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Abstract

In 1968, Milnor asked if a finitely-generated group could have volume growth that is
neither exponential nor polynomial (so-called ‘intermediate’), and if there is an algebraic
classification of groups with polynomial volume growth. We consider the analogous
questions for geodesic growth.

We show that no virtually abelian group can have intermediate geodesic growth. In
particular, we completely characterise the geodesic growth for every virtually abelian
group. We show that the geodesic growth is either polynomial of an integer degree with
rational geodesic growth series, or exponential with holonomic geodesic growth series. In
addition, we show that the language of geodesics is blind multicounter. These results
hold for each finite weighted monoid generating set of any virtually abelian group.

A direct consequence of Gromov’s classification of polynomial volume growth is that if a
group has polynomial geodesic growth with respect to some finite generating set, then it is
virtually nilpotent. Until now, the only known examples with polynomial geodesic growth
were all virtually abelian. We furnish the first example of a virtually 2-step nilpotent
group having polynomial geodesic growth with respect to a certain finite generating set.

Holt and Röver proved that finitely-generated bounded automata groups have indexed
co-word problems. We sharpen this result to show that their co-word problem is ET0L.
We do so using an equivalent machine model known as a cspd automaton. This extends a
result of Ciobanu, Elder and Ferov who showed this for the first Grigorchuk group by
explicitly constructing an ET0L grammar.
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Chapter 1
Introduction

Two of the most important results in geometric group theory are Gromov’s classification of
groups with polynomial volume growth [56], and Grigorchuk’s construction of a group with
intermediate volume growth [53]. These results answer two questions originally posed by
Milnor, namely, whether the volume growth of groups must always be either exponential,
or polynomial of an integer degree; and if there is an algebraic classification of groups
with polynomial volume growth [77]. In this thesis, we consider the analogous questions
for geodesic growth.
The volume growth function of a group counts the number of elements that can be

represented using words up to a given length. It was shown by Gromov that a group
has polynomial volume growth if and only if it is virtually nilpotent [56]. The geodesic
growth function of a group counts the number of geodesic words (i.e. minimal-length
representatives of group elements) with a given upper bound on their lengths. The volume
(resp. geodesic) growth series is then the power series whose coefficients are the values
of the volume (resp. geodesic) growth function. Since each element of a group has at
least one corresponding geodesic, we see that the geodesic growth is bounded from below
by the volume growth. From this and Gromov’s theorem, we see that only virtually
nilpotent groups may have polynomial geodesic growth. It is well known that the class
of nilpotent groups come in a sequence of steps, the first step being the abelian groups.
Thus, to obtain a classification of polynomial geodesic growth, it is natural to start with
the virtually abelian groups.

The study of geodesic growth for abelian groups began in 1997 when Shapiro considered
the function pS : G → N which counts the geodesics corresponding to a given element
of a group G [90]. The function pS is referred to as the Pascal function as, in the case
of free-abelian groups, it resembles a Pascal triangle. The geodesic growth of virtually
abelian groups was considered by Bridson, Burillo, Elder and Šunić who provided the
first example of a group with polynomial geodesic growth that is not virtually cyclic [19].
Moreover, they provided a sufficient condition for a virtually abelian group to have
polynomial geodesic growth with respect to some generating set, a condition for a group
to have exponential geodesic growth with respect to every generating set, and proved
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1. Introduction

that the geodesic growth function of a virtually cyclic group is either exponential, or
polynomial of an integer degree. In this thesis, we extend their results by completely
characterising the geodesic growth for virtually abelian groups.

Theorem A. Let G be a virtually abelian group with a finite weighted monoid generating
set S. Then the geodesic growth with respect to S is either polynomial of integer degree
with rational geodesic growth series, or exponential with holonomic geodesic growth series.

We provide the first example of a group with polynomial geodesic growth that is not
virtually abelian. In particular, we show that the virtually Heisenberg group

H3 o C2 =
〈
a, b, c, t

∣∣ [a, b] = c, [a, c] = [b, c] = t2 = 1, at = b
〉

has a polynomial upper bound on its geodesic growth function with respect to the
generating set S = {a, a−1, t}. We prove this result in Theorem B. This example shows
that a classification of polynomial geodesic growth is more complicated than just a
subclass of virtually abelian groups.

Theorem B. The geodesic growth function of H3 o C2 with respect to S = {a, a−1, t} is
bounded from above by a polynomial of degree 8.

It was shown by Duchin and Shapiro that the volume growth series of the Heisenberg
group H3 is rational with respect to every generating set [39]. Theorem A shows us that
if the geodesic growth of a virtually abelian group is polynomial, then its geodesic growth
series is rational. However, it is not clear if this holds for the geodesic growth function of
our virtually Heisenberg example H3 o C2. In fact, computational experiments suggest
that the geodesic growth series is not rational (see [12]). Thus, this may be the first
example with polynomial geodesic growth and non-rational geodesic growth series.
The question of the existence of a group with intermediate geodesic growth was

considered as early as 1993 by Grigorchuk and Shapiro (see [54, p. 756]). In the PhD
thesis of Brönnimann most of the groups known to have intermediate volume growth, at
the time, were shown to have exponential geodesic growth with respect to their standard
generating sets [21, Chapter 3]; these results were an extension of an unpublished work of
Elder, Gutierrez and Šunić where this was shown only for the first Grigorchuk group [41].
We cannot, at this time, eliminate the possibility of there being a virtually nilpotent group
with intermediate geodesic growth. Thus, the results in this thesis also have application
to the search of a group with intermediate geodesic growth.

Most of the literature on geodesic growth has been concerned with either showing that
the language of geodesics is regular (see Section 2.1), or that the geodesic growth series is
rational (see Section 2.2.1) with respect to some particular generating sets. It is known
that the language of geodesics for a hyperbolic group is regular with respect to any finite
generating set [43, Theorem 3.4.5]. This result was generalised by Neumann and Shapiro
to any group and generating set with the falsification by fellow traveller property [80,
Proposition 4.2 on p. 267]. There are many results for particular generating sets of certain
Coxeter groups, Artin groups [3, 4, 6, 33, 60, 67, 75], and Garside groups [24, 88]. Shapiro
studied the Pascal function for abelian and hyperbolic groups [90]. It was shown by
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Loeffler, Meier and Worthington that having a regular language of geodesics is preserved
by graph product [74]. Hermiller, Holt and Rees studied groups whose languages of
geodesics are locally testable (which is a proper subfamily of the regular languages) [59].
Cleary, Elder and Taback showed that the language of geodesics for the lamplighter group
is context-free and counter for some generating sets; and that the language of geodesics
for Thompson’s group F is not regular for any generating set [34].

We prove Theorem A by constructing an algorithm that converts geodesics into patterned
words. From this algorithm, we find a bijection from the set of geodesics of a virtually
abelian group to a certain formal language with a holonomic growth series. It is then
natural to ask if there is a formal-language characterisation for the language of geodesics
for a virtually abelian group. In Theorem C, we obtain such a characterisation by
implementing this algorithm using blind multicounter automata.

Theorem C. The language of geodesics of a virtually abelian group with respect to any
finite weighted monoid generating set S is blind multicounter.

A formal language over a group is a set of words whose letters are taken from the
generating set. So far we have discussed our results on the language of geodesics for a
group. In this thesis, we also study the co-word problem, that is, the language of words
that do not correspond to the group identity. Characterisations of such languages provide
us with one measure for the computational difficulty involved with computing in a group.

The word problem of a group G with respect to a finite monoid generating set S, denoted
WPS , is the set of all words in S∗ that correspond to the group identity. We see that the
word problem completely specifies a group as 〈S |WPS〉 is a presentation for G. This
formal language is one characterisation of the difficulty of computing within a group, i.e.,
checking if two words u, v ∈ S∗ represent the same group element is equivalent to checking
if the word uv−1 is in the word problem WPS . The co-word problem of a group, denoted
coWPS , is the complement of the word problem in the sense that coWPS = S∗ \WPS .

There are groups for which it is not possible to decide membership to the word problem.
Interestingly, there are such groups for which the word problem is recursively enumerable
but not recursive, that is, there is an algorithm that lists every word in the word problem
(with no guarantee of order) but no such algorithm which lists out every word in the
co-word problem. In particular, there are finitely-presented groups with unsolvable word
problems. The existence of such examples was shown independently by Novikov [81] (see
[20] for an English translation) and Boone [18]. An explicit example with 10 generators
and 27 relators was given by Collins [35], then later a simpler example with 2 generators
and 27 relators was given by Wang, Li, Yang and Lin [94]. We see that the word problem
for any finitely-presented group is recursively enumerable (see Proposition A.1).
Suppose that F is a family of formal languages that is closed under inverse word

homomorphism. Then, if the word or co-word problem with respect to some generating
set belongs to F , it belongs to F for all generating sets (see Lemma 3.2). Thus, for such
a family it is well defined to state that a group has a word or co-word problem in F .
Examples of such families are the regular, context-free and context-sensitive languages; the
family of ET0L languages which are a type of L-system, introduced by Rozenberg [87], that
generalises context-free languages, and form a subfamily of context-sensitive languages;
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1. Introduction

and the family of blind multicounter languages [52] which generalise counter languages
and are equivalent to the class of reversal bounded multicounter languages [8] and Parikh
languages [64]. If F is a family of formal languages that is closed under inverse word
homomorphism, and the word (resp. co-word) problem of a group lies in F , then we say
that the group is an F (resp. co-F) group.
It is interesting to find classifications of groups whose languages WPS and coWPS

belong to certain language families. The study of this problem began with Anisimov
who showed that a group is finite if and only if WPS is a regular language [2]. Further
classifications were obtained by Muller and Schupp who showed that a group is virtually
free if and only if its word problem is a context-free language [78]; and Elder, Kambites
and Ostheimer who showed that a group is virtually abelian if and only if its word problem
is a blind multicounter language [42].

The study of the group co-word problem, coWPS , gives us an additional source of such
classifications. The class of groups for which coWPS is context-free was first studied by
Holt, Rees, Röver and Thomas [61]. Their results were then extended by Lehnert and
Schweitzer [70] who showed that Thompson’s group V has a context-free co-word problem.
Combining a result of Bleak, Matucci and Neunhöffer [17] with a remark in Lehnert’s
thesis [71, § 4.2], it is conjectured that every group with context-free co-word problem is a
subgroup of Thompson’s group V . Moreover, it is conjectured that Grigorchuk’s group
does not have a context-free co-word problem [17].

The class of bounded automata groups includes important examples such as Grigorchuk’s
group of intermediate growth, the Gupta-Sidki groups, and many more [55, 57, 79, 91].
It was shown by Holt and Röver [63] that bounded automata groups have indexed co-
word problems. ET0L languages form a proper subfamily of the indexed languages
introduced by Aho [1] (see Corollary 4.1 in [36] and Proposition 4.5 in [40]). For the
case of Grigorchuk’s group, it was later shown by Ciobanu, Elder and Ferov that the
co-word problem is ET0L [32]. They proved this result by explicitly constructing an
ET0L grammar to recognise the co-word problem. In Theorem D we use an equivalent
machine model to generalise this result to all bounded automata groups.

Theorem D. Every finitely-generated bounded automata group is co-ET0L.

All results in this thesis are with respect to monoid generating sets for groups. In
particular, this means that we do not assume that our generating sets are symmetric.
For example, the group of integers Z = 〈a | −〉 is generated by {a−1, a3}. Moreover, we
prove Theorems A and C for each finite weighted monoid generating set. That is, for each
generator we associate a positive integer weight, and we say that a word is a geodesic
if it represents an element with minimal weight. Notice that we may recover the usual
definition of a geodesic by choosing the weight of each generator to be one.

1.1. Structure

This thesis is structured as follows. In Chapter 2, we provide background on formal
language theory and define the families of formal languages that are used in our proofs.
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1.2. Attribution of Results

In Chapter 3 we study the co-word problem for bounded automata groups, and prove
Theorem D. We then return to formal language theory in Chapter 4 where we define the
family of polyhedrally constrained languages. Then, in Chapter 5 we prove provide a
characterisation of the language of geodesics and geodesic growth of virtually abelian
groups by proving Theorems A and C. Finally, in Chapter 6 we consider virtually nilpotent
groups and prove Theorem B.

1.2. Attribution of Results

Theorems A and C are published in the single-authored paper [13]. Theorem B is joint
work with my supervisor, Murray Elder, a preprint of this work is available in [14].
Theorem D is also joint work with Elder and has appeared in the conference proceedings
of LATA (Language and Automata Theory and Applications) 2019 [15].

1.3. Notation

Let N = {0, 1, 2, . . .} denote the set of nonnegative integers, including zero, and N+ =
{1, 2, 3, . . .} the set of positive integers.
Let G be a group, and let g, h ∈ G, then [g, h] = ghg−1h−1 and gh = hgh−1. Given

two subgroups H,K 6 G, we write [H,K] for the subgroup

[H,K] = 〈{[h, k] | h ∈ H, k ∈ K}〉 .

A group G is k-step nilpotent if there is a finite sequence of subgroups

G0 = G, G1 = [G,G0], G2 = [G,G1], G3 = [G,G2], . . . , Gk = [G,Gk−1] = {1}.

Notice that the 1-step nilotent groups are precisely the abelian groups. Moreover, for
each k, the set of (k + 1)× (k + 1) invertible upper-triangular integer matrices with 1’s
on their diagonal form a k-step nilpotent group. In fact, it is a result of Auslander that
each nilpotent (or more generally each polycyclic) group has a faithful representation in
SL(n,Z) for some n [7, Theorem 2].

Let P be some group property, e.g., being abelian, nilpotent, or free. Then, we say that
a group is virtually P is it has a finite-index subgroup with the property P . For example,
we say that a group is virtually nilpotent if it has a finite-index nilpotent subgroup.

Let G be a group with a finite generating set S, then we write S∗ for the set of all
words, including the empty word ε ∈ S∗, in the letters of S; and σ ∈ G for the group
element corresponding to the word σ ∈ S∗. We endow S with a weighting, that is, for each
generator s ∈ S we assign a positive integer weight ω(s) ∈ N+. We then say that S is a
finite weighted generating set for the group G. The weight of a word σ = σ1σ2 · · ·σk ∈ S∗
is then given by ω(σ) =

∑k
i=1 ω(σi). Moreover, we write |σ|S = k for the word length

of σ. The weighted length of an element g ∈ G is then defined as the minimum weight
required to represent it as a word, that is,

`S(g) = min{ω(σ) | σ = g where σ ∈ S∗}.

5



1. Introduction

We may now define the volume growth function aS : N→ N as follows.

Definition 1.1. The volume growth function aS : N→ N is defined as

aS(n) = #{g ∈ G | `S(g) 6 n}.

That is, aS(n) counts the elements which can be represented by a word of length n or less.

We say that a word σ ∈ S∗ is a geodesic if it represents σ with minimal weight, that is,
if ω(σ) = `S(σ). We write GeodS for the set of all geodesic words with respect to the
generating set S, that is,

GeodS = {σ ∈ S∗ | ω(σ) = `S(σ)}.

We then define the geodesic growth function γS : N→ N as follows.

Definition 1.2. The geodesic growth function γS : N→ N is defined as

γS(n) = #{σ ∈ GeodS | ωS(σ) 6 n}

This function counts the number of geodesic words of length n or less.

Notice that the volume and geodesic growth functions can be at most exponential as

aS(n) 6 γS(n) 6
n∑
i=0

|S|i 6 |S|n+1.

We say that a (volume/geodesic) growth function f : N→ N has
• polynomial growth if there is some β, d ∈ N+ such that f(n) 6 βnd for each n > 1;
• exponential growth if there is an α ∈ R with α > 1 such that f(n) > αn; and
• intermediate growth if its growth is neither polynomial nor exponential.

Notice that the volume and geodesic growth functions are submultiplicative, that is, if
f : N→ N is a growth function, then f(n+m) 6 f(n)f(m) for each n,m ∈ N. Thus, we
may apply the following result.

Lemma 1.3 (Fekete’s lemma [47]). If f : N→ N is submultiplicative, then the growth
rate αf = limn→∞

n
√
f(n) is defined.

From Lemma 1.3, we see that a function f : N→ N has exponential growth if and only
if the growth rate αf > 1.
In this thesis, we are interested in studying the asymptotics of growth functions by

considering their associated generating functions. We write AS and ΓS for the generating
functions associated with aS and γS , respectively.

Definition 1.4. We write

AS(z) =

∞∑
n=0

aS(n)zn and ΓS(z) =
∞∑
n=0

γS(n)zn

for the volume and geodesic growth series, respectively.

6



1.3. Notation

We write x = (x1, x2, . . . , xm) for a finite list of variables. Then, for each vector
n = (n1, n2, . . . , nm), we then write xn = xn1

1 xn2
2 · · ·xnmm . We may write a multivariate

generating series as f(x) =
∑

n∈Nm cnx
n where each cn is a constant. We write C[[x]], C[x],

C((x)), and C(x) for the class of formal power series, polynomials, formal Laurent series,
and rational functions, respectively, over the variables x = (x1, x2, . . . , xm). Moreover,
we write ∂xif(x) for the formal partial derivative of f(x) with respect to xi. We use this
notation in Section 2.2 where we define multivariate generating functions and the classes
of rational, algebraic and holonomic power series.
Let G be a group with finite monoid generating set S, then the word and co-word

problem of G with respect to S are given as

WP(G,S) = {w ∈ S∗ | w = 1G} and coWP(G,S) = {w ∈ S∗ | w 6= 1G},

respectively. Notice here that coWP(G,S) = S∗ \WP(G,S), that is, the two sets are
complements of each another with respect to the set S∗.

7





Chapter 2
Formal Languages and Generating
Functions

How can we describe and study the complexity of combinatorial structures? One answer
is to use the theory of formal languages, that is, after finding a bijection from our
combinatorial structures to words in a formal language, we may produce generating
functions and computational descriptions.

A formal language is a set of words whose letters are taken from a finite set of abstract
symbols Σ known as an alphabet, or equivalently, a formal language is a subset of the
free monoid Σ∗. We collect formal languages into families, and study the computational
complexity and the generating functions of languages in these families.

In this chapter, we begin by recalling some basic definitions in formal language theory, in
particular, we recall the Chomsky hierarchy in Section 2.1, and formal language generating
functions in Section 2.2. In Section 2.2 we describe the classes of rational, algebraic, and
holonomic generating functions. For each such class of generating functions we provide a
family of formal languages with generating functions lying in the class, and an explicit
example of such a language. We then define several particular language families which
we require for the proofs and results in this thesis. In particular, we define the family of
constrained languages, blind multicounter languages, and ET0L languages.

In Section 2.3, we define constrained languages with a focus on the family of linearly
constrained languages introduced by Massazza [76]. It was shown by Massazza [76,
Theorem 2] that linearly constrained languages have holonomic generating functions. We
return to constrained languages in Chapter 4 where we define the family of polyhedrally
constrained languages. This family of languages is used in the proof of Theorem A.

In Section 2.4 we study blind multicounter automata. We say that a language is blind
multicounter if it is recognised by a blind multicounter automaton. In Theorem C, we
show that the language of geodesics for a virtually abelian group, with respect to any
finite weighted monoid generating set, is blind multicounter.

Lastly, in Section 2.5 we study the family of ET0L languages. ET0L languages and their
deterministic counterpart, EDT0L, arise naturally in many areas of group theory [29–32,

9



2. Formal Languages and Generating Functions

37, 45]. In Chapter 3 we see that this family is relevant to the well-studied class of
groups known as bounded automata. In particular, we show that the co-word problem
for bounded automata groups is ET0L. Our proof relies on a machine model, known as
a cspd automaton, which is equivalent to the family of ET0L languages. In Section 2.5
we provide a self-contained proof of an equivalence between ET0L languages and cspd
automata. We prove Theorem D by constructing a cspd automaton for the co-word
problem of a bounded automata group.

2.1. The Chomsky Hierarchy

The Chomsky hierarchy consists of four well-known families of languages which can
be described by formal grammars with increasingly restrictive rules. In particular, the
hierarchy comprises the families of recursively enumerable, context-sensitive, context-free
and regular languages. Each family in the hierarchy has an equivalent machine model,
which are arbitrary Turing machines, linearly bounded automata, pushdown automata,
and finite-state automata, respectively. Moreover, the families in this hierarchy form a
sequence of strict containment as seen in Figure 2.1.

regular

context-free

context-sensitive

recursively enumerable

Figure 2.1: The Chomsky hierarchy.

The standard reference for this hierarchy is the 1959 paper by Chomsky [27], in which
these languages were studied with respect to the complexity of their corresponding formal
grammars. The class of Turing machines and family of recursively-enumerable languages
were defined by Turing [93] in 1936, and Post [82] in 1943, respectively. These concepts
were shown to be equivalent in 1947 by Post [83]. The family of regular languages
and class of finite-state automata were defined and shown to be equivalent in 1956
by Kleene [66] where they were studied in the context of nerve nets. The family of
context-free languages was shown to be equivalent to the class of pushdown automata
independently by Chomsky [25] in 1962 and Evey [46] in 1963. Lastly, in 1964 it was
shown by Kuroda [68] that the family of context-sensitive languages is equivalent to the
class of languages recognised by a Turing machine with linearly bounded tape, that is, a
Turing machine whose work tape (i.e. its memory) can only be linear in size with respect
to the size of its input. For a more detailed history the reader is directed to [51].
In Section 2.1.1 we define each family in the Chomsky hierarchy in terms of their

grammars, and describe what it means for a context-free language to be unambiguous.
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2.1. The Chomsky Hierarchy

Then, in Section 2.1.2 we define the class of finite-state automata. The concepts described
in this section are preliminaries to our discussion of other families of languages discussed
in this chapter, and are assumed in many of the proofs within this thesis.

2.1.1. Formal Grammars

A formal grammar is a finite set of replacement rules which describe how to build words
in a language. There are many equivalent definitions of formal grammar in the literature.
We define a formal grammar to be a 4-tuple of the form (Σ, V, S, P ) where

• Σ is the alphabet of the language generated by the grammar;
• V is a finite set of non-terminal letters which are disjoint from the letters in Σ;
• S ∈ V is the starting symbol ; and
• P is a finite set of replacement rules of the form r : p→ q where p, q ∈ (V ∪ Σ)∗.

For each replacement rule r : p→ q and each word αpβ where α, β ∈ (V ∪ Σ)∗, we may
write αpβ →r αqβ, that is, our rule r allows us to replace any instance of p with q. For
each sequence of replacement rules ρ = r1r2 · · · rk ∈ P ∗, we write w →ρ σ if there is a
finite sequence of words w1, w2, . . . , wk−1 ∈ (V ∪ Σ)∗ such that

w →r1 w1 →r2 w2 →r3 · · · →rk σ.

The language generated by a formal grammar (Σ, V, S, P ) is then

L(Σ, V, S, P ) = {w ∈ Σ∗ | S →ρ w where ρ ∈ P ∗}.

We classify formal grammars into four types based on the complexity of their replacement
rules, in particular, every formal grammar is Type 0, and a grammar is

• Type 1 if each replacement rule has the form αAβ → αγβ where A ∈ V is a
non-terminal, and α, β, γ ∈ (V ∪ Σ)∗ are words;

• Type 2 if each rule has the form A→ α where A ∈ V and α ∈ (V ∪ Σ)∗; and
• Type 3 if each rule has the form A→ α or A→ αB where A,B ∈ V and α ∈ Σ∗.

The classes of Type 0, 1, 2 and 3 formal grammars correspond to the families of recursively
enumerable, context-sensitive, context-free, and regular languages, respectively.

Notation 2.1. To simplify notation when presenting the replacement rules of a grammar,
we often write α → β1 | β2 | · · · | βk to denote the k replacement rules α → βj for
j ∈ {1, 2, . . . , k}, where α, β1, β2, . . . , βk ∈ (V ∪ Σ)∗.

The productions of a Type 2 grammar can be represented as a tree, for example, let
D2 = (Σ, V, S, P ) be the Type 2 grammar given by

Σ = {a, b}, V = {S}, P = {S → aSbS | ε}.

This is a grammar for the Dyck language. The language corresponds to strings of matching
open and closed brackets where a is an open bracket, and b is a close bracket. The word
aabaabbb is generated by the grammar D2 and can be encoded with the derivation tree
given in Figure 2.2. A derivation tree is a tree where the children of each node are ordered,

11



2. Formal Languages and Generating Functions

the word produced by the tree is obtained by performing an in-order traversal of its
leaves. One can show that each word produced by the grammar D2 will have exactly one
derivation tree. A grammar is called unambiguous if it has exactly one derivation tree for
each of its words. Moreover, if a language has an unambiguous grammar, then we will say
that the language itself is unambiguous. Otherwise, if a language has no unambiguous
grammar, then we say that it is inherently ambiguous.

S

a S b S

a S b S

a S b S

a S b S

ε

ε

ε

ε ε

Figure 2.2: Derivation tree for aabaabbb in D2

It is a result of Chomsky and Schützenberger that the generating function of any
unambiguous context-free language is algebraic (see Lemma 2.8). This result allows us to
show that certain languages are inherently ambiguous. For example, let L be the language

L = {w ∈ {a, a, b, b}∗ | |w|a = |w|a or |w|b = |w|b}.

From [48, p. 296] it is known that the generating function of L is

f(z) =
2

π

∫ π/2

0

1√
1− 16z2 sin2 θ

dθ.

It can be shown that f(z) is not algebraic and thus L is inherently ambiguous.

2.1.2. Finite-State Automata

The class of finite-state automata is equivalent in expressive power to the family of regular
languages, that is, each regular language is recognised by some finite-state automaton,
and the language recognised by each finite-state automaton is regular [92, Theorm 1.54].
A finite-state automaton is a finite directed edge-labelled graph with a distinguished

initial vertex and a subset of the vertices labelled as accepting. A word is accepted by
a finite-state automaton if there is a path from its initial vertex to an accepting vertex
where the edge labels can be composed to form the word. Formally, we define a finite-state
automaton as follows.

Definition 2.2. A finite-state automaton is a 5-tuple M = (Σ, Q,A, q0, δ) where

12



2.2. Generating Functions

• Σ is the input alphabet;
• Q is a finite set of states;
• A ⊆ Q is the set of accepting states;
• q0 ∈ Q is the initial state; and
• δ ⊆ Q× Σ×Q is a finite set known as the transition relation.

The word w = w1w2 · · ·wk ∈ Σ∗ is accepted by the finite-state automaton M if there is
a finite sequence of states q0, q1, q2, . . . , qk with qk ∈ A and (qi, wi+1, qi+1) ∈ δ for each
i ∈ {0, 1, 2, . . . , k − 1}. The set of all such words is the language recognised by M . We
can represent a finite-state automaton as a finite directed graph with vertex set Q where
for each (p, σ, q) ∈ δ, there is an edge from p to q labelled with σ.

For example, the language

L = {(ab)nam | n,m ∈ N+} ∪ {bk | k ≡ 1 (mod 3)}

is regular as it is recognised by M = (Σ, Q,A, q0, δ) where

Σ = {a, b}, Q = {q0, q1, q2, q3, q4, q5, q6}, A = {q3, q4}, and
δ = {(q0, a, q1), (q0, b, q4), (q1, b, q2), (q2, a, q1), (q2, a, q3),

(q3, a, q3), (q4, b, q5), (q5, b, q6), (q6, b, q4)}.

This finite-state automaton corresponds to the graph in Figure 2.3 where the double-circled
nodes are accepting states.

q0initial q1 q2 q3

q4 q5 q6

a

b

b

a

a

a

b b

b

Figure 2.3: A finite-state automaton.

2.2. Generating Functions

In this section, we study the univariate and multivariate generating functions of formal
languages. In particular, we study formal languages with rational and holonomic gen-
erating functions, as defined in Sections 2.2.1 and 2.2.3, respectively. Our aim in this
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2. Formal Languages and Generating Functions

section is to provide enough background in analytic combinatorics so that we may prove
Theorem A. For a more complete introduction, the reader is directed to [50].

The univariate generating function of a language is the power series whose coefficients
count the number of words of a given length, that is, the power series defined as follows.

Definition 2.3. The univariate generating function of a language L ⊆ Σ∗ is the formal
power series f(z) =

∑∞
n=0 cnz

n where each coefficient cn = #{w ∈ L | |w|Σ = n}.

The multivarate generating function of a language is the multivariate power series
whose terms correspond to the number of occurrences of each letter in a word. To define
these series, we first introduce the Parikh map as follows.

Definition 2.4. Let Σ = {σ1, σ2, . . . , σm} be an ordered alphabet, then the Parikh map
is the homomorphism ΦΣ : Σ∗ → Nm such that, for each word w ∈ Σ∗, we have

ΦΣ(w) = (|w|σ1 , |w|σ2 , . . . , |w|σm)

where |w|σi counts the number of occurrences of σi in w.

We may then define the multivariate generating function of a language as follows.

Definition 2.5. The multivariate generating function of a language L ⊆ Σ∗ over an
alphabet Σ = {σ1, σ2, . . . , σm} is the formal multivariate power series

f(x1, x2, . . . , xm) =
∑

(n1,n2,...,nm)∈Nm
c(n1, n2, . . . , nm)xn1

1 xn2
2 · · ·xnmm

where each coefficient

c(n1, n2, . . . , nm) = #{w ∈ L | ΦΣ(w) = (n1, n2, . . . , nm)}

counts the number of words with a given Parikh image.

In the following subsections, we study classes of power series with increasing generality.
In particular, we study the classes of rational, algebraic, and holonomic power series. For
each of these classes of power series, we provide a family of formal languages such that the
generating function of each language in the family lies within the class. In the following
subsections, we write the notation x = (x1, x2, . . . , xm).

2.2.1. Rational Power Series

A (multivariate) power series f(x) is rational if there are two polynomials p(x) and q(x),
where q(x) is nontrivial, such that q(x)f(x) = p(x). We denote this as f(x) = p(x)/q(x).

It is known that the (multivariate) generating function for a regular language is rational.
For example, the regular language

L = {ai(ab)j | i, j ∈ N}
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2.2. Generating Functions

has a multivariate generating function given by

∞∑
i=0

∞∑
j=0

xi (xy)j =

( ∞∑
i=0

xi

) ∞∑
j=0

(xy)j

 =
1

(1− x)(1− xy)
.

A useful property of univariate rational functions is that we may always find closed-form
equations for their asymptotic behaviour, in particular, we have the following result.

Lemma 2.6 (Theorem IV.9 in [50]). Suppose that f(z) =
∑∞

n=0 cnz
n is rational with

singularities at α1, α2, . . . , αk ∈ C. Then there are polynomials p1(n), . . . , pk(n) ∈ C[z]
such that for each sufficiently large n we have cn =

∑k
j=0 pi(n)α−nj .

Since the coefficients of univariate generating functions count words, we see that they
have integer coefficients, and thus we may apply the Pólya-Carlson theorem as follows.

Lemma 2.7 (Carlson [22, p. 3]). If f(z) is a power series with integer coefficients that is
complex analytic in the open unit disc, then f(z) either has the unit circle as its natural
boundary or is rational of the form p(z)/(1− zm)n where p(z) ∈ Z[z] and n,m ∈ N.

From Lemma 2.7 we have the following characterisation of geodesic growth series with
finitely many singularities. We make use of this corollary to prove Lemma 5.18 which we
then use in the proof of Theorem A.

Corollary 2.7.1. Let G be a group with a finite (weighted monoid) generating set S. If
the geodesic growth series fS(z) =

∑∞
n=0 γS(n)zn has finitely many singularities, then G

either has exponential geodesic growth with respect to S, or fS(z) is rational and G has
polynomial geodesic growth of an integer degree with respect to S.

Proof. From Lemma 1.3 we see that either the geodesic growth function γS(n) has
exponential growth or the geodesic growth rate αS = limn→∞

n
√
γS(n) = 1. In the latter

case we apply Lemma 2.7 to show that fS(z) is a rational with singularities only at the
m-th roots of unity for some m ∈ N. From Lemma 2.6, we have

γS(n) =
k∑
j=1

pj(n)
(
e2πi·j/m

)−n
(2.1)

for each sufficiently large n, were each pj(z) is a polynomial.
Since the geodesic growth function, γS(n), is non-decreasing we have

γS(n) 6 γS(mn) =
k∑
j=1

pj(mn) and γS(n) > γS(mbn/mc) =
k∑
j=1

pj(mbn/mc) (2.2)

for sufficiently large n.
Let d be the largest degree of any polynomial pi(z) in (2.1). Then, from the inequalities

in (2.2) we see that there are positive constants α1, α2 ∈ R>0 such that

α1n
d 6 γS(n) 6 α2n

d

for every n ∈ N. These bounds follow since γS(0) = 1 and γS(n) is nondecreasing.
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2. Formal Languages and Generating Functions

2.2.2. Algebraic Power Series

A (multivariate) power series f(x) is algebraic if there exists some nontrivial polynomial
a(x, y) ∈ C[x, y] such that f(x) satisfies the equation a(x, f(x)) = 0. Notice that each
rational function f(x) = p(x)/q(x) is also algebraic as can be seen from the choice of
polynomial a(x, y) = q(x)y−p(x). We have the following formal language characterisation.

Lemma 2.8 (Chomsky and Schützenberger [26]). The (multivariate) generating function
of an unambiguous context-free language is algebraic.

For example, the context-free language

L = {w ∈ {a, b}∗ | |w|a = |w|b}

has an algebraic multivariate generating function

f(x, y) =
∞∑
k=0

(
2k

k

)
xkyk =

1√
1− 4xy

.

This equality is given in [95, Eq. (2.5.11) on p. 53].

2.2.3. Holonomic Power Series

In this subsection we provide a background to the class of holonomic power series. Some
authors use the term D-finite or differentiably finite to refer to the class of single-variable
holonomic functions, or as a synonym for holonomic. This class of power series is
interesting due to its closure properties, and that the coefficients of a univariate holonomic
power series are easy to compute, i.e., the sequence of coefficients satisfies a recurrence
relation with polynomial coefficients known as a P-recurrence [50, p. 748]. In Section 2.3.1
we study the family of linearly constrained languages which have holonomic (multivariate)
generating functions. We extend this result in Chapter 4 to the family of polyhedrally
constrained languages. In Theorem A, we use polyhedrally constrained languages to show
that the geodesic growth series of each virtually abelian group is holonomic.

A (multivariate) generating function f(x) is holonomic if the span of

Xf =
{
∂k1
x1
∂k2
x2
· · · ∂kmxmf(x)

∣∣∣ k1, k2, . . . , km ∈ N
}

over C(x) is a finite-dimensional vector space Vf ⊆ C((x)), or equivalently, f(x) is
holonomic if it is a solution to a system of differential equations of the form

∂k1+1
x1

f(x) + r1,k1(x) ∂k1
x1
f(x) + · · ·+ r1,1(x) ∂x1f(x) + r1,0(x)f(x) = 0

∂k2+1
x2

f(x) + r2,k2(x) ∂k2
x2
f(x) + · · ·+ r2,1(x) ∂x2f(x) + r2,0(x)f(x) = 0

...

∂km+1
xm f(x) + rm,km(x) ∂kmxmf(x) + · · ·+ rm,1(x) ∂xmf(x) + rm,0(x)f(x) = 0
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where each ri,j(x) ∈ C(x) is a rational function. Notice here that there is one differential
equation for each independent variable xi. This equivalent definition is the reason that
some authors prefer the name D-finite and differentiably finite.
The class of holonomic power series satisfy many nice closure properties, however, in

this thesis we only require the following.

Lemma 2.9 (Proposition 2.3 in [73]). The class of holonomic power series over the
variables x is closed under addition and multiplication. If f(x) is a holonomic power
series with x = (x1, x2, . . . , xm), and a1(y), a2(y), . . . , am(y) are algebraic power series,
then g(y) = f(a1(y), a2(y), . . . , am(y)) is also holonomic if it is defined. Each algebraic
power series (and thus each rational function) is holonomic.

For univariate holonomic power series with integer coefficients, we may also apply
Pólya-Carlson theorem, as given in Lemma 2.7. That is, holonomic functions may have
only finitely many singularities as in the following lemma.

Lemma 2.10 (Theorem 1 in [49]). A univariate holonomic function may only have
finitely many singularities.

2.3. Constrained Languages

Linearly constrained languages, defined below in Section 2.3.1, were introduced by Mas-
sazza [76] as an example of a family of languages with holonomic univariate generating
functions. In this section, we define the more general class of constrained languages, and
show that Massazza’s result holds for multivariable generating functions. In Chapter 4
we provide a new generalisation of linearly constrained languages, known as polyhedrally
constrained, which we use in the proof of Theorem A.

Definition 2.11. Let U ⊆ Σ∗ be an unambiguous context-free language and let C ⊆ Z|Σ|,
then L(U, C) = {w ∈ U | ΦΣ(w) ∈ C} is a constrained language (where ΦΣ : Σ∗ → N|Σ| is
the Parikh map as given in Definition 2.4).

We then study families of constrained languages by placing restrictions on the sets
C ⊆ Zn. Informally, the family of linearly constrained languages results from requiring
that C corresponds to the integer solutions of a system of linear equations.

2.3.1. Linear Constraints

Modifying the notation of Massazza [76], we define n-atoms and n-constraints as follows.

Definition 2.12. A subset of Zn is an n-atom if it can be expressed as {v ∈ Zn | a ·v = b}
or {v ∈ Zn | a ·v > b} where a ∈ Zn and b ∈ Z. An n-constraint is a Boolean expression of
n-atoms, that is, a finite expression of n-atoms using intersection, union, and complement
with respect to Zn.

17



2. Formal Languages and Generating Functions

For example,

{(x, y) ∈ Z2 | either x = 1 and y > 10, or x 6= 1 and 2x− 3y > 4}

is a 2-constraint as it can be written as the Boolean expression

{v ∈ Z2 | (1, 0) · v = 1} ∩ {v ∈ Z2 | (0, 1) · v > 10}
∪
(
Z2 \ {v ∈ Z2 | (1, 0) · v = 1}

)
∩ {v ∈ Z2 | (2,−3) · v > 4}.

Massazza defined the family of linearly constrained languages as follows.

Definition 2.13. If C is an n-constraint, then L(U, C) is a linearly constrained language.

Massazza [76] introduced linearly constrained languages as a family of languages with
holonomic univariate generating functions. Massazza proved this by first showing that
linearly constrained languages have holonomic multivariate generating functions. Thus,
we have the more general result given in Proposition 2.14.

Proposition 2.14. The multivariate generating function of a linearly constrained language
is holonomic.

Proof. See the proof of Theorem 2 in [76].

For example, let L = L(U,B) be the linearly constrained language with

U = {a, b, c}∗ and B = {(n, n, n) ∈ Z3 | n ∈ N}.

It was shown in [76, Example 2] that L has a multivariate generating function of

f(x, y, z) =
∑
n∈N

(3n)!

(n!)3
xnynzn.

From Proposition A.2 (see the appendix), we see that f(x, y, z) satisfies the system of
differential equations

(x2 − 27x3yz)∂2
xf(x, y, z) + (x− 54x2yz)∂xf(x, y, z)− 6xyz f(x, y, z) = 0

(y2 − 27xy3z)∂2
yf(x, y, z) + (y − 54xy2z)∂yf(x, y, z)− 6xyz f(x, y, z) = 0

(z2 − 27xyz3)∂2
zf(x, y, z) + (z − 54xyz2)∂zf(x, y, z)− 6xyz f(x, y, z) = 0.

Hence, the generating function f(x, y, z) is holonomic.

2.4. Blind Multicounter Automata

The class of blind multicounter automata was introduced by Greibach [52], where they were
shown [52, Theorem 2] to be equivalent in expressive power to the class of reversal-bounded
multicounter automata as introduced by Baker and Book [8]. Moreover, it was shown in
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[65, § 2.2] that the class of reversal-bounded multicounter automata, and thus the class
of blind multicounter automata, are equivalent in expressive power to the class of Parikh
automata introduced by Klaedtke and Rueß [64].

We say that a language is blind multicounter if it is accepted by a blind multicounter
automata. It was shown by Elder, Kambites and Ostheimer [42] that the word problem of
a group is blind multicounter if and only if the group is virtually abelian. In Theorem C
we show that the language of geodesics for a virtually abelian group is blind multicounter.

Informally, a blind k-counter automaton is a nondeterministic finite-state acceptor with
a one-way input tape and k integer counters. The machine is allowed to increment and
decrement its counters by fixed amounts during transitions where each transition does not
depend on the state of the counters. A computation of a blind k-counter automata begins
with zero on all its counters, and accepts when it is in an accepting state with all input
consumed and zero on each counter. A language L is called blind multicounter if it is
accepted by a blind k-counter automaton for some k ∈ N. The family of blind multicounter
languages satisfies the hierarchy given in Figure 2.4. We prove the correctness of this
diagram at the end of this section, that is, after we provide the formal definition of blind
multicounter language in Definition 2.16.

regular

blind 1-counter

context-free

blind 2-counter

...

blind k-counter

...

blind multicounter

context-sensitive

Figure 2.4: Hierarchy of blind multicounter language.

Our definition of a blind multicounter automaton differs slightly from the one given by
Greibach [52]. In particular, we introduce e as an end of input symbol, and allow our
automata to add and subtract any constant vector from their counters on a transition
instead of only allowing basis vectors. It is clear that this does not increase the expressive
power of our model. Formally, we define a blind k-counter automaton as follows.

Definition 2.15. Let k ∈ N, then a blind k-counter automaton is a 6-tuple of the form
M = (Q,Σ, δ, q0, F, e) where

1. Q is a finite set of states;
2. Σ is a finite input alphabet;
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2. Formal Languages and Generating Functions

3. δ is a finite subset of (
Q× (Σ ∪ {ε, e})

)
×
(
Q× Zk

)
,

where ε is the empty word, which we call the transition relation;
4. q0 ∈ Q is the initial state;
5. F ⊆ Q is the set of final states; and
6. e /∈ Σ is the end of tape symbol.

Let M = (Q,Σ, δ, q0, F, e) be a blind k-counter automaton. Then M begins in state q0

with zero on all its counters. Suppose that there is a transition relation ((q, a), (p, v)) ∈ δ
with p, q ∈ Q, a ∈ Σ∪ {ε, e} and v ∈ Zk; if M is in state q with a as the next letter on its
input tape, then it can transition to state p after adding v to its counters and consuming
a from its input tape. The machine accepts if it is in an accepting state q ∈ F , has no
letters remaining on its input tape, and has zero on all its counters.
Formally, we represent the configuration of a blind k-counter automaton M as an

instantaneous description of the form

(q, (c1, c2, . . . , ck), σe) ∈ Q× Zk × Σ∗e

where q ∈ Q is the current state, (c1, c2, . . . , ck) ∈ Zk are the values of the counters,
and σ ∈ Σ∗ is the sequence of letters which have yet to be consumed. Let C1 and C2

be instantaneous descriptions for the configuration of M . Then we write C1 ` C2 if M
can move from configuration C1 to C2 in a single transition. Formally, we interpret the
transition relation δ as follows.
For each transition relation of the form ((q, s), (p, v)) ∈ δ with s ∈ Σ ∪ {ε}, and for

each σ = sσ′ ∈ Σ∗, we have transitions of the form

(q, (c1, c2, . . . , ck), σe) ` (p, (c1 + v1, c2 + v2, . . . , ck + vk), σ
′e).

Moreover, for each relation ((q, e), (p, v)) ∈ δ we have transitions

(q, (c1, c2, . . . , ck), e) ` (p, (c1 + v1, c2 + v2, . . . , ck + vk), e).

Notice that we do not consume the end of tape symbol e.
We then write `∗ for the transitive symmetric closure of `, that is, we have C1 `∗ C2

if M can move from configuration C1 to C2 within finitely many transitions. We say that
a word σ ∈ Σ∗ is accepted by M if

(q0, (0, 0, . . . , 0), σe) `∗ (q, (0, 0, . . . , 0), e)

for some q ∈ F . We define the language accepted by a blind multicounter automaton as
follows.

Definition 2.16. Let M be a blind multicounter automaton. Then

L(M) = {σ ∈ Σ∗ | (q0, (0, 0, . . . , 0), σe) `∗ (q, (0, 0, . . . , 0), e) where q ∈ F}

is the blind multicounter language accepted by M .
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The family of blind multicounter languages satisfy the language hierarchy in Figure 2.4,
in particular, we may construct a language for each region of the diagram in Figure 2.4
as follows. We see that the class of finite-state automata is equivalent to the class
of blind 0-counter automata, and that each blind k-counter language is also a blind
(k + 1)-counter language. We see that blind 1-counter languages form a subfamily of the
context-free languages. Moreover, from [52, Theorem 1] it can be seen that the class of
blind multicounter languages is a subclass of context-sensitive languages. From [89] it is
known that F2 × F2 has a context-sensitive word problem. It is a classic result by Muller
and Schupp [78] that the word problem for a group is context-free if and only if the group
is virtually free. Moreover, it was shown in [42] that the word problem for a group is
blind k-counter if and only if the group is virtually Zm for some m 6 k. From these
characterisations we see that the word problem for the free group F2 is context-free but
not blind multicounter; for each k > 2, the word problem for Zk is blind k-counter but not
context-free; the word problem for Zk+1 is blind (k + 1)-counter but not blind k-counter;
and that the word problem for F2 × F2 is context-sensitive and neither context-free nor
blind multicounter. From the proof of Theorem 5 in [52], we see that

Lk = {an1
1 an2

2 · · · ankk b
nk
k · · · bn2

2 bn1
1 | n1, n2, . . . , nk ∈ N}

is context-free and blind k-counter, but not blind (k − 1)-counter.

2.5. ET0L Languages

The family of Extended Tabled 0-interaction Lindenmayer (ET0L) languages and their
deterministic counterpart EDT0L were introduced and studied by Rozenberg [87]. The
class of ET0L language results from modifying the grammar of a context-free language,
in particular, we demand that a replacement is made for each non-terminal letter at the
same time in the sense of an L-system. We provide a formal definition of this family of
languages in Definition 2.17.
In recent publications, the family of ET0L languages and their deterministic counter-

part, EDT0L, have found their place as a natural choice for modelling group-theoretic
problems. In particular, it is known that the solutions to equations over free monoids
with involution [37], hyperbolic groups [30], virtually abelian groups [45], and right-angled
Artin groups [38] can be expressed as EDT0L languages, and that these languages are
effectively constructable. Moreover, it was shown by Ciobanu, Elder and Ferov [32] that
many of the existing problems in group theory that were known to be context-sensitive
(or indexed), are in-fact ET0L.

It was shown by Holt and Röver [63] that the co-word problem for bounded automata
groups is indexed. Ciobanu, Elder and Ferov [32] strengthened this result for the case of
Grigorchuk group, in particular, they provided an explicit ET0L grammar for the co-word
problem of Grigorchuk’s group. In Theorem C, we complete this project by showing that
all bounded automata groups have ET0L co-word problems. We accomplish this with the
use of an equivalent machine model known as a cspd automaton (see Section 2.5.1). We
provide a self-contained proof of this equivalence in Section 2.5.2.
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2. Formal Languages and Generating Functions

In the definition of formal grammar we gave in Section 2.1, we were allowed to apply
the grammar rules in any order to any part of a word. One generalisation of this
is Lindenmayer-systems as introduced by Lindenmayer [72] to model the growth of
filamentous organisms, e.g., algae. In this model, we demand that a grammar rule be
applied to each nonterminal in parallel. Informally, ET0L languages are Lindenmayer-
systems with context-free replacement rules which are collected into tables. Formally, we
define ET0L languages as follows.
A table, τ , is a finite set of context-free replacement rules where each non-terminal,

X ∈ V , has at least one replacement in τ . For example, let Σ = {a, b} and V = {S,A,B},
then the following are tables.

α :


S → SS | S | AB
A→ A

B → B

β :


S → S

A→ aA

B → bB

γ :


S → S

A→ ε

B → ε

(2.3)

We apply a table, τ , to the word w ∈ (Σ ∪ V )∗ to obtain a word w′, written w →τ w′,
by performing a replacement in τ to each non-terminal in w. If a table includes more
than one rule for some non-terminal, we nondeterministically and independently apply a
replacement to each occurrence. For example, with w = SSSS and α as in (2.3), we can
apply α to w to obtain w′ = SABSSAB. Given a sequence of tables τ1, τ2, . . . , τk, we
will write w →τ1τ2···τk w′ if there is a sequence of words w = w1, w2, . . . , wk+1 = w′ such
that wj →τj wj+1 for each j. Notice here that the tables are applied from left to right.

Definition 2.17 (Asveld [5]). An ET0L grammar is a 5-tuple G = (Σ, V, T,R, S), where
1. Σ is an alphabet of terminals;
2. V is an alphabet of non-terminals;
3. T = {τ1, τ2, . . . , τk} is a finite set of tables;
4. R ⊆ T ∗ is a regular language called the rational control; and
5. S ∈ V is the start symbol.

The ET0L language produced by the grammar G, denoted L(G), is

L(G) = {w ∈ Σ∗ | S →v w for some v ∈ R} .

Moreover, G is an EDT0L grammar, and L(G) an EDT0L language, if for each table τi
has exactly one replacement for each non-terminal letter.

For example, let α, β and γ as in (2.3), then the language produced the grammar with
rational control R = α∗β∗γ is {(anbn)m | n,m ∈ N}. It can then be shown using the
pumping lemma (see [92, Theorem 2.34]) that this language is not context-free. We see
that each context-free language is ET0L, in particular, for each context-free grammar
(Σ, V, S, P ) we may construct an ET0L grammar (Σ, V, T,R, S) with R = T ∗ where T
contains one table τ = P ∪ {v 7→ v | v ∈ V }. Thus, the family of ET0L languages contain
the context-free languages as a proper sub-family.
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2.5. ET0L Languages

2.5.1. CSPD Automata

An alternative method to show that a language is ET0L is by making use of an equivalent
machine model known as a cspd automaton. In Section 2.5.2, we show that ET0L languages
and cspd automata are equivalent in expressive power.
A cspd automaton, studied in [69], is a nondeterministic finite-state automaton with

a one-way input tape, and access to both a check-stack (with stack alphabet ∆) and a
pushdown stack (with stack alphabet Γ), where access to these two stacks is tied in a very
particular way. The execution of a cspd machine is separated into two stages.
In the first stage the machine is allowed to push letters onto its check-stack but not

its pushdown, and further, the machine will not be allowed to read from its input tape.
Thus, the set of all possible check-stacks that can be constructed in this stage forms a
regular language which we will denote as R.

In the second stage, the machine can no longer alter its check-stack, but is allowed to
access its pushdown and input tape. We restrict the machine’s access to its stacks so
that it can only move along its check-stack by pushing and popping items to and from its
pushdown. In particular, every time the machine pushes a value onto the pushdown it
will move up the check-stack, and every time it pops a value off of the pushdown it will
move down the check-stack. See Figure 2.5 for an example of this behaviour.

...

b b

τ1

τ2

τ3

τn

check-stack

...

b

pushdown

read
head

...

b b

τ1

τ2

τ3

τn

check-stack

...

a2

a1

pushdown

read
head

...

b b

τ1

τ2

τ3

τn

check-stack

...

a2

pushdown

read
head

Figure 2.5: An example of a cspd machine pushing w = a1a2, where a1, a2 ∈ ∆, onto its
pushdown stack, then popping a1 (as read from left to right).

We define a cspd machine formally as follows.

Definition 2.18. A cspd machine is a 9-tupleM = (Q,Σ,Γ,∆, b,R, θ, q0, F ), where
1. Q is the set of states;
2. Σ is the input alphabet;
3. Γ is the alphabet for the pushdown;
4. ∆ is the alphabet for the check-stack;
5. b /∈ ∆ ∪ Γ is the bottom of stack symbol;
6. R ⊆ ∆∗ is a regular language of allowed check-stacks;
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2. Formal Languages and Generating Functions

7. θ is a finite subset of

(Q× (Σ ∪ {ε})× ((∆× Γ) ∪ {(ε, ε), (b, b)}))× (Q× (Γ ∪ {b})∗),

called the transition relation (see below for allowable elements of θ);
8. q0 ∈ Q is the start state; and
9. F ⊆ Q is the set of accepting states.

In its initial configuration, the machine is in state q0, the check-stack will contain bw
for some nondeterministic choice of w ∈ R, the pushdown will contain only the letter
b, the read-head for the input tape will be at its first letter, and the read-head for the
machine’s stacks will be pointing to the b on both stacks. From here, the machine will
follow transitions as specified by θ. Each such transition will have one of the following
three forms, where a ∈ Σ ∪ {ε}, p, q ∈ Q and w ∈ Γ∗.

1. ((p, a, (b, b)), (q, wb)) ∈ θ meaning that if the machine is in state p, sees b on both
stacks and is able to consume a from its input; then it can follow this transition to
consume a, push w onto the pushdown and move to state q.

2. ((p, a, (d, g)), (q, w)) ∈ θ where (d, g) ∈ ∆ × Γ, meaning that if the machine is in
state p, sees d on its check-stack, g on its pushdown, and is able to consume a from
its input; then it can follow this transition to consume a, pop g, then push w and
move to state q.

3. ((p, a, (ε, ε)), (q, w)) ∈ θ meaning that if the machine is in state p and can consume
a from its input; then it can follow this transition to consume a, push w and move
to state q.

In the previous three cases, a = ε corresponds to a transition in which the machine
does not consume a letter from input. We use the convention that, if w = w1w2 · · ·wk
with each wj ∈ Γ, then the machine will push wk first, followed by the wk−1 and so forth.
The machine accepts if it has consumed all its input and is in an accepting state q ∈ F .

In [69] van Leeuwen proved that the family of languages recognised by cspd automata
is precisely the class of ET0L languages. For completeness, in the following subsection we
provide a self-contained proof of this equivalence.

2.5.2. Equivalence of CSPD and ET0L

We now provide our own self-contained proof of the equivalence between the family of
ET0L languages and the class of languages recognised by cspd automata. We begin by
introducing some additional notation and a normal form for cspd automata, then we
prove our result in Lemmas 2.22 and 2.23.

Additional Notation

We define a non-terminal d which we call a dead-end symbol. If an ET0L grammar has
the dead-end symbol, then we demand that d is not a terminal and that each table can
only map d to itself, i.e., d→ d. Thus, if a table induces a letter d, then there is no way
to remove it to generate a word in the associated language.
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2.5. ET0L Languages

For simplicity when presenting tables, if a replacement is not specified for a particular
variable X, then it should be assumed that the replacement rule X → X is in the table.

We introduce the following generalisation of ET0L grammars. We use this generalisation
to construct an ET0L grammar from a cspd automaton in Lemma 2.23.

Lemma 2.19 (Christensen [28]). The class of ET0L grammars does not gain any
expressive power if each replacement rule has the form τ : X → LX,τ where each LX,τ
is an ET0L language, that is, if we allow τ to replace instances of the variable X with
nondeterministic choices of words from LX,τ .

Proof. Let G = (Σ, V, T,R, S) be a grammar in this extended form, that is, where each
replacement rule maps X into any word in some ET0L language LX,τ . Assume without
loss of generality that every terminal is also a non-terminal, i.e., Σ ⊆ V (this is done by
first adding replacement rules τ : a→ a for each table τ ∈ T and each a ∈ Σ \ V ; then
we add the letters of Σ to V . It is clear that this modified grammar generates the same
language).

For each language LX,τ in the grammar G, let

GX,τ = (ΣX,τ , VX,τ , TX,τ ,RX,τ , SX,τ )

be an ET0L grammar such that LX,τ = L(GX,τ ). Notice here that ΣX,τ must be a subset
of V such that the language LX,τ generates words in V ∗.
For each X ∈ V , we define two disjoint copies denoted as X(1) and X(2); and we

demand that these copies are disjoint to letters in the alphabets VY,τ and ΣY,τ for each
Y ∈ V and τ ∈ T .
We define two ET0L tables α and κ such that, for each X ∈ V , we have replacement

rules α : X → X(1) and κ : X(1) → d.
For each table τ ∈ T and non-terminal X ∈ V , we define ET0L tables

βτX : X(1) → X(1) | SX,τ and γτX :

{
Y → Y (2) for Y ∈ ΣX,τ ⊆ V,
Z → d for Z ∈ VX,τ \ ΣX,τ .

Given a τ ∈ T , it can be seen that τ is equivalent to the regular expression

τ ′ = α
(
βτX1
RX1,τγ

τ
X1

)∗ (
βτX2
RX2,τγ

τ
X2

)∗ · · · (βτXkRXk,τγτXk)∗ κ
where {X1, X2, . . . , Xk} = V . Thus, after replacing each τ in a regular expression for
R with its corresponding expression τ ′, we obtain a regular language which we denote
R′. Thus, it can be seen that the grammar G is equivalent to an ET0L grammar with
rational control given by R′.

In the proof of Lemma 2.23, we begin by normalising a given cspd automaton as follows.

Lemma 2.20. Given a cspd automaton,M = (Q,Σ,Γ,∆, b,R, θ, q0, F ), we may assume
without loss of generality that:

1. the pushdown is never higher than the check-stack;
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2. Formal Languages and Generating Functions

2. there is only one accepting state, i.e., {qaccept} = F ;
3. the pushdown is empty when M enters the accepting state qaccept;
4. transitions to the accepting state qaccept do not modify the pushdown;
5. each transition to states other than qaccept either pushes exactly one letter to the

pushdown or pops exactly one letter from the pushdown.

Proof. LetM = (Q,Σ,Γ,∆, b,R, θ, q0, F ) be a cspd machine.
For assumption 1, letN ∈ N be an upper bound on the number of letters any transition of
M can push. That is, N is such that, given any transition ((q, a, (d, g)), (p, b1b2 · · · bk)) ∈ θ
where each bj ∈ Γ, it is the case that k 6 N . We now add a disjoint letter t to the check-
stack alphabet ∆. Thus,M has no available transitions when it sees t on its check-stack.
We thus satisfy assumption 1 after replacing the regular language of check-stacks with
RtN (where tN is a sequence of N letters t’s).

For assumptions 2–4 we introduce states qfinish and qaccept disjoint from all other states
in Q. For each (d, g) ∈ ∆× Γ and each q ∈ F we add

((q, ε, (d, g)), (qfinish, ε)), ((qfinish, ε, (d, g)), (qfinish, ε))

so that we can empty the pushdown after reaching an accepting state q ∈ F . Further, for
each state q ∈ F , we add transitions

((q, ε, (b, b)), (qaccept, b)), ((qfinish, ε, (b, b)), (qaccept, b))

so that we can move to state qaccept once the pushdown has been emptied.
Thus, we now replace the set of accepting states, F , with {qaccept} to obtain an

equivalent machine that satisfies assumptions 2–4.
For assumption 5, we only need to consider transitions of the form

((p, α, (d, g)), (q, a1a2 · · · ak)) (2.4)

where p, q ∈ Q with q 6= qaccept, (d, g) ∈ ∆× Γ ∪ {(b, b)}, α ∈ Σ∗, and each aj ∈ Γ ∪ {b}
with either ak 6= g or k > 2.

Given a transition as in (2.4), we add states pqa1 , p
q
a1a2 , . . . , p

q
a1a2···ak ; and for each

(b, c) ∈ ∆× Γ ∪ {(b, b)} and j ∈ N with 1 < j 6 k, we add transitions

((pqa1a2···aj , ε, (b, c)), (p
q
a1a2···aj−1

, ajc)), ((pqa1
, ε, (b, c)), (q, a1c)),

so that, from state pqa1a2···qj , we go through a sequence of transitions which push the word
a1a2 · · · aj and end in the state q. Moreover, if ak 6= g in our given transition, then we
add a transition

((p, α, (d, g)), (pqa1a2···ak , ε)),

otherwise we add a transition

((p, α, (d, g)), (pqa1a2···ak−2
, ak−1g)).

Notice that with the addition of these states and transitions, we can remove all
transitions as in (2.4) and still recognise the same language.

This completes the proof.
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2.5. ET0L Languages

Proof of Equivalence

In this section we prove the following equivalence.

Proposition 2.21 (van Leeuwen [69]). The class of ET0L languages is equivalent to the
class of languages recognised by cspd automata.

We now provide our own self-contained proof of the equivalence given in Proposition 2.21.
The proof is divided into Lemmas 2.22 and 2.23. We begin as follows by showing that
ET0L languages form a subfamily of languages recognised by cspd automata.

Lemma 2.22. For each ET0L language there is an equivalent cspd automaton.

Proof. Let L be a given ET0L language with grammar G = (Σ, V, T,R, S), i.e., L = L(G).
Thus, in this proof we construct a cspd machineM which accepts precisely the language
L by emulating derivations of words with respect to G.
Let w ∈ L. Then, by the definition of an ET0L grammar, there exists a sequence of

tables α = α1α2 · · · ak ∈ R for which S →α w. Thus, the idea of this construction is that
M accepts the word w by choosing its check-stack to represent such a sequence α, then
M emulates a derivation of w from S with the use of its pushdown and reference to the
check-stack.
We now give a description of this construction. We begin by choosing the alphabets

and states forM as follows.
The input alphabet ofM is given by Σ. The alphabet of the check-stack is given by

∆ = T ∪ {t} where t is used to denote the top of the check-stack. Further, the regular
language of allowed check-stacks is given by Rt where R is the rational control of the
grammar G.

The alphabet for the pushdown, Γ, will include letters JSK and JεK to denote the starting
symbol and empty word, respectively; and for each table τ ∈ T and each replacement
rule τ : A→ B1B2 · · ·B` with each Bj ∈ V ∪ Σ, and for each k ∈ N with 1 6 k 6 `, we
have JBkBk+1 · · ·B`K as a distinct symbol of Γ. For example, if T = {α, β, γ} where

α : S → ABC | BCB β :


A→ BA | B
B → B | ε
C → B

γ :


A→ a

B → bb

C → c

,

then the corresponding pushdown alphabet is given by

Γ = {JSK, JεK} ∪ {JABCK, JBCK, JCK, JBCBK, JCBK, JBK}︸ ︷︷ ︸
suffixes of rules in α

∪ {JBAK, JAK, JBK}︸ ︷︷ ︸
suffixes of rules in β

∪{JaK, JbbK, JbK, JcK}︸ ︷︷ ︸
suffixes of rules in γ

.

Notice that the pushdown alphabet Γ is finite as an ET0L grammar can have only finitely
many replacement rules.
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2. Formal Languages and Generating Functions

The machineM has three states {q0, qapply, qaccept} = Q where q0 is the start state and
qaccept is the only accepting state. The idea of state qapply is that its transitions to itself
emulate an application of a table, which it sees on the check-stack, to a non-terminal,
which it sees on the pushdown.

Now that we have chosen our alphabets and states, we are ready to describe the
transition relations, θ, ofM.

To begin a computation we have the transition

((q0, ε, (b, b)), (qapply, JSKb))

which pushes the start symbol of the grammar onto the pushdown (see Figure 2.6). In
the remainder of this proof, we will ensure thatM is only able to empty its pushdown by
emulating a derivation of its input word with respect to the grammar G. Thus, we have
the transition

((qapply, ε, (b, b)), (qaccept, b)),

to accept when the pushdown is emptied.

...

b

α1

α2

αn

t

check-stack

...

b

JSK

pushdown

read
head

Figure 2.6: The stack configuration when the machine first enters state qapply.

We will now describe how the transitions from qapply performs a derivation in the
grammar G.

Suppose thatM is in state qapply, then the remaining transitions can be separated into
the following three cases.

1. Applying a table. Suppose that the read-head ofM sees (τ, JA1A2 · · ·AmK) where
τ is a table of the grammar and m > 1. Then, we wantM to apply the table τ to
the word A1A2 · · ·Am. We do this by applying τ from left-to-right, i.e., for each
B1B2 · · ·Bk ∈ (V ∪ Σ)∗ such that A1 →τ B1B2 · · ·Bk we have transitions

((qapply, ε, (τ, JA1A2 · · ·AmK)), (qapply, JB1B2 · · ·BkKJA2 · · ·AmK))

to expand the letter A1 to a nondeterministic choice of sequence B1B2 · · ·Bk. See
Figure 2.7 for an example of this expansion.

28
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2. Empty word. Suppose that the read-head of M sees (τ, JεK) where τ is a table.
Then, since there is no way to expand ε any further, we pop this letter from the
pushdown, i.e., for each table τ ∈ T we have a transition

((qapply, ε, (τ, JεK)), (qapply, ε)).

3. Finished applying tables. Suppose thatM is at the top of its check-stack, i.e., its
read-head sees (t, JA1A2 · · ·AmK) where m = 0 corresponds to the read-head seeing
(t, JεK). Then, we have no further tables to apply to A1A2 · · ·Am. Thus, each Aj
must be a terminal letter of Σ, and we must see A1A2 · · ·Am on the input tape.
Thus, for each Ja1a2 · · · amK ∈ Γ with each aj ∈ Σ, we have a transition

((qapply, a1a2 · · · am, (t, Ja1a2 · · · amK)), (qapply, ε)).

Notice here that, if the letter on the pushdown does not correspond to a word in
Σ∗, then we have no path to qaccept and thus we reject.

τ

τ ′

JA1A2 · · ·AmKread
head

τ

τ ′

JA2 · · ·AmK

JB1B2 · · ·BkKread
head

Figure 2.7: Expanding the letter A1 with respect to the table τ .

Soundness and Completeness.
Suppose thatM is given a word w ∈ L on its input tape. Then, there must exist some
α ∈ R such that S →α w in the grammar G. Thus,M can nondeterministically choose a
check-stack of αt and emulate a derivation of w from S as previously described. Hence,
M will accept any word from L.
Suppose that M accepts a given word w ∈ L with a check-stack of αt. Then, by

following the previous construction, it can be seen that we can recover a derivation
S →α w. Hence,M can only accept words in L.

Therefore,M accepts a given word if and only if it is in the language L.

We now complete our proof of Proposition 2.21 by showing that the family of languages
recognised by cspd automata forms a subclass of ET0L as follows.

Lemma 2.23. A language recognised by a cspd automaton is ET0L.

Proof. Let M = (Q,Σ,Γ,∆, b,R, θ, q0, F ) be a given cspd automaton, where we will
assume without loss of generality thatM satisfies Lemma 2.20.
We will construct a grammar G = (Σ, V, T,R′, S) as in Lemma 2.19, which generates

precisely the language recognised byM.

29



2. Formal Languages and Generating Functions

Considering assumptions 2–4 from Lemma 2.20, a plot of the height of the pushdown
during a successful computation of M (i.e. one that leads to the accepting state) will
resemble a Dyck path; that is, the non-negative height of the pushdown is zero at the
beginning and end of such a computation.

For each pair of states p, q ∈ Q and each pushdown letter g ∈ Γ, the grammar G has a
non-terminal letter Agp,q. The non-terminal Agp,q corresponds to the situation whereM
has just pushed g onto its pushdown on a transition to the state p; and that whenM
pops this g, it will do so on a transition to the state q. Further, G has a non-terminal
Ab
q0,qaccept

which corresponds to any path from the initial configuration to the accepting
state. (See Figure 2.8.) Thus, the starting symbol of G will be given by S = Ab

q0,qaccept
.

For each letter c ∈ ∆ ∪ {b} on the check-stack, we have a table τc ∈ T in the grammar
G. Moreover, by taking a regular expression for the language bR and replacing each
instance of c ∈ ∆ ∪ {b} with its corresponding table τc, we obtain the rational control R′
of the grammar G.
Thus, in the remainder of this proof we describe the tables τc, and the way in which

they emulate a computation ofM. Note that when describing these tables we make use
of the notation introduced in Lemma 2.19; in particular, we will use replacements with
regular languages on their right-hand sides.

p
u
sh
d
ow

n
h
ei
gh

t

state

q0 p qaccept

Ab
q0,qaccept

Ag1
p1,p

Ag2
p′,qaccept

Figure 2.8: The height of the pushdown during an example computation.

For each p, q ∈ Q and (c, b) ∈ (∆× Γ) ∪ {(b, b)}, let F (c,b)
p,q be a finite-state automaton.

The idea here is that, with L(c,b)
p,q as the regular language accepted by F (c,b)

p,q , we will have
the replacement rule τc : Abp,q → L(c,b)

p,q .

The states of each F (c,b)
p,q include all the states ofM, and an additional disjoint state

λ. We denote these states as Q′ = Q ∪ {λ} where Q are states ofM. The state λ is the
only accepting state in each F (c,b)

p,q .
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Let some F (c,b)
p,q be given. Then, a given state r ∈ Q ⊆ Q′ of F (c,b)

p,q corresponds to the
situation where M is in state r and its read-head sees (c, b). Thus, the start state of
F (c,b)
p,q is given by p ∈ Q′. Further, the accepting state λ corresponds to the configuration

ofM immediately after following a path described by Abp,q.
With a finite-state automaton F (c,b)

p,q given, we now describe its transitions. Suppose
thatM is in the state r ∈ Q and its read-head sees (c, b), thenM can either push some
letter x ∈ ∆ with a transition of the form

((r, α1α2 · · ·αk, (c, b)), (s, xb)) (2.5)

then follow a path described by Axs,t for some state t ∈ Q; or M can complete a path
described by Abr,q with a transition of the form

((r, α1α2 · · ·αk, (c, b)), (q, ε)) or ((r, α1α2 · · ·αk, (b, b)), (q, b)) (2.6)

depending on whether q is the accepting state qaccept (see Lemma 2.20).
Thus, for each transition in M of form (2.5), and each state t ∈ Q ⊆ Q′, we have a

transition in F (c,b)
p,q from state r to t labelled α1α2 · · ·αkAxs,t.

Further, for each transition of form (2.6), we have a transition in F (c,b)
p,q from state r to

λ labelled α1α2 · · ·αk.
For each check-stack letter c ∈ ∆∪{b} ofM and non-terminal Abp,q of G, we define the

tables τc such that τc : Abp,q → L(c,b)
p,q where L(c,b)

p,q is the regular language recognised by
F (c,b)
p,q . Since regular language is a subset of ET0L, then, by Lemma 2.19, the grammar G

produces an ET0L language as required.

Soundness and Completeness.
Suppose that M is able to accept the word w ∈ Σ∗ with α ∈ R chosen as its check-
stack. Then, by following such a computation to the accepting state, we can construct a
derivation S →bα w in the grammar G. Thus, every word that is accepted byM is in
the language produce by G.
Let w ∈ L(G) be a word produced by the grammar G. Then, there must exist some

sequence of tables β ∈ R′ such that S →β w; and thus, for any corresponding derivation
in the grammar G, and by following our construction, we can recover a computation of
M which accepts w.

Therefore, G generates precisely the language that is recognised byM.

2.6. Concluding Remarks

In this chapter we defined and motivated several families of formal languages and classes
of power series. In Chapter 3 we make use of the theory of ET0L grammars, and their
equivalence to cspd automata to prove Theorem C. In Chapter 4, we return to formal
language theory and define the family of polyhedrally constrained languages. We then use
this family of languages in the proof of Theorem A in which we show that every virtually
abelian group has a holonomic generating function.
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Chapter 3
Co-Word Problems

Let G be a group with a finite monoid generating set S. Then, if we are given two words
u, v ∈ S∗, it is a natural question to ask whether these words represent the same group
element. This question is equivalent to asking if the word w = uv−1 ∈ S∗ represents the
group identity. We then define the formal language

WPS = {w ∈ S∗ | w = 1}

which we refer to as the word problem with respect to the generating set S.
For each finite monoid generating set S of G, we see that 〈S |WPS〉 is a presentation

for G. Thus, the word problem completely describes a group. A classification of the word
problem is thus one method to characterise the complexity of a group.
The study of the formal language complexity of group word problems began with

Anisimov [2] who showed that the word problem is regular if and only if the group is
finite. This was extended by Muller and Schupp [78] who showed that a group has a
context-free word problem if and only if it is virtually free, in which case, the word problem
is deterministic context-free. It was shown by Elder, Kambites and Ostheimer [42] that
a group has a word problem that is (deterministic) blind multicounter if and only if it
is virtually abelian. It was shown by Holt, Rees and Shapiro [62] that a group has a
growing context-sensitive word problem if and only if its word problem can be solved by a
certain generalisation of Dehn’s algorithm, however, this result does not appear to provide
a group-theoretic classification.
An alternate method of obtaining characterisation of group word problems is to

characterise the co-word problem coWPS = S∗ \WPS , that is, the formal language

coWPS = {w ∈ S∗ | w 6= 1} .

It is known that regular and deterministic context-free languages are closed under taking
set complements, see [85, Theorem 8.4] and [92, Theorem 2.42], respectively. Thus, the
co-word problem for a group is

• regular if and only if the group is finite; and
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3. Co-Word Problems

• deterministic context-free if and only if the group is virtually free.
The class of groups for which coWPS is context-free was first studied by Holt, Rees, Röver
and Thomas [61], in particular, they showed that a polycyclic group has a context-free
co-word problem if and only if it is virtually abelian. The study of co-context-free groups
was later extended by Lehnert and Schweitzer [70] who showed that Thompson’s group V
has a context-free co-word problem. It is conjectured [17, Conjecture 5] that a group has
a context-free co-word problem if and only if it is a subgroup of Thompson’s group V .
However, a potential counter-example to such a classification is provided in [11].
It was shown by Holt and Röver [63] that the class of bounded automata groups have

co-word problems that can be recognised as indexed languages, as defined by Aho [1].
The class of bounded automata groups includes important examples such as Grigorchuk’s
group of intermediate growth, the Gupta-Sidki groups, and many more [55, 57, 79, 91].
ET0L languages form a proper subfamily of the indexed languages (see Corollary 4.1

in [36] and Proposition 4.5 in [40]). For the specific case of the Grigorchuk group, Ciobanu,
Elder and Ferov [32] constructed an ET0L grammar for the co-word problem. In this
chapter, we generalise this result by showing that the co-word problem for any bounded
automata group is ET0L. In particular, for each bounded automata group, we construct
a cspd automaton which recognises the language of geodesics.

3.1. Generating Sets

Many interesting families of formal language are closed under inverse word homomorphism,
as defined in Definition 3.1. For example, the class of regular, context-free and ET0L
languages have this closure property.

Definition 3.1. A family of formal languages F is closed under inverse word homomorph-
ism, if for each language L ∈ F ⊆ Σ∗, and each monoid homomorphism h : Γ∗ → Σ∗

where Γ is an alphabet, the language h−1(L) = {w ∈ Γ∗ | h(w) ∈ L} lies within F .

We then see that the formal language complexity of the co-word problem for a group is
well defined in the following sense.

Lemma 3.2. Let G be a group with a finite monoid generating set S. If coWPS ∈ F and
F is closed under inverse word homomorphism, then coWPX ∈ F for each finite monoid
generating set X of G.

Proof. For each x ∈ X we choose a word wx ∈ S∗ such that x = wx. We then define
a monoid homomorphism h : X∗ → S∗ where h(x) = wx for each x ∈ X. We see that
coWPX = h−1(coWPS), and thus coWPX ∈ F as required.

Let F be a family of languages which is closed under inverse word homomorphism.
Then, a group is co-F if its co-word problem lies in the class F , for any and thus all
generating sets. It was shown by Čulik [36, Corollary 3.2 on p. 40] that ET0L languages
form a full AFL, one of the defining properties of this being closure with respect to inverse
word homomorphism. From Lemma 3.2 it is well defined to ask if a group is co-ET0L.
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3.2. Bounded Automata Groups

3.2. Bounded Automata Groups

In this section, we define the class of bounded automata groups. Each such group is a
group of automorphisms of an infinite rooted tree and can be completely described using
finitely many finite-state rewrite automata. We begin by defining rooted trees as follows.

For d > 2, let Td denote the d-regular rooted tree, that is, the infinite rooted tree where
each vertex has exactly d children. We identify the vertices of Td with words in Σ∗ where
Σ = {a1, a2, . . . , ad}. In particular, we identify the root with the empty word ε ∈ Σ∗ and
we identify the k-th child of each vertex v ∈ V(Td) with the word vak, see Figure 3.1.

ε

a1 a2 ad· · ·

a1a1 a1a2 a1ad· · ·
· · · · · · · · ·

· · · · · ·

Figure 3.1: A labelling of the vertices of Td.

Recall that an automorphism of a graph is a bijective mapping of the vertex set that
preserves adjacency, thus an automorphism of Td preserves the root and levels of the
tree. We denote the group of automorphisms of Td as Aut(Td). We write Sym(Σ) for the
permutation group of Σ. An important observation is that Aut(Td) can be seen as the
wreath product Aut(Td) o Sym(Σ), since any automorphism α ∈ Aut(Td) can be written
uniquely as α = (α1, α2, . . . , αd) · σ where each αi ∈ Aut(Td) is an automorphism of the
sub-tree with root ai, and σ ∈ Sym(Σ) is a permutation of the first level.
Let α ∈ Aut(Td) where α = (α1, α2, . . . , αd) · σ ∈ Aut(Td) o Sym(Σ). Then, for any

letter ai ∈ Σ, the restriction of α to ai, denoted α|ai = αi, is the action of α on the
sub-tree with root ai (which is given by αi). Given any vertex w = w1w2 · · ·wk ∈ Σ∗ of
Td, we can define the restriction of α to w recursively as

α|w =
(
α|w1w2···wk−1

)∣∣∣
wk

and thus describe the action of α on the sub-tree with root w.
The action of each element of a bounded automata group on its associated tree can be

described using a certain type of finite-state rewrite automata, which we will refer to as a
Σ-automaton. We define this class of automata as follows.

Definition 3.3. A Σ-automaton, (Γ, v), is a finite directed graph with a distinguished
vertex v, called the initial state, and a (Σ×Σ)-labelling of its edges, such that each vertex
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3. Co-Word Problems

has exactly |Σ| outgoing edges; and for each a ∈ Σ each vertex has exactly one incoming
edge of the form (a, a′) and exactly one outgoing edge of the form (a′, a). Thus, the
outgoing edges define a permutation of Σ.

From a Σ-automaton, we may then define a tree automorphism as follows.

Definition 3.4. Let (Γ, v) be a Σ-automaton with Σ = {a1, . . . , ad}, then we define
an automorphism α(Γ,v) ∈ Aut(Td) as follows. Notice that for each vertex b1b2 · · · bk ∈
V(Td) = Σ∗, there is a unique path in the graph Γ starting from the initial vertex, v, of the
form (b1, b

′
1) (b2, b

′
2) · · · (bk, b

′
k). We define α(Γ,v) such that α(Γ,v)(b1b2 · · · bk) = b′1b

′
2 · · · b′k.

From the definition of Σ-automata it the follows that α(Γ,v) is an isomorphism.

We provide an example of a Σ-automaton in Figure 3.2.

binitial c d

a 1

(R,R)

(L,L)

(R,R)

(L,L)

(R,R)

(L,L)
(R,L)

(L,R)

(R,R)

(L,L)

Figure 3.2: A Σ-automaton for the generator b in Grigorchuk’s group.

An automaton automorphism, α, of the tree Td is an automorphism for which there
exists a Σ-automaton, (Γ, v), such that α = α(Γ,v). We write A(Td) for the set of all
automata automorphisms of the tree Td. The set A(Td) forms a group [91, Proposition 1].
Moreover, a subgroup of A(Td) is called an automata group.
An automorphism α ∈ Aut(Td) will be called bounded (originally defined in [91]) if

there exists a constant N ∈ N such that for each k ∈ N, there are no more than N vertices
v ∈ Σ∗ with |v| = k (i.e. at level k) such that α|v 6= 1. Thus, the action of such a bounded
automorphism will, on each level, be trivial on all but (up to) N sub-trees. The set of
all such automorphisms form a group which we will denote as B(Td). The group of all
bounded automaton automorphisms is defined as the intersection A(Td)∩B(Td), which we
will denote as D(Td). A subgroup of D(Td) is called a bounded automata group.

A finitary automorphism of Td is an automorphism φ such that there exists a constant
k ∈ N for which φ|v = 1 for each v ∈ Σ∗ with |v| = k. Thus, a finitary automorphism
is one that is trivial after some k levels of the tree. Given a finitary automorphism φ,
the smallest k for which this definition holds will be called its depth and will be denoted
as depth(φ). We will denote the group formed by all finitary automorphisms of Td as
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3.2. Bounded Automata Groups

Fin(Td). See Figure 3.3 for examples of the actions of finitary automorphisms on their
associated trees (where any unspecified sub-tree is fixed by the action).

a b

Figure 3.3: Examples of finitary automorphisms a, b ∈ Fin(T2).

Let δ ∈ A(Td) \ Fin(Td). We call δ a directed automaton automorphism if

δ = (φ1, φ2, . . . , φk−1, δ
′, φk+1, . . . , φd) · σ ∈ Aut(Td) o Sym(Σ) (3.1)

where each φj is finitary and δ′ is also directed automaton (that is, not finitary and can
also be written in this form). We call dir(δ) = b = ak ∈ Σ, where δ′ = δ|b is directed
automaton, the direction of δ; and we define the spine of δ, denoted spine(δ) ∈ Σω,
recursively such that spine(δ) = dir(δ) spine(δ′). We denote the set of all directed
automaton automorphisms as Dir(Td). See Figure 3.4 for examples of directed automaton
automorphisms (in which a and b are the finitary automorphisms in Figure 3.3).

x

a

a
a

a
a

a
a

b

y

a
a
a
a
a
a
a
a
a

z

b

b

b

b

a

a

a
a

a

a

Figure 3.4: Examples of directed automorphisms x, y, z ∈ Dir(T2).

The following lemma is essential to prove our main theorem.

Lemma 3.5 (Lemma 3 in [63]). The spine, spine(δ) ∈ Σω, of a directed automaton
automorphism, δ ∈ Dir(Td), is eventually periodic, that is, there exists some ι = ι1ι2 · · · ιs ∈
Σ∗, called the initial section, and π = π1π2 · · ·πt ∈ Σ∗, called the periodic section, such
that spine(δ) = ι πω; and

δ|ι πk π1π2···πj = δ|ι π1π2···πj (3.2)

for each k, j ∈ N with 0 6 j < t.

Proof. Let (Γ, v) be a Σ-automaton such that δ = α(Γ,v). By the definition of Σ-automata,
for any given vertex w = w1w2 · · ·wk ∈ Σ∗ of Td there exists a vertex vw ∈ V(Γ) such
that δ|w = α(Γ,vw). In particular, such a vertex vw can be obtained by following the path
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3. Co-Word Problems

with edges labelled (w1, w
′
1)(w2, w

′
2) · · · (wk, w′k). Then, since there are only finitely many

vertices in Γ, the set of all restrictions of δ is finite, that is,

#
{
δ|w = α(Γ,vw) | w ∈ Σ∗

}
<∞. (3.3)

Let b = b1b2b3 · · · = spine(δ) ∈ Σω denote the spine of δ. Then, there exists some
n,m ∈ N with n < m such that

δ|b1b2···bn = δ|b1b2···bn···bm (3.4)

as otherwise there would be infinitely many distinct restrictions of the form δ|b1b2···bk thus
contradicting (3.3). By the definition of the spine, it follows that

spine (δ|b1b2···bn) = (bn+1bn+2 · · · bm) spine (δ|b1b2···bn···bm) .

Hence, by (3.4),
spine (δ|b1b2···bn) = (bn+1bn+2 · · · bm)ω.

Thus,

spine(δ) = (b1b2 · · · bn) spine (δ|b1b2···bn)

= (b1b2 · · · bn) (bn+1bn+2 · · · bm)ω.

By taking ι = b1b2 · · · bn and π = bn+1bn+2 · · · bm, we have spine(δ) = ι πω. Moreover,
from (3.4), we have equation (3.2) as required.

Notice that each finitary and directed automata automorphism is also bounded, in fact,
we have the following proposition which shows that the generators of any given bounded
automata group can be written as words in Fin(Td) and Dir(Td).

Proposition 3.6 (Proposition 16 in [91]). The group D(Td) of bounded automata auto-
morphisms is generated by Fin(Td) together with Dir(Td).

3.2.1. Co-Word Problems

We may now prove the following characterisation of bounded automata groups.

Theorem D. Every finitely-generated bounded automata group is co-ET0L.

The idea of the proof is straightforward: we construct a cspd machine that nondetermin-
istically chooses a vertex v ∈ V(Td), writing its labels on the check-stack and a copy on its
pushdown; as it reads letters from input, it uses the pushdown to keep track of where the
chosen vertex is moved; and finally it checks whether the pushdown and the check-stack
differ. The full details are as follows.

Proof. Let G ⊆ D(Td) be a bounded automata group with finite monoid generating set
X. By Proposition 3.6, we can define a map

ϕ : X → (Fin(Td) ∪Dir(Td))∗
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so that x and ϕ(x) are equal in D(Td) for each x ∈ X. Let

Y =
{
α ∈ Fin(Td) ∪Dir(Td)

∣∣ α or α−1 is a letter in ϕ(x) for some x ∈ X
}

which is a finite generating set for a group which contains G as a subgroup. Consider
the group H ⊆ D(Td) generated by Y . Since ET0L is closed under inverse word homo-
morphism, it suffices to prove that coWPY is ET0L, as coWPX is its inverse image under
the mapping X∗ → Y ∗ induced by ϕ. We construct a cspd machineM that recognises
coWPY , thus proving that G is co-ET0L.

Let α = α1α2 · · ·αn ∈ Y ∗ denote an input word given toM. The execution of the cspd
will be separated into four stages; (1) choosing a vertex v ∈ Σ∗ of Td which witnesses the
non-triviality of α (and placing it on the stacks); (2a) reading a finitary automorphism
from the input tape; (2b) reading a directed automaton automorphism from the input
tape; and (3) checking that the action of α on v that it has computed is non-trivial.

After Stage 1,M will be in state qcomp. From here,M nondeterministically decides to
either read from its input tape, performing either Stage 2a or 2b and returning to state
qcomp; or to finish reading from input by performing Stage 3.
We set both the check-stack and pushdown alphabets to be Σ ∪ {t}, i.e., we have

∆ = Γ = Σ ∪ {t}. The letter t will represent the top of the check-stack.

Stage 1: choosing a witness v = v1v2 · · · vm ∈ Σ∗.
If α is non-trivial, then there must exist a vertex v ∈ Σ∗ such that α · v 6= v. Thus, we
nondeterministically choose such a witness from R = Σ∗t and store it on the check-stack,
where the letter t represents the top of the check-stack.

From the start state, q0,M will copy the contents of the check-stack onto the pushdown,
then enter the state qcomp ∈ Q. Formally, this will be achieved by adding the transitions
(for each a ∈ Σ):

((q0, ε, (b, b)), (q0, tb)), ((q0, ε, (a, t)), (q0, ta)), ((q0, ε, (t, t)), (qcomp, t)).

This stage concludes withM in state qcomp, and the read-head pointing to (t, t). Note
that whenever the machine is in state qcomp and α1α2 · · ·αk has been read from input,
then the contents of pushdown will represent the permuted vertex (α1α2 · · ·αk) · v. Thus,
the two stacks are initially the same as no input has been read and thus no group action
has been simulated. In Stages 2a and 2b, only the height of the check-stack is important,
that is, the exact contents of the check-stack will become relevant in Stage 3.

Stage 2a: reading a finitary automorphism φ ∈ Y ∩ Fin(Td).
By definition, there exists some kφ = depth(φ) ∈ N such that φ|u = 1 for each u ∈ Σ∗ for
which |u| > kφ. Thus, given a vertex v = v1v2 · · · vm ∈ Σ∗, we have

φ(v) = φ(v1v2 · · · vkφ) v(kφ+1) · · · vm.

Given thatM is in state qcomp with tv1v2 · · · vmb on its pushdown, we will read φ from
input, move to state qφ,ε and pop the t; we will then pop the next kφ (or fewer if m < kφ)
letters off the pushdown, and as we are popping these letters we visit the sequence of
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states qφ,v1 , qφ,v1v2 , . . . , qφ,v1v2···vkφ . From the final state in this sequence, we then push
tφ(v1 · · · vkφ) onto the pushdown, and return to the state qcomp.
Formally, for letters a, b ∈ Σ, φ ∈ Y ∩ Fin(Td), and vertices u,w ∈ Σ∗ where |u| < kφ

and |w| = kφ, we have the transitions

((qcomp, φ, (t, t)), (qφ,ε, ε)), ((qφ,u, ε, (a, b)), (qφ,ub, ε)),

((qφ,w, ε, (ε, ε)), (qcomp, tφ(w)))

for the case where m > kφ, and

((qφ,u, ε, (b, b)), (qcomp, tφ(u)b))

for the case where m 6 kφ. Notice that we have finitely many states and transitions since
Y, Σ and each kφ is finite.

Stage 2b: reading a directed automorphism δ ∈ Y ∩Dir(Td).
By Lemma 3.5, there exists some ι = ι1ι2 · · · ιs ∈ Σ∗ and π = π1π2 · · ·πt ∈ Σ∗ such that
spine(δ) = ι πω and

δ(ιπω) = I1I2 · · · Is (Π1Π2 · · ·Πt)
ω

where
Ii = δ|ι1ι2···ιi−1

(ιi) and Πj = δ|ι π1π2···πj−1
(πj).

Given some vertex v = v1v2 · · · vm ∈ Σ∗, let ` ∈ N be largest such that p = v1v2 · · · v`
is a prefix of the sequence ιπω = spine(δ). Then by definition of directed automorphism,
δ′ = δ|p is directed and φ = δ|a, where a = v`, is finitary. Then, either p = ι1ι2 · · · ι` and

δ(v) = (I1I2 · · · I`) δ′(a) φ(v`+2v`+3 · · · vm),

or p = ιπkπ1π2 · · ·πj , with ` = |ι|+ k · |π|+ j, and

δ(v) = (I1I2 · · · Is) (Π1Π2 · · ·Πt)
k (Π1Π2 · · ·Πj) δ

′(a) φ(v`+2v`+3 · · · vm).

Hence, from state qcomp with tv1v2 · · · vmb on its pushdown, M reads δ from input,
moves to state qδ,ι,0 and pops the t; it then pops pa off the pushdown, using states to
remember the letter a and the part of the prefix to which the final letter of p belongs (i.e.
ιi or πj). From here,M performs the finitary automorphism φ on the remainder of the
pushdown (using the same construction as Stage 2a), then, in a sequence of transitions,
pushes tδ(p)δ′(a) and returns to state qcomp. The key idea here is that, using only the
knowledge of the letter a, the part of ι or π to which the final letter of p belongs, and the
height of the check-stack, thatM is able to recover δ(p)δ′(a).
We now give the details of the states and transitions involved in this stage of the

construction.
We have states qδ,ι,i and qδ,π,j with 0 6 i 6 |ι|, 1 6 j 6 |π|; where qδ,ι,i represents that

the word ι1ι2 · · · ιi has been popped off the pushdown, and qδ,π,j represents that a word

40



3.2. Bounded Automata Groups

ιπkπ1π2 · · ·πj for some k ∈ N has been popped of the pushdown. Thus, we begin with
the transition

((qcomp, δ, (t, t)), (qδ,ι,0, ε)),

then for each i, j ∈ N, a ∈ Σ with 0 6 i < |ι| and 1 6 j < |π|, we have transitions

((qδ,ι,i, ε, (a, ιi+1)), (qδ,ι,(i+1), ε)), ((qδ,ι,|ι|, ε, (a, π1)), (qδ,π,1, ε)),

((qδ,π,j , ε, (a, πj+1)), (qδ,π,(j+1), ε)), ((qδ,π,|π|, ε, (a, π1)), (qδ,π,1, ε))

to consume the prefix p.
After this,M will either be at the bottom of its stacks, or its read-head will see a letter

on the pushdown that is not the next letter in the spine of δ. Thus, for each i, j ∈ N with
0 6 i 6 |ι| and 1 6 j 6 |π| we have states qδ,ι,i,a and qδ,π,j,a; and for each b ∈ Σ we have
transitions

((qδ,ι,i, ε, (b, a)), (qδ,ι,i,a, ε))

where a 6= ιi+1 when i < |ι| and a 6= π1 otherwise, and

((qδ,π,j , ε, (b, a)), (qδ,π,j,a, ε))

where a 6= πj+1 when j < |π| and a 6= π1 otherwise.
Hence, after these transitions,M has consumed pa from its pushdown and will either

be at the bottom of its stacks in some state qδ,ι,i or qδ,π,j ; or will be in some state qδ,ι,i,a
or qδ,π,j,a. Note here that, ifM is in the state qδ,ι,i,a or qδ,π,j,a, then from Lemma 3.5 we
know δ′ = δ|p is equivalent to δ|ι1ι2···ιi or δ|ιπ1π2···πj , respectively; and further, we know
the finitary automorphism φ = δ|pa = δ′|a.

Thus, for each state qδ,ι,i,a and qδ,π,a we will follow a similar construction to Stage 2a,
to perform the finitary automorphism φ to the remaining letters on the pushdown, then
push δ′(a) and return to the state rδ,ι,i or rδ,π,j , respectively. For the case whereM is at
the bottom of its stacks we have transitions

((qδ,ι,i, ε, (b, b)), (rδ,ι,i, b)), ((qδ,π,i, ε, (b, b)), (rδ,π,i, b))

with 0 6 i 6 |ι|, 1 6 j 6 |π|.
Thus, after following these transitions,M is in some state rδ,ι,i or rδ,π,j and all that

remains is forM to push δ(p) with p = ι1ι2 · · · ιi or p = ιπkπ1π2 · · ·πk, respectively, onto
its pushdown. Thus, for each i, j ∈ N with 0 6 i 6 |ι| and 1 6 j 6 |π|, we have transitions

((rδ,π,i, ε, (ε, ε)), (qcomp, tI1I2 · · · Ii)), ((rδ,π,j , ε, (ε, ε)), (rδ,π,Π1Π2 · · ·Πj))

where from the state rδ,π, through a sequence of transitions,M will push the remaining
IΠk onto the pushdown. In particular, we have transitions

((rδ,π, ε, (ε, ε)), (rδ,π,Π)), ((rδ,π, ε, (ε, ε)), (qcomp, tI)),

so thatM can nondeterministically push some number of Π’s followed by tI before it
finishes this stage of the computation. We can assume that the machine pushes the correct

41



3. Co-Word Problems

number of Π’s onto its pushdown as otherwise it will not see t on its check-stack while
in state qcomp and thus would not be able to continue with its computation, as every
subsequent stage (2a,2b,3) of the computation begins with the read-head pointing to t on
both stacks.
Once again it is clear that this stage of the construction requires only finitely many

states and transitions.

Stage 3: checking that the action is non-trivial.
At the beginning of this stage, the contents of the check-stack represent the chosen witness,
v, and the contents of the pushdown represent the action of the input word, α, on the
witness, i.e., α · v.

In this stageM checks if the contents of its check-stack and pushdown differ. Formally,
we have states qaccept and qcheck, with qaccept accepting; for each a ∈ Σ, we have transitions

((qcomp, ε, (t, t)), (qcheck, ε)), ((qcheck, ε, (a, a)), (qcheck, ε))

to pop identical entries of the pushdown; and for each (a, b) ∈ Σ× Σ with a 6= b we have
a transition

((qcheck, ε, (a, b)), (qaccept, ε))

to accept if the stacks differ by a letter.
Observe that if the two stacks are identical, then there is no path to the accepting

state, qaccept, and thusM will reject. Notice also that by definition of cspd automata,
ifM moves into qcheck before all input has been read, thenM will not accept, i.e., an
accepting state is only effective if all input is consumed.

Soundness and Completeness.
If α is non-trivial, then there is a vertex v ∈ Σ∗ such that α · v 6= v, which M can
nondeterministically choose to write on its check-stack and thus accept α. If α is trivial,
then α · v = v for each vertex v ∈ Σ∗, and there is no choice of checking stack for which
M will accept, soM will reject.

Thus,M accepts a word if and only if it is in coWPY .

3.3. Open Problems and Concluding Remarks

Theorem D opens the door to a new characterisation of groups by their co-word problem.
In particular, this result is a step towards a characterisation of groups with ET0L co-word
problems. However, it still remains to be shown that there is a group whose co-word
problem is ET0L but not context-free. It is conjectured [17, p. 2] that Grigorchuk’s group
does not have a context-free co-word problem. Thus, we ask the following.

Question 3.7. Is the co-word problem for Grigorchuk’s group (or some other bounded
automata group) not context-free?

It is then natural to ask if there is a classification of co-ET0L groups.
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Chapter 4
Polyhedral Sets and Polyhedrally
Constrained Languages

In this chapter we introduce the family of polyhedrally constrained languages which we
use in the proof of Theorem A. This family of languages is a generalisation of linearly
constrained languages, as in Definition 2.13. It is a result of Massazza [76] that the
generating function of linearly constrained languages is holonomic (see Proposition 2.14).
In Proposition 4.5, we show that the family of polyhedrally constrained languages also
have holonomic (multivariate) generating functions.

Benson [10] introduced the concept of polyhedral sets to compute the volume growth of
virtually abelian groups, in particular, for each virtually abelian group Benson constructed
a polyhedral set whose (volume) generating function is the volume growth series of the
group. In Chapter 5 we apply a similar argument to construct a polyhedrally constrained
language whose generating function is the geodesic growth series of a virtually abelian
group. We define and study the class of polyhedral sets in Section 4.1, and the family of
polyhedrally constrained languages in Section 4.2.

4.1. Polyhedral Sets

A polyhedral set, as we see in Definition 4.1, is a subset of Zn that encodes the integer
solutions to finitely many systems of linear equations, inequalities and congruences. The
class of polyhedral sets is closed under Boolean expressions, Cartesian products, and
(inverse) mapping by integer affine transformation (see Propositions 4.2 and 4.3). The
class of polyhedral sets and their closure properties are essential to our study of the
language of geodesics for virtually abelian groups in Chapter 5.

Definition 4.1. A subset E ⊆ Zm is called an elementary region if it can be expressed as

{z ∈ Zm | a · z = b} , {z ∈ Zm | a · z > b} or {z ∈ Zm | a · z ≡ b (mod c)}
for some a ∈ Zm and b, c ∈ Z with c > 0. A basic polyhedral set is a finite intersection of
elementary regions; and a polyhedral set is a finite disjoint union of basic polyhedral sets.
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4. Polyhedral Sets and Polyhedrally Constrained Languages

From this definition we see that ∅ and Zm are elementary regions, and that Nm is a
basic polyhedral set. In Proposition 4.2 we see that the class of polyhedral sets is closed
under Boolean expressions and Cartesian products.

Proposition 4.2 (Proposition 13.1 and Remark 13.2 in [10]). The class of polyhedral
subsets of Zm is closed under finite union, finite intersection and set difference. Moreover,
the class of polyhedral sets is closed under Cartesian product.

A map E : Zm → Zn is an integer affine transform if it can be written as E(v) = vA+ b
where A ∈ Zm×n is a matrix and b ∈ Zn is a vector. In Proposition 4.3 we see that the
class of polyhedral sets is closed under (inverse) mapping by integer affine transformations.

Proposition 4.3 (Propositions 13.7 and 13.8 in [10]). Suppose that P ⊆ Zm and Q ⊆ Zn
are polyhedral sets, and E : Zm → Zn is an integer affine transform. Then, E(P) and
E−1(Q) are both polyhedral sets.

Notice that our definition of n-atoms and n-constraints in Definition 2.12 is similar to
that of elementary regions and polyhedral sets, respectively, without modular arithmetic.
From the closure properties in Proposition 4.2 we see that n-constraints form a subclass
of the polyhedral subsets of Zn. It can be verified by the reader that, for each n > 1,

{(x, 0, 0, . . . , 0) ∈ Zn | x ≡ 0 (mod 2)}
is a polyhedral set but not an n-constraint, and thus the class of n-constraints form a
proper subclass of the polyhedral subsets of Zn. In the following section, we generalise
the family of linearly constrained languages, defined in Definition 2.13, to the family of
polyhedral constrained languages which we use in the proof of Theorem A.

4.2. Polyhedrally Constrained Languages

In Section 2.3, we saw that a constrained language, L(U, C), is the intersection of an
unambiguous context-free language U ⊆ Σ and the set of words whose Parikh images
belong to a set C ⊆ Z|Σ|. Moreover, we defined the family of linearly constrained languages
in Definition 2.13 as the constrained languages where C is a |Σ|-constraint. In this section
we generalise this definition to the family of polyhedrally constrained languages as follows.

Definition 4.4. A language is polyhedraly constrained if it can be written as

L(U,P) = {w ∈ U ⊆ Σ∗ | ΦΣ(w) ∈ P}
where U is an unambiguous context-free language, and P is a polyhedral set.

In Chapter 5 we will not require the full power of polyhedrally constrained languages,
in particular, we only require polyhedrally constrained languages L(U,P) where U is a
regular language. It can then be shown that such languages form a subfamily of the RCM
languages introduced by Castiglione and Massazza [23], moreover, they showed that the
single-variable generating functions of these languages are holonomic. In Proposition 4.5,
we show that the multivariate generating function of each polyhedrally constrained
language is holonomic. We make use of this characterisation in the proof of Theorem A.
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Proposition 4.5. The multivariate generating function of a polyhedrally constrained
language is holonomic.

Proof. Let L(U,P) ∈ Σ∗ be a polyhedrally constrained language. From the definition of
polyhedral sets, we may decompose P ⊆ Z|Σ| into a union of finitely many disjoint basic
polyhedral sets P =

⋃L
i=1 Bi. Moreover, each such basic polyhedral set Bi ⊆ Z|Σ| can be

written as a finite intersection of elementary regions

Bi =

Ki,1⋂
j=1

{v ∈ Z|Σ| | αi,j · v = βi,j} ∩
Ki,2⋂
j=1

{v ∈ Z|Σ| | ξi,j · v > λi,j}

∩
Ki,3⋂
j=1

{v ∈ Z|Σ| | ζi,j · v ≡ ηi,j (mod θi,j)}

where each αi,j , ξi,j , ζi,j ∈ Z|Σ|, each βi,j , λi,j , ηi,j ∈ Z, and θi,j ∈ N+.
From the definition of constrained language we see that L(U,P) is the union of

disjoint polyhedrally constrained languages L(U,Bi). We see that if each L(U,Bi) has a
multivariate generating function of fi(x1, x2, . . . , x|Σ|), then the multivariate generating
function for L(U,P) is given by

f(x1, x2, . . . , x|Σ|) =
L∑
i=1

fi(x1, x2, . . . , x|Σ|).

For each basic polyhedral set Bi, we introduce a |Σ|-constraint

Ci =

Ki,1⋂
j=1

{v ∈ Z|Σ| | αi,j · v = βi,j} ∩
Ki,2⋂
j=1

{v ∈ Z|Σ| | ξi,j · v > λi,j},

and a monoid homomorphism ϕi : Σ∗ →∏Ki,3
j=1 (Z/θi,jZ) such that

ϕi(w) = (ζi,1 · ΦΣ(w), ζi,2 · ΦΣ(w), . . . , ζi,Ki,3 · ΦΣ(w));

moreover, we write Ri ∈ Σ∗ for the inverse image

Ri = ϕ−1
i ({(ηi,1, ηi,2, . . . , ηi,Ki,3)}).

Each language Ri ∈ Σ∗ is expressed as the inverse image of a subset of a finite monoid.
From [84, Theorem 1] we see that each Ri is a regular language, in particular, for each Ri
we may construct a finite-state automaton with states given by the set

∏Ki,3
j=1 (Z/θi,jZ),

initial state given by (0, . . . , 0), an accepting state of (ηi,1, ηi,2, . . . , ηi,Ki,3), and a transition
v →σ v′ for each state v and letter σ ∈ Σ where v′ = v + ϕi(σ). Moreover, since the
class of unambiguous context-free grammar is closed under intersection with regular
language (see Theorem 6.4.1 on p. 197 of [58]), we see that each L(U ∩Ri, Ci) = L(U,Bi)
is linearly constrained as in Definition 2.13. From Proposition 2.14, we see that each
fi(x1, x2, . . . , x|Σ|) is holonomic.
From Lemma 2.9, holonomic functions are closed under addition, and thus the mul-

tivariate generating function of L(U,P) is holonomic.

45





Chapter 5
Virtually Abelian Groups

It is a well-known result of Gromov [56] that a group has polynomial volume growth if and
only if it is virtually nilpotent. Moreover, from the work of Bass [9] we know that virtually
nilpotent groups have polynomial volume of integer degrees. Bridson, Burillo, Elder and
Šunić [19] asked if there is an analogous classification for groups with polynomial geodesic
growth and if there exists a group with intermediate geodesic growth. Towards these
questions they provided a sufficient condition, given in Lemma 5.1, for a virtually abelian
group to have polynomial geodesic growth, and furnished an example of a virtually Z2

group, given in Equation (5.1), with polynomial geodesic growth. Before this virtually Z2

example, the only groups known to have polynomial geodesic growth were virtually cyclic.
In this chapter, we take the next step towards a classification of polynomial geodesic
growth by characterising the geodesic growth series for all virtually abelian groups with
respect to any finite weighted monoid generating sets.

Lemma 5.1 (Theorem 1 in [19]). Let G be a finitely-generated group. If there is an
element g ∈ G whose normal closure is a finite-index abelian subgroup of G, then G has
polynomial geodesic growth with respect to some generating set.

In [19], it was shown that the virtually Z2 group〈
a, b, t | [a, b] = t2 = 1, at = b

〉
(5.1)

has polynomial geodesic growth with respect to the generating set {a, a−1, t}. This group
was introduced by Cannon [43, Example 4.4.1 on p. 97] as an example of a group that is
short-lex automatic with respect to one, but not all, generating sets. Moreover, it was
shown in Example 4.4.2 on page 98 of [43] that this group has a generating set for which
the geodesics do not form a regular language. In Theorem D, we show that the language
of geodesics for each virtually abelian group is blind multicounter for every generating set.
We may generalise the construction given in Equation (5.1) to show that for any

finitely-generated abelian group, A, there is a virtually-A group with polynomial geodesic
growth. Let A be a finitely-generated abelian group, then from the classification of
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5. Virtually Abelian Groups

finitely-generated abelian groups we see that A = F × Zn for some n and finite group F .
Let x1, x2, . . . , xn be the standard basis for the Zn subgroup of A. Let

B =
〈
A, t

∣∣ [F, t] = 1, xti = xi+1 for each i < n, tn = 1
〉
. (5.2)

We see that B contains A as a subgroup of index n; and thus B contains Zn as a subgroup
of index n|F |. Moreover, the normal closure of x1 in B is the finite-index free-abelian
subgroup Zn. From Lemma 5.1, we see that B has polynomial geodesic growth with
respect to some generating set.

Benson [10] showed that the volume growth series for virtually abelian groups is rational
with respect to any finite (weighted monoid) generating set. This result was generalised by
Evetts [44] who showed that the coset, subgroup, and conjugacy growth series of a virtually
abelian group is rational with respect to any finite (weighted monoid) generating set. In
Sections 5.1 to 5.1.2 we modify the methods of Benson, and provide a characterisation of
the geodesic growth series in Section 5.2 by combining this with our result on polyhedrally
constrained language given in Proposition 4.5.

5.1. Patterned Words

Let G be a virtually abelian group that is generated as a monoid by some finite weighted
generating set S. It is known that G contains a finite-index normal subgroup that is
isomorphic to Zn for some n. This follows as G must contain an abelian subgroup A
of finite index, then from the classification of finitely generated abelian groups we see
that G must contain a group H that is isomorphic to Zn. We may then obtain a normal
subgroup from the core of H as

⋂
g∈GH

g. This subgroup will be finite index in G, and is
free abelian as it is a subgroup of a free abelian group H [86, pp. 100–1]. Without loss of
generality, we assume that Zn / G with d = [G : Zn]. We fix a set of coset representatives
T = {t1 = 1, t2, . . . , td} for Zn in G. We then write elements of G in the normal form
g = z · t where z ∈ Zn and t ∈ T .

Definition 5.2. Let ψ : G→ Zn and ρ : G→ T be the maps defined such that the normal
form for g ∈ G is given by ψ(g) · ρ(g).

Benson [10] showed that virtually abelian groups have rational volume growth series
by demonstrating that each group element has at least one geodesic representative that
can be expressed as a patterned word, where the set of such patterned words is then
studied using the theory of polyhedral sets. In this section we modify these arguments to
study the set of all geodesic words in S∗, in particular, we describe Algorithm 5.15 which
converts words in S∗ to patterned words which represent the same group element with
the same weight. In Section 5.1.2 we compute the weight and group element of patterned
words, and describe the patterned words which correspond to geodesics.

We begin by defining two finite sets of words Y, P ⊆ S∗ as follows.
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5.1. Patterned Words

Definition 5.3. From the generating set S and the normal subgroup Zn / G with finite
index d = [G : Zn], we define the sets

Y = {σ ∈ S∗ | 1 6 |σ|S 6 d and σ ∈ Zn} and
P = {σ ∈ S∗ | 1 6 |σ|S 6 d− 1 and σ /∈ Zn},

and we fix a labelling {y1, y2, . . . , ym} = Y where m = |Y |.
We define the sets Y and P as above so that we have the technical property given in

Lemma 5.4. We will find this property useful in the proof of Lemma 5.14 which is then
used to construct Algorithm 5.15.

Lemma 5.4. Suppose that w ∈ S∗ with 1 6 |w|S 6 d and w /∈ P . Then, there is a
factoring w = αβδ with α ∈ P ∪ {ε}, β ∈ Y and δ ∈ S∗. In particular, there is a
unique choice of such a factoring for which (|α|S , |β|S) ∈ N2 is minimal with respect to
the lexicographic ordering on N2.

Proof. Let w = w1w2 · · ·wk with 1 6 k 6 d and w /∈ P .
Notice that if we have at least one such factorisation, then there is a unique choice

of such a factoring where (|α|S , |β|S) ∈ N2 is minimal with respect to the lexicographic
ordering on N2. Thus, all that remains to be shown is that at least one such factoring
w = αβδ exists.
If |w|S < d, then we have such a factorisation given by β = w, and α = δ = ε. Thus,

in the remainder of this proof we consider the case where |w|S = d.
If |w|S = d, then from the pigeonhole principle on the d cosets, we see that there must

be a nontrivial factor b = wiwi+1 · · ·wj for which b ∈ Zn. Let I > 1 be the smallest value
for which there is a J > I with wIwI+1 · · ·wJ ∈ Zn, then let α = w1w2 · · ·wI−1 and
β = wIwI+1 · · ·wJ . From our choice of indices I and J , we see that β ∈ Y , and either
α = ε or α /∈ Zn. Moreover, we see that |α|S = I − 1 6 d− 1 and thus α ∈ P ∪ {ε}.

Notice that S ⊆ Y ∪ P , and thus Y ∪ P generates the group G. We will see that for
each word σ ∈ S∗, there is a word w ∈ Y ∗(PY ∗)k, with 0 6 k 6 d, such that w represents
the same group element as σ with the same weight. We formalise this by defining patterns
and patterned words as follows.

Definition 5.5 (Patterned words). Let π = π1π2 · · ·πk ∈ P ∗ be a word in the letters of P
with length k = |π|P 6 d for which each proper prefix belongs to a distinct coset, that is,

1 = ρ(ε), ρ(π1), ρ(π1π2), . . . , ρ(π1π2 · · ·πk−1) (5.3)

are pairwise distinct; and let v ∈ N(k+1)m be a vector where m = |Y |. Then we say that π
is a pattern and that (v, π) is a patterned word. We then write

vπ =
(
yv1

1 y
v2
2 · · · yvmm

)
π1

(
y
vm+1

1 y
vm+2

2 · · · yv2m
m

)
π2 · · ·πk

(
y
vk·m+1

1 y
vk·m+2

2 · · · yv(k+1)·m
m

)
.

Notice that ρ(π) is not included in (5.3). If ρ(π) is also distinct from each coset repres-
entative in (5.3), then we say that π is a strong pattern and that (v, π) is a strongly
patterned word.
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5. Virtually Abelian Groups

To simplify notation in later sections, we introduce the following sets.

Definition 5.6. We write Patt ⊆ P ∗ for the set of all patterns, and we write StrPatt ⊆
Patt for the set of all strong patterns. Notice that Patt and StrPatt are finite, in
particular, |Patt| 6 |P |d+1.

To simplify notation in Section 5.1.1, we extend this as follows.

Definition 5.7 (Extended Patterned Words). If (v, π) is a (strongly) patterned word,
and σ ∈ S∗, then ((v, π), σ) is an extended (strongly) patterned word.

In Algorithm 5.15, for each word σ ∈ S∗, we construct a finite sequence of extended
patterned words that begins with ((0, ε), σ) and ends with an extended patterned word of
the form ((v, π), ε). Moreover, this sequence has the property that vπ and σ represent the
same group element with the same weight. To simplify notation, we define the following
equivalence relation.

Definition 5.8. We define the equivalence relation ' on S∗ such that, for each w, σ ∈ S∗,
we have w ' σ if and only if both w = σ and ω(w) = ω(σ).

Notice that if we have a patterned word (v, π) with vπ ' σ, then σ is a geodesic if and
only if the word vπ is a geodesic.

5.1.1. Word Shuffling

In this section we construct Algorithm 5.15 which ‘shuffles’ words of the form σ ∈ S∗ into
patterned words (v, π) which represent the same group element with the same weighted
length. In particular, for each word σ, we compute a finite sequence of extended patterned
words

((0, ε), σ) = ((u(1), τ (1)), σ(1)), ((u(2), τ (2)), σ(2)),

. . . , ((u(q), τ (q)), σ(q)) = ((v, π), ε), (5.4)

such that
(u(i))τ

(i)
σ(i) ' (u(i+1))τ

(i+1)
σ(i+1) and |σ(i)|S > |σ(i+1)|S

for each i. Notice that vπ ' σ, and q 6 |σ|S + 1 where q is the length of the sequence in
(5.4). From (5.4), we define Shuffle(σ) = (v, π) where the patterned word (v, π) has the
property that vπ ' σ.

The idea of Algorithm 5.15 is to compute each ((u(i+1), τ (i+1)), σ(i+1)) from its previous
extended patterned word ((u(i), τ (i)), σ(i)) by replacing a bounded-length prefix of σ(i)

with a strictly shorter word, adding at most a unit vector to u(i), and adding at most one
letter to τ (i). In order to describe our algorithm, we introduce the following additional
notation.
Recall that d = [G : Zn] is the index of the Zn normal subgroup of G. For each word

σ ∈ S∗, we fix a bounded-length prefix as follows.
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Definition 5.9 (Prefixes). We write Prefix: S∗ → S∗ for the function which computes the
prefix of a word of length at most d, that is, Prefix(σ) = σ1σ2 · · ·σq where q = min(d, |σ|S).
Notice that if w = Prefix(σ) with |w|S < d, then σ = w.

In sequence (5.4), each word σ(i+1) is obtained from σ(i) by replacing the prefix
w(i) = Prefix(σ(i)) with a strictly shorter word w(i)′. We write these prefix replacements
using the following notation.

Definition 5.10 (Prefix Replacements). Let σ ∈ S∗ be a word which factors as σ = wζ
where w, ζ ∈ S∗, then for each word w′ ∈ S∗ we write (w 7→ w′) · σ = w′ζ which we call a
prefix replacement. We write a sequence of replacements as

(wn 7→ w′n) · · · (w2 7→ w′2)(w1 7→ w′1) · σ
where replacements are composed right-to-left. Notice that if σ′ = (w 7→ w′) · σ, then
ω(σ′) = ω(σ)− ω(w) + ω(w′) where ω : S∗ → N is the weight function.

To understand how prefix replacements are composed, consider the following.

Example 5.11. We have the sequence of replacements

(c 7→ dc)(ba 7→ cb)(ε 7→ b) · az = dcbz. (5.5)

Notice that if (w 7→ w′) ·σ is defined, then we have σ = (w′ 7→ w)(w 7→ w′) ·σ, that is, each
prefix replacement has an inverse. For example, from the sequence of prefix replacements
given in (5.5), we see that

az = (b 7→ ε)(cb 7→ ba)(dc 7→ c) · dcbz.
Thus, we may compute the inverse of a sequence of prefix replacements.

For each pattern π, we write Nπ for the set of all vectors v for which (v, π) is a patterned
word, as defined in Definition 5.5. We introduce the following notation to simplify the
description of our algorithm.

Definition 5.12. For each pattern π = π1π2 · · ·πk ∈ P ∗, we write Zπ and Nπ for
the sets Z(k+1)m and N(k+1)m, respectively, where m = |Y |. Moreover, for each i ∈
{1, 2, . . . , dim(Zπ)} we write eπ,i for the i-th standard basis element of Zπ and eπ,∅ =
0 ∈ Zπ for the zero vector of Zπ.

When computing (5.4), it may be the case that |τ (i)|P 6= |τ (i+1)|P and thus the vectors
u(i) and u(i+1) lie in different spaces Nτ (i) and Nτ (i+1) , respectively. We define the following
map to convert between these spaces.

Definition 5.13. For each pair of patterns π, τ ∈ P ∗, let t = dim(Zτ ) and p = dim(Zπ),
then we define the map Projπ,τ : Zπ → Zτ such that

Projπ,τ (u1, u2, . . . , up) = (u1, u2, . . . , up, 0, 0, . . . , 0)

if t > p, and
Projπ,τ (u1, u2, . . . , up) = (u1, u2, . . . , ut)

otherwise. Notice that if dim(Zτ ) < dim(Zπ), then Projπ,τ is a projection; otherwise,
dim(Zτ ) > dim(Zπ) and Projπ,τ is an embedding.
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In order to construct Algorithm 5.15, we need to define a map which explicitly describes
how to construct the sequence of extended patterned words in (5.4). We construct such a
map in the following lemma.

Lemma 5.14. We may construct a map

∆: StrPatt×W1 → (N+ ∪ {∅})× Patt×W2,

where
W1 = {w ∈ S∗ | 1 6 |w|S 6 d} and W2 = {w ∈ S∗ | |w|S < d}

with the following properties. Let ((u, τ), σ) be an extended strongly patterned word, and
let ∆(τ, w) = (x, τ ′, w′) with w = Prefix(σ). We may then apply ∆ to obtain an extended
patterned word ((u′, τ ′), σ′) where u′ = Projτ,τ ′(u) + eτ ′,x and σ′ = (w 7→ w′) · σ. This
will be denoted as

((u, τ), σ)
∆−→ ((u′, τ ′), σ′).

For each extended strongly patterned word ((u, τ), σ),
1. |τ |P 6 |τ ′|P and thus Projτ,τ ′ : Nτ → Nτ ′ is an embedding;
2. uτσ ' (u′)τ

′
σ′;

3. |σ|S > |σ′|S and ω(w) > ω(w′); and
4. either |σ′|S = 0, or ((u′, τ ′), σ′) is an extended strongly patterned word.

Notice that property 4 implies that either ((u′, τ ′), σ′) is equivalent to the patterned word
(u′, τ ′), or we may apply ∆ again. From property 3, we see that after finitely many
applications of the map ∆, we have a patterned word.

Proof. Let τ = τ1τ2 · · · τk ∈ P ∗ be a strong pattern, that is, τ is a pattern for which the
coset representatives

ρ(ε), ρ(τ1), ρ(τ1τ2), ρ(τ1τ2τ3), . . . , ρ(τ)

are pairwise distinct. Then, from the pigeonhole principle on the d cosets of Zn in G, we
see that |τ |P = k < d.
Let w ∈ S∗ be a word with length 1 6 |w|S 6 d. We separate the remainder of this

proof into the cases where w ∈ P and w /∈ P as follows.
Suppose that w ∈ P , then we have a length k + 1 pattern τ ′ = τw, moreover, from

the definition of words in P , we see that |w|S < d, and from Definition 5.9 we have
w = σ. We then define ∆(τ, w) = (∅, τ ′, ε). For each extended strongly patterned word
((u, τ), w) with u ∈ Np, we then obtain an extended patterned word ((u′, τ ′), ε) where
u′ = Projτ,τ ′(u) = (u1, u2, . . . , up, 0, 0, . . . , 0). Notice that we have (u′)τ

′
= uτw. This

completes our proof for the case that w ∈ P .
In the remainder of this proof, we suppose that w /∈ P . From Lemma 5.4, we factor w

uniquely as w = αβδ where α ∈ P ∪ {ε}, β ∈ Y and (|α|S , |β|S) is minimal with respect
to the lexicographic order on N2. From the labelling Y = {y1, y2, . . . , ym}, we see that
there must be an index b such that β = yb.
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Let ((u, τ), σ) be an extended strongly patterned word with w = Prefix(σ) and u =
(u0, u1, . . . , uk) where each ua = (ua,1, ua,2, . . . , ua,m) ∈ Nm. Then if we factor σ as
σ = wζ, we see that

uτσ =
(
y
u0,1

1 y
u0,2

2 · · · yu0,m
m

)
τ1

(
y
u1,1

1 y
u1,2

2 · · · yu1,m
m

)
τ2

· · · τk−1

(
y
uk−1,1

1 y
uk−1,2

2 · · · yuk−1,m
m

)
τk

(
y
uk,1
1 y

uk,2
2 · · · yuk,mm

)
αybδζ.

If there is an index a with 0 6 a 6 k such that ρ(τ1τ2 · · · τa) = ρ(πα), then the choice of
such an index a must be unique, and we see that

τa+1

(
y
ua+1,1

1 y
ua+1,2

2 · · · yua+1,m
m

)
τa+2 · · · τk

(
y
uk,1
1 y

uk,2
2 · · · yuk,mm

)
α ∈ Zn

commutes with yb ∈ Zn, that is,

(u0, . . . , ua−1, ua + eb, ua+1, . . . , uk)
ταδζ ' uταybδζ = uτσ

where eb ∈ Nm is the b-th standard basis element. In this case we define the map
∆(τ, w) = (a ·m+ b, τ, αδ) and our proof is complete. Otherwise, we see that the coset
representatives

ρ(ε), ρ(τ1), ρ(τ1τ2), ρ(τ1τ2τ3), . . . , ρ(τ), ρ(τα)

are pairwise distinct and α 6= ε, that is, α ∈ P . Then we see that the length k + 1 word
τ ′ = τα ∈ P ∗ is a strong pattern, and that we have

(u0, u2, . . . , uk, eb)
τ ′δζ = uταybδζ = uτσ

where eb ∈ Nm is the b-th standard basis vector. After defining ∆(τ, w) = (a · k + b, τ ′, δ)
our proof is complete.

We are now ready to define our algorithm as follows.

Algorithm 5.15 (Word Shuffling). Let ∆ be the map in Lemma 5.14. For each word
σ ∈ S∗, there is a finite sequence of extended patterned words

((0, ε), σ) = ((u(1), τ (1)), σ(1))
∆−→ ((u(2), τ (2)), σ(2))

· · · ∆−→ ((u(q), τ (q)), σ(q)) = ((v, π), ε). (5.6)

From this sequence we define Shuffle(σ) = (v, π). Notice from property 3 in Lemma 5.14
that we have

|σ|S = |σ(1)|S > |σ(2)|S > |σ(3)|S > · · · > |σ(q)|S = 0

and thus q 6 |σ|S + 1. From property 2 in Lemma 5.14, we see that vπ ' σ.

In the remainder of this section, we compute the group elements and weights of patterned
words, and determine which patterned word represents geodesics.
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5.1.2. Geodesic Patterned Words

From Algorithm 5.15, for each word σ ∈ S∗ we have a well-defined patterned word
(v, π) = Shuffle(σ) such that vπ ' σ, that is, vπ represents the same group element as σ
with the same weight. We see that σ is a geodesic if and only if vπ is a geodesic.

In this section, we modify an argument of Benson [10] and show that the group element
and weight of any word vπ can be computed with the use of integer affine transforms,
and that we may verify that vπ is a geodesic by checking if the vector v belongs to a
polyhedral set Gπ.

Lemma 5.16. For each pattern π, there are integer affine transformations Ψπ : Zπ → Zn
and Ωπ : Zπ → Z such that for each patterned word (v, π), we have vπ = Ψπ(v) · ρ(π) and
ω(vπ) = Ωπ(v).

Proof. Recall that in Definition 5.3 we fixed a labelling Y = {y1, y2, . . . , ym} where
m = |Y |. Define the matrix Z ∈ Zm×n such that eiZ = yi for each standard basis vector
ei ∈ Zm. Then, we see that vZ = yv1

1 y
v2
2 · · · yvmm for each v ∈ Nm. For each p ∈ P we

see that pxp−1 ∈ Zn for each x ∈ Zn / G; thus we define matrices Rp ∈ Zn×n such that
xRp = pxp−1 for each x ∈ Zn.

To compute the element vπ we first rewrite vπ as(
yv1

1 y
v2
2 · · · yvmm

)
· π1

(
y
vm+1

1 y
vm+2

2 · · · yv2m
m

)
π−1

1

(π1π2)
(
y
v2m+1

1 y
v2m+2

2 · · · yv3m
m

)
(π1π2)−1

· · ·π
(
y
vkm+1

1 y
vkm+2

2 · · · yv(k+1)m
m

)
π−1 · π.

Then we see that ρ(vπ) = ρ(π) and ψ(vπ) = Ψπ(v) where

Ψπ(v) = (v1, v2, . . . , vm)Z + (vm+1, vm+2, . . . , v2m)ZRπ1+

· · ·+ (vmk+1, vmk+2, . . . , v(k+1)m)ZRπk · · ·Rπ2Rπ1 + ψ(π).

Considering the word vπ we see that ω(vπ) = Ωπ(v) where

Ωπ(v) = ω(π) +
k∑
j=0

m∑
i=1

vjm+i · ω(yi).

The maps Ψπ : Zπ → Zn and Ωπ : Zπ → Z are integer affine transforms.

From the integer affine transformations defined in Lemma 5.16 and the closure properties
of polyhedral sets we have the following result.

Lemma 5.17. For each pattern π, there is a polyhedral set Gπ ⊆ Nπ such that v ∈ Gπ if
and only if (v, π) is a patterned word where vπ is a geodesic.
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5.2. Geodesic Growth

Proof. From Algorithm 5.15 we see that the word vπ is a geodesic if and only if there
is no patterned word (u, τ) with uτ = vπ and ω(uτ ) < ω(vπ). For each pattern π, let
Eπ : Zπ → Zn+1 be the integer affine transformation defined as Eπ(v) = (Ψπ(v),Ωπ(v)),
and let R ⊆ Z2(n+1) be the polyhedral set

R =

{
(ν, µ) ∈ Zn+1 × Zn+1

∣∣∣∣∣ ν1 = µ1, ν2 = µ2, . . . , νn = µn

and νn+1 > µn+1

}
.

Then, we see that vπ is geodesic if and only if there is no patterned word (u, τ) with
ρ(τ) = ρ(π) and

(
Eπ(v), Eτ (u)

)
∈ R; or equivalently, vπ is a geodesic if and only if the

intersection (
Eπ({v})× Eτ (Nτ )

)
∩R

is empty for each pattern τ with ρ(τ) = ρ(π).
Let f : Zn+1 × Zn+1 → Zn+1 be the projection onto the first Zn+1 factor, that is,

f(ν, µ) = ν for each (ν, µ) ∈ Zn+1 × Zn+1. Let

Dπ,τ = Nπ ∩
[
(Eπ)−1 f

((
Eπ(Nπ)× Eτ (Nτ )

)
∩R

)]
.

Then, we see that vπ is a geodesic if and only if v /∈ Dπ,τ for each pattern τ with
ρ(τ) = ρ(π). Then, vπ is a geodesic if and only if v ∈ Gπ where

Gπ = Nπ \
⋃{
Dπ,τ

∣∣∣ τ is a pattern with ρ(τ) = ρ(π)
}

where we see that the above union is finite as there can be only finitely many patterns.
Moreover, from the closure properties in Propositions 4.2 and 4.3 we see that each set
Gπ ⊆ Nπ is polyhedral.

5.2. Geodesic Growth

In this section we provide a characterisation of the geodesic growth of virtually abelian
groups, in particular, we show that the geodesic growth of a virtually abelian group with
respect to any finite weighted monoid generating set is either polynomial with rational
geodesic growth series, or exponential with holonomic geodesic growth series. This result
is provided in Theorem A.
The result in Theorem A is proven by first showing that the geodesic growth series is

holonomic, then applying the following lemma.

Lemma 5.18. If G has a holonomic geodesic growth series with respect to the weighted
monoid generating set S, then the geodesic growth is either exponential, or the polynomial
of an integer degree with a rational geodesic growth series.

Proof. The proof follows from Corollary 2.7.1 and Lemma 2.10.
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5. Virtually Abelian Groups

In Lemma 5.22, we construct a weight-preserving bijection from the words in S∗ to
a subset of paths in a weighted graph Γ. Then, in Theorem A we construct a weight-
preserving bijection from the set of such paths which correspond to geodesics, and the
set of words in a finite number of polyhedrally constrained languages. Using the theory
developed in Section 2.2.3, we then prove our result. We begin by constructing the graph
Γ as follows.

Definition 5.19. Let ∆ be the map constructed in Lemma 5.14. Let Γ be the finite
weighted directed edge-labelled graph defined as follows. For each pattern τ and each word
w ∈ S∗ with |w|S 6 d = [G : Zn], the graph Γ has a vertex [τ, w] ∈ V(Γ). Suppose
τ ∈ StrPatt, |w|S > 1 and that ∆(τ, w) = (x, τ ′, w′); if |w|S = d, then for each word
ξ ∈ S∗ with |w′ξ|S 6 d, the graph Γ has a labelled edge [τ, w]

x−→ [τ ′, w′ξ]; otherwise,
1 6 |w|S < d and the graph Γ has a labelled edge [τ, w]

x−→ [τ ′, w′]. Moreover, each such
edge has weight ω(w)− ω(w′) > 0.

We are interested in paths of the following form.

Definition 5.20. For each pattern π, we write Pathπ for the set of paths

Pathπ = {p : [ε, w]→∗ [π, ε] | w ∈ S∗ with |w|S 6 d} .

We write Path for the union of all such sets, that is, Path =
⋃
π Pathπ.

We count the instances of each edge label as follows.

Definition 5.21. Let α : Path→ ⋃{Nπ | π ∈ Patt} map paths p ∈ Pathπ to vectors in
Nπ such that the i-th component of α(p) counts the number of edges of p that are labelled
with i, that is, if p : ν1

x1−→ ν2
x2−→ · · · xk−→ [π, ε] ∈ Pathπ, then we have α(p) = v ∈ Nπ

where each vi = #{j | xj = i}.

In the following lemma, we construct a weight-preserving bijection that maps from the
set of words S∗ to the set of paths Path.

Lemma 5.22. We may construct a weight-preserving bijection S∗ → Path, which
we denote as σ 7→ pσ, with the following properties. For each word σ ∈ S∗ where
Shuffle(σ) = (v, π), we have pσ ∈ Pathπ. For each path p ∈ Pathπ, there is a unique
word σ ∈ S∗ such that p = pσ and vπ ' σ where v = α(p) ∈ Nπ.

Proof. Let σ ∈ S∗, then from Algorithm 5.15 there is a finite sequence

((0, ε), σ) = ((u(1), τ (1)), σ(1))
∆−→ ((u(2), τ (2)), σ(2))

· · · ∆−→ ((u(q), τ (q)), σ(q)) = ((v, π), ε). (5.7)

Let w(j) = Prefix(σ(j)) and ∆(τ (j), w(j)) = (x(j+1), τ (j+1), w(j)′).
From Lemma 5.14 we see that each σ(j+1) = (w(j) 7→ w(j)′) · σ(j). Then,

σ = (w(1)′ 7→ w(1))(w(2)′ 7→ w(2)) · · · (w(q−1)′ 7→ w(q−1)) · ε (5.8)
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5.2. Geodesic Growth

and thus

ω(σ) = (ω(w(1))− ω(w(1)′)) + (ω(w(2))− ω(w(2)′))

+ · · ·+ (ω(w(q−1))− ω(w(q−1)′)). (5.9)

Moreover, from the properties of ∆ given in Lemma 5.14, and the definition of the graph
Γ given in Definition 5.19, we see that

pσ : [ε, w] = [τ (1), w(1)]
x(2)

−−→ [τ (2), w(2)]
x(3)

−−→

· · · x
(q−1)

−−−−→ [τ (q−1), w(q−1)]
x(q)

−−→ [τ (q), w(q)] = [π, ε] (5.10)

is a path in Pathπ. Notice that the weight of the path pσ is the same as the weight of σ
in (5.9) and thus the map σ 7→ pσ is weight preserving. It remains to be shown that the
map σ 7→ pσ is a bijection.
Suppose that we are given a path pσ as in (5.10). Then, we may recover the words

w(i)′ as ∆(τ (j), w(j)) = (x(j+1), τ (j+1), w(j)′). Hence, we may recover the word σ using
equation (5.8). Thus, we see that the map σ 7→ pσ is one-to-one. It remains to be shown
that the map σ 7→ pσ is onto, that is, for each p ∈ Path, there is a word σ such that
p = pσ.

Let p ∈ Pathπ be a path written as

p : [ε, w] = [τ (1), w(1)]
x(2)

−−→ [τ (2), w(2)]
x(3)

−−→

· · · x
(q−1)

−−−−→ [τ (q−1), w(q−1)]
x(q)

−−→ [τ (q), w(q)] = [π, ε].

Let ∆(τ (j), w(j)) = (x(j+1), τ (j+1), w(j)′). We define the words σ(j) such that

σ(j) = (w(j)′ 7→ w(j)) · σ(j+1)

and σ(q) = ε. We define the vectors u(j) ∈ Nτ (j) such that

u(j+1) = Projτ (j),τ (j+1)(u(j)) + eτ (j+1),x(j+1)

and u(1) = 0 ∈ Nτ (1) . From the property 1 in Lemma 5.14 we see that each |τ (j)|P 6
|τ (j+1)|P , and thus from Definition 5.13 we see that u(q) = α(p). Let σ = σ(1) and
v = u(q), then we see that

((0, ε), σ) = ((u(1), τ (1)), σ(1))
∆−→ ((u(2), τ (2)), σ(2))

· · · ∆−→ ((u(q), τ (q)), σ(q)) = ((v, π), ε).

From this, we see that Shuffle(σ) = (v, π) and that p = pσ with σ ' vπ where v = α(p) ∈
Nπ. Moreover, we see that the map σ 7→ pσ is onto.

We may now prove our first main theorem as follows.
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5. Virtually Abelian Groups

Theorem A. Let G be a virtually abelian group with a finite weighted monoid generating
set S. Then the geodesic growth with respect to S is either polynomial of integer degree
with rational geodesic growth series, or exponential with holonomic geodesic growth series.

Proof. From Lemma 5.22, we may compute the geodesic growth function as

γS(k) =
∑

π∈Patt

#{p ∈ Pathπ | ω(p) 6 k and α(p) ∈ Gπ} (5.11)

where ω(p) is the weight of p, and Gπ is the polyhedral set in Lemma 5.17. Notice that
(5.11) is a finite sum as we have only finitely many patterns.

Let Σ be the weighted finite alphabet which contains the edges of Γ, that is, for each
edge e : ν1

x−→ ν2 in Γ, there is a letter (ν1, x, ν2) ∈ Σ with weight ω(e). Then, for each
pattern π, we have a weight-preserving bijection from the paths in Pathπ to the words
in a language Lπ ⊆ Σ∗, in particular, the language Lπ contains all words of the form

([ε, w], x1, ν1)(ν1, x2, ν2)(ν2, x3, ν3) · · · (νk, xk+1, [π, ε]) ∈ Σ∗.

Notice that each Lπ is a regular language.
We write Φ(ν1, x, ν2) ∈ N|Σ| to denote the Parikh vector corresponding to the letter

(ν1, x, ν2) ∈ Σ. For each pattern π, we define an integer affine transform Eπ : Z|Σ| →
Zπ such that Eπ(Φ(ν1, x, ν2)) = eπ,x is the x-th standard basis element for each x ∈
{1, 2, . . . , dim(Zπ)}, and Eπ(Φ(ν1, x, ν2)) = 0 otherwise. Let w ∈ Lπ be the word
corresponding to the path p ∈ Pathπ, then we see that α(p) = Eπ(Φ(w)). From
Lemma 5.22, we see that the path p corresponds to a geodesic if and only if Φ(w) ∈
E−1
π (Gπ).
For each pattern π, we define the constrained language Lgeod

π ⊆ Lπ as

Lgeod
π = {w ∈ Lπ | Φ(w) ∈ E−1(Gπ)}.

Notice that there is a weight-preserving bijection between Lgeod
π and the set of geodesics

σ ∈ S∗ with pσ ∈ Pathπ. From Proposition 4.3 we see that E−1(Gπ) is a polyhedral set
and thus each Lgeod

π is a polyhedrally constrained language, as studied in Section 4.2. Then,
from Proposition 4.5 we see that the multivariate generating function fπ(x1, x2, . . . , x|Σ|)

of each Lgeod
π is holonomic.

Let aπ,i ∈ N+ be the weight of the letter that corresponds to the variable xi in the
generating function fπ(x1, x2, . . . , x|Σ|). Let hπ(z) ∈ C[[z]] be defined as

hπ(z) = fπ(zaπ,1 , zaπ,2 , . . . , zaπ,|Σ|).

Then we see that the coefficient of zk in hπ(z) counts the geodesics σ ∈ S∗ for which
pσ ∈ Pathπ and ω(σ) = k. Let g(z) ∈ C[[z]] be defined as

g(z) =
1

1− z ·
∑

π∈Patt

hπ(z),

Then we see that the coefficient of zk in g(z) is given by γS(k), that is, g(z) is the geodesic
growth series g(z) =

∑∞
k=0 γS(k)zk. Moreover, from the closure properties in Lemma 2.9

we see that the function g(z) is holonomic.
Our result then follows from Lemma 5.18.
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5.3. Language of Geodesics

5.3. Language of Geodesics

In the previous section, we characterised the geodesic growth of virtually abelian groups.
In our proof of this result, we found a bijection between the geodesics of the virtually
abelian group and a finite union of formal languages. It is then natural to ask if there
is a formal language characterisation for the language of geodesics. In this section we
show that the language of geodesics can be recognised by blind multicounter automaton.
Informally, we prove this result in Theorem C by implementing Algorithm 5.15 on a blind
multicounter automaton, we then check if the word is geodesic using Lemma 5.17.

Theorem C. The language of geodesics of a virtually abelian group with respect to any
finite weighted monoid generating set S is blind multicounter.

Proof. Let G be a virtually abelian group that is generated as a monoid by a finite
weighted set S, and let Zn / G with finite index d = [G : Zn]. Let σ ∈ S∗, then from
Algorithm 5.15 we have a patterned word (v, π) = Shuffle(σ) for which vπ ' σ and thus
σ is a geodesic if and only if v ∈ Gπ where Gπ ⊆ Nπ is the polyhedral set given by
Lemma 5.17.

The idea of our proof is to simulate Algorithm 5.15 on a blind multicounter automaton,
while maintaining enough information on the machine’s counters so that we may verify
the membership of the vector v to the set Gπ.

For each polyhedral set Gπ, we fix a finite union of basic polyhedral sets

Gπ =

Nπ⋃
i=1

Bπ,i.

Then, for each basic polyhedral set Bπ,i, we fix a finite intersection

Bπ,i =

Kπ,i,1⋂
j=1

{z ∈ Zπ |απ,i,j · z > βπ,i,j}

∩
Kπ,i,2⋂
j=1

{z ∈ Zπ |χπ,i,j · z ≡ ηπ,i,j (mod θπ,i,j)}

∩
Kπ,i,3⋂
j=1

{z ∈ Zπ | ξπ,i,j · z = λπ,i,j} (5.12)

where απ,i,j , χπ,i,j , ξπ,i,j ∈ Zπ, βπ,i,j , ηπ,i,j , λπ,i,j ∈ Z and θπ,i,j ∈ N+.
Let k ∈ N be such that k > Kπ,i,1 + Kπ,i,2 + Kπ,i,3 for each basic polyhedral set
Bπ,i. In the remainder of this proof, we construct a blind k-counter automaton M =
(Q,S, δ, q0, F, e) that recognises the language of geodesics. Notice that the input alphabet
of the machine is the generating set S.
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For each basic polyhedral set Bπ,i, we define a map Cπ,i : Nπ → Zk as

Cπ,i(v) = (απ,i,1 · v, απ,i,2 · v, . . . , απ,i,Kπ,i,1 · v,
χπ,i,1 · v, χπ,i,2 · v, . . . , χπ,i,Kπ,i,2 · v,

ξπ,i,1 · v, ξπ,i,2 · v, . . . , ξπ,i,Kπ,i,3 · v, 0, 0, . . . , 0). (5.13)

Notice that a vector v ∈ Nπ belongs to Bπ,i if and only if

Cπ,i(v) = (a1, a2, . . . , aKπ,i,1 , b1, b2, . . . , bKπ,i,2 , c1, c2, . . . , cKπ,i,3 , 0, 0, . . . , 0)

where each aj > βπ,i,j , each bj ≡ ηπ,i,j (mod θπ,i,j) and each cj = λπ,i,j .

State-Space of the Machine.
For each τ ∈ Patt, each basic polyhedral set Bπ,i, and each word w ∈ S∗ with |w|S 6 d,
we have a state of the form [τ, w, π, i] ∈ Q. From these states, the machine will perform
Algorithm 5.15 on its input word.

During the construction of our machine, we will ensure that if

(q0, (0, 0, . . . , 0), σe) `∗ ([τ, w, π, i], (c1, c2, . . . , ck), ζe),

then there is a u ∈ Nτ with uτwζ ' σ and (c1, c2, . . . , ck) = Cπ,i(Projτ,π(u)). In
particular, this vector will correspond to some vector u(i) in the sequence of extended
patterned words given in (5.6) as constructed in Algorithm 5.15.

For each basic polyhedral set Bπ,i, we have an accepting state qπ,i ∈ F . Moreover, our
construction will have the property that (q0,0, σe) `∗ (qπ,i,0, e) if and only if Shuffle(σ) =
(v, π) with v ∈ Bπ,i, and thus the machine M will accept the word σ if and only if it is a
geodesic.

Nondeterministically Guessing a Basic Polyhedral Set.
The machine M begins simulating the word shuffling algorithm after nondeterministically
guessing a basic polyhedral set Bπ,i for which Shuffle(σ) = (v, π) with v ∈ Bπ,i. Notice
that such a choice of basic polyhedral set exists if and only if σ is a geodesic. We
accomplish this by introducing a relation

((q0, ε), ([ε, ε, π, i],0)) ∈ δ

for each basic polyhedral set Bπ,i, that is, we have a transition

(q0, (0, 0, . . . , 0), σe) ` ([ε, ε, π, i], (0, 0, . . . , 0), σe) (5.14)

for each Bπ,i. Notice that 0εσ ' σ and (0, 0, . . . , 0) = Cπ,i(Projε,π(0)).

Performing the Word Shuffling Algorithm.
For each extended strongly patterned word ((u(i), τ (i)), σ(i)) in sequence (5.6) in Al-
gorithm 5.15, we will see that M has configurations of the form

([w, τ (i), π, i], Cπ,i(u
(i)), ζ)
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where σ(i) = wζ. In order to apply the map ∆ from such a configuration we will require
that w = Prefix(σ). We do so by introducing transitions as follows.
Let ([τ, w, π, i], (c1, c2, . . . , ck), ζe) be a configuration of M and let σ = wζ, then

w = Prefix(σ) if and only if either |w|S = d or ζ = ε. Thus, for each word w ∈ S∗ with
|w|S < d and each s ∈ S, we introduce a relation of the form

(([τ, w, π, i], s), ([τ, ws, π, i],0)) ∈ δ

for each τ, π, i. From these relations we have a unique partial computation

([τ, w, π, i], (c1, c2, . . . , ck), ζe) `∗ ([τ, w′, π, i], (c1, c2, . . . , ck), ζ
′e) (5.15)

where w′ = Prefix(σ) and σ = wζ = w′ζ ′. We then apply the map ∆ as follows.
Let τ ∈ StrPatt be a strong pattern, let w, ζ ∈ S∗ with w = Prefix(wζ) and |w|S > 1,

and let ∆(τ, w) = (x, τ ′, w′). From Lemma 5.14, we see that for each vector u ∈ Nτ we
have (u′)τ

′
w′ζ ' uτwζ where u′ = Projτ,τ ′(u) + eτ ′,x. Moreover, we see that

Cπ,i(Projτ,π(u′)) = Cπ,i(Projτ,π(u)) + Cπ,i(Projτ ′,π(eτ ′,x)).

Notice that w = Prefix(wζ) if and only if either |w|S = d or ζ = ε. If |w|S = d, then we
introduce the relation

(([τ, w, π, i], ε), ([τ ′, w′, π, i], Cπ,i(Projτ ′,π(eτ ′,x)))) ∈ δ

for each π, i; otherwise, if |w|S < d, then we introduce the relation

(([τ, w, π, i], e), ([τ ′, w′, π, i], Cπ,i(Projτ ′,π(eτ ′,x)))) ∈ δ

for each π, i. That is, we may apply the map ∆ with the above relations.
Combining these transitions with those described in (5.15), we see that after non-

deterministically choosing a basic polyhedral set in (5.14), the machine will deterministic-
ally perform Algorithm 5.15, then enter a configuration of the form

([τ, ε, π, i], (c1, c2, . . . , ck), e) (5.16)

with (c1, c2, . . . , ck) = Cπ,i(v) where (v, τ) = Shuffle(σ).
For each pair of patterns π, τ with π 6= τ , and each basic polyhedral set Bπ,i, the

machine has no transitions out of any configuration ([τ, ε, π, i], c, e) where c ∈ Zk. Hence,
if the computation enters such a state, it cannot continue to an accepting configuration.
Thus, we may assume without loss of generality that the machine nondeterministically
chose the basic polyhedral set Bπ,i with π = τ when performing the transition in (5.14).
In the rest of our proof, we describe how the machine verifies that v ∈ Bπ,i.
Checking Polyhedral Set Membership.
Suppose that

(q0, (0, 0, . . . , 0), σe) `∗ ([π, ε, π, i], (c1, c2, . . . , ck), e),
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then (c1, c2, . . . , ck) = Cπ,i(v) where (v, π) = Shuffle(σ). For each state of the form
[π, ε, π, i], we introduce a relation

(([π, ε, π, i], e), (qπ,i, µπ,i)) ∈ δ

where

µπ,i = (−βπ,i,1 − 1,−βπ,i,2 − 1, . . . ,−βπ,i,k − 1,

− ηπ,i,1,−ηπ,i,2, . . .− ηπ,i,k,
− λπ,i,1,−λπ,i,2, . . .− λπ,i,k, 0, 0, . . . , 0).

From this relation we have

([π, ε, π, i], (c1, c2, . . . , ck), e) ` (qπ,i, (c
′
1, c
′
2, . . . , c

′
k), e)

where v ∈ Bπ,i if and only if (c′1, c
′
2, . . . , c

′
k) belongs to the set

NKπ,i,1 × θπ,i,1Z× θπ,i,2Z× · · · × θπ,i,Kπ,i,2Z× {0}k−Kπ,i,1−Kπ,i,2 .

We verify v’s membership to Bπ,i by introducing additional relations as follows. For each
1 6 j 6 Kπ,i,1, we have

((qπ,i, e), (qπ,i,−ej)) ∈ δ,
where ej ∈ Zk is the j-th standard basis element, and for each 1 6 j 6 Kπ,i,2

((qπ,i, e), (qπ,i,±θπ,i,j ej′)) ∈ δ

where j′ = Kπ,i,1 + j and ej′ ∈ Zk is the j′-th standard basis element. From these
relations, we see that we see that

(q0, (0, 0, . . . , 0), σe) `∗ (qπ,i, (0, 0, . . . , 0), e),

if and only if v ∈ Bπ,i where (v, π) = Shuffle(σ).

5.4. Concluding Remarks

In this chapter we characterised the geodesic growth for all virtually abelian groups with
respect to every generating set. Moreover, the proofs in this chapter are constructive, i.e.,
it is possible to compute the geodesic growth series for any given virtually abelian group.
Bridson, Burillo, Elder and Šunić gave a sufficient condition for a virtually abelian

groups to have polynomial geodesic growth (see Lemma 5.1). It would be interesting to
see if this condition is also necessary, that is, we ask the following question.

Question 5.23. Let G be a virtually abelian group with polynomial geodesic growth. Then,
is there an element g ∈ G whose normal closure is a finite-index abelian subgroup of G?
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5.4. Concluding Remarks

Recall that the geodesic growth is bounded from below by the volume growth, and thus,
any group with polynomial geodesic growth must be virtually nilpotent. In this chapter,
we have shown that for any abelian group A, there is a virtually-A group with polynomial
geodesic growth (see the presentation in Equation (5.2)); and we have provided a method
to determine if a virtually abelian group has polynomial geodesic growth. Until now, the
only known examples of polynomial geodesic growth have been virtually abelian, e.g.,
the groups studied by Bridson, Burillo, Elder and Šunić [19]. It is then natural to ask if
every group with polynomial geodesic growth is virtually abelian, and if not, then what
counterexamples are there. In Chapter 6, we take the next step towards answering this
question, and in moving forward to a classification of polynomial geodesic growth.
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Chapter 6
Towards Virtually Nilpotent Groups

In Chapter 5 we characterised the geodesic growth of virtually abelian groups. In this
chapter, we take the next step towards a classification of polynomial geodesic growth
by furnishing an example of a virtually 2-step nilpotent group with polynomial geodesic
growth. This is the first group which has been shown to have polynomial geodesic growth
and is not virtually abelian. This result is important as it shows that a classification of
polynomial geodesic growth must include groups beyond the class of virtually abelian.

In Theorem B, we show that there is a group that is virtually 2-step nilpotent and has
polynomial geodesic growth. Our proof relies on a result that is implicit in the work of
Blachère [16] which we provide in Lemma 6.1.

This result shows that there are groups with subexponential geodesic growth which are
not virtually abelian, in particular, this example opens the door to the possible existence
of a virtually nilpotent group that has intermediate geodesic growth with respect to
some generating set. It also raises the question of whether polynomial geodesic growth is
restricted to virtually nilpotent groups of step at most 2.

6.1. A Virtually Heisenberg Group

The integer Heisenberg group is the group of 3× 3 upper-triangular integer matrices with
1’s on their diagonals, that is, the group generated by the matrices

a =

1 1 0
0 1 0
0 0 1

 and b =

1 0 0
0 1 1
0 0 1

 .
It is well known that the integer Heisenberg group, H3, has the presentation

H3 = 〈a, b | [a, [a, b]] = [b, [a, b]] = 1〉 .

Let X denote the standard generating set X = {a, a−1, b, b−1} for H3, following the
convention of Blachère [16] we write (x, y, z) ∈ H3 for the element corresponding to the
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6. Towards Virtually Nilpotent Groups

normal form word [a, b]zbyax. Inspired by the polynomial geodesic growth example in
Equation (5.1), we construct a virtually Heisenberg group H3 o C2 as follows.

H3 o C2 =
〈
a, b, t | [a, [a, b]] = [b, [a, b]] = t2 = 1, at = b

〉
. (6.1)

From the relation b = at and applying a Tietze transform, we see that S = {a, a−1, t}
is a generating set for H3 o C2. We provide a partial picture of the Cayley graph of
H3 oC2 in Figure 6.1. Informally, one may think of this group as two copies of H3 “glued”
together with a “twist” by t edges.

Figure 6.1: A Cayley graph for H3 o C2 with respect to the generating set S where the
undirected edges are labelled by t and directed edges labelled by a.

Our goal is to show that any geodesic of H3 o C2 with respect to the generating set S
can contain at most 7 instances of the letter t. From this we are able to place a polynomial
upper bound on the geodesic growth function of H3 o C2. To do this, we first study
geodesics of the integer Heisenberg group with respect to the generating set X.

Blachère [16, Theorem 2.2] provided explicit formulae for the length of elements in H3,
with respect the generating set X, by constructing geodesic representatives. We provide
the following lemma which is implicit in the proof of Theorem 2.2 in [16].

Lemma 6.1. Each element (x, y, z) ∈ H3 has a geodesic representative with respect to
the generating set X = {a, a−1, b, b−1} of the form

aα1bβ1aα2bβ2aα3bβ3 or bβ1aα1bβ2aα2bβ3aα3

where each αi, βj ∈ Z.

Proof. We see that the lemma holds in the case of (0, 0, 0) ∈ H3 as the empty word ε ∈ S∗
is such a geodesic. In the remainder of the proof, we assume that (x, y, z) 6= (0, 0, 0).
Following Blachère [16, p. 22] we reduce this proof to the case where x, z > 0 and
−x 6 y 6 x as follows.
Let τ : X∗ → X∗ be the monoid isomorphism defined such that τ(ak) = bk and

τ(bk) = ak for each k ∈ Z. Let wR denote the reverse of the word w, that is, if
w = w1w2 · · ·wk where each wj ∈ X, then wR = wk · · ·w2w1.
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6.1. A Virtually Heisenberg Group

If w ∈ X∗ is a word as described in the lemma statement with w = (x, y, z), then
w′ = τ(wR) is also in the form described in the lemma statement and w′ = (y, x, z).
Moreover, we see that τ(wR) is a geodesic if and only if w is a geodesic. Defining the
monoid isomorphisms ϕa, ϕb : X∗ → X∗ by ϕa(ak) = a−k, ϕa(bk) = bk, and ϕb(ak) = ak,
ϕb(b

k) = b−k for each k ∈ Z, we see that if w ∈ X∗ is a geodesic representative for
(x, y, z) ∈ H3, then ϕa(w), ϕb(w) and ϕa(ϕb(w)) are geodesics for (−x, y,−z), (x,−y,−z)
and (−x,−y, z), respectively, and each such word is in the form as described in the lemma
statement. From application of the above transformations, we may assume without loss
of generality that x, z > 0 and −x 6 y 6 x.

Let h = (x, y, z) ∈ H3, then from [16, Theorem 2.2] we have the following formulae for
the length `X(h) and (most importantly for us) geodesic representative for h.

I. If y > 0, then we have the following cases.
I.1. If x <

√
z, then `X(h) = 2b 2

√
z c − x− y and h has a geodesic representative

given by by−y
′
Sza

x−x′ where x′, y′ are the values given by Sz = (x′, y′, z)
(cf. [16, p. 32]), where Sz is as follows.

∗ If z = (n+ 1)2 for some n ∈ N, then Sz = an+1bn+1;
∗ if there exists a k ∈ N with 1 6 k 6 n such that z = n2 + k, then let
Sz = akban−kbn;

∗ otherwise, there exists some k ∈ N with 1 6 k 6 n such that z = n2 +n+k
and we have Sz = akban+1−kbn.

I.2. If x >
√
z, then we have the following two cases:

I.2.1 xy > z, then `X(h) = x+ y, otherwise
I.2.2 xy 6 z, then `X(h) = 2dz/xe+ x− y;
and in both cases, the word by−u−1avbax−vbu is a geodesic for h where 0 6 u,
0 6 v < x and z = ux+ v (cf. pages 24, 32 and 33 in [16]).

II. If y < 0, then we have the following cases.
II.1. If x 6

√
z − xy, then `X(h) = 2d 2

√
z − xy e − x+ y. Let n = d√z − xy e − 1.

Then
∗ there is either some k ∈ N with 1 6 k 6 n such that we have z−xy = n2+k,

and h has ax−nb−n−1akban−kbn+y as a geodesic representative; or
∗ there is some k ∈ N with 0 6 k 6 n such that we have z − xy =

(n+1)2−k and ax−nb−ka−1bk−n−1an+1bn+1+y is a geodesic representative
for h (cf. [16, p. 24]1).

II.2. If x >
√
z − xy, then `X(h) = 2dz/xe+x−y and h has a geodesic representative

of by−u−1avbax−vbu where u, v > 0, v < x and z = ux+v (cf. [16, pp. 24& 33]).
Notice that in each of the above cases, we have our desired result.

From this lemma, we have the following result.

Corollary 6.1.1. If w ∈ S∗ is a geodesic of H3 o C2 with respect to the generating set
S = {a, a−1, t}, then w contains at most 7 instances of the letter t.

Proof. Let w ∈ S∗ be a word containing 8 instances of t of the form

w = an1tam1tan2tam2tan3tam3tan4tam4t,

1Note that in [16] there is an error in the second case.
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where ni,mi ∈ Z, and notice that w belongs to the subgroup H3. The Tietze transform
given by b = tat which we applied to obtain the generating set S = {a, a−1, t} from (6.1)
yields an automorphism ϕ : H3 o C2 → H3 o C2 given by ϕ(a) = a, ϕ(t) = t, ϕ(b) = tat,
and since t2 = 1 we have ϕ(bk) = takt for k ∈ Z. Let X = {a, a−1, b, b−1} be a generating
set for the subgroup H3. Then from the word w ∈ S∗ we may construct a word

w2 = an1bm1an2bm2an3bm3an4bm4 ∈ X∗

where w2 = w since ϕ(w2) = w. Moreover, |w|S = |w2|X + 8.
From Lemma 6.1, we know that there is a word w3 ∈ X∗, with w3 = w2 and |w3|X 6
|w2|X , of the form

w3 = aα1bβ1aα2bβ2aα3bβ3 or w3 = bβ1aα1bβ2aα2bβ3aα3

where αi, βi ∈ Z (possibly zero). We then see that w can be represented by a word of the
form

w4 = aα1taβ1taα2taβ2taα3taβ3t or w4 = taβ1taα1taβ2taα2taβ3taα3

where
|w4|S = |w3|X + 6 < |w2|X + 8 = |w|S .

Then w cannot be a geodesic as we have a strictly shorter word w4 that represents the
same element. Thus, a geodesic of H3 oC2 with respect to S = {a, a−1, t} can contain at
most 7 instances of the letter t as we can replace any subword with 8 instances of t with
a strictly shorter word containing at most 7 instances of t.

From this corollary we may immediately obtain the following polynomial upper bound
on the geodesic growth function.

Theorem B. The geodesic growth function of H3 o C2 with respect to S = {a, a−1, t} is
bounded from above by a polynomial of degree 8.

Proof. From Corollary 6.1.1, we see that any geodesic of H3 o C2, with respect to the
generating set S, must have the form

w = am1tam2t · · · tamk+1

where k 6 7 and each mi ∈ Z. Then with k fixed and r = |w|S , we see that there are
at most 2k+1 choices for the sign of m1,m2, . . . ,mk+1, and at most

(
r
k

)
choices for the

placement of the t’s in w. Thus, the geodesic growth function γS(n) has an upper bound
given by

γS(n) 6
7∑

k=0

n∑
r=k

2k+1

(
r

k

)
6

7∑
k=0

n∑
r=k

2k+1rk 6 8 · 28n8

which gives the degree 8 polynomial upper bound.
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6.2. Concluding Remarks and Open Questions

The proof that the virtually 2-step nilpotent group in this chapter has polynomial geodesic
growth relied heavily on work of Blachère (see Lemma 6.1) and does not appear to be
generalisable in its current form. It is then natural to ask if there are nilpotent groups of
higher step with analogous properties, in particular, we ask the following question.

Question 6.2. Is there a virtually k-step nilpotent group with polynomial geodesic growth
for some k > 3, and if so, is there such an example for each k?

It follows from the work of Bass [9, Theorem 2] that the usual growth rate of a virtually
nilpotent group is polynomial of integer degree. Moreover, from Theorem A it is known
that if a virtually abelian group has polynomial geodesic growth, then it must be of
integer degree since the geodesic growth series is rational in this case. It is not known if
there is a group with polynomial geodesic growth of a non-integer degree.

Question 6.3. Is there a group with polynomial geodesic growth of a non-integer degree?

Based on experimental results (see [12]) we conjecture that the geodesic growth rate of
H3 o C2 with respect to the generating set S can be bounded from above and below by
polynomials of degree six (cf. the volume growth is polynomial of degree four). We ask
the following question.
From Theorem A we know that if a virtually abelian group has polynomial geodesic

growth, then its geodesic growth series is rational. However, it is unclear if this property
is held by virtually nilpotent groups. From experimental results, it appears that the
geodesic growth series of H3 o C2 with respect to S is not rational (see [12]).

Question 6.4. Is the geodesic growth series for H3 o C2 with respect to S rational?

In this thesis we have taken steps towards a classification of polynomial geodesic
growth, and more generally towards the study of the geodesic growth of virtually nilpotent
groups. In particular, we characterised the geodesic growth of virtually abelian groups;
and provided the first example of a group with polynomial geodesic growth that is not
virtually abelian. The results in this thesis open up new questions and new techniques
for obtaining characterisations.
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Appendix A
Additional Proofs

In this appendix we provide proofs of incidental statements made throughout this thesis.
These proofs are provided in the interest of completeness.

In the introduction, it was stated that the word problem for any finitely presented
group is recursively enumerable. This is a well-known fact which we prove as follows.

Proposition A.1. Finitely presented groups have recursively enumerable word problems.

Proof. Let G be a group with presentation 〈X | R〉 where X and R are both finite. We
then see that a word w ∈ X∗ is in the word problem if and only if we have

w =FX

n∏
i=0

uir
δi
i u
−1
i

for some n ∈ N where each ui ∈ X∗, δj ∈ {−1, 1} and ri ∈ R. Notice here that ‘=FX ’
denotes that the left and right-hand sides are the same word after free-reduction is
performed, that is, they are equivalent if viewed as elements of the free group.
We may then construct a Turing machine M which takes a word w ∈ X∗ as input,

then iterates through the set of all finite products
∏n
i=0 uir

δi
i u
−1
i . At each iteration, the

machine should compare the word w and the result of the product. The machine then
terminate and accepts only if the two words are equal.
We see that the machine M accepts a word w ∈ X∗ if and only if it lies within the

word problem WPX , that is, membership to the word problem WPX is semi-decidable.
It is well known that a problem is semi-decidable if and only if the set of all accepted

words (in this case the word problem) is recursively enumerable. This can be proven by
constructing a machine which checks all words in parallel using a technique known as
dovetailing (see Theorem 20.8 on p. 441 of [85] for a proof of this fact).

In Section 2.3.1 we gave an example of a linearly constrained language, and provided its
generating function. In the following we show that this generating function is holonomic
by explicitly constructing a system of linear differential equations which it satisfies.
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Proposition A.2. The multivariate power series

f(x, y, z) =
∑
n∈N

(3n)!

(n!)3
xnynzn

satisfies the differential equations

(x2 − 27x3yz)∂2
xf(x, y, z) + (x− 54x2yz)∂xf(x, y, z)− 6xyz f(x, y, z) = 0

(y2 − 27xy3z)∂2
yf(x, y, z) + (y − 54xy2z)∂yf(x, y, z)− 6xyz f(x, y, z) = 0

(z2 − 27xyz3)∂2
zf(x, y, z) + (z − 54xyz2)∂zf(x, y, z)− 6xyz f(x, y, z) = 0.

 (A.1)

Thus, f(x, y, z) is holonomic.

Proof. Notice that the system of differential equations in (A.1) is equivalent to

x2∂2
xf(x, y, z) + x∂xf(x, y, z)− 27x2∂2

x(xyz f(x, y, z))− 6xyz f(x, y, z) = 0

y2∂2
yf(x, y, z) + y∂yf(x, y, z)− 27y2∂2

y(xyz f(x, y, z))− 6xyz f(x, y, z) = 0

z2∂2
zf(x, y, z) + z∂zf(x, y, z)− 27z2∂2

z (xyz f(x, y, z))− 6xyz f(x, y, z) = 0.

 (A.2)

This can be shown using the product rule of differentiation.
Let

f(x, y, z) =
∑
n∈N

(3n)!

(n!)3
xnynzn,

then

x∂xf(x, y, z) =
∞∑
n=1

(3n)!

(n!)3
nxnynzn,

x2∂2
xf(x, y, z) =

∞∑
n=1

(3n)!

(n!)3
n(n− 1)xnynzn,

xyz f(x, y, z) =
∞∑
n=1

(3(n− 1))!

((n− 1)!)3
xnynzn, and

x2∂2
x(xyz f(x, y, z)) =

∞∑
n=1

(3(n− 1))!

((n− 1)!)3
n(n− 1)xnynzn.

We then see that

x2∂2
xf(x, y, z) + x∂xf(x, y, z)− 27x2∂2

x(xyz f(x, y, z))− 6xyz f(x, y, z) =
∞∑
n=1

cnx
nynzn

where each

cn = n2 (3n)!

(n!)3
− (27n2 − 27n+ 6)

(3(n− 1))!

((n− 1)!)3

=
1

n

[
n3 (3n)!

(n!)3
− 3n(3n− 1)(3n− 2)

(3(n− 1))!

((n− 1)!)3

]
.
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Moreover, we see that each cn = 0 as

(3n)!

(n!)3
=

3n(3n− 1)(3n− 2)

n3
· (3(n− 1))!

((n− 1)!)3
.

Thus, we have

x2∂2
xf(x, y, z) + x∂xf(x, y, z)− 27x2∂2

x(xyz f(x, y, z))− 6xyz f(x, y, z) = 0.

The proofs of the other two differential equations in (A.2) are the same.

73





References

[1] Alfred V. Aho. ‘Indexed grammars—an extension of context-free grammars’. In:
J. Assoc. Comput. Mach. 15 (1968), pp. 647–671. issn: 0004-5411. doi: 10.1145/
321479.321488.

[2] A. V. Anisimov. ‘The group languages’. In: Kibernetika (Kiev) 7.4 (1971), pp. 18–24.
issn: 0023-1274.

[3] Yago Antolín and Laura Ciobanu. ‘Geodesic growth in right-angled and even Coxeter
groups’. In: European J. Combin. 34.5 (July 2013), pp. 859–874. issn: 0195-6698.
doi: 10.1016/j.ejc.2012.12.007.

[4] Yago Antolín and Islam Foniqi. Geodesic Growth of some 3-dimensional RACGs.
2021. arXiv: 2105.09751 [math.GR].

[5] Peter R. J. Asveld. ‘Controlled iteration grammars and full hyper-AFL’s’. In:
Information and Control 34.3 (1977), pp. 248–269. issn: 0890-5401.

[6] Jayadev S. Athreya and Amritanshu Prasad. Growth in Right-Angled Groups and
Monoids. 2014. arXiv: 1409.4142 [math.GR].

[7] Louis Auslander. ‘On a problem of Philip Hall’. In: Ann. of Math. (2) 86 (1967),
pp. 112–116. issn: 0003-486X. doi: 10.2307/1970362.

[8] Brenda S. Baker and Ronald V. Book. ‘Reversal-bounded multipushdown machines’.
In: J. Comput. System Sci. 8 (1974), pp. 315–332. issn: 0022-0000. doi: 10.1016/
S0022-0000(74)80027-9.

[9] H. Bass. ‘The degree of polynomial growth of finitely generated nilpotent groups’.
In: Proc. London Math. Soc. (3) 25 (1972), pp. 603–614. issn: 0024-6115. doi:
10.1112/plms/s3-25.4.603.

[10] M. Benson. ‘Growth series of finite extensions of Zn are rational’. In: Invent. Math.
73.2 (1983), pp. 251–269. issn: 0020-9910. doi: 10.1007/BF01394026.

[11] Rose Berns-Zieve, Dana Fry, Johnny Gillings, Hannah Hoganson and Heather Math-
ews. ‘Groups with context-free co-word problem and embeddings into Thompson’s
group V ’. In: London Math. Soc. Lecture Note Ser. 451 (2018), pp. 19–37.

[12] Alex Bishop. A virtually 2-step nilpotent group with polynomial geodesic growth
(data and code). July 2020. doi: 10.5281/zenodo.3941381.

[13] Alex Bishop. ‘Geodesic growth in virtually abelian groups’. In: J. Algebra 573
(2021), pp. 760–786. issn: 0021-8693. doi: 10.1016/j.jalgebra.2020.12.003.

75

https://doi.org/10.1145/321479.321488
https://doi.org/10.1145/321479.321488
https://doi.org/10.1016/j.ejc.2012.12.007
https://arxiv.org/abs/2105.09751
https://arxiv.org/abs/1409.4142
https://doi.org/10.2307/1970362
https://doi.org/10.1016/S0022-0000(74)80027-9
https://doi.org/10.1016/S0022-0000(74)80027-9
https://doi.org/10.1112/plms/s3-25.4.603
https://doi.org/10.1007/BF01394026
https://doi.org/10.5281/zenodo.3941381
https://doi.org/10.1016/j.jalgebra.2020.12.003


References

[14] Alex Bishop and Murray Elder. A virtually 2-step nilpotent group with polynomial
geodesic growth. 2020. arXiv: 2007.06834 [math.GR].

[15] Alex Bishop and Murray Elder. ‘Bounded automata groups are co-ET0L’. In:
Language and automata theory and applications. Vol. 11417. Lecture Notes in
Comput. Sci. Springer, Cham, 2019, pp. 82–94. doi: 10.1007/978-3-030-13435-
8_6.

[16] Sébastien Blachère. ‘Word distance on the discrete Heisenberg group’. In: Colloq.
Math. 95.1 (2003), pp. 21–36. issn: 0010-1354. doi: 10.4064/cm95-1-2.

[17] Collin Bleak, Francesco Matucci and Max Neunhöffer. ‘Embeddings into Thompson’s
group V and coCF groups’. In: J. Lond. Math. Soc. (2) 94.2 (2016), pp. 583–597.
issn: 0024-6107. doi: 10.1112/jlms/jdw044.

[18] William W. Boone. ‘The word problem’. In: Ann. of Math. (2) 70 (1959), pp. 207–
265. issn: 0003-486X. doi: 10.2307/1970103.

[19] Martin R. Bridson, José Burillo, Murray Elder and Zoran Šunić. ‘On groups whose
geodesic growth is polynomial’. In: Internat. J. Algebra Comput. 22.5 (2012),
pp. 1250048, 13. issn: 0218-1967. doi: 10.1142/S0218196712500488.

[20] J. L. Britton. ‘P. S. Novikov. Ob algoritmičéskoj nérazréšimosti problémy toždéstva
slov v téorii grupp (Algorithmic unsolvability of the word problem in group the-
ory). Trudy Matématičéskogo Instituta iméni V. A. Stéklova, vol. 44. Izdatél’stvo
Akadémii Nauk SSSR, Moscow1955, 143 pp.’ In: Journal of Symbolic Logic 23.1
(1958), pp. 50–52. doi: 10.2307/2964487.

[21] Julie Marie Brönnimann. ‘Geodesic growth of groups’. PhD thesis. Université de
Neuchâtel, 2016. url: http://doc.rero.ch/record/277391/files/00002547.
pdf.

[22] Fritz Carlson. ‘Über Potenzreihen mit ganzzahligen Koeffizienten’. In: Math. Z.
9.1-2 (1921), pp. 1–13. issn: 0025-5874. doi: 10.1007/BF01378331.

[23] Giusi Castiglione and Paolo Massazza. ‘On a class of languages with holonomic
generating functions’. In: Theoret. Comput. Sci. 658.part A (2017), pp. 74–84. issn:
0304-3975. doi: 10.1016/j.tcs.2016.07.022.

[24] Ruth Charney and John Meier. ‘The language of geodesics for Garside groups’. In:
Math. Z. 248.3 (2004), pp. 495–509. issn: 0025-5874. doi: 10.1007/s00209-004-
0666-8.

[25] A. Noam Chomsky. Context-free grammars and pushdown storage. Quarterly Pro-
gress Report no. 65. Massachusetts Institute of Technology, Research Laboratory
of Electronics, 15 Apr. 1962, pp. 187–194. url: http://hdl.handle.net/1721.1/
53697.

[26] N. Chomsky and M. P. Schützenberger. ‘The algebraic theory of context-free lan-
guages’. In: Computer programming and formal systems. North-Holland, Amsterdam,
1963, pp. 118–161.

76

https://arxiv.org/abs/2007.06834
https://doi.org/10.1007/978-3-030-13435-8_6
https://doi.org/10.1007/978-3-030-13435-8_6
https://doi.org/10.4064/cm95-1-2
https://doi.org/10.1112/jlms/jdw044
https://doi.org/10.2307/1970103
https://doi.org/10.1142/S0218196712500488
https://doi.org/10.2307/2964487
http://doc.rero.ch/record/277391/files/00002547.pdf
http://doc.rero.ch/record/277391/files/00002547.pdf
https://doi.org/10.1007/BF01378331
https://doi.org/10.1016/j.tcs.2016.07.022
https://doi.org/10.1007/s00209-004-0666-8
https://doi.org/10.1007/s00209-004-0666-8
http://hdl.handle.net/1721.1/53697
http://hdl.handle.net/1721.1/53697


[27] Noam Chomsky. ‘On certain formal properties of grammars’. In: Information and
Control 2 (1959), pp. 137–167. issn: 0019-9958.

[28] P. A. Christensen. ‘Hyper-AFL’s and ET0L systems’. In: (1974), 254–257, 327–338.
Lecture Notes in Comput. Sci., Vol. 15.

[29] Laura Ciobanu, Volker Diekert and Murray Elder. ‘Solution sets for equations over
free groups are EDT0L languages’. In: Internat. J. Algebra Comput. 26.5 (2016),
pp. 843–886. issn: 0218-1967. doi: 10.1142/S0218196716500363.

[30] Laura Ciobanu and Murray Elder. ‘Solutions sets to systems of equations in hy-
perbolic groups are EDT0L in PSPACE’. In: 46th International Colloquium on
Automata, Languages, and Programming. Vol. 132. LIPIcs. Leibniz Int. Proc. Inform.
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019, Art. No. 110, 15.

[31] Laura Ciobanu and Murray Elder. ‘The complexity of solution sets to equations in
hyperbolic groups’. In: Israel Journal of Mathematics (Nov. 2021). doi: 10.1007/
s11856-021-2232-z. url: https://doi.org/10.1007/s11856-021-2232-z.

[32] Laura Ciobanu, Murray Elder and Michal Ferov. ‘Applications of L systems to
group theory’. In: Internat. J. Algebra Comput. 28.2 (2018), pp. 309–329. issn:
0218-1967. doi: 10.1142/S0218196718500145.

[33] Laura Ciobanu and Alexander Kolpakov. ‘Geodesic growth of right-angled Coxeter
groups based on trees’. In: J. Algebraic Combin. 44.2 (2016), pp. 249–264. issn:
0925-9899. doi: 10.1007/s10801-016-0667-9.

[34] Sean Cleary, Murray Elder and Jennifer Taback. ‘Cone types and geodesic languages
for lamplighter groups and Thompson’s group F ’. In: J. Algebra 303.2 (2006),
pp. 476–500. issn: 0021-8693. doi: 10.1016/j.jalgebra.2005.11.016.

[35] Donald J. Collins. ‘A simple presentation of a group with unsolvable word problem’.
In: Illinois J. Math. 30.2 (1986), pp. 230–234. issn: 0019-2082. url: http://
projecteuclid.org/euclid.ijm/1256044631.

[36] Karel Čulik. ‘On some families of languages related to developmental systems’. In:
Internat. J. Comput. Math. 4 (1974), pp. 31–42. issn: 0020-7160. doi: 10.1080/
00207167408803079.

[37] Volker Diekert and Murray Elder. ‘Solutions of twisted word equations, EDT0L
languages, and context-free groups’. In: 44th International Colloquium on Automata,
Languages, and Programming. Vol. 80. LIPIcs. Leibniz Int. Proc. Inform. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017, Art. No. 96, 14.

[38] Volker Diekert and Anca Muscholl. ‘Solvability of equations in free partially com-
mutative groups is decidable’. In: Automata, languages and programming. Vol. 2076.
Lecture Notes in Comput. Sci. Springer, Berlin, 2001, pp. 543–554. doi: 10.1007/3-
540-48224-5_45.

[39] Moon Duchin and Michael Shapiro. ‘The Heisenberg group is pan-rational’. In: Adv.
Math. 346 (2019), pp. 219–263. issn: 0001-8708. doi: 10.1016/j.aim.2019.01.046.

77

https://doi.org/10.1142/S0218196716500363
https://doi.org/10.1007/s11856-021-2232-z
https://doi.org/10.1007/s11856-021-2232-z
https://doi.org/10.1007/s11856-021-2232-z
https://doi.org/10.1142/S0218196718500145
https://doi.org/10.1007/s10801-016-0667-9
https://doi.org/10.1016/j.jalgebra.2005.11.016
http://projecteuclid.org/euclid.ijm/1256044631
http://projecteuclid.org/euclid.ijm/1256044631
https://doi.org/10.1080/00207167408803079
https://doi.org/10.1080/00207167408803079
https://doi.org/10.1007/3-540-48224-5_45
https://doi.org/10.1007/3-540-48224-5_45
https://doi.org/10.1016/j.aim.2019.01.046


References

[40] A. Ehrenfeucht, G. Rozenberg and S. Skyum. ‘A relationship between ET0L and
EDT0L languages’. In: Theoretical Computer Science 1.4 (Apr. 1976), pp. 325–330.
doi: 10.1016/0304-3975(76)90076-1.

[41] M. Elder, M. Gutierrez and Z. Šunić. ‘Geodesics in the first Grigorchuk group’.
unpublished. 2006.

[42] Murray Elder, Mark Kambites and Gretchen Ostheimer. ‘On groups and counter
automata’. In: Internat. J. Algebra Comput. 18.8 (2008), pp. 1345–1364. issn:
0218-1967. doi: 10.1142/S0218196708004901.

[43] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S.
Paterson and William P. Thurston. Word processing in groups. Jones and Bartlett
Publishers, Boston, MA, 1992, pp. xii+330. isbn: 0-86720-244-0.

[44] Alex Evetts. ‘Rational growth in virtually abelian groups’. In: Illinois J. Math. 63.4
(2019), pp. 513–549. issn: 0019-2082. doi: 10.1215/00192082-8011497.

[45] Alex Evetts and Alex Levine. Equations in virtually abelian groups: languages and
growth. 2020. arXiv: 2009.03968 [math.GR].

[46] Robert James Evey. ‘The theory and applications of pushdown store machines’.
PhD thesis. Harvard University, May 1963.

[47] M. Fekete. ‘Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen
mit ganzzahligen Koeffizienten’. German. In: Math. Z. 17.1 (1923), pp. 228–249.
issn: 0025-5874. doi: 10.1007/BF01504345.

[48] Philippe Flajolet. ‘Analytic models and ambiguity of context-free languages’. In:
vol. 49. 2-3. Twelfth international colloquium on automata, languages and program-
ming (Nafplion, 1985). 1987, pp. 283–309. doi: 10.1016/0304-3975(87)90011-9.

[49] Philippe Flajolet, Stefan Gerhold and Bruno Salvy. ‘On the non-holonomic character
of logarithms, powers, and the nth prime function’. In: Electron. J. Combin. 11.2
(Apr. 2005), Article 2, 16. url: http://www.combinatorics.org/Volume_11/
Abstracts/v11i2a2.html.

[50] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge Univer-
sity Press, Cambridge, 2009, pp. xiv+810. isbn: 978-0-521-89806-5. doi: 10.1017/
CBO9780511801655.

[51] S. A. Greibach. ‘Formal languages: origins and directions’. In: Ann. Hist. Comput.
3.1 (1981), pp. 14–41. issn: 0164-1239. doi: 10.1109/MAHC.1981.10006.

[52] S. A. Greibach. ‘Remarks on blind and partially blind one-way multicounter ma-
chines’. In: Theoret. Comput. Sci. 7.3 (1978), pp. 311–324. issn: 0304-3975. doi:
10.1016/0304-3975(78)90020-8.

[53] R. I. Grigorchuk. ‘On the Milnor problem of group growth’. In: Dokl. Akad. Nauk
SSSR 271.1 (1983), pp. 30–33. issn: 0002-3264.

[54] Rostislav Grigorchuk. ‘Milnor’s problem on the growth of groups and its con-
sequences’. In: Frontiers in complex dynamics. Vol. 51. Princeton Math. Ser. Prin-
ceton Univ. Press, Princeton, NJ, 2014, pp. 705–773.

78

https://doi.org/10.1016/0304-3975(76)90076-1
https://doi.org/10.1142/S0218196708004901
https://doi.org/10.1215/00192082-8011497
https://arxiv.org/abs/2009.03968
https://doi.org/10.1007/BF01504345
https://doi.org/10.1016/0304-3975(87)90011-9
http://www.combinatorics.org/Volume_11/Abstracts/v11i2a2.html
http://www.combinatorics.org/Volume_11/Abstracts/v11i2a2.html
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1109/MAHC.1981.10006
https://doi.org/10.1016/0304-3975(78)90020-8


[55] Rostislav Grigorchuk. ‘On Burnside’s problem on periodic groups’. In: Funktsional.
Anal. i Prilozhen. 14.1 (1980), pp. 53–54. issn: 0374-1990.

[56] Mikhael Gromov. ‘Groups of polynomial growth and expanding maps’. In: Inst.
Hautes Études Sci. Publ. Math. 53.53 (1981), pp. 53–73. issn: 0073-8301. url:
http://www.numdam.org/item?id=PMIHES_1981__53__53_0.

[57] Narain Gupta and Saïd Sidki. ‘On the Burnside problem for periodic groups’. In:
Mathematische Zeitschrift 182.3 (Sept. 1983), pp. 385–388. issn: 0025-5874. doi:
10.1007/BF01179757.

[58] Michael A. Harrison. Introduction to formal language theory. Addison-Wesley Pub-
lishing Co., Reading, Mass., 1978, pp. xiv+594. isbn: 0-201-02955-3.

[59] Susan Hermiller, Derek F. Holt and Sarah Rees. ‘Groups whose geodesics are locally
testable’. In: Internat. J. Algebra Comput. 18.5 (2008), pp. 911–923. issn: 0218-1967.
doi: 10.1142/S0218196708004676.

[60] Derek F. Holt and Sarah Rees. ‘Artin groups of large type are shortlex automatic
with regular geodesics’. In: Proc. Lond. Math. Soc. (3) 104.3 (2012), pp. 486–512.
issn: 0024-6115. doi: 10.1112/plms/pdr035.

[61] Derek F. Holt, Sarah Rees, Claas E. Röver and Richard M. Thomas. ‘Groups with
context-free co-word problem’. In: J. London Math. Soc. (2) 71.3 (2005), pp. 643–
657. issn: 0024-6107. doi: 10.1112/S002461070500654X.

[62] Derek F. Holt, Sarah Rees and Michael Shapiro. ‘Groups that do and do not have
growing context-sensitive word problem’. In: International Journal of Algebra and
Computation 18.07 (Nov. 2008), pp. 1179–1191. doi: 10.1142/S0218196708004834.

[63] Derek F. Holt and Claas E. Röver. ‘Groups with indexed co-word problem’. In:
Internat. J. Algebra Comput. 16.5 (2006), pp. 985–1014. issn: 0218-1967. doi:
10.1142/S0218196706003359.

[64] Felix Klaedtke and Harald Rueß. ‘Monadic second-order logics with cardinalities’.
In: Automata, languages and programming. Vol. 2719. Lecture Notes in Comput.
Sci. Springer, Berlin, 2003, pp. 681–696. doi: 10.1007/3-540-45061-0_54.

[65] Felix Klaedtke and Harald Rueß. Parikh Automata and Monadic Second-Order
Logics with Linear Cardinality Constraints. Technical Report 177. Albert-Ludwigs-
Universität Freiburg, 2002. url: http://tr.informatik.uni-freiburg.de/2002/
Report177/index.php.

[66] S. C. Kleene. ‘Representation of events in nerve nets and finite automata’. In:
Automata studies. Annals of mathematics studies, no. 34. Princeton University
Press, Princeton, N. J., 1956, pp. 3–41.

[67] Alexander Kolpakov and Alexey Talambutsa. ‘Spherical and geodesic growth rates
of right-angled Coxeter and Artin groups are Perron numbers’. In: Discrete Math.
343.3 (2020), pp. 111763, 8. issn: 0012-365X. doi: 10.1016/j.disc.2019.111763.

[68] S.-Y. Kuroda. ‘Classes of languages and linear-bounded automata’. In: Information
and Control 7 (1964), pp. 207–223. issn: 0019-9958.

79

http://www.numdam.org/item?id=PMIHES_1981__53__53_0
https://doi.org/10.1007/BF01179757
https://doi.org/10.1142/S0218196708004676
https://doi.org/10.1112/plms/pdr035
https://doi.org/10.1112/S002461070500654X
https://doi.org/10.1142/S0218196708004834
https://doi.org/10.1142/S0218196706003359
https://doi.org/10.1007/3-540-45061-0_54
http://tr.informatik.uni-freiburg.de/2002/Report177/index.php
http://tr.informatik.uni-freiburg.de/2002/Report177/index.php
https://doi.org/10.1016/j.disc.2019.111763


References

[69] Jan van Leeuwen. ‘Variations of a new machine model’. In: 17th Annual Symposium
on Foundations of Computer Science (Houston, Tex., 1976). IEEE Comput. Soc.,
Long Beach, Calif., Oct. 1976, pp. 228–235. doi: 10.1109/SFCS.1976.35.

[70] J. Lehnert and P. Schweitzer. ‘The co-word problem for the Higman-Thompson
group is context-free’. In: Bull. Lond. Math. Soc. 39.2 (2007), pp. 235–241. issn:
0024-6093. doi: 10.1112/blms/bdl043.

[71] Jörg Lehnert. ‘Gruppen von quasi-Automorphismen’. In: Goethe-Universitaet Frank-
furt am Main (2008).

[72] Aristid Lindenmayer. ‘Mathematical models for cellular interactions in development
I. Filaments with one-sided inputs’. In: Journal of Theoretical Biology 18.3 (Apr.
1968), pp. 280–99. doi: 10.1016/0022-5193(68)90079-9.

[73] L. Lipshitz. ‘D-finite power series’. In: J. Algebra 122.2 (1989), pp. 353–373. issn:
0021-8693. doi: 10.1016/0021-8693(89)90222-6.

[74] Joseph Loeffler, John Meier and James Worthington. ‘Graph products and Cannon
pairs’. In: Internat. J. Algebra Comput. 12.6 (2002), pp. 747–754. issn: 0218-1967.
doi: 10.1142/S021819670200122X.

[75] Jean Mairesse and Frédéric Mathéus. ‘Growth series for Artin groups of dihedral
type’. In: Internat. J. Algebra Comput. 16.6 (2006), pp. 1087–1107. issn: 0218-1967.
doi: 10.1142/S0218196706003360.

[76] P. Massazza. ‘Holonomic functions and their relation to linearly constrained lan-
guages’. In: RAIRO Inform. Théor. Appl. 27.2 (1993), pp. 149–161. issn: 0988-3754.
doi: 10.1051/ita/1993270201491.

[77] John Milnor. ‘Advanced Problems: 5603’. In: The American Mathematical Monthly
75.6 (1968), pp. 685–686. issn: 00029890, 19300972. url: http://www.jstor.org/
stable/2313822.

[78] David E. Muller and Paul E. Schupp. ‘Groups, the theory of ends, and context-free
languages’. In: J. Comput. System Sci. 26.3 (1983), pp. 295–310. issn: 0022-0000.
doi: 10.1016/0022-0000(83)90003-X.

[79] Volodymyr Nekrashevych. Self-similar groups. Vol. 117. Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 2005, pp. xii+231.
isbn: 0-8218-3831-8. doi: 10.1090/surv/117.

[80] Walter D. Neumann and Michael Shapiro. ‘Automatic structures, rational growth,
and geometrically finite hyperbolic groups’. In: Invent. Math. 120.2 (1995), pp. 259–
287. issn: 0020-9910. doi: 10.1007/BF01241129.
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