
“©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.” 

 



Constraint-Based Rerouting mechanism to address
Congestion in Software Defined Networks

Vijaya Durga Chemalamarri, Robin Braun and Mehran Abolhasan
School of Electrical and Data Engineering

University of Technology Sydney, Sydney, Australia
vijaya.d.chemalamarri@student.uts.edu.au

Abstract—In this paper, we propose a traffic rerouting mech-
anism to address congestion in Software-Defined networks. We
employ back-tracking and constraint propagation techniques to
find alternate paths to reroute multiple active flows simultane-
ously. Cost function is based on standard deviation of link-loads.
We then compare traffic distribution and link utilisation with and
without rerouting active flows. We measure and compare network
performance using parameters such as total rate of transfer, jitter,
and packet loss with that of Shortest Path First with no rerouting.
Our proposed solution produces lower jitter, packet drops, and
higher transfer rate. We finally conclude the paper by making
observations and discussing the scope of the future work.

Index Terms—SDN, Rerouting scheme, Back-tracking

I. INTRODUCTION

Flow scheduling algorithms establish new flows based on
the current state of the network. Legacy algorithms such as
Equal Cost Multipath Routing (ECMP) schedule new flows
on available paths in a round-robin manner. Techniques such
as Weighted Cost Multi-Path Routing(WCMP) assigns weights
to links and provisions flows according to the weight of the
paths. While flow admission strategies provision new flows on
links with less load, they cannot guarantee a congestion-free
network. Rerouting few flows to delay the onset of congestion
is necessary. While efficient traffic rerouting can reduce or
delay the onset of congestion and help distribute traffic across
various links, inefficient rerouting can lead to congestion in
other parts of the network while alleviating congestion on other
links. To avoid such displacement of congestion, a global view
of network state is necessary.

Software-Defined Networking allows a logical separation
and centralisation of the network’s control-plane from the data-
plane. A logically centralised control-plane configures flow-
rules or instructions on the data-plane. Switches use flow-rules
to handle packets. The controller configures flow-rules on the
data-plane using OpenFlow(OF) or similar southbound proto-
col. A flow-rule is composed of matching parameters(fields)
and actions. The interactions between the data and control-
planes can be proactive or reactive. To proactively/reactively
install flow-rules, the controller needs to maintain network
information such as link-loads, number of flows and size of
flows.

Rerouting of network traffic is a well-researched topic.
While in traditional networks, link failures trigger traffic

reroutes, SDN is a perfect platform to revisit this problem
as a centralised control-plane allows for maintaining a global
perspective of the network.

Rest of the paper is organised as follows: Section II briefly
lists related work and motivation behind this work. Section
III introduces our solution, defines keywords, presents our
rerouting mechanism and various components and implemen-
tation details. Testing results and observations are presented
in Section IV. We conclude in Section V.

II. RELATED WORK AND MOTIVATION

We now review some literature on multi-path routing tech-
niques that focus on flow admission and rerouting.

Weighted Cost Multipath Routing (WCMP) [1] distributes
traffic amongst the available next-hop nodes in proportion to
available link capacity.

Authors of [2] propose FlowBender that enables end-host
to drive flow-level load balancing scheme by using Explicit
Congestion Notification(ECN) for congestion detection and
rerouting large flows.The solution uses the Equal Cost Multi-
Path(ECMP) hashing mechanism to hash against a flexible
field in the packet. This field is updated in case of congestion,
thus allowing ECMP to handle packets differently.

In [3], authors propose OFLoad scheme that separates
elephant flows from mice flows and aims to minimise network
congestion by routing the elephant flows on a single shortest
path. Mice flows are aggregated and routed using WCMP.

[4] proposes Mahout, which introduces a Shim layer at the
end-host to detect elephant flows. Switches use the Differential
Services(DS) Field of a packet to notify the controller of
elephant flows. The controller places elephant flows on the
best path.

In [5], authors aim at maximising aggregated network utili-
sation by scheduling flows dynamically. [6] proposes Niagara
that uses wild card rules to split aggregate incoming traffic on
the same set of next-hop nodes based on a weight vector.

In [7], weights are assigned to links and new flows are
configured on the path with the least weight. In [8], Dijkstra’s
algorithm finds multiple equal length paths. In the event of



congestion, higher priority flows are rerouted to links with the
least cost and form the shortest path.

In [9] authors describe a network monitoring module that
monitors the data-plane every second. A load distribution
module calculates the amount of load to rerouted to backup
paths.

Unlike the above stated works, in this paper we propose an
algorithm to reroute multiple flows simultaneously to alleviate
congestion while avoiding congestion displacement.

A. Motivation

We now discuss the motivation behind this work. Flow-
scheduling algorithms distribute traffic based on current link
capacity, hence require real-time network state updates. Since,
the controller does not monitor the network upon installing
a flow-rule,the controller provisions all the flows on the
perceived best path at a given instance as shown in Fig.6(b).

Rerouting of flows can free-up resources for flows with
higher demand. In Fig.1(a), active flows f1, f2 and f3 are
provisioned on paths p1, p2, p3 respectively A new flow f4 is
provisioned on perceived best path p2. The desired behaviour
would be as shown in Fig.1(b) where f2 are rerouted via p3
to free-up resources for f4 on p2.Test1 in Section IV verifies
this effect.

(a) pre-rerouting (b) post-rerouting

Fig. 1: Active flow Rerouting

Rerouting solutions usually reroute a critical flow or a flow
with the highest flow-demand that might not always yield a
solution due to reasons such as flow is no longer active, or
insufficient resources on alternate paths. On the other hand,
moving flow with moderate demand can free resources. Hence,
in this work, we propose to reroute multiple active flows
simultaneously on alternate paths.

Our proposed solution combines flow scheduling with pe-
riodic monitoring and rerouting of multiple flows instead of a
single flow. To reroute multiple flows on alternate paths, we
need to ensure that rerouting of one flow does not starve other
flows of resources and does not displace congestion to other
parts of network while using multiple paths to route flows.
We propose a constraint-based rerouting method to reroute to
minimise the standard deviation of traffic on multiple paths
between a set of nodes.

III. PROPOSED SOLUTION

In this section, we introduce some definition, followed by
description of application components and operation.

Definitions

1) Flow: A flow is denoted by source ip address(src ip),
destination ip address(ds ip), port(pr) tuple.

2) Path: If v is the set of all nodes in a fully connected
network, and l is the set of all links, then a path p between
source src and destination nodes dst is a subset of nodes
vp, sourcing at src and sinking at dst, connected via
subset of links lp

3) Residual bandwidth of a link: is defined as the available
bandwidth of the link l. If bwl is the bandwidth of the
link, and current load on the link is cll, then residual
bandwidth on link is given by rbwl = bwl − cll

4) Current load of a link: If txt−1,txt are a port’s trans-
mission counters at earlier timestamp t − 1 and current
timestamp t respectively and current load of a link,cll is
calculated as (txt−1 − txt)/pi where polling interval pi
is the time interval between two captures

5) Path-capacity: If rbw1, rbw2, rbw3...rbwn are the
residual bandwidth along each link in path p,
A path’s available capacity is determined by
bandwidth of the bottleneck link in the path given
by min(rbw1, rbw2, rbw3...rbwn)

Such a definition of path capacity, will allow the algo-
rithm to not provision a path with a flow beyond the
capacity currently offered by the most congested link in
the path.

6) Path-load: If cl1, cl2, cl3...cln are current loads on links of
a path p,then load of the path pl is max(cl1, cl2, cl3...cln)

7) Flow-demand: flow-demand estimates the bandwidth re-
quirement for a flow based on the flow stats collected
from a switch. If ft−1,ft are flow stats of a flow f at
time instances t− 1 and t respectively then flow-demand
(fd) is given by ft−1−ft/pi where pi is polling interval

8) Link Threshold: Link threshold is set at 80% of link
capacity, upon which the link is flagged as a congested
link.

9) Link-load constraint: If links with load cl1, cl2, cl3...cln
form a path p with path-load pl,a flow f of flow-demand
fd can be provisioned on this path, if and only if there
exists no link whose link-load exceeds link threshold due
to action pl + fd

That is, when a flow is provisioned on a path, no link’s
load should exceed the link threshold. Such a constraint
prevents the algorithm from displacing congestion from
one link to another link.

A. Application components

1) Network Monitoring

Maintaining an updated network state is essential to our
solution. Our application uses information from OF Flow-



Stats, OpenFlow(OF) Port-Stats messages to compute flow-
demands, find paths to forward packets on, calculate the
current link-loads, and identify congested links and reroute
flows. The application polls network every 3 secs to gather
port and flow stats.

2) New flow handler

Similar to existing solutions, our application employs the
best-fit algorithm to handle new-flows by choosing a path with
maximum path-capacity to provision the flow. Upon receiving
a new flow, the application computes all possible paths and
corresponding path-loads between the source and destination
OF switches and chooses the path that offers maximum path-
capacity. We employ a simple depth-first search algorithm to
find all possible paths between OF switch pairs. Finding paths
between a set of OF devices is a one-time activity. Path-loads
and path-capacities are updated in every monitoring cycle.

3) Rerouting active flows

The network monitoring module triggers the rerouting pro-
cess upon detecting link congestion. A link is identified as a
congested link if the link-load exceeds 80% threshold. We have
chosen this value to avoid frequent rerouting (observed for
threshold set to 70%) and delayed or no rerouting (observed
for threshold set to 90%). To reroute flows, we need to (i)
choose flows to reroute and (ii) the paths to reroute on.
To answer (i), we choose an arbitrary number of flows {F}
randomly that are currently using the congested link such that
sizeof{F} >= 1 allowing the application to consider flows
of different flow-demands.

That brings us to (ii) finding paths to reroute the flows
on. One of the risks of rerouting load is the displacement
of congestion from one part of the network to another. All the
paths onto which the selected flows can be rerouted make up
the feasible set of paths. Not all paths can accommodate the
new flow-demands, and though some paths can accommodate
a flow, provisioning the flow might congest the path for other
active flows. For instance, consider the Fig.3. By provisioning
f1 on p1, we can no longer reroute or provision f2. Thus, we
need to find an assignment where all the flows in {F} have a
path to be provisioned on. We employ the back-tracking and
pruning mechanism with constraint checking, as explained in
the next section to find such an assignment.

4) Back-Track with pruning search

Classical search techniques find a solution by systemati-
cally searching through a tree. The algorithm backtracks and
navigates through new branches until a solution is found.
Navigating all possible nodes is resource consuming. Back-
tracking search [10] with constraint propagation is a systematic
search mechanism where a partial solution is extended and any
assignment that fails to satisfy a constraint results in pruning
of the entire branch and the algorithm backtracks to navigate
and find alternate solutions. Formally, a backtracking problem
can be defined as below:

If {V } is the set of variables and set {D} is the domain of
all possible values a variable can take, then a solution is found
if all variables in V have a legal value assigned from D. A legal
value is a value that satisfies constraints [10]. Backtracking
search assigns a variable v1 a legal value d1 from {D}, the
algorithm then assigns next unassigned variable v2 a value
d2. This process continues as long as constraints are satisfied,
and {D} has legal values to assign it to variable vi and search
stops when a solution is found. Upon detection of a assignment
that fails constraint or when a variable has no legal values for
assignment, a branch is considered as not suitable and pruned
entirely and allows the algorithm to backtrack early as shown
in Fig.2.

Thus, if {F} is set of all flows demands and {P} is the set
of all possible paths for flows in F , restating the problem as
’How do we assign ’n’ flows to ’p’ paths such that the link-
load constraint is satisfied?’ The algorithm backtracks when
link’s load exceeds the threshold.

Since a single solution might not necessarily yield the
best solution, we extend the algorithm to continue searching
for other possible solutions. ’Best’ solution here refers to a
solution that minimizes the cost function. Thus, by checking
all links-load constraint, we allow the algorithm to backtrack
early and prune the search space to build a feasible set of all
possible solutions. A solution is found when all the chosen
active flows have a path to be configured on.

Fig. 2: Backtracking and pruning

Sample example with two flows and 2 possible paths has
been provided in Fig.3

Fig. 3: Constraint propagation and backtracking



5) Cost-Function:Standard Deviation/Mean

Flows can be rerouted to meet different goals. Goals can
be formulated as cost functions. For the current work, we use
and minimise standard deviation of path-loads across a set of
paths as cost function.

B. Operation

Upon receiving a table-miss packet from the data-plane, the
controller application computes all possible paths and cor-
responding path-loads and available path-capacities between
source and destination. As mentioned earlier, finding all paths
between a set of nodes is a one-time activity as the physical
topology does not change unless in the instances of link
failure. Path with maximum path-capacity is chosen and flow-
rules are configured proactively on the data-plane. At this
instance, the path-capacities are based on the earlier network
stats collected during earlier monitoring cycle. The monitoring
module monitors the network periodically and updates the
stored network state.

Fig. 4: Rerouting mechanism

Rerouting, on the other hand, is triggered only when one
or more links are congested. A link is congested if the link-
load exceeds 80% threshold as explained earlier . A set of
’n’ randomly selected active flows are selected for rerouting.
Given the dynamic nature of link-loads, there is no definite
way of choosing a specific flow or a set of specific flows
for rerouting. For instance, few flows with high flow-load
can be chosen for rerouting, and no path might be able to
accommodate these flows, whereas they could accommodate

flows of lesser flow-demands and still reduce the load on
congested links. To find a flow or set of flows that meets
the criteria of available link capacities, the controller would
have to iterate over multiple flows. To avoid this process, the
controller randomly chooses a set of flows. This gives equal
chance for all the flows to be selected.

Upon selecting n active flows to reroute, the application
composes alternate paths for the flows to reroute. We apply
constraint checking and back-tracking to prune any non-
feasible solutions. The process of finding a solution be-
gins with provisioning one flow at a time and adding non-
provisioned flows to this set until all flows have a path to
route on. A flow f of flow-demand fdf is assigned to a
path p with path load plp only if the link-load constraint is
satisfied. Since a link can be part of multiple paths used by
other flows, the algorithm checks for constraint satisfaction
for all the links and proceeds to extend this current solution
cur sol by provisioning remaining flows. In case of constraint
failure, while assigning flow f , the algorithm back-tracks and
assigns f to alternative path and prunes all the subsequent flow
assignments of the current branch. The process is repeated
until all flows are assigned to a path. At this stage, the
application has a complete solution cur sol. As mentioned
earlier, the process doesn’t stop after finding one solution, the
algorithm back-tracks and finds all possible solutions to form
the feasible set.

Backtracking algorithm and corresponding constraint check
mechanism are listed below

FIND-SOLUTIONS(cur sol, feasible set)

1 f = select unassigned flow(F )
2 if f == None

3 feasible set.append(cur sol)
4 return feasible set
5 recompute residual bandwidths()
6 if cur sol[f ] == None

7 for p ∈ paths

8 plp = plp + fdf
9 cur sol[f ] = p

10 if CONSTRAINT-SATISFIED()

11 FIND-SOLUTIONS(cur sol, feasible set)

12 cur sol[f ] = None

13 plp = plp − fdf
14 return feasible set

CONSTRAINT-SATISFIED()

1 for l ∈ links

2 if cll > link − threshold

3 return False
4 return True



Upon finding all possible assignments, we select the solu-
tion that yields lowest cost-function from the set of all possible
solutions. At this point, a solution is available for the applica-
tion. Corresponding end-to-end flow-rules are composed and
configured proactively on the OF devices.

COST-FUNCTION(feasible set)

1 for sol ∈ feasible set

2 for f ∈ sol

3 plp = plp + fdf
4 sol std = standard-deviation of link-loads
5 sol val = sol std / mean
6 return min(sol val),sol

IV. TESTING AND OBSERVATIONS

As with the majority of SDN simulations, OF topology is
simulated with Mininet [11]. The controller of choice is Ryu
[12].

1) Test1

Abilene topology from the Topology Zoo database [13]
is used to test the Proposed Solution(PS) where each link’s
bandwidth is set to 1 Mbps. Link-load comparison is made
against Shortest Path First(SPF) algorithm with no rerouting
functionality. For both PS and SPF, the network state is
updated every 3 secs and the threshold for triggering rerouting
process is 80% of link capacity. Hosts h1,h2,h3 connected to
s1,s2,s3 send UDP traffic in an ON-OFF manner to host h11
connected to s11. The ON-OFF traffic generation pattern is
listed in Table 1.

Fig.6 captures different links utilisation for the duration of
the test. With the proposed rerouting algorithm, it can be
noticed that the network links experience a lesser duration
of high-utilisation and more links; in other words, alternate
paths are utilised when active flows are rerouted, as shown
in Fig.6(a). To contrast this behavior against an application
running SPF and not rerouting active flows, as shown in Fig.
6(b). We can observe that a smaller set of links are highly-
utilised over a longer duration of time.

(a) abilene topology for test1 (b) Topology for test2

Fig. 5: topologies used in testing

TABLE I: ON-OFF traffic generation sources

Duration Src Dst P
0-600secs H1 H11 10
40-200secs H1 H11 5
100-300secs H2 H11 10
150-300secs H2 H11 5
150-350secs H3 H11 10
250-400secs H3 H11 5
280-580secs H1 H11 5

(a) proposed solution

(b) shortest path first

Fig. 6: link-load comparison: Proposed Solution vs SPF

2) Test2

In Test2, we verify the effect of rerouting on transfer
rates, jitter and loss. We have used iperf to generate UDP
streams and register jitter and delay.Topology listed in [14]
as in Fig.5(b) has been used to conduct the test. Each link’s
bandwidth is set of 1Mbps. h1, h2 send a UDP bit stream at
750 Kbits to h5 and h3 sends UDP stream at 750 to h6 for
a duration of 60 secs. Initially,traffic from h1 to h5 is routed
via path via s1,s4,s6,s3,s5 and traffic from h2 to h5 is routed
via path s1,s4,s6,s3,s5 and traffic from h3 to h6 routes via
s2,s4,s5. Since the topology information is updated every 3
secs, flows h1 towards h5 and h2 towards h5 are routed via
same path leading to congestion. Upon rerouting, flows from
h1 to h5 is rerouted on to s1,s3,s6,s4,s5.

Given that network information is updated periodically, SPF
identifies same path as best path for all the flows generated
between polling duration and ultimately uses the same path
to forward all the flows onto thus leading to higher loss and
jitter as shown in Fig.7 With our proposed solution, this is
eventually addresses when the application detects a congestion
in following monitoring cycles and triggers rerouting, thus
moving the flows to alternate paths.



(a) avg. total transfer
rates PS vs SPF

(b) avg.jitter PS vs
SPF

(c) avg. total loss PS
vs SPF

Fig. 7: Network performance comparison between SPF and
PS

Observations

The cost function for this work is standard deviation, is a non-
monotonic function. In sense, it doesn’t display an increasing
or decreasing trend and fluctuates as new flows are added to the
path. Thus, greedy calculations of cost function are rendered
useless. Standard deviation amongst the path-loads can only
be calculated at the leaves of the tree only after all flows are
assigned to paths.

Also, an upper bound on total number of possible solutions
is pf where p is number of paths for f number of flows.
Such an high number of solutions can be generated only
when majority of the branches are navigated and not pruned.
This can occur when all the flows assignments satisfy the
constraints, which is possible when high number of paths have
sufficient capacity to provision the most of flows, in which
case we can conclude that the paths are not highly congested-
thus making the rerouting process redundant. This behaviour
was observed when the threshold value was set to 70%.

In other words, the algorithm performs its worst when
there is less congestion in the network. Lower congestion
threshold results in a rise in the number of alternate paths
for provisioning flows, thus expanding the feasible region.

In-case links are fully congested, the algorithm does not
yield a solution as no alternative paths can be found that
satisfies the constraints. This explains why there are some
highly utilised links. As observed in Fig.6(a), where the onset
of congestion is delayed but not entirely absent.

Higher polling intervals reduce the benefits of rerouting
whereas smaller intervals increase polling traffic. With a
certain level of link-load prediction, this can be addressed and
is scoped for future work.

Since rerouting occurs only in the presence of congestion,
there might be instances where traffic between a source and
destination is not evenly distributed on all available paths.
This behaviour is acceptable as long as it does not lead to
congestion on one specific path.

A time-limit can be set for congestion duration to avoid
frequent fluctuation of traffic on links. For instance, a link
congested for a longer duration preempts a recently is con-
gested link.

Finally, Since port stats from earlier time-stamps are used,
multiple flows see the same link as the best available link with
maximum resources at a given time. Rerouting resolves such
behavior.

V. CONCLUSION

In this paper, we proposed a rerouting mechanism with
a goal to distribute traffic across multi-path networks. This
was achieved by selecting and rerouting multiple active flows
on multiple paths by minimising the standard deviation of
the path-loads while meeting the link constraints. We have
then tested our proposed solution against SPF algorithm. We
have made critical observations about the proposed rerouting
mechanism.

REFERENCES

[1] J. Zhou, M. Tewariy, M. Zhu, A. Kabbani, L. Poutievski, A. Singh,
and A. Vahdat, “WCMP: Weighted cost multipathing for improved
fairness in data centers,” Proceedings of the 9th European Conference
on Computer Systems, EuroSys 2014, 2014.

[2] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “Flowbender: Flow-
level adaptive routing for improved latency and throughput in datacenter
networks,” CoNEXT 2014 - Proceedings of the 2014 Conference on
Emerging Networking Experiments and Technologies, pp. 149–159,
2014.

[3] R. Trestian, K. Katrinis, and G. M. Muntean, “OFLoad: An OpenFlow-
based dynamic load balancing strategy for datacenter networks,” IEEE
Transactions on Network and Service Management, vol. 14, no. 4, pp.
792–803, 2017.

[4] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,”
Proceedings - IEEE INFOCOM, pp. 1629–1637, 2011.

[5] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” Proceed-
ings of NSDI 2010: 7th USENIX Symposium on Networked Systems
Design and Implementation, pp. 281–295, 2019.

[6] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient
Traffic Splitting on SDN Switches,” CoNEXT ’15, 2015.

[7] M. Shafiee and J. Ghaderi, “A Simple Congestion-Aware Algorithm for
Load Balancing in Datacenter Networks,” IEEE/ACM Transactions on
Networking, vol. 25, no. 6, pp. 3670–3682, 2017.

[8] G. N. Senthil and S. Ranjani, “Dynamic Load Balancing using Software
Defined Networks,” International Journal of Computer Applications, pp.
11 – 14, 2015.

[9] S. Attarha, K. Haji Hosseiny, G. Mirjalily, and K. Mizanian, “A load
balanced congestion aware routing mechanism for Software Defined
Networks,” 2017 25th Iranian Conference on Electrical Engineering,
ICEE 2017, pp. 2206–2210, 2017.

[10] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Pearson Education, 2003.

[11] http://mininet.org/, [Online; accessed 2-July-2020].
[12] https://ryu.readthedocs.io/en/latest/#, [Online;accessed 2-July-2020].
[13] http://www.topology-zoo.org, [Online;accessed 2-July-2020].
[14] M. T. Kao, B. X. Huang, S. J. Kao, and H. W. Tseng, “An Effec-

tive Routing Mechanism for Link Congestion Avoidance in Software-
Defined Networking,” Proceedings - 2016 International Computer Sym-
posium, ICS 2016, pp. 154–158, 2017.


	20xx IEEE
	1570679251 final

