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ABSTRACT

HUMAN GAIT RECOGNITION UNDER CHANGES OF WALKING

CONDITIONS

by

Lingxiang Yao

Gait has been gathering extensive research interest for its non-fungible position in

applications, e.g., security surveillance and forensic identification. First, it is difficult

to disguise one’s gait, since walking is necessary for human mobility. Second, it works

well in an unconstrained condition and can be attained at a distance without physical

contact or proximal sensing. However, although recently different methods have been

proposed for gait recognition, gait analysis is still in its infancy. Most methods enable

to garner a remarkable recognition performance when the gallery and the probe are in

a similar situation. However, when exterior factors affect a person’s gait and changes

occur in human appearances, a significant performance degradation happens.

Among these exterior factors, clothing variations and mode changes can be treated

as the most influential factors for gait recognition. It is advisable to identify a person

using gait, since each person exhibits his/her walking patterns in a sufficiently unique

and fairly characteristic way. However, clothing variations can significantly influence

available features to be used in the future recognition process, while walking/running

modes can change human motions made by limbs and thus dramatically influence the

instinct walking patterns of each person. Hence, in this thesis different methods have

been proposed for gait recognition to handle the difficulties of clothing variations and

walking/running mode changes.

First, given that model-based methods are less vulnerable to clothing variances, a

more robust model-based gait feature, Skeleton Gait Energy Image (SGEI), is formed

to handle this cloth-changing gait recognition problem. Then, since clothing changes



can cause different impacts to different body parts, a part-based collaborative spatio-

temporal feature learning method is also proposed for cloth-changing gait recognition

by concatenating features from the non/less affected body parts under the correlative

H−W and T−W views. Based on the aforementioned two methods, another efficient

network is proposed for cloth-changing gait recognition. This network consists of two

sub-networks, aiming to produce part-based features from the non/less affected body

parts and the estimated skeleton key-point regions. Moreover, in order to address the

walking-vs-running problem in a cross-mode manner, a feasible hybrid method is also

proposed in this thesis. Distinct from most cross-mode gait recognition methods, this

method focuses on learning mode-invariant features for each person from their innate

patterns between walking and running modes. Multi-task learning strategies are also

used to enhance the efficiency of these learned features. Finally, given that the above-

mentioned methods are all proposed based on sufficient input data, a complementary

solution is given when only a few gait frames can be offered.

To sum up, the main objective of this thesis is to address the problems of clothing

variations and walking/running mode changes for gait recognition, thus four different

methods have been proposed in this thesis. Besides, related experiments have proved

that these proposed methods can obtain a remarkable performance when tackling the

cloth-changing and walking-vs-running gait recognition problems.
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