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ABSTRACT

Deep Learning (DL) has shown its superiority in various research areas in recent years,
including computer vision, natural language processing, and autonomous driving.
Through designing different deep neural networks (DNNs), deep learning techniques

have achieved the state-of-the-art performance in numerous real-world applications. Deep
neural network has become the first choice for most researchers when solving different machine
learning problems. However, the performance of deep neural networks is very sensitive to
the structures, and engineers need to choose or design appropriate network structures through
tedious and repeated experiments so that deep neural networks can reach their potentials for
different problems. Automated Deep Learning (AutoDL) aims to build a better deep learning
model in a data-driven and automated manner, so that most practitioners in deep learning
can also build a high-performance machine learning model, with being relieved from a labor-
intensive and time-consuming neural network design process. AutoDL can bring new research
ideas to deep neural networks, and lower the threshold of deep learning in various research
areas through automated neural network design.

The process of automated neural network design is termed as Neural Architecture Search
(NAS). As the name suggested, the goal of NAS is to automatically design deep neural
networks without human intervention. Most recent works on NAS adopt a weight-sharing
paradigm to find competitive architectures with greatly reducing the computational complexity.
Instead of separating training architectures, weight sharing strategy encodes the whole search
space as a supernet, and all neural networks directly inherit weights from the supernet for
evaluation without needing to be trained from scratch. Pioneer studies on weight-sharing NAS
follow two sequential steps. They first adopt an architecture sampling controller to sample
architectures for the supernet training. Then, a heuristic search method is adopted to search
promising architectures over a discrete search space based on the trained supernet. Since only
the supernet is trained for once, this paradigm is also called as one-shot NAS. To further improve
the efficiency, later researches further employ the continuous relaxation to make the neural
architecture differentiable, so that gradient descent can be used to optimize the architecture
with respect to validation accuracy, and this paradigm is also referred to as differentiable NAS.
This thesis focuses on the two specific research directions: one-shot NAS and differentiable
NAS.

Most state-of-the-art one-shot NAS methods use the validation accuracy based on inheriting
weights from the supernet as the stepping stone to search for the best performing architecture,
adopting a bilevel optimization pattern with assuming this validation accuracy approximates to
the test accuracy after re-training. However, recent works have found that there is no positive
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correlation between the above validation accuracy and test accuracy for these weight-sharing
methods, and this reward based sampling for supernet training also entails the rich-get-richer
problem. To handle this deceptive problem, Chapter 2 presents a new approach, Efficient
Novelty-driven Neural Architecture Search (EN2AS), to sample the most abnormal architecture
to train the supernet. Specifically, a single-path supernet is adopted, and only the weights
of a single architecture sampled by our novelty search are optimized in each step to reduce
the memory demand greatly. Experiments demonstrate the effectiveness and efficiency of our
novelty search based architecture sampling method.

Although one-shot NAS significantly improves the computational efficiency, it also intro-
duces multi-model forgetting during the supernet training, where the performance of previous
architectures degrades when sequentially training new architectures with partially-shared
weights. To overcome such catastrophic forgetting, Chapter 3 formulates the supernet training
in the one-shot NAS as a constrained optimization problem of continual learning that the learn-
ing of current architecture should not degrade the performance of previous architectures during
the supernet training. We propose a Novelty Search based Architecture Selection (NSAS) loss
function and demonstrate that the posterior probability could be calculated without the strict
assumption when maximizing the diversity of the selected constraints. Extensive experiments
demonstrate that our method enhances the predictive ability of the supernet in one-shot NAS
and achieves remarkable performance on CIFAR-10, CIFAR-100, and PTB with efficiency.

Existing works on differentiable NAS adopt a bilevel optimization to alternatively optimize
the supernet weights and architecture parameters after relaxing the discrete search space into
differentiable, to further improve the efficiency. However, there is non-negligible incongruence
in this simple transformation, and it is hard to guarantee that the differentiable optimization in
the continuous latent space is equivalent to the optimization in the discrete space. In Chapter
4, we utilize a variational graph autoencoder to injectively transform discrete architecture
space into an equivalently continuous latent space, to resolve the incongruence. We further
devise a probabilistic exploration enhancement method to encourage intelligent exploration
during the architecture search in latent space. The catastrophic forgetting is an inevitable
problem in weight-sharing NAS, which deteriorates supernet predictive ability and makes
the bilevel optimization inefficient in differentiable NAS. This paper proposes an architecture
complementation method to relieve this deficiency in differentiable NAS. We analyze the
effectiveness of the proposed method in differentiable NAS, and a series of experiments have
been conducted to compare the proposed method with state-of-the-art differentiable NAS
methods.

Despite notable benefits on computational efficiency from differentiable NAS, more recent
works find that existing differentiable NAS techniques struggle to outperform naive baselines,
yielding deteriorative architectures as the search proceeds. Rather than directly optimizing the
architecture parameters, Chapter 5 formulates the neural architecture search as a distribution
learning problem through relaxing the architecture weights into Gaussian distributions. By
leveraging the recently-proposed natural-gradient variational inference (NGVI), the architecture
distribution can be easily optimized based on existing codebases without incurring more
memory and computational consumption. We demonstrate how the differentiable NAS benefits
from Bayesian principles, enhancing exploration and improving stability. The experimental
results on benchmark datasets confirm the significant improvements the proposed framework
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can make. Furthermore, to enhance the searched architectures’ transferability in the complicated
search space, we propose a simple yet effective depth-aware differentiable neural architecture
search. Specifically, we achieve state-of-the-art results on the NAS-Bench-201 and NAS-
Bench-1Shot1 benchmark datasets. Our best architecture in the DARTS search space also
obtains competitive test errors with 2.37%, 15.72%, and 24.2% on CIFAR-10, CIFAR-100, and
ImageNet datasets, respectively.

While much has been discussed about several potentially fatal factors in DARTS, the
architecture gradient, a.k.a. hypergradient, has received less attention. In Chapter 6, we tackle
the hypergradient computation in DARTS based on the implicit function theorem, making
it only depends on the obtained solution to the inner-loop optimization and agnostic to the
optimization path. To further reduce the computational requirements, we formulate a stochastic
hypergradient approximation for differentiable NAS, and theoretically show that the architecture
optimization with the proposed method, named iDARTS, is expected to converge to a stationary
point. Comprehensive experiments on two NAS benchmark search spaces and the common
NAS search space verify the effectiveness of our proposed method. It leads to architectures
outperforming, with large margins, those learned by the baseline methods.
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