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ABSTRACT

Deep Learning (DL) has shown its superiority in various research areas in recent years,
including computer vision, natural language processing, and autonomous driving.
Through designing different deep neural networks (DNNs), deep learning techniques

have achieved the state-of-the-art performance in numerous real-world applications. Deep
neural network has become the first choice for most researchers when solving different machine
learning problems. However, the performance of deep neural networks is very sensitive to
the structures, and engineers need to choose or design appropriate network structures through
tedious and repeated experiments so that deep neural networks can reach their potentials for
different problems. Automated Deep Learning (AutoDL) aims to build a better deep learning
model in a data-driven and automated manner, so that most practitioners in deep learning
can also build a high-performance machine learning model, with being relieved from a labor-
intensive and time-consuming neural network design process. AutoDL can bring new research
ideas to deep neural networks, and lower the threshold of deep learning in various research
areas through automated neural network design.

The process of automated neural network design is termed as Neural Architecture Search
(NAS). As the name suggested, the goal of NAS is to automatically design deep neural
networks without human intervention. Most recent works on NAS adopt a weight-sharing
paradigm to find competitive architectures with greatly reducing the computational complexity.
Instead of separating training architectures, weight sharing strategy encodes the whole search
space as a supernet, and all neural networks directly inherit weights from the supernet for
evaluation without needing to be trained from scratch. Pioneer studies on weight-sharing NAS
follow two sequential steps. They first adopt an architecture sampling controller to sample
architectures for the supernet training. Then, a heuristic search method is adopted to search
promising architectures over a discrete search space based on the trained supernet. Since only
the supernet is trained for once, this paradigm is also called as one-shot NAS. To further improve
the efficiency, later researches further employ the continuous relaxation to make the neural
architecture differentiable, so that gradient descent can be used to optimize the architecture
with respect to validation accuracy, and this paradigm is also referred to as differentiable NAS.
This thesis focuses on the two specific research directions: one-shot NAS and differentiable
NAS.

Most state-of-the-art one-shot NAS methods use the validation accuracy based on inheriting
weights from the supernet as the stepping stone to search for the best performing architecture,
adopting a bilevel optimization pattern with assuming this validation accuracy approximates to
the test accuracy after re-training. However, recent works have found that there is no positive
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correlation between the above validation accuracy and test accuracy for these weight-sharing
methods, and this reward based sampling for supernet training also entails the rich-get-richer
problem. To handle this deceptive problem, Chapter 2 presents a new approach, Efficient
Novelty-driven Neural Architecture Search (EN2AS), to sample the most abnormal architecture
to train the supernet. Specifically, a single-path supernet is adopted, and only the weights
of a single architecture sampled by our novelty search are optimized in each step to reduce
the memory demand greatly. Experiments demonstrate the effectiveness and efficiency of our
novelty search based architecture sampling method.

Although one-shot NAS significantly improves the computational efficiency, it also intro-
duces multi-model forgetting during the supernet training, where the performance of previous
architectures degrades when sequentially training new architectures with partially-shared
weights. To overcome such catastrophic forgetting, Chapter 3 formulates the supernet training
in the one-shot NAS as a constrained optimization problem of continual learning that the learn-
ing of current architecture should not degrade the performance of previous architectures during
the supernet training. We propose a Novelty Search based Architecture Selection (NSAS) loss
function and demonstrate that the posterior probability could be calculated without the strict
assumption when maximizing the diversity of the selected constraints. Extensive experiments
demonstrate that our method enhances the predictive ability of the supernet in one-shot NAS
and achieves remarkable performance on CIFAR-10, CIFAR-100, and PTB with efficiency.

Existing works on differentiable NAS adopt a bilevel optimization to alternatively optimize
the supernet weights and architecture parameters after relaxing the discrete search space into
differentiable, to further improve the efficiency. However, there is non-negligible incongruence
in this simple transformation, and it is hard to guarantee that the differentiable optimization in
the continuous latent space is equivalent to the optimization in the discrete space. In Chapter
4, we utilize a variational graph autoencoder to injectively transform discrete architecture
space into an equivalently continuous latent space, to resolve the incongruence. We further
devise a probabilistic exploration enhancement method to encourage intelligent exploration
during the architecture search in latent space. The catastrophic forgetting is an inevitable
problem in weight-sharing NAS, which deteriorates supernet predictive ability and makes
the bilevel optimization inefficient in differentiable NAS. This paper proposes an architecture
complementation method to relieve this deficiency in differentiable NAS. We analyze the
effectiveness of the proposed method in differentiable NAS, and a series of experiments have
been conducted to compare the proposed method with state-of-the-art differentiable NAS
methods.

Despite notable benefits on computational efficiency from differentiable NAS, more recent
works find that existing differentiable NAS techniques struggle to outperform naive baselines,
yielding deteriorative architectures as the search proceeds. Rather than directly optimizing the
architecture parameters, Chapter 5 formulates the neural architecture search as a distribution
learning problem through relaxing the architecture weights into Gaussian distributions. By
leveraging the recently-proposed natural-gradient variational inference (NGVI), the architecture
distribution can be easily optimized based on existing codebases without incurring more
memory and computational consumption. We demonstrate how the differentiable NAS benefits
from Bayesian principles, enhancing exploration and improving stability. The experimental
results on benchmark datasets confirm the significant improvements the proposed framework

ii



can make. Furthermore, to enhance the searched architectures’ transferability in the complicated
search space, we propose a simple yet effective depth-aware differentiable neural architecture
search. Specifically, we achieve state-of-the-art results on the NAS-Bench-201 and NAS-
Bench-1Shot1 benchmark datasets. Our best architecture in the DARTS search space also
obtains competitive test errors with 2.37%, 15.72%, and 24.2% on CIFAR-10, CIFAR-100, and
ImageNet datasets, respectively.

While much has been discussed about several potentially fatal factors in DARTS, the
architecture gradient, a.k.a. hypergradient, has received less attention. In Chapter 6, we tackle
the hypergradient computation in DARTS based on the implicit function theorem, making
it only depends on the obtained solution to the inner-loop optimization and agnostic to the
optimization path. To further reduce the computational requirements, we formulate a stochastic
hypergradient approximation for differentiable NAS, and theoretically show that the architecture
optimization with the proposed method, named iDARTS, is expected to converge to a stationary
point. Comprehensive experiments on two NAS benchmark search spaces and the common
NAS search space verify the effectiveness of our proposed method. It leads to architectures
outperforming, with large margins, those learned by the baseline methods.
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1
INTRODUCTION

1.1 Background: Deep Learning and Automated Deep
Learning

1.1.1 Deep Learning

In many industries such as finance and manufacturing, automation has completely revolution-
ized the production process with greatly improving the productivity efficiency. However, in the
field of artificial intelligence (AI) and machine learning (ML), most applications are usually
designed by experts through tedious and repeated experiments[63]. Deep learning (DL), as the
most promising subfield of machine learning, has recently achieved remarkable progress in
many fields, such as computer vision, natural language processing, autonomous driving, health-
care, bancassurance, fault diagnosis in industry, and so on [49, 78]. Deep learning system builds
deep neural networks (DNNs) to learn the meaningful representations of high-dimensional
data, which has become the first choice for most researchers when solving different machine
learning tasks.

The first form of deep learning is the fully-connected neural network (FNN), where deep
learning stacks several fully-connected layers to build the model [57]. Figure 1.1 (a) gives a
simple example of FNN. There are two types of layers, one is liner layer to learn the linear
transformation, and the other is the nonliner layer which is with non-linear activation function.
Later, researchers found that, compared to fully-connection, the convolutional operation is a
better way to extract spatial features for image processing. In 1994, the LeNet-5 is proposed for
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(a) Fully-connected neural network

 

(b) LeNet-5

Figure 1.1: Illustrations of neural network structures in the early stage [57, 78].

handwritten zip code recognition. The LeNet-5 architecture is fundamental to image processing,
which bring deep learning into a new era [78]. As shown in Figure 1.1 (a), LeNet-5 contains
convolutional layer, pooling layer, and fully-connected layer, which are still the most popular
layers nowadays. However, due to the limit of computational resources, LeNet-5 could hardly
be applied to more complicated images, and draw litter attention from the community. In 2012,
Alex Krizhevsky designed the AlexNet [77], which was a deeper and wider version of the
LeNet-5, for the ImageNet competition, and won other baselines with significant margins. With
leveraging the GPUs computational ability, Alex Krizhevsky showed the promising future of
deep learning. Hereafter, the community focuses designing different neural architectures to
improve the performance and solve different tasks. For example, the VGG network [128] from
Oxford utilized several smaller 3×3 convolutional filter to replace the large convolutional filter
in the AlexNet. The Google team proposed the GoogLeNet and different variants of inception
architectures [132] that further leveraged the 1×1 convolutional filter to reduce the number
of features, which was also adopted by the most famous ResNet [59]. A typical revolution in
deep learning community was the ResNet proposed in 2016, which utilized a simple idea to
design the structure of deep neural networks: feeding the output of a convolutional layer and
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 (a) AlexNet

 

(b) VGG Net  (c) GoogLeNet

Figure 1.2: Typical structures of modern deep neural networks [77, 128, 132].

also bypassing the input to the next layers through residual connection. All above attempts
show that the structure of deep neural network plays an important role in the deep learning.

1.1.2 Automated Deep Learning

Similar to artificial intelligence and machine learning systems, the deep learning systems
are still designed by experts through tedious and repeated experiments for hyperparameter
selection and network structure design. Since there are only a limited number of experts with
the knowledge of deep learning systems, seeking to automate the design of deep learning
systems has gradually become a popular research direction. On a high level, this automation
can shorten the development time of deep learning systems, significantly relieve the burden for
experts, and accelerate the development of deep learning technology, thereby make artificial
general intelligence (AGI) possible to a certain extent[63].

Automated Deep Learning (AutoDL) aims to build a better deep learning system in a
data-driven and automated manner, so that most practitioners in deep learning can build a
high-performance machine learning model, without being an expert in the field of deep learning
[43, 139, 148, 163, 164]. AutoDL is the process of automatically applying deep learning to
real-world problems, which covers the entire process from data processing to the deployment
of deep learning models. AutoDL can provide end-to-end deep learning solutions, and these
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solutions are usually better than hand-designed deep learning systems. AutoDL brings new
research ideas to deep neural networks, and lowers the threshold of deep learning through
automated neural network design. AutoDL has not only attracted the interest from the research
community, technology companies such as Amazon, Facebook, and Google have also leverage
the AutoDL to automatically build deep neural networks for solving various businesses tasks
[4, 6, 48], including computer vision [84, 133], natural language processing [67], autonomous
driving, and so on [28, 119]. AutoDL makes deep learning easier to use, thereby improving
the business capabilities of enterprises to obtain more profits. There are two main research
directions in AutoDL: Hyperparameter Optimization (HO) and Neural Architecture Search
(NAS), which are very crucial to apply deep learning algorithms in practice.

1.1.2.1 Hyperparameter Optimization (HO)

Determining appropriate values of hyperparameters of DNN is a frustratingly difficult task
where all feasible hyperparameter configurations form a huge space, from which we need to
choose the optimal case. Setting correct hyperparameters is often critical for reaching the full
potential of the deep neural network chosen or designed, otherwise it may severely hamper the
performance of deep neural networks.

Hyperparameter optimization in DNN is a global optimization to find a D-dimensional
hyperparameter setting x that minimize the validation error f of a DNN with learned parameters
θ. The optimal x could be obtained through optimizing f as follows:

(1.1)
min
x⊆RD

f (x,θ;Zval)

s.t. θ = argmin
θ

f (x,θ;Ztrain)

where Ztrain and Zval are training and validation datasets respectively. Solving Eq.(1.1) is
very challenging for the high complexity of the function f, and it is usually accomplished
manually in the deep learning community, which largely depends on expert’s experience or
intuition. It is also hard to reproduce similar results when this configuration is applied on
different datasets or problems. There are several systematic approach to tune hyperparameters
in deep learning community, including Grid search [79], Random search [12], Tree-structured
Parzen Estimator Approach (TPE)[14] and Bayesian optimization[130], which have shown
their superiority than manual search method in hyperparameters optimization of deep neural
network. Grid search is the most common strategy in hyper-parameter optimization [79], and it
is simple to implement with parallelization, which makes it reliable in low dimensional spaces
(e.g., 1-d, 2-d). However, Grid search suffer from the curse of dimensionality because the
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search space grows exponentially with the number of hyper-parameters. Random search [12]
proposes to randomly sample points from the hyperparameter configuration space. Although
this approach looks simple, but it could find comparable hyperparameter configuration to grid
search with less computation time. Hyperparameter optimization in deep neural networks is a
computational expensive problem where evaluating a hyperparameter choice may cost several
hours or even days. This property also makes it unrealistic to sample many enough points to be
evaluated in Grid and Random search. One popular approach is using efficient surrogates to
approximate the computationally expensive fitness functions to guide the optimization process.
Bayesian optimization [130] built a probabilistic Gaussian model surrogate to estimate the
distribution of computationally expensive validation errors. Hyperparameter configuration
space is usually modeled smoothly, which means that knowing the quality of certain points
might help infer the quality of their nearby points, and Bayesian optimization [13, 14, 126]
utilizes the above smoothness assumption to assist the search of hyperparameters. Gaussian
Process is the most common method for modeling loss functions in Bayesian optimization for
it is simple and flexible. There are several acquistion functions to determin the next promising
points in Gaussian process, including Probability of Improvement (PI), Expected Improvement
(EI), Upper Confidence Bound (UCB) and the Predictive Entropy Search (PES) [61, 130].

1.1.2.2 Neural Architecture Search (NAS)

Neural Architecture Search (NAS), another sub-field of AutoDL, is an efficient and effective
method for automating the process of neural network design, which has attracted increasing
attention recently as it relieves human experts from the labor-intensive and time-consuming
neural network design process. NAS has achieved remarkable success on image recognition
[84, 133], language modeling [67], and other deep learning applications [28, 119]. The search
space of neural architecture A is generally represented as a directed acyclic graph (DAG), and
the subgraph in the search space is denoted as α ∈A corresponding to a neural architecture
U (α,w) with weights w. NAS aims to find a subgraph α with the best validation loss after
being trained on the training set, as:

(1.2) α∗ = argmin
α∈A

Lval(U (α,wα))

where Lval is the loss function on the validation set, and wα are the weights of the architecture
after being trained on the training set to minimize the training loss Ltrain:

(1.3) wα = argmin
w

Ltrain(U (α,w))
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Early NAS works adopt a nested manner to optimize weights and architectures, which
samples numerous architectures to be trained on the training set and utilize different search
strategies, e.g., evolutionary algorithm (EA) or reinforcement learning (RL) [118], to find
promising architectures based on those evaluated architectures. Despite its capacity to find
competitive architectures, the computational complexity of NAS is highly expensive since
exactly evaluating architectures has highly computational demand. Zoph et al. [173] spends
more than 1800 GPU days for reinforcement learning (RL) based NAS and Real et al. [118]
uses 450 GPUs for 7 days through evolutionary algorithm (EA) to train the model. As described,
the downside is that NAS comes with an extremely high demand for computation power. To
mitigate this problem, many recent studies have been devoted to reducing these search costs
through different performance estimation strategies, including performance prediction [7],
weight generation [156], and the well-known weight sharing method [114].

1.2 Literature Review

The primary drawback in NAS is the extremely high computational cost, and more and more
recent works turn to relieve this issue. The most popular strategies include the performance
prediction [7], weight generation [156], and the weight sharing [114], where the weight sharing
takes the dominant position among the three. This subsection will review the related works
based on these three strategies in NAS. After that, we will review several common NAS search
spaces used in this thesis.

1.2.1 Performance Prediction

Since evaluating a deep neural network usually requires several GPU hours or even days, it is
hard to find the optimal or suboptimal neural network based on heuristic algorithms through
evaluating a large number of deep neural networks. Therefore, accelerating the neural network
evaluation has become a promising research direction in the neural architecture search. First, the
deep neural network can be evaluated based on the low-fidelity indicators of its real performance.
Low-fidelity indicators based strategies include: shorter training time [153, 173], training on
a small part of the full dataset [153], training on low-resolution images [32], reducing the
number of channels or neurons in the deep neural networks [118, 173]. These low-fidelity
indicators based strategies can greatly reduce the computational cost. Although the low-fidelity
based methods will introduce bias in the performance prediction, the neural architecture search
mainly depends on the ranking among the neural networks rather than their real performance.
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Therefore, as long as the ranking of the neural networks is consistent, the architecture search
method based on low fidelity can find a high-performance structure. However, recent studies
have shown that when the difference between low-fidelity indicator and real performance is
too large, the architecture ranking will be greatly affected, and the literature [93] proposes to
search for the network structure by gradually increasing the fidelity.

Another performance prediction method is based on the learning curve of the neural network
[7, 39, 131]. It evaluates the neural network according to the initial learning curve, and discards
those neural networks with poor performance in the initial learning curve, speeding up the
architecture search process. Similar to the surrogate model based hyperparameter optimization,
the performance of architectures can be predicted by establishing a proxy model. Kandasamy
et al. [69] propose a novel kernel function to define the relationship among different network
structures, with using the optimal transport program to define the distance. Luo et al. [99]
transform the discrete neural architectures into continuous variables with an autoencoder, where
the continuous encoding of the neural architectures transformed by encoder could be used to
establish a proxy model for the architecture search. After obtaining a continuous representation
of a promising architecture, the decoder will generate a discrete architecture for evaluation.

1.2.2 Weights Generation

The weight generation method defines a hypernetwork to generate weights for different neural
architectures. The paper [56] proposes a dynamic hypernetwork, which takes the network
structures as input to generate the weights for different neural architectures. The hypernetwork
can rank different neural architectures to obtain the most promising structure, which is then
trained from scratch for evaluation. Therefore, the weight generation methods only need to
train the hypernetwork during the neural architecture search phase, which thus greatly reduces
the computational cost. Zhang et al. [156] propose a Graph-hypernetwork (GHN) for the
weights generation based neural architecture search: given a neural architecture, GHN utilize
the graph neural network to generate weights for this neural network directly. GHN can model
the topology of the network, so it could more accurately predict the performance of the neural
architecture compared with the normal hypernetwork.

1.2.3 Weights Sharing

Weight-sharing neural architecture search (weight-sharing NAS) [9, 114] defines a supernet
subsuming all possible architectures in the search space, and all architectures share the weights
from the supernet for the evaluation. Weight-sharing NAS is the most popular paradigm in
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current neural architecture search research, which attracts a lot of attention from the AutoDL
community. This thesis mainly focuses on the neural architecture search based on the weight
sharing strategy. There are two main paradigms in weight-sharing NAS: one-shot NAS and
differentiable NAS.

1.2.3.1 One-Shot NAS

Pioneer studies on weights-sharing NAS contains two sequential steps [54, 86, 114]:

1. First utilize a sampling controller to sample architectures for the supernet training:

(1.4) WA = argmin
W

Ltrain(U (A ,W ));

2. Then use a heuristic search algorithm for the promising architectures over a discrete
search space based on the trained supernet:

(1.5) α∗ = argmin
α∈A

Lval(U (α,WA (α))).

Since only the supernet is trained for once, these weight-sharing NAS methods are also
called one-shot NAS. ENAS [114] utilizes the validation accuracy with shared weights as the
reward to optimize the reinforcement learning (RL) based architecture sampling controller.
Whereas, Guo et al. [54] and Li et al. [86] train the supernet based on a uniform sampling
strategy, and the best-performing architecture from the trained supernet is found through a
random search or evolutionary method.

1.2.3.2 Differentiable NAS

Recent state-of-the-art weigh-sharing methods use continuous relaxation to transform discrete
architectures into a continuous space Aθ to further improve efficiency [40, 95, 109, 140]. The
supernet weights and architecture parameters can be jointly optimized through:

(1.6) (α∗
θ ,WAθ

(α∗
θ ))= argmin

αθ ,W
Ltrain(WAθ

(α∗
θ )),

making it possible to optimize the architecture with gradient descent. The best architecture α∗

is determined through argmax based on the continuous architecture representation α∗
θ
.

Most differentiable NAS [20, 95, 140] methods apply a softmax function to calculate the
magnitude of each operation and relax the discrete architectures into a continuous representation.
A discrete architecture is obtained by applying an argmax function to the magnitude matrix

8
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after the supernet has been trained. Once the discrete architectures have been transformed into
a continuous space, continuous optimization is performed to update the continuous architecture
representation αθ along the gradient of validation performance [20, 95, 99]:

(1.7) αi+1
θ ←αi

θ −γOαθ
Lval(αθ,W ∗),

where γ is the learning rate, and W ∗ is approximated by adapting W using only a single training
step with descending OωLtrain(WA (αi

θ
)) [40, 86].

Since Eq.(1.6) is supposed to train the entire supernet in each step, it has a much higher
memory requirement than ENAS. Hence, ProxylessNAS [20] transforms the real-valued archi-
tecture parameters into binary representations through binary gates, and only a single path is
activated during the supernet training. In this way, the memory requirement for ProxylessNAS is
the same as training a single architecture. Yao et al. [149] developed a constrained optimization
method to force each step of the architecture optimization process in the continuous space to
arrive at a binary result, thus reducing the memory requirement of supernet training. Unlike
continuous relaxation, NAO [99] uses an LSTM-based autoencoder to transform discrete neural
architectures into continuous representations. A differentiable method is then used to search for
architectures in the continuous space.

Unlike directly optimizing the architecture parameters, several recent works formulate the
differentiable NAS as a distribution learning problem by relaxing architecture parameters into
different distributions. SNAS [140] and GDAS [40] formulate the architecture as a discrete
distribution with concrete relaxation and utilize the Gumbel-softmax trick to obtain the discrete
architecture. DrNAS [24] treats the continuous architecture parameters as random variables
being modeled by a learnable Dirichlet distribution. This distribution is parameterized by a
concentration parameter β, which controls the sampling behavior and is optimized via pathwise
derivative estimators [66]. Zheng et al. [169] consider the whole search space as a joint
multinomial distribution and learn the probabilities of candidate operations among all nodes
based on the multinomial distribution learning. A common point in these previous methods
is that they formulate the architecture parameters as simple distributions in which only one
parameter needs to be learned. In this way, these learning paradigms are easy to fit with existing
DARTS codebases.

1.2.4 NAS Search Spaces

The extensive experiments in this thesis are conducted on several common neural architecture
search spaces, including the DARTS convolutional search space, DARTS recurrent search
space, NAS-Bench-101 search space, NAS-Bench-201 search space, and NAS-Bench-1shot1
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Figure 1.3: Description of DARTS convolutional (middle) and recurrent (right) search space.

Table 1.1: Summarize of common search spaces in NAS

Name Size Number of operations Number of edges

DARTS convolutional search space ≈ 1025 8 14
DARTS recurrent search space ≈ 1.5×1010 5 36
NAS-Bench-101 search space 423624 3 ≤ 9
NAS-Bench-1shot1 search space 423624 3 ≤ 9
NAS-Bench-201 search space 15625 5 6

search space, which are summarized in the Table 1.1, with describing the search space size, the
number of candidate operations, and the number of the candidate edges. In the following, we
detailed describe the above search spaces.

DARTS convolutional search space: DARTS searches for micro-cell structures on CIFAR-10
to stack more cells to form the final structure for architecture evaluation. The cell structure in
this space contains eight different types of operations: 3×3 max pooling and average pooling
operation, 3×3 and 5×5 separable convolution operation, 3×3 and 5×5 dilated separable
convolutions operation, identity, and zero. There are seven nodes in each cell: two input nodes,
four operation nodes, and one output node. The inputs to a cell are the outputs of two of its
former cells, and the output of the cell is the sum of the outputs of all operation nodes. Fig. 1.3
describes a unified convolutional cell search space in DARTS. The best-found cells on CIFAR-
10 are then transferred to CIFAR-100 and ImageNet datasets to evaluate its transferability.
There are two types of cells with the unified search space: a normal cell αnormal and a reduction
cell αreduce. Cell structures are repeatedly stacked to form the final CNN structure. There are
only two reduction cells in the final CNN structure, located in the 1/3 and 2/3 depths of the
network. There are seven nodes in each cell: two input nodes, four operation nodes, and one
output node. Each operation node selects two of the previous nodes’ output as input nodes
in this search space, resulting in 2+3+4+5=14 connections. Each input node will select one
operation from |O | = 8 candidate operations. In this way, a cell structure could be represented
as a 14×8 matrix, and DARTS relax the categorical matrix to a softmax over all possible
operations in every connection. The output of the connection is the mixing-weighted over all
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Figure 1.4: Example architectures in NAS-Bench-101 search space

possible operation:

(1.8) ō(i, j)(x)= ∑

o∈O

exp(αi
o
, j)

∑
o′∈O exp(αi

o
,
′
j)

o(x),

so each connection is parameterized by a continuous vector α
(i, j)

with dimension |O | and
θ

learned by gradient descent. After the optimization in the continuous space, DARTS applies

the argmax on α∗
θ

to obtain the discrete architecture α∗. Specifically, DARTS first applies the

argmax on the connection level, o(i, j) = argmaxo∈Oα
(i, j)
θ

, to specify the operation type for each

connection. After that, DARTS will select two top connections based on αo(i, j)

θ
.

DARTS recurrent search space: Beyond the convolutional cell structure search, we also con-

ducted experiments on RNN cell structure search with the PTB dataset. For a fair comparison,

the search space and hyperparameters were set following [86, 95]. The RNN search space only

contains four different types of operations: identity, relu, tanh, sigmoid. The recurrent

cell contains 12 nodes: 2 input nodes, 1 adding node, 8 operation nodes, and 1 output node. The

adding node adds the two inputs and applies the tanh activation function. The input of each

node is the output of one of its previous nodes, and the output of the cell is the summation of

outputs of all operation nodes. Unlike the CNN structure, our RNN architecture only contains a

single cell. Fig.1.3 shows the common search spaces of the RNN cell structure.

NAS-Bench-101 search space: The high computational cost of evaluating architectures is a

major obstacle when analyzing and reproducing one-shot NAS methods. For this reason, it

can be hard to reproduce results with the current NAS methods under the same experimental

settings for a fair comparison. To alleviate this problem, several benchmark datasets have

been published in recent studies [41, 150, 154]. The NAS-Bench-101 dataset [41] is the first

benchmark dataset for the neural architecture search research. This benchmark dataset provides

the train time, validation and test result for all 423624 models in the search space, where each
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Figure 1.5: Search Space in NAS-Bench-201.

model is trained three times in a consistent manner on CIFAR-10. NAS-Bench-101 considers
a cell-based search space, where each cell contains an input node, an output node, and up
to 5 operation nodes, and there are three candidate operations for each operation nod: max
pooling, 3×3 convolution, and 1×1 convolution. Fig. 1.4 describes two example architectures
in NAS-Bench-101 search space, where MP is the max pooling operation.

NAS-Bench-1shot1 search space: NAS-Bench-1shot1 is built from the NAS-Bench-101
benchmark dataset [150], through dividing all architectures in NAS-Bench-101 into 3 dif-
ferent unified cell-based search spaces. The architectures in each search space have the same
number of nodes and connections, making the one-shot NAS could be directly applied to each
search space. The three search spaces contain 6240, 29160, and 363648 architectures with the
CIFAR-10 performance, respectively.

NAS-Bench-201 search space: NAS-Bench-201 is similar to the recent cell-based NAS meth-
ods [86, 95, 150], which repeatedly stacks computational cells to form the final structure. The
architectural skeleton of this search space contains three stages connected by a basic residual
block [59] ] with a stride of 2 between them. In each stage, the cell structure was stacked N = 5

times. In this search space, the cell structure is represented as a densely connected directed
acyclic graph (DAG) with four nodes. There are six different edges between these nodes, and
each edge is associated with five candidate operations, resulting in 56 = 15625 candidate cell
structures. The candidate operations included: 1×1 convolution, 3×3 convolution, 3×3 average
pooling, skip connection, and zero. The zero helps to drop the associated edge. NAS-Bench-
201 reports the CIFAR-10, CIFAR-100, and Imagenet performance for all architecture in this
search space. Fig. 1.5 outlines the search space of NAS-Bench-101 search space.
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1.3 Motivations and Challenges

1.3.1 Motivations

With the development of deep learning, there are more and more candidate structures for deep
learning on different applications, and the performance of deep learning is also sensitive to the
selected neural architectures and hyperparameters. In addition, most deep neural networks only
achieve excellent performance on specific datasets or problems, and their performance usually
drops significantly when applied to different tasks, and it is currently impossible to design a
generalized neural network for different tasks. Due to the lack of theoretical understanding
of DNN, it is difficult to predict the performance of a DNN on different tasks based on its
performance on the benchmark datasets. Designing a high-performance deep neural network is
still a black-box optimization process. A deep neural network is usually designed by experts
based on their past experience and tedious and repeated experiments to select appropriate
hyperparameters and network structures. This neural network design process is highly iterative,
so automated deep learning (AutoDL) is an ideal alternative to manually designing. AutoDL is
an up-and-coming tool to take advantage of automatically building deep learning systems. By
leveraging AutoDL, experts can get rid of tedious and repeated experiments, and thus focus
on tasks that require more creativity. At the same time, AutoDL can also provide different
insights for those real-world tasks from another perspective. Therefore, AutoDL can improve
the efficiency for data scientists, and scientists in other fields without deep learning knowledge
can also build high-performance deep learning models without relying on data scientists
[43, 139, 148]. The main motivation of this thesis is to explore neural architecture search in the
AutoDL for automatically building deep neural networks, from one-shot NAS to differentiable
NAS.

1.3.2 Challenges

Neural architecture search (NAS) is a computationally expensive optimization problem, and
most of the existing NAS methods are based on weight sharing paradigm to reduce com-
putational costs. An essential assumption in the weight-sharing NAS is that the validation
accuracy with inherited weights from the supernet approximates to the test accuracy after
re-training, or at least be highly predictive. However, several recent works [9, 124, 129, 160]
point out that there is no positive correlation between the above validation accuracy and test
accuracy for most one-shot NAS methods. It indicates that we could not utilize the validation
accuracy with inherited weights as a useful feedback for controller improvement. In other
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words, searching for the optimal architecture based on weight sharing is deceptive because
architectures with optimal performance on proxy tasks are not guaranteed to perform the best in
the target task [20]. Furthermore, since architectures with updated weights are supposed to have
higher rewards, those performance reward based controllers have the potential to select those
previously visited architectures with updated weights. Sampling architectures solely based on
this deceptive reward without encouraging intelligent exploration entails the rich-get-richer
problem [87] and leads to the local optima.

Catastrophic Forgetting [74, 89, 134] usually occurs when sequentially training a model for
several tasks. Given a neural network with optimal parameters ω∗ on task T1, its performance
on T1 declines dramatically after the model has been trained on task T2, because the network
weights have been changed to optimize the objectives of T2. Catastrophic forgetting with
weight-sharing NAS has been observed in quite a few recent studies [11, 87, 124, 160], where
performance degrades as the supernet learns new architectures to replace old ones. Sciuto et

al. [124] and Singh et al. [129] observed this deceptiveness that weight sharing is supposed to
disorder the architecture rank, with deteriorating the performance of other architectures when
training a new generated architecture. Benyahia et al. [11] define it as multi-model forgetting

that the architecture learning in each step will deteriorate the performance of other architectures
with shared connections, and make the proxy reward based on the supernet unreliable.

The approach with the most recent works on NAS is to relax the discrete search space into a
differentiable latent space and then alternatively optimize the supernet weights and architecture
parameters via a bilevel optimization scheme, which is referred as differentiable NAS. However,
despite its efficiency, the current differentiable NAS approaches are generally considered to
be rather unreliable [23, 152]. For example, DARTS [95] does not consistently yield excellent
solutions, and the architecture choices get worse and worse as the search proceeds. Performance
can even be worse than a random search in some cases [124]. One potential reason for the
instability of DARTS is that there is no theoretical foundation to show that, with continuous
relaxation, an optimization in a continuous latent space is equivalent to an optimization over
a discrete space. The lack of injective constraints in a simple continuous relaxation means
there can be no guarantee that performing an optimization on a continuous latent space is the
equivalent of doing so with a discrete space. With differentiable NAS, this incongruence might
even increase during the architecture search [23, 152].

Despite notable benefits on computational efficiency from differentiable NAS, more recent
works find it is still unreliable [23, 152] to directly optimize the architecture magnitudes. For
example, DARTS [95] is unable to stably obtain excellent solutions and yields deteriorative
architectures during the search proceeds, performing even worse than random search in some
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cases [124]. This critical weakness is termed as instability in differentiable NAS [152]. Zela
et al. [152] empirically point out that the instability of DARTS is highly correlated with the
dominant eigenvalue of the Hessian of the validation loss with respect to the architectural
parameters, where this dominant eigenvalue increases during the architecture search. On the
other hand, [24, 87, 127, 161] state that directly optimizing the architecture parameters without
exploration easily entails the rich-gets-richer problem, leading to those architectures that
converge faster at the beginning while achieving poor performance at the end of the training,
e.g. architectures with intensive skip-connections [33, 91].

With a gradient-based bi-level optimization, differentiable NAS methods alternately opti-
mize the inner model weights and the outer architecture parameter in a weight-sharing supernet.
Differentiable NAS methods simply assume the model weights w in the inner-loop could reach
the optimal points w∗ with only one training step, leveraging the one-step unroll learning
paradigm to calculate the hypergradient. A key challenge to the scalability and quality of the
learned architectures is the need for differentiating through the inner-loop optimization, while
which can impose considerable computational and memory burdens.

1.4 Thesis Contributions

This thesis studies two paradigms of neural architecture search in automated deep learning:
(a) one-shot NAS; and (b) differentiable NAS. The main contributions of this thesis lie in the
following five aspects:

• To relieve the deceptive reward problem in the supernet training, we innovatively intro-
duce novelty search to one-shot NAS rather than devising a complicated reward-based
controller, which samples architectures to train the supernet through novelty search.
Compared with the existing reward-based sampler, novelty search has the potential to
fairly training the supernet in One-Shot NAS, as it always samples those untrained or less
trained parts of the supernet to be trained. Furthermore, since our method always samples
architectures containing few shared connections with previously visited architectures, it
could also effectively relieve the multi-model forgetting that occurs during the supernet
training and make the supernet more predictive.

• Addressing multi-model forgetting during supernet training is an urgent issue if we are to
better leverage one-shot NAS and improve the predictive ability of supernets. Hence, we
have formulated supernet training as a constrained optimization problem for continual
learning, where learning the current architecture should not degrade the performance of
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previous architectures with partially-shared weights. However, it is intractable to consider
all previously visited architectures during each step of supernet training. Therefore, we
only choose the most representative subset of previous architectures to regularize learning
of the current architecture, where we have designed an efficient greedy novelty search
method based on maximizing diversity to select a subset of the constraints that best
approximate the feasible region formed by all previous architectures.

• The non-negligible incongruence in the relaxation methods adopted by existing differ-
entiable NAS methods makes it hard to guarantee that a differentiable optimization in
the continuous latent space will be equivalent to an optimization in the discrete space.
To address the potential incongruence, we use a variational graph autoencoder with an
asynchronous message passing scheme to injectively transform the discrete architectures
into an equivalent continuous space. Using an injective approach lends a solid theoretical
foundation to the equivalence between performing optimization in the continuous latent
space versus the discrete space [141, 157].

• Unlike existing works that directly optimize the architecture parameters, we formulate
the neural architecture search as a distribution learning problem and builds a generalized
Bayesian framework for architecture optimization in differentiable NAS. We investigate
differentiable NAS from a Bayesian learning perspective, and introduce the Bayesian
Learning rule [72, 73, 106, 111] to the architecture optimization in differentiable NAS.
We demonstrate that the proposed Bayesian framework is a practical solution to enhance
exploration for differentiable NAS and improve stability as a by-product via implicitly
regularizing the Hessian norm.

• While there are many variants on improving the DARTS from various aspects, limited
research attention has been paid to the approximation of the architecture parameter
gradient, which is also called the outer-loop gradient or hypergradient. To fill the gap, this
thesis focuses on the hypergradient calculation in the differentiable NAS, with propos-
ing the differentiable architecture search with stochastic implicit gradients (iDARTS).
Specifically, we first revisit the DARTS from the bi-level optimization perspective and
utilize the implicit function theorem (IFT) [10, 96], instead of the one-step unroll learning
paradigm adopted by DARTS, to calculate the architecture parameter gradient.
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Figure 1.6: Framework of the thesis.

1.5 Thesis Structure

The thesis is structured into two parts, where Part I focuses on the existing issues in the one-
shot NAS and Part I deepens our understanding of exploring differentiable neural architecture
searches, as demonstrated by Figure 1.6. The detailed roadmap of the thesis is summarized as
follows:

• Chapter 2 introduces the Efficient Novelty-driven Neural Architecture Search (EN2AS)
to handle the deceptive reward problem and the rich-gets-richer problem in one-shot
NAS.

• Chapter 3 introduces the continual learning into the one-shot NAS and has proposed
the novelty search-based architecture selection (NSAS) loss function accordingly to
overcoming the multi-model forgetting in the one-shot NAS.

• Chapter 4 introduces an approach that uses a variational graph autoencoder to injectively
transform discrete architectures into an equivalent continuous latent space, to guarantee
that a differentiable optimization in the continuous latent space will be equivalent to an
optimization in the discrete space.
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• Chapter 5 formulates the neural architecture search as a distribution learning problem,
rather than directly optimizing the architecture parameters, through relaxing the architec-
ture parameters into Gaussian distributions.

• Chapter 6 tackles the hypergradient computation in differentiable NAS based on the
implicit function theorem, making it only depends on the obtained solution to the inner-
loop optimization and agnostic to the optimization path.

• Chapter 7 summarizes this thesis and points out several future directions of this study.
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ONE-SHOT NAS VIA NOVELTY DRIVEN SAMPLING

2.1 Introduction

One-shot neural architecture search (NAS) has received wide attention due to its computational
efficiency. Most state-of-the-art one-shot NAS methods use the validation accuracy based on
inheriting weights from the supernet as the stepping stone to search for the best performing
architecture, adopting a bilevel optimization pattern with assuming this validation accuracy
approximates to the test accuracy after re-training.

One-shot NAS, also called weight sharing NAS [9, 114], defines a supernet subsuming all
possible architectures in the search space so that architectures can directly inherit weights from
the supernet to avoid training from scratch. ENAS [114] utilizes the validation accuracy with
shared weights as the reward to optimize the RL based architecture sampling controller. An
important assumption in the weight-sharing NAS is that the validation accuracy with inherited
weights from the supernet approximates to the test accuracy after re-training, or at least be
highly predictive. However, several recent works [9, 124, 129, 160] point out that there is no
positive correlation between the above validation accuracy and test accuracy for most one-shot
NAS methods. It indicates that we could not utilize the validation accuracy with inherited
weights as useful feedback for controller improvement. In other words, searching for the
optimal architecture based on weight sharing is deceptive because architectures with optimal
performance on proxy tasks are not guaranteed to perform the best in the target task [20].

Sciuto et al. [124] and Singh et al. [129] observed this deceptiveness that weight sharing
is supposed to disorder the architecture rank, which usually deteriorates the performance of
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other architectures when training a new generated architecture. Benyahia et al. [11] defined
it as multi-model forgetting that the architecture learning in each step will deteriorate the
performance of other architectures with shared connections, and make the proxy reward based
on the supernet unreliable. Furthermore, since architectures with updated weights are supposed
to have higher rewards, those performance reward based controllers have the potential to select
those previously visited architectures with updated weights. Sampling architectures solely based
on this deceptive reward without encouraging intelligent exploration entails the rich-get-richer
problem [87] and leads to the local optima. As suggested by curiosity-driven exploration in
deep reinforcement learning [35], novelty-seeking could help the agent to learn new knowledge
and avoid the local optima in RL domains with deceptive or sparse rewards. Different from the
RL controller or gradient method, novelty search can alleviate this problem by encouraging
the agent to visit unexplored areas rather than those areas with high performance. Compared
with random sampling, novelty search further has the potential to fairly train the supernet in
one-shot NAS, as it always samples those untrained or less trained parts of the supernet to be
trained, which could improve the predictive ability of the supernet [33]. Instead of devising a
complicated reward-based controller, we innovatively introduce novelty search to NAS, which
samples architectures to train the supernet through novelty search. Since our method always
samples architectures containing few shared connections with previously visited architectures,
it could effectively relieve the multi-model forgetting that occurs during the supernet training
and make the supernet more predictive. A weight-sharing based single-path model is adopted to
reduce computational cost and memory storage, where all candidate architectures share weights
and only the single-path weights are optimized in each step. Our contributions in this chapter
can be summarized as follows.

• Firstly, a novelty search based mechanism is innovatively applied to architecture sampling
in one-shot NAS for supernet training, where an efficient novelty-driven approach is
devised to sample architectures without performance reward.

• Secondly, this chapter adopts a weight-sharing based single-path model for neural archi-
tecture search, which could reduce not only the computational cost but also the memory
storage significantly.

• Thirdly, extensive experimental results illustrate the superiority of our method, which
achieves remarkable performance on benchmark datasets with efficiency. Our approach
obtains a competitive test error of 2.51% for CIFAR-10 with only 7.5 hours of search time
in a single GPU, and a competitive validation perplexity of 57.83 and a test perplexity
of 55.88 on PTB with 4 hours search time. After transferring to larger datasets, our best
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models achieve a competitive test error of 16.56% on CIFAR-100 and a 26.66% on
ImageNet, and a validation perplexity of 70.14 and a test perplexity of 69.31 on WT2.
Our method also beats baselines on the NAS-Bench-201 benchmark dataset.

This chapter is based on the publication “Miao Zhang, Huiqi Li, Shirui Pan, Taoping Liu,

Steven Su, One-Shot Neural Architecture Search via Novelty Driven Sampling, In International

Joint Conferences on Artificial Intelligence (IJCAI), 2020” [162]. Miao Zhang conceived the
original idea of focusing on the rich-get-richer problem in one-shot NAS. The EN2AS algorithm
was originally proposed by Miao Zhang. Steven Su helped Miao Zhang to verify all findings in
this paper. This was then discussed with Huiqi Li, Shirui Pan, and Taoping Liu. Miao Zhang
conducted all experiments, with the help from Shirui Pan. The first version of the paper was
written by Miao Zhang with some help from Steven Su. The authors Huiqi Li, Shirui Pan, and
Taoping Liu provided feedback during the writing of the paper.

2.2 Problem Definition and Preliminaries

2.2.1 Neural Architecture Search

The goal of NAS is to automatically design deep neural networks without human intervention.
In general, the architecture of a deep neural network α is usually represented as a directed
acyclic graph (DAG), which is also a subgraph of the whole search space α ∈A . A deep neural
network could be defined as U (α,wα), where wα are the weights associated with architecture
α. With NAS, one tries to find the architecture with the best validation performance according
to:

(2.1) α∗ = argmin
α∈A

Lval(U (α,w∗
α)),

where w∗
α is derived by training architecture α on the training set while minimizing the training

loss function Ltrain:

(2.2) w∗
α = argmin

w
Ltrain(U (α,wα)).

Early studies on NAS usually used a nested approach to finding promising architectures
by training numerous architectures from scratch and leveraging evolutionary algorithm (EA)
[118] or reinforcement learning (RL) [172] to reveal the promising ones. However, from
a practical standpoint, it is computationally inefficient and often unaffordable to evaluate
numerous architectures in this way. Therefore, more recently, researchers have shifted their
attention to reducing computation costs with strategies such as performance prediction [7, 138],
weights generation [19, 156], weight sharing [95, 114], and so on[173].
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2.2.2 One-Shot Neural Architecture Search

One-shot NAS encodes a search space A as a supernet WA that consumes all possible candi-
dates. Only the supernet is trained, while all candidate architectures α directly inherit weights
from the supernet without needing to be trained from scratch. Search times are therefore greatly
reduced because only one neural network needs to be trained during the architecture search
phase. The most promising architecture α∗ is based on validation performance with weights
inherited from the supernet:

(2.3)
min
α∈A

Lval(W ∗
A (α))

s.t. W ∗
A (α)= argmin Ltrain(WA (α)).

Eq. (2.3) is more than a challenging bilevel optimization problem, and the discrete charac-
teristics of the architecture space make it impossible to use a gradient-based method to solve
the formula directly. For this reason, ENAS [114] uses an LSTM controller to sample the
architectures. Whereas, [54] and [86] train the supernet based on a uniform sampling strategy
and the best-performing architecture from the trained supernet is found through a random
search or evolutionary method.

2.2.3 Novelty Search

Novelty search comes from the evolutionary community [81, 118], which encourages the
population to search for notably different areas to enhance the exploration. This approach
utilizes the novelty as the stepping stone instead of the reward function, making it easy to avoid
local optima in return. Previous novelty search based evolutionary algorithms [81] have shown
their superiority in searching for small neural networks. Recent works on deep reinforcement
learning [35] also suggested that hybridized with novelty search evolutionary algorithm could
effectively avoid local optima in RL domains with deceptive reward functions. We investigate
the effects of novelty search on neural architecture search in this chapter and present how to
use the novelty search mechanism as the controller to sample architectures for supernet training
in the following section.

2.3 Efficient Novelty-driven Neural Architecture Search

In this section, we will describe our Efficient Novelty-driven Neural Architecture Search
(EN2AS). Algorithm 1 presents a simple implementation of EN2AS, and we detailedly describe
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Algorithm 1 EN2AS
Input: Training, validation, test datase Dtrain, Dval , Dtest, initialized W , architecture archive
A =;, maximum number of stored architectures S, batch size b, training iteration T.

1: for i = 1,2, ..., (T ∗size(Dtrain)/b) do
2: if size(A)< S then
3: randomly sample an architecture α;
4: update WA(α) by descending ∇WA(α)Ltrain(WA(α)), and add architecture α into A;
5: else
6: randomly select αm

θ
from A, update it with αm′

θ
according Eq.(2.6);

7: Apply argmax operation on the updated architecture to obtain α;
8: Update the shared weights WA(α) by descending ∇WA(α)Ltrain(WA(α));
9: end if

10: end for
11: Perform random search or EA on the trained supernet with validation dataset Dval to get

α∗ based on Eq.(2.7).
12: Retrain α∗ and get the best performance on the test dataset.
Return: architecture α∗ with best performance.

the architecture sampling for supernet training based on novelty search and also discuss
architecture selection from trained supernet in following subsections.

2.3.1 Single Path Supernet Training based on Novelty Search

As described in Eq.(2.3), the inherited weights WA (α) of architecture α from the supernet A

should approximate to the optimal weights w∗
α or be highly predictive. Therefore, the key to

weight sharing based NAS is how to train the supernet. As discussed in [9, 124], a reward
gradient-based architecture sampling controller is easy to be trapped in local optima, where
there is no positive correlation between the validation accuracy with inherited weights and
the test accuracy after re-training for such one-shot NAS methods. Recent work [35] on deep
reinforcement learning demonstrates the effectiveness of novelty search as it could help the
agent get out of local optimal when the reward function is very deceptive. In this chapter, we
utilize the novelty search to sample architectures for supernet training in one-shot NAS.

The novelty search policy is defined as π and a behavior characterization b(π) to describe
its behavior. During the architecture search phase, every architecture α sampled from π is
described as b(πα) and added into archive A after calculating the novelty particular policy
N(b(πα), A). A simple and common novelty measurement is to calculate the mean distance of
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α and its k-nearest neighbors from A:

(2.4)
N(α, A)= N(b(πα), A)= 1

|S|
∑
j∈S

∥∥b(πα)−b(π j)
∥∥

2

S = kNN(b(πα), A)= {b(π1),b(π2), ...,b(πk)}

However, the distance calculation between neural architectures is not efficient because
we need to compare all nodes and connections of two subgraphs, and calculating distances
between the sampled architecture and all previously visited architectures in every search step.
In this section, we introduce an archive based novelty search to relieve the high computational
complexity for the novelty calculation. Given an archive Aθ containing a fixed number of
continuous representation of sampled architectures as αi

θ
=αθ +σεi, the gradient of expected

novelty could be approximated as:

(2.5) ∇αθ
Eε∼N (0,I)[N(αθ +σε, A)|A]≈ 1

nσ

n∑
i=1

N(αi
θ, A)εi

where εi ∼ N (0, I), αi
θ

is the i-th architecture with continuous parameters representation
in the archive, n is the number of sampled perturbations to αt

θ
, and the archive is fixed at

the beginning of the iteration and updated at the end. Eq. (2.5) demonstrates how to change
the current architectures to increase the novelty of the archive, and we could update m-th
architecture in the archive according to:

(2.6) αm′
θ ←αm

θ +γ
1

nσ

n∑
i=1

N(αm,i
θ

, A)εi

where γ is the stepsize. Based on Eq.(2.6), we only need to calculate the distance of the sampled
architecture and an archive with a fixed number of architectures in every search step. It is
straightforward to randomly select an architecture from the archive, and update it accordingly
to optimize the novelty. In our practical implementation, only the architectures stored in the
archive are continuous, and they are also applied with the argmax operation before calculating
the distance to the sampled architectures.

2.3.2 Model Selection

Since evaluating an architecture is very efficient based on the trained supernet, it is possible to
utilize a heuristic approach to find the most promising architecture, where random search and
evolutionary algorithms are the two most common methods [54, 86]. In this chapter, we adopt
the validation accuracy as the optimizing goal in model selection as:

(2.7) maximize
α

ACC(WA (α))
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Figure 2.1: Best cell structures found by EN2AS.

where ACC(WA (α)) is the validation accuracy of α with inhered weights from the supernet,
and a baseline evolutionary algorithm is adopted to find the most promising architecture from
the trained supernet.

2.4 Experimental Result

The experimental design is following [86, 95, 140] for a fair comparison, which contains
three stages: architecture search, architecture evaluation, and transfer to larger datasets. We
perform our EN2AS on small datasets, CIFAR-10 and PTB, to search for cell architectures
on a smaller supernet architecture with fewer cells in the architecture search phase, and stack
more multiple cells to construct larger architecture for full training and evaluation. Finally, the
best-learned cells are also transferred to CIFAR-100, ImageNet and WT2 to investigate the
transferability. We also evaluate the supernet predictive ability of our novelty based sampling
method compared with two baselines in the following subsections. Fig.2.1 show the best cell
structures found by our EN2AS. For CNN cells, each node needs to select two former nodes
with applied operations as its input. As to RNN cells, each node only selects one former node
with applied operation as its input. The outputs for the three types of cells are the summation of
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Table 2.1: Comparison results with state-of-the-art weight sharing NAS methods on CIFAR-10, CIFAR-
100 and ImageNet.

Method Test Error (%) Param. Search Memory Supernet
CIFAR10 CIFAR100 ImageNet (M) Cost Consumption Optimization

NAO-WS [99] 3.53 - - 2.5 0.3 single path gradient
ENAS [114] 2.89 18.91 - 4.6 - single path RL
SNAS [140] 2.85±0.02 20.09 27.3 2.8 1.5 whole supernet gradient
BayesNAS [170] 2.81±0.04 - 26.5 3.40 0.2 whole supernet gradient
MdeNAS [169] 2.51 - - 4.06 0.16 single path MDL
MdeNAS* [169] 2.87 17.61 26.8 3.78 0.16 single path MDL
GDAS [40] 2.93 18.38 27.5 3.4 0.21 single path gradient
DARTS (1st) [95] 2.94 - - 2.9 1.5 whole supernet gradient
DARTS (2nd) [95] 2.76±0.09 17.54 26.9 3.4 4 whole supernet gradient
RandomNAS [86] 2.85±0.08 17.63 - 4.3 2.7 single path random
EN2AS 2.61±0.06 16.45 26.66 3.1 0.3 single path novelty search
EN2AS + 2.51±0.05 - - 3.1 0.3 single path novelty search

“MdeNAS*" indicates that we reproduce the results based on the best-reported model in MdeNAS. All models are trained
with 600 (250 for ImageNet) epochs, where the batch size is 96, and the initial channel is 36, to obtain the test error. We also
further train our best architecture with 1000 epochs on CIFAR-10 and 500 epochs on ImageNet to achieve state-of-the-art
results.

Table 2.2: Comparison results with state-of-the-art NAS approaches on PTB and WT2.

Method Perplexity(PTB) Perplexity(WT2) Param. Search Memory Search
Valid Test Valid Test (M) Cost Consumption Method

ENAS [114] 60.8 58.6 72.4‡ 70.4‡ 24 0.5 single path RL
DARTS (1st) [95] 60.2 57.6 - - 23 0.5 whole supernet gradient
DARTS (2nd) [95] 58.1 55.7 71.2 69.6 23 1 whole supernet gradient
DARTS (2nd)* [95] 59.21 56.70 - - 23 1 whole supernet gradient
GDAS* [40] 60.23 57.69 - - 23 0.4 single path gradient
RandomNAS* [86] 60.34 57.8 73.35 70.86 23 0.25 single path random
EN2AS 59.28 57.26 - - 23 0.67 single path novelty&reward
EN2AS + 57.83 55.88 70.14 69.31 23 0.67 single path novelty&reward

Since the results on PTB reported in these peer methods are with different training epochs, we reproduce the results of the
best models reported in these approaches with the same experimental setting as ours, which are indicated by “*", for a fair
comparison. ‡ means that the results are reproduced by DARTS with the same search space as ours. All models are trained
with 1600 epochs with 64 batch size to obtain the perplexity, and we also further train our best-found architecture with 3600
epochs on to achieve competitive results.

outputs for all nodes.

2.4.1 Architecture Search for Convolutional Cells

We first consider the most popular DARTS convolutional search space to compare our EN2AS
with NAS baselines. In this search space, we search for micro-cell structures on a small dataset
CIFAR-10 [76] to stack more cells to form the final structure for architecture evaluation. The
best-found cells on CIFAR-10 are then transferred to CIFAR-100 [76] and ImageNet datasets

28



2.4. EXPERIMENTAL RESULT

[38] to evaluate its transferability. The CIFAR-10 dataset only has 10 classes, where each class
contains 6000 images resulting in 60000 32x32 colour images in total. The CIFAR-100 dataset
is similar to CIFAR-10 dataset, except that CIFAR-100 dataset contains 100 classes where each
class contain 6000 32x32 colour images. The ImageNet dataset is much larger than CIFAR
datasets, and we consider the ImageNet-1K, which contains 1000 classes, in this thesis. More
details of this search space can be found in Sec.1.2.4.

2.4.1.1 Results on CIFAR-10

The comparison results on CIFAR-10 with the state-of-the-art NAS methods are demonstrated
in Table 2.1. We report the results of the best found structure from 10 independent search
experiments. It is impressive that the Random Search WS could obtain satisfactory results,
which randomly sample architectures for supernet training. Random sampling strategy beats
most reward-based sampling methods for one-shot NAS with the same search space, except for
DARTS (2nd) and BayesNet, which are with an elaborate controller. The result is also in line
with the observation from [9]. It is inspiring that the best architecture searched by our EN2AS
obtains the state-of-the-art test error on CIFAR-10 for weight sharing NAS. Our approach is
also very efficient since the architecture search phase only costs about 7.5 hours (0.3 GPU day),
and the memory consumption is the same as training a single architecture. The convolutional
cell obtained by our EN2AS is also very efficient, which has fewer parameters than most NAS
methods.

2.4.1.2 Results on CIFAR-100 and ImageNet

The architecture evaluation setting on CIFAR-100 is the same as CIFAR-10, and the comparison
results are also presented in Table 2.1. Our model could obtain a competitive result with 17.58%
Top1 test errors with only 3.13M parameters. We further increase the number of initial filters
from 36 to 50 (and the parameters increase to 5.88 M), and our network achieves state-of-the-
art results with a test error of 16.45% among all compared methods. The mobile setting on
ImageNet also follows [95] and we stacked the best found structure by 14 cells with batch size
128. Our model could obtain a competitive result with Top1/Top5 test errors as 26.66%/8.58%
with only 4.5M parameters.

2.4.2 Architecture Search for Recurrent Cells

Beyond the convolutional cell structure search, we also conducted experiments on RNN cell
structure search with the Penn Treebank (PTB) dataset [104], which a well-studied dataset
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for language model. Similar to DARTS convolutional search space, the best searched RNN
structure on PTB dataset is also transferred to WikiText-2 (WT2) [107] dataset, which contains
more realistic vocabularies and larger corpora, to verify the transferability. For a fair comparison,
the search space and hyperparameters were set following [86, 95].

2.4.2.1 Results on PTB

The comparison results on PTB with the state-of-the-art manually-designed architectures and
NAS methods are demonstrated in Table 2.2. We can find that the DARTS (2nd) achieves state-
of-the-art results on PTB among those NAS methods, which obtains a validation perplexity of
59.21 and a test perplexity of 56.71 and shows the efficiency of gradient method in the recurrent
search space. Our EN2AS obtains a competitive validation perplexity of 59.28 and a test
perplexity of 57.26, which is much better than DARTS (1st) and on par with the state-of-the-art
NAS methods on PTB. As discussed before, our EN2AS is a first-order iterative optimization
based on novelty. The results clearly show that enhancing the exploration instead of sampling
architecture based on performance reward could improve the supernet predictive ability, as
evidenced by the fact that our EN2AS beats the DARTS with first-order approximation. We
further train our best found recurrent cell structure with more training epochs and achieve a
competitive validation perplexity of 57.83 and test perplexity of 55.88.

2.4.2.2 Results on WT2

We also transfer those promising models obtained on PTB to WT2 following the experimental
settings in [95]. The embedding and hidden sizes are changed to 700, weight decay to 5×10−7,
hidden-node variational dropout to 0.15, and other hyperparameter settings are the same as
PTB. The results of different models on WT2 are presented in Table 2.2. We train our best
model with 3600 epochs on WT2 and achieve a state-of-the-art validation perplexity of 70.14
and a test perplexity of 69.31.

2.4.3 Empirical Comparison with Baselines

Supernet Training Comparison with Reward based Sampling Strategy. As discussed
previously, the reward based controller entails the rich-get-richer problem [87], and the multi-
model forgetting that occurs during the supernet training will also deteriorate the supernet’s
validation performance. In this section, we investigate the validation performance of architec-
tures during the supernet training for our proposed novelty search based sampling strategy
compared with reward based sampling strategy. We adopt the GDAS [40] as the reward based
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Figure 2.2: Validation accuracy of sampled architecture and fixed architectures during the supernet
training for GDAS (dash lines) and EN2AS (solid lines).

sampling baseline as it also only trains a single path in each step during the architecture search
phase. We conduct this comparison experiment on CIFAR-10 and train the supernet with
the two different sampling methods with 100 epochs, respectively. We tracked the validation
accuracy of the sampled architecture in each step and also three fixed architectures through
inheriting weights during the supernet training for the two sampling strategies. We present
the validation accuracy of the sampled architectures during the supernet training in Fig.2.2
(a), and the validation accuracy of those fixed architectures in Fig.2.2 (b). It is straightforward
that architectures are supposed to increase their validation accuracy with the supernet training.
However, the performance of all those architectures shockingly gets worse during the supernet
training for GDAS after several generations, as shown in Fig. 2.2, which demonstrates the exis-
tence of multi-model forgetting [11] induced by reward-based sampling methods in one-shot
NAS that makes the supernet unreliable. Differently, our E2NAS always samples abnormal
architectures containing few shared connections with previously visited architectures to over-
come this forgetting. Fig. 2.2 shows that the performance of architectures does not get worse
during the supernet training based on novelty based sampling. It suggests that our proposed
novelty search based sampling strategy can effectively relieve the multi-model forgetting and is
more reliable than reward based sampling strategy.

Supernet Predictive Ability Evaluation. To demonstrate the effectiveness of our approach
in relieving the rank disorder caused by weight sharing, we further conduct experiments to
verify the supernet predictive ability of the proposed method compared with random sampling
(Random Search WS, depicted as RS WS) and reward gradient based sampling (GDAS) in
one-shot NAS. We also replace the baseline evolutionary algorithm in the model selection
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Figure 2.3: The τ metric and mean test accuracy for architectures obtained through different architecture
sampling methods.

Table 2.3: Comparison with two baselines on NAS-Bench-201 dataset.

Method Test Acc(%) τ metric s-τ metric

EN2AS 93.36±0.3 0.228±0.066 0.333
RS WS [86] 91.93±1.2 -0.016±0.100 0.111
GDAS [40] 92.05±0.2 -0.067±0.109 -0.092

of our EN2AS with a random search for a fair comparison in this experiment. We conduct
this comparison experiment on CIFAR-10 and also train the supernet with different sampling
strategies for 100 epochs. Then we randomly sample 10 architectures and evaluate these
architectures based on the three different trained supernets. We measure the correlation of
architecture ranking based on weight sharing and retraining, and demonstrate the supernet
predictive ability of three different sampling methods based on the Kendall Tau (τ) metric
[70]. Kendall Tau (τ) is to demonstrate the difference of ranking based on weight sharing and
retraining for the three sampling methods. As shown in Figure 2.3 (a), the random sampling
and gradient based sampling both obtain negative values that show the rank disorder in the two
baselines. Our approach obtains a much better τ=0.378 with a positive correlation between
the architecture ranking based on weight sharing and retraining, which indicates that the
supernet trained based on novelty search sampling archives a better predictive ability. Since the
supernet with better predictive ability tends to obtain better architectures, we further compare
the retraining validation accuracy of sampled architectures from the trained supernet based
on the three different architecture sampling methods. Figure 2.3 (b) plots the mean retraining
validation accuracy, and we could observe that our novelty search based architecture sampling
achieves the best results.
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2.5. CHAPTER SUMMARY AND DISCUSSION

2.4.4 Experiments on Benchmark Dataset

The high computational cost of evaluating architectures is the major obstacle of analyzing
one-shot NAS methods, and several recent works try to build benchmark datasets [150] to
relieve this difficulty. We adopt NAS-Bench-201 [41] as a benchmark dataset to analyze our
approach in this experiment. The search space in NAS-Bench-201 contains 4 nodes with 5
associated operations, which results in 15625 cell candidates. Although the search space in
NAS-Bench-201 is much simpler than the common search space, the ground-truth test accuracy
of all candidates in the search space is reported, which could greatly reduce the computational
requirements in the analysis of one-shot NAS methods. We run our EN2AS on NAS-Bench-201
for three independent times with the same experimental settings in [41], and report the mean
test accuracy of the best-found architectures in Table 2.3. To evaluate the supernet predictive
ability, we further measure the Kendall Tau (τ) metric to demonstrate the difference of ranking
based on supernet and ground truth for the three sampling methods. Apart from τ, we also
calculate the s-τ to measure the stability of generated ranks from different runs, which is
defined as 2

N(N−1)
∑

1≤i< j≤N τ(Ri,R j), where N = 3 in this experiment. We ranked 15 randomly
generated architectures based on supernet and the ground-truth to obtain the (τ) and s-τ for
the three methods, and the results are presented in Table 2.3, where our method beats the two
baselines.

2.5 Chapter Summary and Discussion

This chapter originally focuses on resolving the rich-get-richer problem in supernet training for
weight-sharing neural architecture search, where a novelty search is proposed to enhance the
exploration for architecture sampling during the supernet training. In particular, a novelty search
mechanism is developed to efficiently find the most abnormal architecture, and the single-path
model is adopted to greatly reduce computational and memory demand. Experimental results
show the proposed approach could find the state-of-the-art or competitive CNN and RNN
models, and also improve the predictive ability of the supernet in one-shot NAS.

Rather than considering the validation performance-based indicator for architecture sam-
pling, this chapter simply devises a diversity-based indicator to sample diversified architectures
for the supernet training in the one-shot NAS. As we can observe from the experimental results,
the proposed architecture sampling method obtains to a better predictive ability for the supernet
in one-shot NAS, showing in the Sec.2.4.3. The underline reason is that, the performance-based
indicator usually leads to the “rich-get-richer" problem while the diversity-based indicator
has the potential to fairly train the supernet. This phenomenon suggests that the validation
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performance by inheriting the weights from the supernet is deceptive, and devising a more
effective indicator for the architecture sampling or selection is a promising research direction,
which is also in line with several concurrent works [22, 105, 166].
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OVERCOMING MULTI-MODEL FORGETTING IN

ONE-SHOT NAS

3.1 Introduction

Pioneer studies on one-shot NAS follow two sequential steps [9, 33, 86, 114]. They first adopt
an architecture sampling controller to sample architectures for training the supernet. Then, a
heuristic search method finds promising architectures over a discrete search space based on the
trained supernet [54, 86, 114, 147]. Later studies [20, 40, 95, 99, 140, 149, 158] have further
employed continuous relaxation to differentiate between architectures so that the gradient
descent can be used to optimize the architecture with respect to validation accuracy. The
architecture parameters and supernet weights are alternatively optimized through a bilevel
optimization method, and the most promising architecture is obtained once the supernet is
trained.

Since one-shot NAS evaluates candidate architectures based on the validation accuracy
of the weights it inherits from the supernet as opposed to training them from scratch, the
success of one-shot NAS relies on a critical assumption that the validation accuracy should
approximate the test accuracy after training from scratch or be highly predictive. The authors
of the first study on one-shot NAS [9] observed a strong positive correlation between the
validation accuracy and the test accuracy when the supernet was trained through random path
dropout. Subsequent studies all rightly considered this assumption to be true for all one-shot
NAS methods. However, several recent studies have revealed that this assumption may not hold
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Figure 3.1: Left: The general process of one-shot NAS. First, the search space is defined as a supernet
containing all candidate architectures. Then a single path of the supernet (an architecture) is trained in
each step of the supernet training process. Promising architectures are selected based on the validation
accuracy of weights inherited from the trained supernet without the need for training from scratch.
Right: The validation accuracy for four different architectures during the supernet training. The solid
lines (“Arch") are the accuracies returned using weights inherited from the supernet; the dashed lines
(“Arch-R") are the accuracies after retraining.

in most popular one-shot NAS approaches. For instance, Sciuto et al. [124] show that there
is no observable correlation between the validation and test accuracy of the weight-sharing
paradigm with ENAS [114], and Adam et al. [2] show that the RNN controller in ENAS
does not depend on past sampled architectures, which means its performance is the same as a
random search. Similarly, Singh et al. [129] find that there is no visible progress in terms of the
retrained performance for found architectures based on supernet during the architecture search
phase, implying the supernet training is useless for improving the predictive ability of one-shot
NAS. Further, Yang et al. [146] conducted extensive experiments that demonstrated that the
current one-shot NAS techniques struggle to outperform naive baselines. Rather, the success of
one-shot NAS is mostly due to the design of the search space.

Most one-shot NAS approaches [20, 33, 54, 86] adopt a single-path training method for
their supernet training, where only a single path (one architecture) in the supernet is trained in
each step. This is the scenario we consider. However, Benyahia et al. [11] observed that when
training multiple models (architectures) with partially-shared weights for a single task, the
training of each model may lower the performance of other models. Benyahia et al. [11] defined
this phenomenon as multi-model forgetting, also known as catastrophic forgetting. They also
observed this catastrophic forgetting in one-shot NAS. For example, consider a large supernet
containing multiple models with shared weights across them. Sequentially training each model
on a single task could mean that the accuracy of each model tends to drop when training
another model containing partially-shared weights [11, 124]. This multi-model forgetting in
one-shot NAS is illustrated in Fig.3.1 in terms of the validation accuracy of four different
architectures during supernet training. What is clear from the figure is that inheriting weights
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3.1. INTRODUCTION

makes performance deteriorate even further during supernet training.
So, although weight sharing can greatly reduce computation hours, it can also introduce

catastrophic forgetting into the supernet training, which results in unreliable architecture
rankings. Addressing multi-model forgetting during supernet training is an urgent issue if we
are to better leverage one-shot NAS and improve the predictive ability of supernets. Hence, we
have formulated supernet training as a constrained optimization problem for continual learning
to avoid degrading the performance of previous architectures when training a new one.

That said, it is intractable to consider all previously visited architectures. Therefore, only
the most representative subset of previous architectures is used to regularize learning of the
current architecture. We have devised an efficient greedy novelty search method based on
maximizing diversity to select the constraints. We have also implemented the approach in two
one-shot baselines. The experimental results demonstrate that our strategy is able to relieve
multi-model forgetting in one-shot NAS methods. A summary of our main contributions in this
chapter follows.

• We first formulate supernet training with one-shot NAS as a constrained optimization
problem of continual learning, where learning the current architecture should not degrade
the performance of previous architectures with partially-shared weights.

• We have also designed an efficient greedy novelty search method based on maximizing
diversity to select a subset of the constraints that best approximate the feasible region
formed by all previous architectures.

• With these two techniques, we then incorporate this NSAS loss function (novelty search-
based architecture selection) into the RandomNAS [86] and GDAS [40] one-shot NAS
baselines to form RandomNAS-NSAS and GDAS-NSAS, with the goal of reducing the
level of multi-model forgetting during supernet training. Our best-found models from the
common search space [95] returned a competitive test error of 2.59% on CIFAR-10 and
only took 0.7 GPU days of search time.

• To improve transferability, we further devised a variant of NSAS, called NSAS-C, which
searches for “deeper” architectures in the convolutional cell search. Experiments on the
common search space demonstrate increased transferability of the found models, and
competitive test errors of 16.69% on CIFAR-100 and 25.5% on ImageNet.

• A series of experiments conducted with the NAS benchmark dataset NAS-Bench-201
[41] also verify that NSAS significantly reduce forgetting and improve the performance
of one-shot NAS baselines.
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This chapter is based on the publication “Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang,

Steven Su, Overcoming Multi-Model Forgetting in One-Shot NAS with Diversity Maximization.

In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020” [159]
and “Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, Zongyuan Ge, and Steven Su, One-Shot

Neural Architecture Search: Maximising Diversity to Overcome Catastrophic Forgetting. In

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020” [161], where
the second one is the extended journal version of the previous one. Miao Zhang conceived the
original idea of focusing on the catastrophic forgetting in one-shot NAS. The NSAS algorithm
was originally devised by Miao Zhang. Steven Su helped Miao Zhang to verify all derivations
of theoretical parts in this paper. This was then discussed with Shirui Pan and Huiqi Li. Miao
Zhang conducted all experiments, with the help from Shirui Pan, and with feedback from
Steven Su. The first version of the paper was written by Miao Zhang with some help from
Steven Su. Huiqi Li and Shirui Pan revised the paper many times. The authors Xiaojun Chang,
Chuan Zhou, and Zongyuan Ge provided feedback during the writing of the paper.

3.2 Preliminaries

3.2.1 Catastrophic Forgetting

Catastrophic Forgetting is a common problem in artificial general intelligence and multi-task
learning. It describes the phenomenon of where a model forgets what it has learned about
a previous task(s) after being trained on a new task [60, 74, 80, 112]. Formally, a model
with optimal parameters θ∗

A for dataset DA will perform substantially less well on DA after
it has trained on another dataset DB. Methods to resolve such issues are defined as continual

learning. Some examples include learning without forgetting (LwF) [89], which adds a response
from the old task as a regularization term to prevent catastrophic forgetting, and elastic weight
consolidation (EWC) [74], which maximizes the likelihood of a conditional probability p(θ |D),
where D containing two independent data sets DA and DB, and DA is not available when trained
on DB.

3.2.2 Multi-model Forgetting

Multi-model Forgetting occurs when training multiple models with a single dataset. Unlike
training a model on several tasks sequentially, one-shot NAS applies different models to a single
dataset D, e.g., θa = (θp

a ,θs) and θb = (θp
b ,θs), to a single dataset D, where θs is the shared

weight and θ
p
a and θ

p
b are private weights. Several recent studies [87, 124, 137] have shown that
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the interactions between networks can degrade the performance of a whole network, and that
catastrophic forgetting with one-shot NAS can lower the performance of previous architectures
after training a new architecture in the supernet. To alleviate this problem, Benyahia et al.
[11] proposed a weight plasticity loss (WPL), which maximizes the posterior probability
p(θp

a ,θp
b ,θs |D) as:

(3.1)
p(θ |D)= p(θp

a ,θp
b ,θs,D)

p(D)
= p(θp

a | θp
b ,θs,D)p(θp

b ,θs,D)

p(D)

= p(θp
a ,θs |D)p(D | θp

b ,θs)p(θp
b ,θs)

p(θs,D)
= p(θa |D)p(D | θb)p(θb)

p(θs,D)
.

However, it is intractable to calculate (θs,D) in Eq.(3.1), so Benyahia et al. [11] made
several presuppositions to make the calculation feasible: a) that θ

p
a and θs are independent,

and b) that the weights θa for previous model are in optimal points. This way, p(θs,D) can be
estimated by the distance of θs to the optimal θ∗

s with the diagonal of the Fisher information
defining the importance of each parameter. In WPL, the loss function to maximize the likelihood
of p(θp

a ,θp
b ,θs |D) is calculated as:

(3.2) LWPL(θb)=Lc(θb)+ η

2
(
∥∥θp

b

∥∥2 +∥∥θs∥∥2)+ ∑
θsi∈θs

ε

2
Fθsi

(θsi −θ∗
si

),

where Lc is the cross-entropy loss function, and Fθsi
is the diagonal element of the Fisher in-

formation matrix corresponding to parameter θsi . Fθsi
is estimated by presupposing parameters

(θp
a ,θp

b ) are independent, and that θ∗
s are the shared parameters θs after the previous model has

been trained, which are assumed to be in the optimal points. A detailed derivation of Eq.(3.2)
can be found in [11].

Limitations: Weight plasticity loss (WPL) only considers one previous architecture in each
step of supernet training. This method is also based on the assumption that the shared weights
are optimal. However, these two assumptions are hard to hold when training a supernet in a one-
shot NAS scheme given numerous architectures shared weights with the current architecture.
Plus, the shared weights are usually far away from the optimal points. To address these concerns,
we formulated supernet training with one-shot NAS as a constrained optimization problem,
where learning the current architecture does not degrade the performance of previously-visited
architectures. We consider a subset of previous architectures as constraints to regularize the
learning of the current architecture. We also demonstrate that the loss function of the posterior
probability p(θp

a ,θp
b ,θs | D) can be calculated without assuming that the shared weights are

optimal when maximizing the diversity of the selected architectures.
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Algorithm 2 Greedy Novelty Search
Input: constraints archive M , recent architectures archive C , selected architecture αm, n.

N(αm,M )← calculate the novelty score of αm in M based on Eq.(3.5);
2: for i = 1,2, ...,n do

randomly sample an architecture αr from C ;
4: if N(αr,M )> N(αm,M ) then

replace αm with αr;
6: end if

end for
Return: architecture αm.

3.3 Novelty Search based Architecture Selection Loss
Function

3.3.1 Problem Formulation

Unlike jointly optimizing the posterior probability under the assumption that θa is near-optimal
as per WPL [11] or keeping the shared weights fixed as per Learn to Grow [88], we formulate
supernet training as a constrained optimization problem. Specifically, we enforce the archi-
tectures with inherited weights in the current step so as to perform better than the last step.
Without loss of generality, we consider a typical scenario where only one architecture in the
supernet is trained in each step, and the constrained optimization problem is defined as:

(3.3)
W t

A = argmin
θ∈WA (αt)

Ltrain(WA (αt)),

s.t. Ltrain(W t
A (αi))≤Ltrain(W t−1

A (αi)); ∀i ∈ {0...t−1}.

Here, Ltrain(WA (α))=Lc(WA (α))+λR(WA (α)), and WA represents the total of all weights
in the supernet. αt is the current architecture in step t, and WA (αt) is the weights of αt inherited
from the supernet, and only WA (αt) is optimized in each step t.

3.3.2 Constraints Selection based on Novelty Search

The constraints in Eq.(3.3) prevent the learning the current architecture from degrading the
performance of previous architectures as a strategy to overcome multi-model forgetting in
one-shot NAS. However, the number of constraints in Eq.(3.3) increases linearly with the step,
which makes it intractable to consider all constraints in the optimization. Therefore, it is more
practical to try and select a subset of M constraints from the previous architectures that forms
as close a feasible region to the original feasible region as possible. Intuitively, maximizing
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Figure 3.2: NSAS loss function ensures that the learning of current architecture will not deteriorate the
performance of previous architectures in the constraint subset.

the diversity of the subset is an efficient way to find the most representative samples from the
previous architectures. Based on this observation and motivated by [5], we propose a surrogate
for constraint selection:

(3.4)
maximizeM

∑

αi ,α j∈M

dis(αi,α j),

s.t. M ⊂ {α1...αt−1}; |M | = M,

where dis(αi,α j) is a function to calculate the distance between architectures. Further, to solve
this equation, we proposed a greedy novelty search method to maximize the diversity of the
subset. Before the archive is full, all the new coming architectures are added into the subset.
Once full, the most similar one to the current architecture is chosen to replace the one that
maximizes the novelty score of the archive. Algorithm 2 sets out a simple implementation of
our greedy novelty search method. A simple and standard novelty measurement, defined as
N(α,M ), measures the mean distance of its k-nearest neighbors in M :

(3.5)
N(α,M )= 1

|S|
∑

α j∈S
dis(α,α j)

S = kNN(α,M )= {α1,α2, ...,αk}.

In this chapter, we measure the difference of the input edges for each node in an architecture.
The input edge of the same node for two architectures is considered to be the same only when
the two edges have the same input node and the same operations. M constraint architectures
are then selected from |C | recent architectures rather than all previous architectures.
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3.3.3 The NSAS Loss Function

After finding the M most representative architectures {α1, ...,αM} by maximizing diversity, we
need to forcibly optimize the learning of the current architecture in the feasible region formed
by these constraints. A common approach is to convert the constraints into a soft regularization
loss or apply a replay buffer [5]. The weights of these architectures in the subset are described
as {θ1, ...,θM}. When the selected constraints are converted to a soft regularization loss, the loss
function for the constrained optimization problem in Eq. (3.3) could be described as Eq.(3.6):

(3.6) LN(WA (αt))= (1−β)(Lc(WA (αt))+λR(WA (αt)))+ β

M

∑
i=1:M

(Lc(WA (αi))+λR(WA (αi))),

where Lc is the cross-entropy loss function, R is the `2 regularization term, and β are the trade-
offs. The term LN(WA (αt)) is the NSAS loss function. While learning the current architecture
αt, NSAS protects the performance of those constraint architectures by ensuring the shared
parameters stay in a region of low error for these constraints, as shown schematically in Fig.
3.2.

3.3.4 From Weight Plasticity Loss (WPL) to NSAS

WPL [11] regularizes the learning of current architecture by maximizing the posterior proba-
bility p(θp

a ,θp
b ,θs |D), where θa = {θp

a ,θs} is the weights of the last architecture, θb = {θp
b ,θs}

is the weights of the current architecture, and θs is their shared weights. Unlike WPL, which
only considers one previous architecture, we consider a subset of previously visited architec-
tures - θa = {θ1, ...,θM}= {(θp

1 ,θs
1), ..., (θp

M ,θs
M)} - where θ

p
i is the private weights, and θs

i is the
weights shared with the current architecture. When selected constraints make the following two
assumptions hold true, then Lemma 1 describes the relationship between WPL and NSAS.

Assumption 1. The architectures in the constraint subset cover all weights of the current

architecture αt that θ(e)
b ⊆ {θ(e)

1 ∪ ...∪θ(e)
M } for every edge e in αt, where θ(e)

m is the weight of the

operations assigned to each edge of αm.

Assumption 2. There are no shared weights among these constraint architectures, i.e, θ1∩θ2 =
...= θM−1 ∩θM =;.

Lemma 1. When the selected constraint architectures satisfy the above two assumptions, the

NSAS loss function with the WPL can be formulated as:

(3.7) LN(WA (αt))=Lc(WA (αt))+γLWPL(WA (αt)).
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Algorithm 3 One-Shot NAS-NSAS
Input: Dtrain, Dval , W , constraints archive M =;, M, neural architecture search iteration T,
batch size b

1: for t = 1,2, ..., (T ∗size(Dtrain)/b) do
2: if size(M )< M then
3: sample αt based on gradient search or random search;
4: update the weights WA(α) by normal loss function, and add architecture α into M ;
5: else
6: sample αt based on gradient search or random search;
7: select the architecture αm that is most similar to αt from M ;
8: replace αm with αt to maximize the diversity of M based on Algorithm 2;
9: update the WA(α) by our proposed loss function in Eq.(3.6);

10: end if
11: end for
12: Obtain α∗ based on RandomNAS or GDAS.

Lemma 1 demonstrates that the NSAS loss function not only contains the WPL but also
optimizes learning of the current architecture when the appropriate constraints have been
selected. Additionally, when a specific number of constraints for a densely-connected search
space are set, the strategy of selecting constraints based on maximizing diversity has the
potential to see the two assumptions hold true. Take the search space of NAS-Bench-201[41]
(as defined in Section 4.4.2) as an example. When the number of candidate operations in
each edge M = 5 and the diversity of the constraint subset is maximized, those five constraint
architectures should cover all possible operations for all edges (Assumption 1), and each edge
in each constraint architecture should contain different operations (Assumption 2).

3.3.5 One-Shot NAS with Novelty Search based Architecture Selection

We implemented our loss function into two popular one-shot NAS: RandomNAS [86] and
GDAS [40]. Like the most weight sharing NAS methods, only a single path is trained in each
step of the architecture search phase. Therefore, incorporating NSAS into RandomNAS is
relatively easy. However, most gradient-based NAS methods, like DARTS [95], train the whole
supernet in each step of the supernet training, which would violate both the assumptions set out
above. For this reason, we chose GDAS [40] as the gradient method, which uses the Gumbel-
Max trick [65, 103, 140] to relax the discrete architecture distribution so as to be continuous and
differentiable. The argmax function reparameterizes the architecture distribution and samples
only one architecture in each supernet training step during the forward pass. The softmax
function is applied during the backward pass for architecture learning. Algorithm 3 outlines the
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one-shot NAS with the NSAS loss function, called one-shot NAS-NSAS.

3.4 Experimental Result

To evaluate the performance of NSAS loss function, we compared baseline versions of Random-
NAS [86] and GDAS [40] with our NSAS implementations denoted as RandomNAS-NSAS
and GDAS-NSAS. We considered two different search spaces: a common search space adopted
by most state-of-the-art one-shot NAS methods [86, 95], and a second NAS-Bench-201 space
[41]. The NAS-Bench-201 dataset was specifically designed for one-shot NAS research, so it
comes with a guarantee of fair comparison between one-shot NAS methods. The NAS-Bench-
201 search space is much smaller than the common search space, and, accordingly, the best test
performances for all candidate architectures on all datasets were reported with this search space,
relieving the computational concern in the further analysis of one-shot NAS approaches. We
first apply RandomNAS-NSAS and GDAS-NSAS to search for promising neural architectures
in the common search space and compared the results with the two baselines and many other
current one-shot NAS algorithms. We then further analyzed NSAS loss function with the
NAS-Bench-201 benchmark dataset. In the next two subsections, we describe the experimental
settings for each of these search spaces.

3.4.1 Experimental Results on Common Search Space

Our first set of experiments was to conduct a neural architecture search on the common DARTS
convolutional search space and compare with all methods, including our implementations, the
baselines and a range of current and state-of-the-arts methods.

3.4.1.1 Architecture Search on CIFAR-10

With this experiment, we searched for micro-cell structures in the search space and formed
the final structure by stacking the cells in series. To compare the performance of one-shot
NAS-NSAS with state-of-the-art NAS methods, we follow DARTS’s experimental setting in
[95]. We conducted the architecture search several times with different random seeds to obtain
the architectures, and then retrained them to pick the best architectures based on retraining
validation performance. The first block of Table 3.1 contains the NAS methods without weight
sharing. The approaches in the second block are the one-shot NAS methods. The comparison
results are provided in Table 3.1. As shown, the one-shot NAS methods, which also obtain
competitive results, are much more efficient than NAS methods without weight sharing. The
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Table 3.1: Results with the existing NAS approaches on CIFAR-10 and CIFAR-100.

Method Test Error (%) Param. FLOPs Search Memory Search
CIFAR10 CIFAR100 (M) (M) Cost Consumption Method

NASNet-A [172] 2.65 17.81 3.3 - 1800 Single path RL
AmoebaNet-A [118] 3.34±0.06 - 3.2 - 3150 Single path EA
Hierarchical Evo [94] 3.75±0.12 - 15.7 - 300 Single path EA
PNAS [93] 3.41±0.09 17.63 3.2 - 225 P Single path SMBO
IRLAS [53] 2.60 - 3.91 - - Single path RL
IRLAS-differential [53] 2.71 - 3.43 - - Single path RL
NAO [99] 3.18 - 10.6 - 1000 Single path Gradient

NAO-WS [99] 3.53 - 2.5 - - Single path Gradient
SETN (T=1K) [42] 2.69 17.25 4.6 606 1.8 Single path Gradient
ENAS [114] 2.89 18.91 4.6 - 0.5 Single path RL
SNAS [140] 2.85±0.02 20.09 2.8 422 1.5 Whole Supernet Gradient
PARSEC [21] 2.86±0.06 - 3.6 485 0.6 Single path Gradient
BayesNAS [170] 2.81±0.04 - 3.4 - 0.2 Whole Supernet Gradient
RENAS [26] 2.88±0.02 - 3.5 - 6 - RL&EA
MdeNAS [169] 2.55 17.61 3.8 599 0.16 Single path MDL
DSO-NAS [167] 2.84±0.07 - 3.0 - 1 Whole Superne Gradient
WPL [11] 3.81 - - - - Single path RL
XNAS [109] 2.57±0.09* 16.34 3.7 596 0.3 - Gradient
PDARTS [25] 2.50 16.63 3.4 532 0.3 - Gradient
PC-DARTS [142] 2.57±0.07 17.11 3.6 557 0.3 - Gradient
Random baseline [95] 3.29±0.15 - 3.2 - 4 - Random
DARTS (1st) [95] 2.94 - 2.9 501 1.5 Whole Supernet Gradient
DARTS (2nd) [95] 2.76±0.09 17.54 3.4 528 4 Whole Supernet Gradient

GDAS [40] 2.93 18.38 3.4 519 0.21 Single path Gradient
GDAS-NSAS 2.75±0.08 18.02±0.05 3.5 528 0.4 Single path Gradient
GDAS-NSAS-C 2.70±0.07 16.70±0.08 3.3 520 0.4 Single path Gradient

RandomNAS [86] 2.85±0.08 17.63 4.3 612 2.7 Single path Random
RandomNAS-NSAS 2.59±0.06 17.56±0.05 3.1 489 0.7 Single path Random
RandomNAS-NSAS-C 2.65±0.05 16.69±0.06 3.5 552 0.7 Single path Random

“*" indicates the results were reproduced with the best-reported cell structures in the original paper but with the same exper-
imental settings as all the other comparators. Methods with “-” in the CIFAR-100 experiment were not reproduced because
either they had different search spaces or did not report their best structures. All models were trained for 600 epochs, and
we trained our best-searched architecture with 3 different random seeds to get the statistical results. “P Single path" means
that the search space progressively increases during the architecture search, while only a single path is trained at each step of
supernet training.

traditional NAS methods requires hundreds or even thousands GPU days, while weigh-sharing
NAS methods usually need less than one GPU day, showing that weight-sharing is an efficient
way to reduce computational cost. We can also find that, compared to RandomNAS and GDAS,
RandomNAS-NSAS and GDAS-NSAS greatly improve the search results, where The NSAS
loss function decreased the test errors from 2.85% for RandomNAS to 2.59%, from 2.93%
for GDAS to 2.75%, demonstrating the effectiveness of NSAS at improving the predictive
ability of the supernet for different frameworks. More important, our RandomNAS-NSAS’
results were competitive compared to the other NAS methods, with a 2.59% test error and
only 489M FLOPs. This is an inspiring result to validate our strategy for overcoming multi-
model forgetting. Since our NSAS evaluate more architectures during supernet training, the
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Table 3.2: Results with manual-designed architectures and NAS approaches on the ImageNet dataset.

Method Test Error (%) Param. FLOPs
ImageNet (M) (M)

Inception-v1 [132] 30.2 6.6 1448
MobileNet V2 [121] 25.3 6.9 585
ShuffleNet 2× (V2) [100] 25.1 5 591
NASNet-A [173] 26.0 5.3 564
AmoebaNet-A [118] 25.5 5.1 555
PNAS [93] 25.8 5.1 588

SNAS [140] 27.3 4.3 522
SETN [42] 25.7 5.4 599
PARSEC [21] 26.3 5.5 -
BayesNAS [170] 26.5 3.9 -
MdeNAS [169] 26.8 6.1 595
DSO-NAS [167] 26.2 4.7 571
PC-DARTS [142] 25.7* (25.1†) 5.3 586
DARTS (2nd) [95] 26.7 4.7 574

GDAS [40] 27.5 4.4 497
GDAS-NSAS 26.7 5.1 564
GDAS-NSAS-C 25.9 5.2 565

RandomNAS [86] 27.1 5.4 595
RandomNAS-NSAS 26.1 5.2 581
RandomNAS-NSAS-C 25.5 (24.65†) 5.4 593

† indicates that the architecture evaluation settings are following PC-DARTS [142], with a warm-up linear learning
rate scheduler.

search cost is slightly higher than the baselines. However, it still efficient in the sense that the
supernet training in RandomNAS-NSAS only took 0.7 GPU days for and only 0.4 GPU days
for GDAS-NSAS.

3.4.1.2 Convolutional Cell Search with Depth Constraint to Improve Transferability

In the next experiments, we transferred the best-found architectures from CIFAR-10 to CIFAR-
100 and ImageNet datasets to evaluat their transferability. The results on CIFAR-100 are
reported in Table 3.1 and ImageNet are reported in Table 3.2. The first block of Table 3.2
contains manually-designed architectures and the NAS methods without weight sharing. The
second block contains one-shot NAS methods. We trained RandomNAS-NSAS with 52 initial
channels C and RandomNAS-NSAS-C with C = 50, GDAS-NSAS and GDAS-NSAS-C were
set to C = 50, and the FLOPs were restricted to less than 600M on the ImageNet dataset.

From Table 3.1 and Table 3.2, we can see that the NSAS loss function improves the perfor-
mance of RandomNAS and GDAS with both datasets. However, although the NSAS methods
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yielded remarkable performance with CIFAR-10, the performance was not as impressive with
CIFAR-100 and ImageNet. For example, NSAS decrease RandomNAS’ test error from 2.85%
to 2.59% on CIFAR-10, but only from 17.63% to 17.56% with CIFAR-100. Similarly, with
ImageNet, the improvement was only 27.1% to 26.1%. More importantly though, the architec-
tures returned by RandomNAS-NSAS on CIFAR-10 were competitive, while XNAS [109] was
the superior method with CIFAR100 and ImageNet, thus demonstrating better transferability.
XNAS [109] suggests that the architectures with “deeper" cell structures should provide supe-
rior performance with the ImageNet dataset. The authors also observe that most NAS methods
usually return shallower cells with a larger width after searching CIFAR-10. For example, the
architectures found by PC-DARTS and NSAS on CIFAR-10 are extremely shallow, which gave
excellent results with CIFAR-10 but poor results with ImageNet. Conversely, the architectures
found by XNAS, PDARTS, and PC-DARTS on ImageNet were much deeper and the results
were impressive. A recent study on neural network optimization [123] gives a hint as to why
most NAS methods prefer wider networks. The authors observe that width is a key factor
affecting the convergence speed of neural networks, and therefore wider networks are easier to
train. Based on this observation, the wider (shallower) architecture in the NAS search space
reduces the loss with limited supernet training epochs, and has a higher probability of being
chosen.

These findings suggest that encouraging NAS methods to search for “deeper" architectures
could improve transferability; hence, our variant of NSAS-C, NSAS with depth constraint .
The depth constraint in NSAS-C force NAS to search for “deeper" architectures. Simply put,
the structure of the architectures are “fixed" to a depth so that the inputs of each node are the
outputs of its previous node and the output of the previous cell. Figure 3.3 (c) and (d) show an
example. This way, we only need to determine the operation of each edge in an architecture.
All remaining experimental settings stay the same. Table 3.1 and 3.2 report the transferability
of the models found by NSAS-C with CIFAR-100 and ImageNet. Compared to NSAS, the
results are excellent. The best found cells by NSAS-C are shown in Fig. 3.3 (c) and (d), with
competitive performance of 2.69%, 16.58%, and 25.5% test errors on CIFAR-10, CIFAR-100
and ImageNet, respectively. From Table 3.1, we can see that restricting the architecture depth is
a very effective way of improving the transferability of NAS methods, e.g., 16.75% for GDAS-
NSAS compared to 18.02% for GDAS with CIFAR-100, and RandomNAS-NSAS from 17.56%
to 16.69%. Similarly, as shown in the ImageNet results in Table 3.2, NSAS-C again improves
transferability, with improving GDAS-NSAS from 26.7% to 25.9%, and RandomNAS-NSAS
from 26.2% to 25.5%.
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Figure 3.3: The best found cells with NSAS and NSAS-C on CIFAR-10.

3.4.1.3 Supernet Predictive Ability Comparison

Multi-model Forgetting in One-Shot NAS To demonstrate catastrophic forgetting in a neural
architecture search, we conducted experiments with a convolutional cell search task. The
results show the differences between weight sharing and a retraining-based architecture ranking
strategy. We tracked the validation accuracy of inheriting weights for several fixed sampled
architectures with GDAS and also plotted the validation accuracy over 100 epochs when
retraining these separate architectures from scratch in Fig. 3.1. From the results, we find that the
validation accuracy of the architectures that directly inherit weights from the supernet fluctuate
tremendously, making it hard to verify the quality of the architecture. What is worse is that the
architecture ranking results completely violate the primary hypothesis of weight sharing NAS,
i.e., that architectures with higher validation performance based on weight sharing should yield
better retraining performance. It is worth noting that the performance of the architectures that
inherited weights gets even worse during the supernet training, as shown in Fig. 3.1.

We also tracked the validation accuracy of weight sharing and retraining during the supernet
training with RandomNAS-NSAS and GDAS-NSAS. The results are given in Fig. 3.4. We find
that the NSAS loss function substantially alleviates multi-model forgetting with one-shot NAS.
The plots of the validation accuracy with the inherited weight methods are much smoother,
especially for architectures 2, 3, and 4. Moreover, performance does not decrease during
supernet training. This is clearly a more reliable method.

Supernet Predictive Ability Comparison RandomNAS-NSAS and GDAS-NSAS should
also alleviate ranking errors. The experiments we conducted to verify the architecture ranking
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Figure 3.4: The validation accuracy during supernet training for four different architectures with
RandomNAS-NSAS and GDAS-NSAS. The solid lines (“Arch") indicate the validation accuracy with
weights inherited from the supernet, and the dashed lines (“Arch-R") represent the validation accuracy
after retraining.

Figure 3.5: The Kendall Tau metric (τ) of architecture ranking based on weight sharing and retraining.

(a) Architectures ranking difference after supernet training (b) Retraining validation accuracy

Figure 3.6: (a) The architecture ranking differences between retraining and inheriting weights from a
trained supernet with RandomNAS, RandomNAS-NSAS, GDAS, and GDAS-NSAS (from left to right,
respectively). (b) The mean retraining validation accuracy for the architectures found through different
methods.
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predictions are shown in Figures 3.5 and 3.6. For these experiments, we sampled four of the best
architectures over four rounds with RandomNAS and RandomNAS-NSAS, and four randomly
sampled from the previous experiment. Then we individually trained these 12 architectures
from scratch and calculated the correlation between the architecture ranking and the validation
accuracy for each of the weight sharing and retraining approaches. Fig. 3.5 presents the Kendall
Tau (τ) metric [70, 169] of the architecture rankings based on weight sharing and retraining. The
results show the difference in rankings between the normal cross-entropy loss function and the
NSAS loss function. Fig. 3.6 (a) gives the final Kendall Tau (τ) metric values for RandomNAS
and GDAS with different loss functions after supernet training. Here, the normal loss function
has poor supernet predictive ability, with only τ= 0.0909 and τ=−0.1818 for RandomNAS
and GDAS, respectively. Although the supernet trained with the NSAS loss function was not
able to provide identical architecture rankings, the positive correlations matched the Kendall Tau
metrics (τ= 0.4242 and τ= 0.3030 for RandomNAS-NSAS and GDAS-NSAS, respectively).
From this we surmise that a supernet with better predictive ability tends to provide architectures
with better retraining performance. Fig. 3.6 (b) plots the mean retraining validation accuracy of
the sampled architectures with various methods. We found that RandomNAS-NSAS achieved
better results than RandomNAS, further verifying its effectiveness.

3.4.2 Experimental Results on NAS-Bench-201

Evaluating architectures in one-shot NAS is much more computationally intensive than an
architecture search, so most state-of-the-art one-shot NAS methods only report the results of
their best-found architectures. Comprehensive statistical analyses of the results are usually also
overlooked due to computational limitations. Several concurrent studies [41, 75, 150, 155] have
tried to address this problem by building benchmark datasets for NAS. With these datasets,
researchers can analyze their one-shot NAS methods without evaluating numerous architectures.
To analyze our approach in this way, we chose NASBench-201 [41] as a benchmark evaluation
set. NAS-Bench-201 is easy to use and can be directly applied to most one-shot NAS algorithms.
It also reports the performance of all candidate architectures on CIFAR-10, CIFAR-100, and
ImageNet, making it sufficient to evaluate one-shot NAS algorithms. We did not restrict
the width of architectures in the NAS-Bench-201 search space because the architectures are
densely connected and have the same depth, making that constraint somewhat moot. To verify
and further analyze the effectiveness of the NSAS loss function, we conducted three sets
of experiments with this search space: 1) a comparison of the baselines; 2) a study of the
hyperparameter settings; and 3) a study of the constraint selection strategies.
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Table 3.3: Results of one-shot NAS baselines on NAS-Bench-201.

Method CIFAR-10 CIFAR-100 ImageNet-16-120
Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%)

ENAS [114] 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10
DARTS (1st) [95] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS (2nd) [95] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
SETN [42] 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
RandomNAS [86] 80.42±3.58 84.07±3.61 52.12±5.55 52.31±5.77 27.22±3.24 26.28±3.09
GDAS [40] 90.00±0.21 93.51±0.13 71.14±0.27 70.61±0.26 41.70±1.26 41.84±0.09

RandomNAS* [86] 85.30±0.59 88.14±0.21 62.60±3.56 63.40±4.52 33.60±4.36 33.83±3.17
RandomNAS-NSAS 89.20±0.31 92.61±0.10 68.62±1.94 68.47±1.73 41.17±2.16 41.68±1.91
GDAS* [40] 89.88±0.33 93.40±0.49 70.95±0.78 70.33±0.87 41.28±0.46 41.47±0.21
GDAS-NSAS 89.99±0.29 93.55±0.16 71.17±0.44 70.69±0.33 41.85±1.71 42.14±1.40

“*" indicates that we reproduce the results with same random seeds as our approaches. All results in the first block are from
[41]. The hyperparameters M and β were set to 5 and 0.5 for RandomNAS-NSA, 2 and 0.2 for GDAS-NSAS. We run each
scenario for 4 independent times with random seed { 0, 1, 100, 101 } following the experimental settings in [41].

Table 3.4: Analysis of one-shot NAS with various settings for β and M on the NAS-Bench-201 dataset.

Method β
CIFAR-10 CIFAR-100 ImageNet-16-120

Valid Acc(%) Test Acc(%) Valid Acc(%) Test Acc(%) Valid Acc(%) Test Acc(%)

(M = 2)

0 85.30±0.59 88.14±0.21 62.60±3.56 63.40±4.52 33.60±4.36 33.83±3.17
0.2 86.38±4.35 89.58±2.82 63.64±6.36 64.72±4.47 34.68±7.80 34.19±5.72
0.5 85.13±1.43 88.09±1.23 58.73±6.82 60.77±3.85 31.67±3.58 30.35±4.18
0.8 86.82±2.44 90.14±2.35 64.41±4.34 64.27±3.26 35.06±4.81 34.82±6.06

(M = 2)

0 85.30±0.59 88.14±0.21 62.60±3.56 63.40±4.52 33.60±4.36 33.83±3.17
0.2 88.38±4.35 90.74±1.31 63.64±6.36 64.83±4.05 36.53±6.50 36.08±4.68
0.5 87.93±1.63 91.23±1.03 66.03±3.46 66.17±4.12 38.14±2.76 38.72±3.11
0.8 85.58±2.59 88.78±2.23 64.12±4.55 65.06±3.35 34.80±4.24 34.37±5.57

(M = 2)

0 85.30±0.59 88.14±0.21 62.60±3.56 63.40±4.52 33.60±4.36 33.83±3.17
0.2 86.73±1.30 90.64±0.99 62.38±4.57 66.42±1.47 36.68±3.80 37.59±3.72
0.5 87.13±1.43 91.04±0.43 64.43±4.82 64.77±3.61 36.86±3.70 36.35±4.15
0.8 88.52±0.74 92.04±0.50 67.40±2.22 67.62±1.94 39.91±4.50 40.61±3.51

(M = 2)

0 85.30±0.59 88.14±0.21 62.60±3.56 63.40±4.52 33.60±4.36 33.83±3.17
0.2 88.45±0.47 91.36±0.74 65.79±0.59 65.58±0.42 37.69±1.23 37.31±2.42
0.5 89.20±0.31 92.61±0.10 68.62±1.94 68.47±1.73 41.17±2.16 41.68±1.91
0.8 88.42±0.30 91.56±0.36 66.77±4.83 66.58±4.99 39.53±4.85 38.64±5.13
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3.4.2.1 Empirical Comparison with Baselines

The results of the comparison study are presented in Table 3.3, and all experimental settings
follow [41]. The statistical results were calculated from independent searches with four different
random seeds. We found the NSAS loss function significantly improved the performance of the
two baselines. RandomNAS-NSAS, in particular, achieved a test accuracy of 92.61%±0.10 on
CIFAR-10 compared to RandomNAS at only 88.14%±0.21. Similarly, GDAS-NSAS yielded
a test accuracy of 93.55%±0.16 on CIFAR-10 compared to the 93.40%±0.49 of GDAS. Fur-
thermore, the architectures searched by RandomNAS-NSAS and GDAS-NSAS also performed
better when transferred to the larger CIFAR-100 and ImageNet datasets.

3.4.2.2 Hyperparameter Study

As described in Eq.(3.6), the trade-off β and the number of constraints M are important
hyperparameters for the NSAS loss function LN . we studied the impact of β concurrent with
M.

First, we considered to fix the number of constraints, and investigated the impact of four
different settings of β on multi-model forgetting with one-shot NAS. In this experiment, we
took the RandomNAS-NSAS with M = 5 as example. The results, shown in the last four rows of
Table 3.4, indicate that using constraints to regularize the supernet training can greatly improve
test performance and, additionally, that RandomNAS-NSAS is somewhat sensitive to β. More
important, with different number of constraints (M = 2,3,4), the results all demonstrated our
regularization method can enhance the performance, where our RandomNAS-NSAS with
different M and β all outperformed the baseline.

We then fixed β= 0.2 and varied M, also to analyzed the impact on forgetting. Given there
are only five candidate operations in the NAS-Bench-201 search space, there are no shared
weights among constraints only when M ≤ 5. The four settings for M in this experiment were 2,
3, 4, and 5. From the results, we found that, again, RandomNAS-NSAS seemed sensitive to the
number of constraints, and the larger M = 5 gave much better results than the other scenarios for
RandomNAS-NSAS with CIFAR10, CIFAR-100, and ImageNet. More interestingly, there was
a large performance gain between M = 4 and M = 5 with RandomNAS-NSAS. One underlying
reason may be that M = 5 has the potential to ensure the two assumptions hold true, as discussed
in Section 3.3.3. Similarly, the tendency also exists in the remain 2 different β, that increasing
the number of constrained architectures can enhance the performance. More details on these
results can be found in Table 3.4.

Overall, Table 3.4 considered three settings for β and four settings for M, and presented the
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Table 3.5: Analysis of the one-shot NAS with constraint selection strategies on CIFAR-10.

METHOD β
NSAS NSAS-G NSAS-LG RG LoW LoW-R

Test Acc(%) Test Acc (%) Test Acc(%) Test Acc(%) Test Acc(%) Test Acc (%)

RandomNAS 0.2 89.58±2.82 91.74±1.16 91.11±2.16 89.24±2.24 90.13±4.25 89.72±3.64
Test Acc(%) 0.5 88.09±1.23 90.37±2.14 91.19±0.79 77.30±19.76 89.86±2.91 86.85±10.29
(88.14±0.21) 0.8 90.14±2.35 92.52±0.48 91.18±1.73 89.53±0.24 89.39±3.88 85.54±7.18

GDAS 0.2 93.55±0.16 93.37±0.27 93.52±0.30 93.29±0.19 93.51±0.14 93.40±0.26
Test Acc(%) 0.5 93.49±0.24 93.51±0.14 93.46±0.27 93.31±0.30 93.47±0.29 93.36±0.21
(93.40±0.49) 0.8 93.32±0.18 93.29±0.29 93.55±0.20 93.40±0.28 93.55±0.20 93.55±0.16

Table 3.6: Analysis of the one-shot NAS with constraint selection strategies on CIFAR-100.

METHOD β
NSAS NSAS-G NSAS-LG RG LoW LoW-R

Test Acc(%) Test Acc (%) Test Acc(%) Test Acc(%) Test Acc(%) Test Acc (%)

RANDOMNAS 0.2 64.72±4.47 67.22±2.20 66.58±3.43 63.66±3.97 64.06±7.89 60.68±9.04
Test Acc(%) 0.5 60.77±3.85 65.30±3.49 66.74±2.66 47.28±27.17 64.27±6.43 59.47±13.13
(63.40±4.52) 0.8 64.27±3.26 67.83±1.66 66.01±2.94 64.13±0.56 61.37±8.95 58.32±8.82

GDAS 0.2 70.69±0.33 70.49±0.61 70.86±0.90 70.43±0.56 70.53±0.34 70.40±0.51
Test Acc(%) 0.5 70.53±0.30 70.57±0.23 70.69±0.67 70.21±0.44 70.10±0.70 70.25±0.38
(70.33±0.87) 0.8 70.33±0.41 70.28±0.58 70.80±0.55 70.40±0.60 70.78±0.19 70.38±0.45

Table 3.7: Analysis of the one-shot NAS with constraint selection strategies on ImageNet-16-120.

METHOD β
NSAS NSAS-G NSAS-LG RG LoW LoW-R

Test Acc(%) Test Acc (%) Test Acc(%) Test Acc(%) Test Acc(%) Test Acc (%)

RANDOMNAS 0.2 34.19±5.72 39.58±2.60 37.79±5.11 34.38±5.02 36.32±8.07 30.64±13.19
Test Acc(%) 0.5 30.35±4.18 35.14±3.33 39.81±2.81 31.96±26.53 36.81±5.47 29.11±17.77
(33.83±3.17) 0.8 34.82±6.06 40.14±2.60 38.34±4.65 34.94±2.29 33.75±7.91 28.38±9.84

GDAS 0.2 42.14±1.40 42.26±0.20 41.71±0.57 41.35±0.13 42.16±1.30 41.68±1.18
Test Acc(%) 0.5 42.20±1.31 42.16±1.30 42.29±1.00 42.45±1.07 41.32±1.56 42.20±1.25
(41.47±0.21) 0.8 41.78±0.89 42.21±0.16 41.64±1.01 41.68±0.96 41.84±1.01 41.64±1.21

results of RadnomNAS-NSAS on CIFAR-10, CIFAR-100, and ImageNet-16-120. In general, a
larger β and a larger M provided the better results. In the next subsection, we discuss the benefits
of holding to the two assumptions with NSAS, with respect to the constrained architecture
selection strategy.

3.4.2.3 Analysis of Constraints Selection

Although we demonstrate the theoretical benefits of the NSAS loss function in relieving catas-
trophic forgetting Section 3.3.3, and the experiments in Sections 3.4.2.1 and 5.2.2 support these
theories, at least for one-shot NAS, is it still open to debate as to whether these improvements

53



CHAPTER 3. OVERCOMING MULTI-MODEL FORGETTING IN ONE-SHOT NAS

are due to the constraint selection strategy or simply because of the regularization. In this
section, we further conduct an ablation study to investigate the impact of different architecture
selection strategies.

Directly maximizing the diversity of the constraint subset, as per Section 3.3.4, easily holds
Assumption 2, but it does not guarantee that Assumption 1 will hold. Therefore, we devised
two variants of the NSAS loss function, both of which strictly observe the assumptions when
selecting constraints. These are NSAS-G and NSAS-LG. The difference between the two
concerns treatment of the last architecture. More specifically, with NSAS-G, the constraints
are generated randomly, maximizing diversity, but the last constraint θM is generated by
complementing the operations contained in the current architecture αt that have not been
covered in the previous constraints. This means all selected architectures {θ1, ...,θM} covering
all parameters of αt such that θt ⊆ {θ1∪...∪θM}. With NSAS-LG, however, the last architecture
αt−1 is first added into the subset, and remaining constraints are generated as following NSAS-
G. This is to test the common thinking on catastrophic forgetting that the last architecture
deteriorates performance the most.

We evaluated all three loss functions - NSAS, NSAS-G, and NSAS-LG - along with
three naive architecture selection methods added to the RandomNAS and GDAS baseline to
regularize the supernet training. Thus, the six loss functions were:

• NSAS - which selects constraints through maximizing diversity.

• NSAS-G - a variant of NSAS described above.

• NSAS-LG - a variant of NSAS described above.

• RG - randomly generates architectures to form the constraint subspace.

• LoW - only adds the last architecture αt−1 to the constraint subset.

• LoW-R - adds the last architecture αt−1 to the constraint subset plus randomly generated
constraints.

Table 3.5, 3.6, and 3.7 show the test accuracies for the CIFAR-10, CIFAR-100, and
ImageNet-16-120 datasets. We set the number of constraints M = 2 in this experiment, to
more precisely investigate the effect of architecture selection and quantitatively analyze the
constraint selection strategies. The results for one-shot NAS without relieving forgetting are
shown in the first column of Table 3.5, 3.6, and 3.7. All NSAS methods improved performance
but, interestingly, some of the naive constraint selection methods did as well, which indicates
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that overcoming catastrophic forgetting is a promising research direction for one-shot NAS. For
example, LoW improved performance simply by including the last visited architecture in the
regularization. However, these results also show the importance of constraint selection strategy,
as randomly selecting constraints can reduce performance. We observed that RG was the worst
method in all cases, with a reduction in test accuracy from 88.14±0.21 to 77.30% ±19.76 for
RandomNAS, and from 93.40±0.49 to 93.29±0.19 for GDAS in CIFAR-10. Moreover, the
LoW-R strategy of adding more randomly generated constraints into the replay buffer yielded
even worse results than LoW in most cases. These results suggest that randomly selecting
constraints does not alleviate multi-model forgetting with one-shot NAS.

As for the NSAS and its variants, NSAS-G and NSAS-LG, all improved performance
significantly. It is interesting that NSAS and NSAS-G achieved similar results with GDAS.
This indicates that Assumption 1, which requires the constraints to cover all parameters of αt,
may not be so important for relieving catastrophic forgetting with gradient-based one-shot NAS
while holding to this assumption with RandomNAS did help. Overall, NSAS-G achieved much
better results than NSAS and, in most cases, NSAS-G and NSAS-LG produced the best results.
Thus, simultaneously considering the last visited architecture and maximizing the diversity of
constraints combined are the two key factors that need to be addressed to relieve catastrophic
forgetting with both random sampling-based and gradient-based one-shot NAS.

3.5 Chapter Summary and Discussion

In this chapter, we formulated supernet training as a constrained optimization problem to reduce
some of the negative impacts of catastrophic forgetting with one-shot NAS, and multi-model
forgetting in particular. Our strategy is to select a representative subset of constraints with a
greedy novelty search method. Then the supernet training is regularized in a feasible region with
a new novelty search-based architecture selection loss function, i.e., NSAS to overcome multi-
model forgetting. We implemented NSAS into two one-shot NAS baselines - RandomNAS
and GDAS - and compared the quality of the architecture selections with and without the new
loss function. The results of experiments on the common search space of a neural architecture
show NSAS and two of its variants improve the predictive ability of the supernet with both
convolutional and recurrent cell search. Experiments with the NAS-Bench-201 dataset also
suggest that NSAS can substantially offset performance degradation due to forgetting with
one-shot NAS.

Catastrophic forgetting, which usually exists in the online learning, is also introduced into
neural architecture search in this chapter, since the supernet is trained under different paths.
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Simply adding a regularization term on the supernet training can greatly improve the predictive
ability of the supernet of different NAS frameworks, as analyzed in Lemma 1 and observed
from the experimental results. It is clear that the NSAS loss function can easily increase the
predictive ability of the supernet, which, in turn, greatly improves the performance of the
architectures found by RandomNAS and GDAS. However, supernet training in one-shot NAS
is still a problem with much room for further advancements. Devising a more appropriate loss
function than the status quo appears to be a promising direction for improving the performance
of one-shot NAS methods.

Another interesting finding is that, RandomNAS tends to achieve better performance
than GDAS with a DARTS search space, whereas GDAS outperforms RandomNAS with
the NASBench-201 space no matter the loss function, showing that the differentiable NAS
framework may be more appropriate to small search space. This may be because gradient-based
methods typically arrive at the local optimal solution once the supernet is trained. RandomNAS,
however, must perform a subsequent model selection process using either a random search or
an EA to find a global optimal solution from the trained supernet. Since common search spaces
are much more complicated than the one in NAS-Bench-201, a global optimization method
will usually outperform a gradient method, while gradient-based NAS is more efficient and
effective with simple search spaces.
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4
DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH

WITH EXPLORATION ENHANCEMENT

4.1 Introduction

Neural Architecture Search (NAS) has been garnering increasing attention in the deep learning
community because it automates the labor-intensive and time-consuming process of neural
network design [7, 26, 28, 53, 94]. The downside is that it comes with an extremely high
demand for computation power. To mitigate this problem, many recent studies have been
devoted to reducing these search costs through a weight-sharing paradigm, also called one-shot
NAS [9]. These methods define a supernet that subsumes all possible architectures in the
search space. The architectures are then evaluated via a scheme that inherits weights from the
supernet. Early weight-sharing approaches to NAS typically adopted a controller that samples
the architectures for supernet training [55, 86, 114]. Promising architectures were found by
using the trained supernet to search on a discrete search space with a heuristic method. More
recent studies have employed continuous relaxation to make the architecture differentiable,
which means gradient descent can be used to find the most promising architectures with respect
to validation accuracy [20, 40, 58, 62, 95, 99, 140]. This paradigm is sometimes referred to as
differentiable NAS, with DARTS being a notable example [95]. DARTS combines both weight
sharing [9, 114] and continuous relaxation [20, 40, 95, 140] to reduce the computational cost
of a search down to perhaps a few hours on a single GPU.

However, despite its efficiency, the current differentiable NAS approaches are generally
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considered to be rather unreliable [23, 152]. For example, DARTS does not consistently yield
excellent solutions, and the architecture choices get worse and worse as the search proceeds.
Performance can even be worse than a random search in some cases [124]. Many refer to this
critical weakness as instability [152]. From empirical experiments, Zela et al. [152] observed
that the instability of DARTS is highly correlated to the dominant eigenvalue of the Hessian
of the validation loss with respect to an architecture’s parameters, and that this dominant
eigenvalue increases during the architecture search. Accordingly, they proposed a simple early-
stopping criterion based on the dominant eigenvalue to make DARTS more robust. Several
recent studies [15, 87, 90, 152] highlight that DARTS tends to choose architectures with more
skip-connections, which do not always perform well. Liang et al.’s [90] solution is to introduce
another simple “early stopping” criteria, where the search procedure ends as soon as one cell
has two or more skip-connections.

One potential reason for the instability of DARTS is that there is no theoretical foundation
to show that, with continuous relaxation, an optimization in a continuous latent space is
equivalent to an optimization over a discrete space. The lack of injective constraints in a simple
continuous relaxation means there can be no guarantee that performing an optimization on a
continuous latent space is the equivalent of doing so with a discrete space. With differentiable
NAS, this incongruence might even increase during the architecture search [23, 152]. In
addition, the current differentiable NAS methods use performance rewards as the sole means
of determining whether the architecture parameters need to be updated. This method clearly
exposes the optimization procedure to the rich-get-richer problem [2, 162]. More specifically,
the architectures with better performance in the early stages would receive more training, and
more frequent updates to their weights. This would, in turn, give those architectures a higher
probability of being sampled. Under these conditions, it would be easy to settle on a local
optimum.

Another limitation of differentiable NAS is that catastrophic forgetting problem can arise
during the training process. Differentiable methods assume that learning the inner supernet
weights at each step improves the validation performance of all architectures that inherit
those supernet weights. However, this assumption may not hold. In practice, each step of
supernet training in a weight-sharing NAS usually deteriorates the validation performance of
any architecture that partially shares weights with the currently learned architecture [11]. This
forgetting problem has not been thoroughly studied with differentiable NAS.

The above limitations faced by existing differentiable NAS approaches are neatly addressed
by our proposed algorithm, Exploration Enhancing Neural Architecture Search with Archi-
tecture Complementation (E2NAS). The potential for incongruence is addressed by using a

60



4.1. INTRODUCTION

variational graph autoencoder with an asynchronous message passing scheme to injectively
transform the discrete architectures into an equivalent continuous space. Using an injective
approach lends a solid theoretical foundation to the equivalence between performing an opti-
mization in the continuous latent space versus the discrete space [141, 157]. To overcome the
rich-get-richer problem associated with reward-based gradient methods, we devised a prob-
abilistic enhancement method to encourage intelligent exploration of the latent space during
the architecture search. As for the catastrophic forgetting problem common to differentiable
one-shot NAS, an architecture complementation based continual learning method is further
proposed for the supernet training so as to force the supernet to retain its memory of previously
visited architectures. To further improve transferability and generalization, the framework
incorporates domain knowledge through a regularization strategy, which encourages a deeper
search of the cell structure.

From evaluations with E2NAS against existing baselines on the benchmark dataset NAS-
Bench-201 [41] and the common DARTS convolutional search space [95], we find that E2NAS
obtains competitive results on the NAS-Bench-201 benchmark dataset [41] outperforming
baselines by large margins, and achieves state-of-the-art performance on CIFAR-10, CIFAR-
100, and ImageNet datasets in the DARTS [95] search space, with test error 2.37%, 15.77%,
and 23.9%, respectively. A summary of our main contributions in this chapter follows.

• This chapter deepens our understanding of exploring differential neural architecture
searches in latent space. Our approach involves a variational graph autoencoder that
injectively transforms the discrete architecture space into an equivalent continuous
latent space, and probabilistic exploration enhancement in the latent space to encourage
intelligent exploration during the supernet training.

• We propose an architecture complementation based on continual learning for the supernet
training with weight sharing NAS. Further, we theoretically demonstrate the relationship
between thethe proposed loss function and the WPL [11] on relieving catastrophic
forgetting in weight sharing NAS.

• The framework further includes a novel regularization strategy for searching complicated
spaces that integrates expert advice to encourage a deeper search. Experiments on the
DARTS convolutional search space demonstrate the increased transferability of the found
models.

• Extensive experiments on the benchmark dataset NAS-Bench-201 [41] and a DARTS
convolutional search space illustrate the effectiveness of E2NAS in comparison to more
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than 20 existing differentiable NAS baselines. On NAS-Bench-201, E2NAS outperformed
all baselines. With the DARTS space, E2NAS’ best-selected architecture returned com-
petitive results on CIFAR-10, CIFAR-100, and the ImageNet datasets, with test 2.37%,
15.77%, and 23.9%, respectively.

This chapter is based on a publication “Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang,

Zongyuan Ge, Steven Su, Differentiable Neural Architecture Search in Equivalent Space with

Exploration Enhancement. In Annual Conference on Neural Information Processing Systems

(NeurIPS), 2020” [158] and a submission “Miao Zhang, Steven Su, Shirui Pan, Xiaojun Chang,

Huiqi Li, Gholamreza Haffari, Differentiable Neural Architecture Search in Equivalent Space

with Enhancing Exploration and Relieving Forgetting. Submitted to IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), 2021”, where the second one is the
extended journal version of the previous one. Miao Zhang conceived the original idea of using
a variational graph autoencoder that injectively transforms the discrete architecture space into
an equivalent continuous latent space. The E2NAS algorithm was originally devised by Miao
Zhang. Steven Su and Shirui Pan helped Miao Zhang to verify all derivations of theoretical
parts in this paper. Miao Zhang conducted all experiments, with the help from Shirui Pan. The
first version of the paper was written by Miao Zhang with some help from Steven Su. Huiqi Li
and Shirui Pan revised the paper many times. The authors Shirui Pan, Xiaojun Chang, Huiqi Li,
Gholamreza Haffari, and Zongyuan Ge provided feedback during the writing of the paper.

4.2 Problem Definition and Preliminaries

4.2.1 Weight-Sharing NAS

Weight-sharing NAS [114], also known as one-shot NAS, encodes a search space A as a
supernet WA . The supernet subsumes all candidate operations and means that all architectures
α can directly inherit weights from the supernet for evaluation rather than training them from
scratch. The supernet is only trained once during the architecture search, which substantially
reduces the search time. The most promising architecture α∗ is determined by validating its
performance with weights inherited from the supernet:

(4.1)
min
α∈A

Lval(W ∗
A (α))

s.t. W ∗
A (α)= argmin Ltrain(WA (α)).

Eq. (4.1) is a formula for a challenging bilevel optimization. The discrete characteristic
of α makes it impossible to use a gradient-based method to alternatively optimize WA and α.
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Hence, an LSTM controller is used to sample architectures for training the supernet training
and validating performance. In [55] the authors adopt a uniform strategy for sampling the
architectures, and the best-performing architecture is selected via an evolutionary algorithm.
The same overall approach applies in [86] but with a random sampling strategy and a random
search.

4.2.1.1 Catastrophic Forgetting in Weight-Sharing NAS

Catastrophic Forgetting [74, 89, 134] usually occurs when sequentially training a model for
several tasks. Given a neural network with optimal parameters ω∗ on task T1, its performance
on T1 declines dramatically after the model has been trained on task T2 because the network
weights have been changed to optimize the objectives of T2.

Catastrophic forgetting with weight-sharing NAS has been observed in quite a few recent
studies [11, 87, 124, 160], where performance degrades as the supernet learns new architectures
to replace old ones. Sciuto et al. [124] make two notable observations in this regard. First, that
the models with more shared weights do worse, and, second, that there is no possible positive
relationship between the distribution of model weights trained from scratch palong and those
inherited from the supernet pshare. Benyahia et al. [11] describe this problem as multi-model

forgetting, defining it as when learning the current model deteriorates the performance of
previously learned models after several models with shared parameters have been applied to a
single dataset D.

Li et al. [87] demonstrate that KL-divergence between the true parameter posterior palong

and proxy posterior pshare also increases during supernet training, making the weight sharing
strategy unreliable. They calculate the KL-divergence between the two distributions from a
Bayesian standpoint as follows:

(4.2)

DK L (palong(W |αk,D) ∥ pshare(W |αk,D))

∝
∫

palong(W |αk,D)log
palong(W |αk,D)
pshare(W |αk,D)

dW

=
∫

palong(W |αk,D)log
palong(W |αk,D)∏
s pshare(W |αs,D)

dW

=− ∑
k 6=s

∫
palong(W |αk,D) log palong(W |αs,D)dW .

Upon the analysis of Eq. (4.2), we find that the KL-divergence is correlated to the sum
of the cross-entropy of palong(W | αk,D) and palong(W | αs,D), where k 6= s and αs and αk

partially-shared weights. Further, the KL-divergence increases with the number of architectures
containing partially-shared weights. Eq. (4.2) demonstrates that training the supernet increases
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the distance between the weight distribution when the architecture is trained from scratch and
the weight inherited from the supernet. As a result, the supernet becomes unreliable.

This catastrophic forgetting clearly reduces both the predictive ability of the supernet and the
overall efficiency of weight-sharing NAS strategies. Three recent studies have put forward ideas
to overcome this catastrophic forgetting problem [11, 87]. Li et al. [87] propose reducing the
KL-divergence by limiting the number of candidate models during each step of the architecture
search. They adopt a progressive strategy that shrinks the search space and only looks for
part of a model in each step. Zhang et al. [160] use the replay-buffer paradigm to overcome
forgetting with one-shot NAS. To regularize the supernet training, only the most representative
architectures are selected. Benyahia et al.’s [11] idea is to use the Weight Plasticity Loss (WPL)
loss function to maximize the joint posterior probability and regularize each network parameter
based on its importance. WPL can be seen as an online variant of Elastic Weight Consolidation
(EWC) [74] in that it only counts the shared parameters between the current architecture and
one previous architecture.

4.2.2 Differentiable NAS

Differentiable NAS is built on weight-sharing NAS. Weight-sharing NAS uses a controller to
sample discrete architectures from the search space for supernet training. The most promising
architecture α∗ is obtained from a trained supernet using a heuristic search method. Dif-
ferentiable NAS further relaxes the discrete architectures into a continuous space Aθ, and
alternatively learns the architecture parameters and supernet weights based on gradient methods
[3, 20, 95, 109, 140]. The best architecture in the continuous representation Aθ is found via

(4.3) min
αθ∈Aθ

Lval(argmin
αθ ,WA

Ltrain(Aθ,WA )),

and usually solved through bi-level optimization.

Most state-of-the-art differentiable NAS [20, 95, 140] methods apply a softmax function to
calculate the magnitude of each operation and relax the discrete architectures into a continuous
representation. A discrete architecture is obtained by applying an argmax function to the
magnitude matrix after the supernet has been trained. Once the discrete architectures have
been transformed into a continuous space, continuous optimization is performed to update
the continuous architecture representation αθ along the gradient of validation performance
[20, 95, 99]:

(4.4) αi+1
θ ←αi

θ −γOαθ
Lval(αθ,W ∗),
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Figure 4.1: The framework of the proposed E2NAS.

where γ is the learning rate, and W ∗ is approximated by adapting W using only a single training
step with descending OωLtrain(WA (α )) [40, 86].

This differentiable method improves the efficiency of weight sharing NAS as it obtains the
most promising architecture once the supernet is trained. However, as αθ reflects the mixing
weights of all operations in the supernet, each step of the supernet training in differentiable NAS
trains the whole supernet rather than a single path, as is the case with one-shot NAS. As a result,
the memory requirements are much higher. Further, as architectures with better performance in
the early stages will be trained more frequently, differentiable methods frequently contend with
the rich-get-richer problem [2, 162] and fall into a local optimum.

4.2.2.1 Incongruence in Differentiable NAS

Another shortcoming with differentiable NAS is that there is no theoretical foundation to show
that the optimization in the continuous latent space is equivalent to one done on the discrete
space. Chen et al. [23] point out that, in most differentiable NAS, incongruence relates to the
Hessian norm of the architecture parameters, which constantly increases during supernet train-
ing [152]. Taking the most common softmax-argmax transformation in DARTS as an example,
the architecture parameters αθ are continuous during the architecture search. And the searched
α is obtained through argmax argmax after the architecture search, which only contains {0,1}
values. Obviously, there can be no one-to-one mapping in such a transformation. More impor-
tantly, all differentiable NASs assume the validation performance of α∗ ,W ∗) equates,
or at least is very informative, to the validation performance of α, Lval(α∗,W ∗). However, the
incongruence between them may not be negligible.

θ
Our strategy assumes that α∗ is in the local optimal, based on the Taylor expansion, we
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have:

(4.5)

Lval(α∗,W ∗)≈Lval(α∗
θ ,W ∗)+Oαθ

Lval(α∗
θ ,W ∗)(α∗−α∗

θ )

+O2
αθ

Lval(α∗
θ ,W ∗)(α∗−α∗

θ )2

=Lval(α∗
θ ,W ∗)+ (α∗−α∗

θ )TH (α∗−α∗
θ ),

where Oαθ
Lval = 0 due to the local optimality condition. H is the Hessian matrix of Lval(W ∗,αθ).

We find that incongruence in the performance of the final continuous architecture and the
final discrete architecture correlates with the norm of the Hessian matrix of Lval(αθ,W ∗).
Several recent studies on differentiable NAS report that this Hessian norm constantly increases
during the architecture search [23, 152]. As a remedy, Zela et al. [152] propose an early stopping
criterion based on the Hessian. However, based on our observation above, we conclude that the
common softmax-argmax transformation will not guarantee congruence with differentiable
NAS.

4.2.2.2 Single-path Differentiable NAS

Although differentiable NAS requires significantly less computational overhead through weight-
sharing and continuous relaxation, it is still a memory hog as the whole supernet must be trained
in each step. DARTS, however, gave rise to a number of studies with propositions to further
tackle the efficiency issue [20, 40, 140, 149]. Rather than training the whole supernet in each
step of supernet training, DARTS-based methods only sample a few paths from the continuous
representation with which to train the supernet in each step. For instance, ProxylessNAS [20]
transforms the real-valued architecture parameters into binary representations through binary
gates. It only activates two paths in each training step.

Several approaches [40, 140, 149] further apply a discrete constraint on the Gumbel-
softmax reparametrization [65, 103] to sample a single path for each training step, which
reduces the memory requirement to the same level as a single-path one-shot NAS [55]. The
validation performance Lval is then calculated based on the discrete architectures, which means
incongruence is not an issue. We call this paradigm “single-path differentiable NAS”.

One critical component of single-path differentiable NAS is the transformation between
the discrete and continuous search spaces. GDAS [40] uses the same continuous relaxation as
DARTS but introduces a gradient-based sampler to sample the single path for each training
step. NAO [99] uses an LSTM-based autoencoder to transform the discrete architectures
into a continuous space. However, there is no injective constraint in these transformations to
theoretically guarantee that the optimization in the continuous latent space will be equivalent
to one performed on a discrete space. In contrast to the continuous relaxation and LSTM-
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based autoencoder methods, recent works on graph neural network theoretically show that a
variational graph autoencoder is able to injectively transform directed acyclic graphs [141, 157],
such as used to represent architectures in a continuous representation in NAS through an
asynchronous message passing scheme. With a solid theoretical foundation and a guarantee of
equivalence between an optimization in the continuous latent space versus a discrete space, this
was an avenue we felt must be pursued.

Hence, in this chapter, we present a single-path differentiable NAS framework called E2NAS
that incorporates a variational graph autoencoder for the transformation between the discrete
and continuous search spaces. Fig.4.1 sketches the framework. The discrete architectures are
mapped to continuous representations αθ with the trained graph encoder. The architecture
search is conducted in the continuous space, with the proposed exploration enhancement based
architecture optimization. The optimized α′

θ
is fed into the trained graph decoder to get the

discrete architecture α′, and the supernet is trained accordingly.
As shown, the variational graph autoencoder first transforms the discrete architecture search

space into one injective, continuous space where the architecture optimization is conducted.
After continuous architecture representation αθ updates based on the gradient, a decoder
derives the discrete architecture and trains a single path of the supernet. A detailed description
of E2NAS follows in the next section.

4.3 Exploration Enhancing Neural Architecture Search
with Architecture Complementation

As shown in Fig. 4.1, our approach consists of two key components: an exploration enhancement
module that overcomes the rich-get-richer problem after transforming the discrete architec-
tures into a differentiable and injective space by a graph neural network; and an architecture
complementation loss function that reduces the risk of catastrophic forgetting. More details
follow.

4.3.1 Exploration Enhancement in the Latent Space

4.3.1.1 Differentialable latent space transformation

As previously mentioned, the existing differentiable NAS methods usually adopt a simple
continuous relaxation [95] to transform the discrete neural architectures into one continuous
search space. Further, the architectures are usually represented as directed acyclic graphs.
However, because this approach does not guarantee an injective transformation [141, 157], the
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continuous results are often incongruent to the original discrete samples. To overcome this
problem, E2NAS incorporates an asynchronous message passing scheme, based on a graph
neural network (GNN), that encodes the neural architecture into an injective space. However,
instead of encoding each discrete architecture into many GNNs, the final output of each
architecture, i.e., the computation C, is what is converted into the continuous representation,
denoted as z. A function U is used to update the hidden state of each node based on the
hidden states of its neighbors and the type of vertex it is, as calculated by hv = U (xv,hin

v ).
Here, hin

v is obtained by aggregating all the predecessors via hin
v =G ({hu : u → v}), where G is

an aggregation function. According to the theory of graph neural networks [141, 157], if the
aggregation function G is invariant to the order of input, then the computation encoder will be
permutation-invariant. Further, we know that the graph encoder will map C to z injectively if
both the aggregation function G and the update function U in the graph encoder are injective.

This injectiveness ensures a one-to-one mapping from a latent representation to an architec-
ture, and vice versa. Therefore, any differentiable optimization on the continuous space will
be equivalent to conducting an optimization over the discrete space. Our graph decoder first
obtains the initial hidden state h0 by applying an MLP to the latent vector z. h0 is then fed
into GRUd to construct a directed acyclic graph node-by-node based on the current state of the
graph. Details of the procedure follow.

Following Zhang [157], we also use a gated sum as the aggregate function and a gated
recurrent unit (GRU) as the update function.

(4.6)
hin

v = ∑
u→v

g(Concat(hu,xuid))¯m(Concat(hu,xuid))

hv =GRUe(xv,hin
v ).

This encoding method is similar to a traditional RNN for sequences. Exactly the same
procedure applies after the optimization in the latent continuous space to decode the latent vector
z into a neural architecture. The procedure of the graph autoencoder is generally described as
following:

1. Compute vi’s type distribution using an MLP fadd_vetex based on current graph state
hG := hvi−1

2. Sample vi’s type.

3. Update vi’s hidden state by hvi =GRUd(xvi ,h
in
vi

)

4. For j = i−1, i−2, ...,1: (a) compute the edge probability of (v j,vi);(b) sample the edge;
(c) if a new edge is added, update hvi using previous step.
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Zhang et al. [157] iteratively apply the above steps to generate new nodes until Step 2)
samples the ending type. However, if we want to sample the same number of nodes for each
neural network, we could sample the same number of nodes before the end of the iteration, and
all nodes without an output edge would be connected by the extra output node.

4.3.1.2 Exploration Enhancement

Contemporary differentiable NAS methods all conduct continuous optimization following
Eq.(4.4) to update the continuous architecture representation αθ, which means that the explo-
ration path only follows the validation performance gradient. This approach easily falls prey
to the rich-get-richer problem. Hence, with E2NAS, exploration follows the novel gradient in
Eq.(4.7):

(4.7) αi+1
θ ←αi

θ − (1−γ)Oαi
θ
Lval(αi

θ,W ∗)−γOαi
θ
LN(αi

θ, A),

where LN(αi
θ
, A) measures the novelty of architecture αi against the archive A that contains

the N previously visited architectures. This approach to exploration ensures the search does
not fall into a local optimum. After an architecture update, the continuous representation
αi+1

θ
of promising architectures is fed into the graph decoder, which outputs the discrete

architectures αi+1. The weights in the supernet ω = WA (αi+1) are updated by descending
OωLtrain(WA (αi+1)). While it is intractable to measure the novelty of the architectures in
the discrete space, the probability density function of αi

θ
can be calculated. This is done by

drawing αi
θ

from the distribution formulated by continuous architectures αθ in the archive A,
also sometimes described to as probabilistic novelty detection in latent space [115].

The trained graph encoder E is a mapping E : Rm → Rn, m > n, and the decoder D is a
mapping D : Rn →Rm that defines a parameterized manifold of dimension n, M ≡ D(Rn). As
such, it is possible to sample every architecture αi with noise ξi through αi = D(αi

θ
)+ξi, where

αi
θ
∈Rn. Assuming the decoding function D is smooth enough [117, 168], a first-order Taylor

expansion used at a given point αi ∈Rm, would give

(4.8) D(αθ)= D(αi
θ)+ JD(αi

θ)(αθ −αi
θ)+O(‖αθ −αi

θ‖2),

where JD(αi
θ
) ∈Rm×n is the Jacobi matrix of D at αi

θ
.

The tangent space of D at αi
θ

can be represented Tαi
θ
= span(JD(αi

θ
)). Let JD(αi

θ
) =

U∥SV> be the singular value decomposition (SVD) of the Jacobi matrix at αi
θ
, and we have

Tαi
θ
= span(JD(αi

θ
))= span(U∥) [115, 168]. After defining U⊥ as the orthogonal complement

of U∥, where U = [
U∥U⊥]

is a unitary matrix, wthe data point αi can be represented with

69



CHAPTER 4. DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH WITH
EXPLORATION ENHANCEMENT

rotated coordinates:

(4.9) w =U> ·αi =
[

U∥> ·αi

U⊥> ·αi

]
=

[
w∥

w⊥

]
,

where the component w∥ is parallel to T , and w⊥ is orthogonal to T as the noise ξ.

Lemma 2. Suppose we have a decoder D with its tangent space represented as T . Given a

random variable A formed by a set of architectures, the random variable W is obtained from

A rotating the coordinates W =U> · A. The rotation contains two parts: W∥, which is parallel

to T , and W⊥, which is orthogonal to T . Defining pA(αi) as the probability density function

for describing αi, drawn from A, we have pA(αi)= pW (w), and

(4.10)

pA(αi)= pW (w)= pW (w∥,w⊥)= pW∥(w∥)pW⊥(w⊥)

≈ ∣∣detS−1∣∣ pAθ
(αθ) · Γ( m−n

2 )

2π
m−n−1

2
∥∥w̄⊥∥∥m−n−1 p‖W⊥‖(‖w̄⊥‖).

Based on Lemma 2, the novelty of a newly sampled architecture α j from A can be calculated
by measuring the probability that the new sampled architecture will be located in the distribution
formed by the archive A: N(α j) = −log(pA(α j)) using a density function. To encourage
exploration during the architecture optimization, the exploration enhancement loss term is
defined as:

(4.11)
LN(αθ, A))= log(pA(ᾱ))= log(

∣∣detS−1∣∣ pAθ
(αθ)

· 2π
m−n−1

2

Γ( m−n
2 )

∥∥w̄⊥∥∥m−n−1
p‖W⊥‖(‖w̄⊥‖)).

With this approach, the enhancement module encourages looking for a novel architecture
instead of always sampling a well-trained architecture from a previous round, reducing the
chances of falling into a local optimum.

4.3.2 Overcoming Multi-Model Forgetting through Architecture
Complementation

As described in Section 4.2, differentiable NAS is built upon weight-sharing NAS, where
numerous architectures with partially shared weights are trained on a single dataset. Without
loss of generality, this study also considers a typical scenario in which only one architecture (a
single path) in the supernet is trained in each step of the architecture search.

Hence, each step of the supernet training is defined as a task with argminLtrain(αi
θ
,WA )=

argminLtrain(WA (αi)), and the training consists of multiple sequential tasks in a lifelong
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Figure 4.2: Example of obtaining αi through our architecture complementation.

learning setting [29, 120] or an online multi-task learning setting [37]. In either scenario,
catastrophic forgetting is an inevitable problem. With differentiable NAS, the supernet is not
able to accumulate the newly learned knowledge in a manner consistent with the past experience.
Hence, it usually forgets past learned tasks when trained on a new task. As mentioned, this
phenomenon is sometimes called multi-model forgetting in [11].

A mainstream approach to mitigating this problem is to select and replay several representa-
tive tasks from a recent buffer or to apply soft regularization [64]. The tasks selected for replay
should not be limited to the most recently experienced tasks. Rather, it is better to maximize
the diversity of tasks in the replay buffer [5, 160], to balance the stability and plasticity [112].
Our framework is designed to select two architectures: the most recent architecture αi−1 in the
replay buffer and another complementary architecture αi that is orthogonal to αi−1. Selecting
two architectures reduces computational overhead while ensuring some diversity.

Fig. 4.2 gives an example of our architecture complementation. We consider a cell structure,
where node 0 is the input node, node 1 and 2 are operation nodes, and node 3 is the output
node which concatenates the outputs of all input and operation nodes as the output of the
cell. When the input of the operation node of αi is the same as αi−1 (take node 1 as an
example), αi randomly select a different operation, but when the input of operation node of
αi is different from αi−1 (take node 2 as an example), αi select the same operation as αi. The
way of selecting the complementary architecture ensures the two following conditions hold
true: ωi ∩ {ωi−1 ∪ωi }=ωi, and ωi−1 ∩ωi =;, where ωi =WA (αi) and ωi =WA (αi ).

When the two architectures in the replay buffer are converted into a soft regularization, the
loss function for the supernet training in step i becomes:

(4.12) Lc(ωi)= (1−ε)L2(ωi)+ε(L2(ωi )+L2(ωi−1))+ηR(ωi),

where L2(ωi) is the cross-entropy loss for the architectures αi in the training set, and R is the
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Algorithm 4 E2NAS
Input: Trained encoder E and decoder D, training dataset Dtrain and validation dataset Dvalid.
Initial architecture archive A =;. Randomly initialize architecture parameter αθ and supernet
weights WA (α);

1: while not done do
2: Sample batch of Dtrain;
3: decode αθ to get α based on D,
4: get the complementary architecture αc;
5: update the supernet weights WA (α) based on Eq. (4.12), and add architecture α into A;
6: sample batch of Dvalid, and update αθ based on Eq. (4.7);
7: end while
8: Decode αθ to obtain the best α∗ based on the trained decoder D.
9: Retrain α∗ and get the best performance on the test dataset Dtest.

Return: architecture α∗ with the best performance.

`2 regularization term. ε is the trade-off that controls whether to push the weights of current
architecture to optimal during training or whether to prevent the performance of the other
architectures in the supernet from deteriorating.

The proposed complementation loss function in Eq.(4.12) is related to the WPL loss
function [11] for overcoming catastrophic forgetting in one-shot NAS, where WPL tries to
maximize the joint posterior probability p(ωi−1,ωi | D) in each step of supernet training.
However, unlike WPL, which only considers one previous architecture αi−1 during the supernet
training, Eq.(4.12) considers one additional complementary architecture αc

i that is orthogonal
to αi−1 during the supernet training. Given two posterior probability p1 = p(ωi−1,ωi |D) and
p2 = p(ωc

i ,ωi |D) for a dataset D, we have the following Lemma.

Lemma 3. Given the previous architecture αi−1 with parameters ωi−1, the current architecture

αi with the parameters ωi, and a complementary architecture αc
i with the parameters ωc

i ,

the proposed architecture complementation loss function in Eq.(4.12) equates to maximizing

p1 ∗ p2 in each step of the supernet training in a one-shot NAS setting.

We can observe from Lemma 3 that the proposed loss function Lc is identical to the
WPL loss function when the additional complementary architecture is considered. However,
calculating our loss function is more efficient because there is no need to estimate the Fisher
information matrix or keep the previous models in optimal points.
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4.3.3 Regularization based Differentiable NAS

As noted in several recent studies [15, 87, 90, 127, 152], differentiable NAS tends to choose
shallow architectures from a DARTS search space. The reason is that shallow architectures have
both a smaller gradient confusion [122], and more smooth landscapes [171], which means they
can be trained faster. However, some researchers have pointed out that the deeper architectures
usually provide superior performance with the larger datasets [25, 109]. This motivated us to
wonder whether encouraging differentiable NAS to search for “deeper” architectures might
improve transferability.

To test the conjecture, we added a depth regularization term into the architecture opti-
mization loss function in Eq.(4.7) when exploring a DARTS search space. The depth of the
architecture is defined as:

(4.13) ldepth
0 (α)=

|C|∑
j=1

d(c j), d(c j) ∈ {0,1},

where d(c j)= 1 when c j connects node i and i−1. Following the constraint-aware differentiable
NAS in [85, 143], the depth regularization term when considering the decoder as a depth
predictor is defined as:

(4.14) L depth(αθ)=−E
[
ldepth
0 (α),α∼ D(α̃θ)

]
,

where D is the decoder in our E2NAS, α̃θ =αθ +δ, and δ is a noisy term. Using a batch size
of M = 10 to sample 10 architectures, we calculated the expectation in Eq.(4.14), resulting in
L depth(αθ)≈ 1

M
∑M

m=1 ldepth
0 (α), α∼ D(α̃θ).

This variant of E2NAS for use with DARTS search spaces is denoted as E2NAS-R. Its loss
function defined as:

(4.15) Lr = (1−γ)Lval(αθ,W ∗)+γLN(αθ, A)+ζL depth(αθ),

where γ and ζ are trade-offs.

In both E2NAS and E2NAS-R, the encoder E and decoder D are both trained offline to
improve efficiency. Following most one-shot NAS methods, only a single-path architecture is
trained during each step of the supernet training, and bilevel optimization is used to alternatively
learn the architecture parameters and the supernet weights [40, 86]. A simple implementation
is given in Algorithm 4.
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Table 4.1: Comparison results with state-of-the-art NAS approaches on NAS-Bench-201.

Method CIFAR-10 CIFAR-100 ImageNet-16-120
Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%)

ENAS [114] 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10
RandomNAS* [86] 85.63±0.44 88.58±0.21 60.99±2.79 61.45±2.24 31.63±2.15 31.37±2.51
DARTS (1st) [95] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS (2nd) [95] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
SETN [42] 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
NAO* [99] 82.04±0.21 85.74±0.31 56.36±3.14 59.64±2.24 30.14±2.02 31.35±2.21
GDAS* [40] 90.03±0.13 93.37±0.42 70.79±0.83 70.35±0.80 40.90±0.33 41.11±0.13
E2NAS 90.94±0.83 93.89±0.47 71.83±1.84 72.05±1.58 45.44±1.24 45.77±1.00

The hyperparameters of E2NAS are set as ε=0.5 and γ=Sigγ(10) in this experiment. The best single run of our
E2NAS (with random seed 0) achieves 94.22%, 73.13%, and 46.48% test accuracy on CIFAR-10, CIFAR-100,
and ImageNet, and the optimal performance on these datasets are 94.37%, 73.51%, and 47.31%, respectively. “*"
indicates the results reproduced with the same random seeds with our E2NAS.

4.4 Experimental Result

We assessed our framework in two different search settings. First, we evaluated E2NAS with
the benchmark dataset, NAS-Bench-201 [41]. We then tested both E2NAS and E2NAS-R with
the common DARTS convolutional search space [95].

4.4.1 Experiments on the Benchmark Dataset

The high computational cost of evaluating architectures is a major obstacle when analyzing and
reproducing one-shot NAS methods. For this reason, it can be hard to reproduce results with the
current NAS methods under the same experimental settings for a fair comparison. To alleviate
this problem, several benchmark datasets have been published in recent studies [41, 150, 154].
The NAS-Bench-201 dataset [41], selected for our experiments, is one such dataset. The search
space in NAS-Bench-201 contains four nodes with five associated operations, resulting in
15,625 cell candidates. The search space in NAS-Bench-201 is much simpler than what would
commonly be encountered in a NAS search space, but the dataset contains the ground-truth test
accuracy for all candidates, which greatly reduces the computational requirements normally
associated with a one-shot NAS method. Moreover, using this dataset provides results that
can be reproduced relatively easily. It is worth noting that the unified cell structure in the
NAS-Bench-201 is densely connected and does not include depth information. Hence, we did
not incorporate depth regularization when testing this search space.
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4.4.1.1 Reproducible Comparison with Baselines

The results for E2NAS and the NAS comparison baselines on the NAS-Bench-201 set are
provided in Table 4.1. This set of experiments involved independent searches with different
random seed configurations. E2NAS produced state-of-the-art results on all three datasets,
significantly outperforming the other baselines, especially with CIFAR-100 and ImageNet.
E2NAS performed only slightly better than GDAS on CIFAR-10. However, the NAS-Bench-
201’s optimal performance of 94.37% leaves little room for improvement. With random seed 0,
E2NAS returned a performance of 94.22% on CIFAR-10, 73.13% on CIFAR-100, and 46.48%
on ImageNet, which is almost equal to the optimal test accuracies with the NAS-Bench-201
dataset.

Overall, these results demonstrate the effectiveness of the three innovations in E2NAS, i.e.,
using an injective transformation to resolve incongruence; enhancing the exploration process
to avoid a local optimum; and incorporating an additional complementary architecture to
overcome catastrophic forgetting.

In the following, we further investigate the benefits of these three components with differ-
entiable one-shot NAS.

4.4.1.2 Analysis of Continuous Transformation

In this subsection, we conduct comparison experiments to demonstrate the effectiveness of
including injective transformation in the framework. We, therefore, set γ in Eq. 4.7 to 0 to
remove the exploration enhancement and ε in Eq. 4.12 to 0 to eliminate the complementation,
which prevents catastrophic forgetting. As described in Section 4.3.1, we first adopted a graph
autoencoder to injectively transform the discrete architectures into an equivalently continuous
latent space. We then conducted differentiable optimization over the architecture search space
in a differentiable NAS setting. The assessment metrics were the test accuracies of: a) the
architecture selected in the last iteration; and b) the best architecture over all iterations, denoted
as Best (%).

The first block in Table 4.2 contains several differentiable NAS baselines, all of which use
some variation of a continuous transformation method. DARTS, SETN and GDAS all adopt a
common continuous relaxation, while NAO uses an LSTM-based autoencoder to transform the
discrete architectures into one continuous space. Note that, unlike DARTS, GDAS incorporates
uncertainty (exploration) into the architecture sampling via the Gumbel-Max trick. To remove
this effect, we prepared a variant of GDAS, GDAS-A, that directly samples architectures
through argmax. GDAS-A is a more appropriate baseline for E2NAS (γ= 0 and ε= 0), because
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Table 4.2: Analysis of E2NAS with different γ on NAS-Bench-201.

Method
CIFAR-10 CIFAR-100 ImageNet-16-120

Test(%) Best(%) Test (%) Test (%)

DARTS (1st) [95] 54.30±0.00 54.30±0.00 15.61±0.00 16.32±0.00
DARTS (2st) [95] 54.30±0.00 54.30±0.00 15.61±0.00 16.32±0.00
SETN [42] 87.64±0.00 87.64±0.00 59.05±0.24 32.52±0.21
NAO* [99] 85.74±0.31 86.39±1.31 59.64±2.24 31.35±2.21
GDAS-A 89.73±3.33 93.49±0.24 62.15±6.86 35.34±4.81

GDAS* [40] 93.37±0.42 93.78±0.16 70.35±0.80 41.11±0.13

E2NAS

0 92.75±0.56 93.79±0.17 68.75±0.35 43.19±2.10
0.2 82.53±12.07 93.57±0.30 54.26±14.05 19.73±6.43
0.5 93.34±0.30 93.85±0.09 70.41±0.76 44.43±0.90
0.8 93.75±0.00 93.77±0.02 70.96±0.00 45.49±0.00

Sigγ(1) 93.82±0.15 93.87±0.07 70.52±1.01 46.10±0.52
Sigγ(2) 93.72±0.30 94.29±0.07 71.63±1.20 45.20±0.24
Sigγ(5) 93.78±0.16 94.19±0.19 70.55±0.44 44.97±0.72
Sigγ(10) 93.43±0.29 94.04±0.08 70.56±0.30 45.07±0.62

The first block shows results of several differentiable NAS baselines, and the second illustrates results of
our E2NAS with different γ.

Figure 4.3: Sigmoid-type function for the hyperparameter γ with the training epochs based on Eq.(4.16).

the two are almost the same method. The only difference is that GDAS-A employs a common
continuous relaxation while E2NAS uses the proposed continuous transformation method.

From Table 4.2, we can see that E2NAS (γ= 0 and ε= 0) still outperformed every base-
line against both test metrics on the three datasets, even without enhanced exploration and
complementation. These results demonstrate the effectiveness of the transformation method
and the accuracy with which it injectively transforms discrete architectures into a continuous
representation.
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4.4.1.3 Analysis of Exploration Enhancement

In the following, we investigate the necessity of exploration with differentiable NAS and
whether enhancing the exploration process affects performance. Theoretically, a larger γ should
encourage more exploration to avoid a local optimum, while a smaller γ should guarantee
better solutions with a higher validation performance. However, for this experiment, we devised
a Sigmoid function, defined as γ(t), to adapt γ during the supernet training so as to strike
a balance between exploration and exploitation. This function should work to avoid a local
optimal in the early stages of the search while guaranteeing better solutions with higher
validation performance in the later stages. The Sigmoid function γ(t) is defined as:

(4.16) γ(t)= 1−Sigmoid
(
(

t
total epochs

∗2−1)∗b
)
,

where the Sigmoid(x) = 1
1+e−x , and Sigγ(b) defines that the γ is scheduled with b based on

Eq.(4.16).
We used eight different settings for γ, including four static settings and four Sigmoid-type

settings, as shown in the third block of Table 4.2. Fig.4.3 plots the Sigmoid function γ(t) with
different γ values.

The results demonstrate that enhancing exploration does indeed help to improve the perfor-
mance of single-path differentiable NAS. Most settings of γ resulted in improved performance.
It also appears that E2NAS is very robust to γ, especially dynamic γ, where all Sigγ yielded
satisfactory results. Sigγ(2) resulted in the best accuracy for E2NAS at 94.29±0.07%, which
represents a great improvement of E2NAS without the exploration enhancement (γ= 0). GDAS
also delivered good performance with this dataset, greatly outperforming its non-exploration
enhanced variant GDAS-A. This result offers further support for the benefits of introducing
exploration into the architecture search. However, E2NAS with Sigγ(10) still outperformed
GDAS, showing impressive results.

4.4.1.4 Analysis of Architecture Complementation

Section 4.3.2 theoretically demonstrates the benefit of the proposed architecture complemen-
tation loss function. The experimental results in Section 4.4.1.1 also verify the effectiveness
of our approach. As discussed in Section 4.3.2, ε is the crucial hyperparameter in our novel
loss function Lc to ameliorate catastrophic forgetting with weight sharing NAS. We, therefore,
conducted an extensive set of experiments to test its effects. The results are reported in this
section.

The baselines compared include E2NAS with a fixed γ=Sigγ(10), plus two popular one-shot
NAS methods: RandomNAS [86] and GDAS [40]. Fig. 4.4 (a) presents the results for four
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(a) Validation and test accuracy of NAS methods
with different ε on NAS-BENCH-201.

(b) Trajectory of validation accuracy of sampled
architecture during supernet training on DARTS
search space.

Figure 4.4: Analysis of architecture complementation on NAS-BENCH-201 dataset and DARTS search
space [40, 95].

different values of ε. As shown, Lc significantly improves the search results, not only for
E2NAS but also for the other NAS baselines. Compared to a normal cross-entropy loss function
(ε=0), Lc greatly improves the search results for RandomNAS, GDAS, and E2NAS. From this
experiment, we recommended a medium-valued ε (ε=0.2 or 0.5) for all three methods.

Fig. 4.4 (b) charts the validation accuracy of the sampled architectures with a common
convolutional search space [40, 95]. In “GDAS-AC", we replace the normal loss function during
the supernet training with the proposed Lc defined in Eq. (4.12). Here, all three baselines –
DARTS_v1, DARTS_v2, and GDAS, suffered from catastrophic forgetting, but that Lc relieved
the problem, as demonstrated by the curve of GDAS_AC in Fig. 4.4 (b). The performance of
architectures by inheriting weights in this curve is getting better with the supernet training,
making the assumption in bilevel optimization-based differentiable NAS hold true.

In addition to these tests, we also conducted an ablation study to investigate whether our
architecture complementation (AC) method would perform better than other naive continual
learning methods. For these experiments, we considered OP(WPL), RP, and NA as baselines.
The OP(WPL) method, taken from WPL [11], only considers the previous architecture αi−1.
RP randomly selects an architecture that is not αi−1 to place in the replay buffer. NA does not
select an architecture, which is the equivalent of setting ε to 0 with a one-shot NAS method.
Further, we applied the three different continual learning baselines for each of the methods:
RandomNAS, GDAS and E2NAS. Table 4.3 presents the results.

It is clear that overcoming catastrophic forgetting is a promising direction for one-shot
NAS since the methods trained with naive continual learning methods showed significant
improvement as a result of excellent test accuracies, especially RandomNAS and GDAS. We
also observe that architecture selection in the quest to prevent forgetting has a substantial
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Table 4.3: Analysis of one-shot NAS with different ε settings on CIFAR-10. We set a fixed γ=Sigγ(10)
for our E2NAS in this experiment.

METHOD ε
AC RP OP

Test Acc (%) Test Acc(%) Test Acc (%)

RANDOMNAS
0 (NA) 88.58±0.21 88.58±0.21 88.58±0.21

0.2 91.41±0.46 89.72±3.79 90.81±3.37
0.5 91.89±0.58 83.98±11.6 91.90±0.35
0.8 90.14±2.26 90.19±1.58 88.44±4.24

GDAS
0 (NA) 93.37±0.42 93.37±0.42 93.37±0.42

0.2 93.67±0.00 93.42±0.09 93.42±0.09
0.5 93.41±0.31 93.42±0.09 93.58±0.13
0.8 93.52±0.22 93.42±0.09 93.52±0.22

E2NAS
0 (NA) 93.43±0.29 93.43±0.29 93.43±0.29

0.2 93.77±0.31 51.49±58.68 92.50±2.04
0.5 93.89±0.47 51.49±58.68 92.50±2.04
0.8 93.32±0.48 51.49±58.68 92.03±1.37

influence over performance. Randomly adding just one additional architecture into the replay
buffer deteriorated RP’s performance to the extent that its results were worse than OP in most
cases. By contrast, our architecture complementation method, which selects a complementary
architecture, produced the best results in most cases. These results further show the benefits of
our architecture complementation loss function.

4.4.1.5 Hyperparameter Study

This subsection presents the results of a hyperparameter study to simultaneously analyze the
impact of ε (complementation to address forgetting) and γ (enhanced exploration to prevent
convergence on a local optimum). The results with four static settings of ε while varying γ on
CIFAR-10 are presented in Table 4.4. From the results, we see that our proposed Lc generally
improves the performance of E2NAS except at Sigγ(1). A mid-range value for ε (ε=0.2 or 0.5)
performed best in most scenarios. As with ε, E2NAS is also very robust to the hyperparameter
for exploration enhancement, with most values of γ achieving similar results on CIFAR-10.
However, unlike with the individual tests, E2NAS was more sensitive to the hyperparameters
when both were active in the framework. In general, a Sigmoid-type function with large b for γ

combined with a mid-range ε helped E2NAS to yield the best results.
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Table 4.4: The CIFAR-10 test accuracy for our E2NAS with different ε and γ settings.

ε

γ
Sigγ(1) Sigγ(2) Sigγ(5) Sigγ(10)

0 93.82±0.15 93.72±0.30 92.76±2.06 93.43±0.29
0.2 92.93±0.80 93.99±0.00 93.00±0.94 93.77±0.31
0.5 92.93±0.80 93.77±0.31 93.87±0.29 93.89±0.47
0.8 92.93±0.80 93.99±0.00 93.11±0.78 93.32±0.48

4.4.1.6 Running Time Analysis on NAS-Bench-201

Following most single-path one-shot NAS methods [40, 86], we only trained one single-path
architecture during each step of supernet training, using bilevel optimization to alternatively
learn the architecture parameters and the supernet weights. Also, the encoder E and decoder D
for continuous relaxation in E2NAS are both trained offline to reduce overheads. Algorithm 4
presents a simple implementation of E2NAS. Compared to the GDAS [40] and RandomNAS
baselines [86], E2NAS includes an additional architectures in each step of the search. The result
is increased diversity in exchange for only a limited increase in the search cost.

E2NAS also needs to calculate the probabilistic novelty of each architecture during the ar-
chitecture search, which further increases the running time. Table 4.5 illustrates the comparison
results of searching time with several differentiable NAS algorithms. GDAS is considered to be
the baseline as E2NAS is built on GDAS with the same experimental settings. Note that DARTS
trains the whole supernet rather than a single path during the architecture search. Following
[41], the training epochs were set to 1/5 of others.

The results show the search time for E2NAS at nearly twice that of GDAS because of the
additional architecture that needs to be evaluated in each step and the probabilistic novelty
calculation.

Table 4.5: The searching time of differentiable NAS baselines.

GDAS DARTS(1st) DARTS(2nd) NAO SETN E2NAS

Searching time(s) 62812.6 21472.1 65325.9 74321.5 68132.5 142321.2

4.4.2 Experiments on DARTS Search Space

We also apply our proposed approach to a convolutional architecture search in the common
DARTS search space [40, 86, 95] in comparison to the current state-of-the-art NAS methods.
The candidate operations in the search space contained: 3×3 and 5×5 separable convolutions;
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Figure 4.5: Best found cells with E2NAS and E2NAS-R on CIFAR-10.

3×3 and 5×5 dilated separable convolutions; 3×3 average pooling; 3×3 max-pooling; identity;
and zero. The search procedure needs to look for two different types of cells with which to
build the architecture: normal cells αnormal and reduction cells αreduce. Reduction cells are
only located in the first and second thirds of the total depth of the network. As described in
Section 4.3.3, encouraging the search to look for architectures with greater depth can improve
performance and transferability. Hence, E2NAS-R incorporates a depth regularization function
into the architecture optimization in the form of Eq.(4.15). For this experiment, we set ε=0.5
and γ=Sigγ(10) for E2NAS and η=0.05 for E2NAS-R.

Convolutional architecture searches in a DARTS search space generally include three
sequential stages: the architecture search, the architecture evaluation, and transfer for evaluation
with a larger dataset(s). In the architecture search stage, we stacked eight convolutional cells to
form the architecture for the search. The number of initial channels c was set to 16, and the
supernet was trained for 100 epochs with a batch size of 32. Once the most promising cell was
found, we stacked 20 cells for architecture evaluation with a batch size of 96 for 600 epochs.
The number of initial channels was increased to 36, the auxiliary towers were given a weight of
0.4, and the path dropout probability was set to 0.2. The other settings remained the same. The
best-found cell structure on CIFAR-10 was subsequently transferred to CIFAR-100 with the
same experimental settings.
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Table 4.6: Comparison results with state-of-the-art weight-sharing NAS approaches.

Method Test Error (%) Param FLOPs ×+ Search Supernet
CIFAR-10 CIFAR-100 ImageNet (M) (M) (M) Cost Optimization

NASNet-A [172] 2.65 17.81 26.0 / 8.4 3.3 604 564 1800 RL
PNAS [93] 3.41±0.09 17.63 25.8 / 8.1 3.2 529 588 225 SMBO
AmoebaNet-A [118] 3.34±0.06 - 25.5 / 8.0 3.2 526 555 3150 EA
ENAS [114] 2.89 18.91 - 4.6 - - 0.5 RL
EN2AS [162] 2.61±0.06 16.45 26.7 / 8.9 3.1 498 506 0.3 EA
RandomNAS [86] 2.85±0.08 17.63 27.1 4.3 604 613 2.7 random
NSAS [160] 2.59±0.06 17.56 25.52 / 8.2 3.1 498 506 2.7 random
NSAS-C [160] 2.65±0.05 16.69 24.65 / 7.5 3.5 557 566 2.7 random
WPL [11] 3.81 - - - - - - RL

NAO-WS [99] 3.53 - - - 2.5 - - gradient
SNAS [140] 2.85±0.02 20.09 27.3 / 9.2 2.8 438 522 1.5 gradient
PARSEC [21] 2.86±0.06 17.06 26.3 / 8.4 3.6 502 509 0.6 gradient
BayesNAS [170] 2.81±0.04 - 26.5 / 8.9 3.40 - - 0.2 gradient
MdeNAS [169] 2.55 17.61 25.5 / 7.9 3.61 595 604 0.16 gradient
DSO-NAS [167] 2.84±0.07 - 26.2 / 8.6 3.0 - - 1 gradient
XNAS* [109] 2.57±0.09* 16.34* 24.7* / 7.5* 3.7 590 599 0.3 gradient
PDARTS [25] 2.50 16.55 24.4 / 7.4 3.4 532 557 0.3 gradient
PC-DARTS [142] 2.57±0.07 17.11 25.1 / 7.8 3.6 557 586 0.3 gradient
PR-DARTS [171] 2.32 16.45 24.1 / 7.3 3.4 - 543 0.17 gradient
DrNAS [24] 2.54±0.03 16.30 24.2 / 7.3 4.0 586 644 3.9 gradient
DARTS (1st) [95] 2.94 17.76 - 2.9 505 513 1.5 gradient
DARTS (2nd) [95] 2.76±0.09 17.54 26.9 / 8.7 3.4 530 574 4 gradient
GDAS [40] 2.93 18.38 27.5 / 8.5 3.4 537 537 0.21 gradient
E2NAS 2.58±0.09 16.59 25.1 / 7.8 3.3 545 553 0.8 gradient
E2NAS-R 2.42±0.07 15.77 23.9 / 7.1 3.8 582 591 0.8 gradient

“*" indicates the results reproduced based on the best-reported cell structures with a common
experimental setting [95]. We do not reproduce those methods with “-" since those approaches
are with different search spaces or do not report their best structures. The Para (M) indicates
the model size when applied on CIFAR-10, while the FLOPs (M) and ×+ (M) is calculated
when the searched model applied on ImageNet dataset. The best single-run of our E2NAS and
E2NAS-R achieves 2.54% and 2.37% test error on CIFAR-10, respectively.
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The experimental settings for the evaluation with ImageNet were slightly different from
CIFAR-10 in that only 14 cells were stacked, and the number of initial channels was changed
to 48. The remaining settings follow [95].

4.4.2.1 Results on CIFAR10

To compare E2NAS with the state-of-the-art NAS methods, we followed the experimental
settings prescribed for DARTS just as most other recent works have done. We conducted the
architecture search several times with different random seeds to obtain the architectures, and
then retrained them to select the best architecture based on the retrained validation performance.
The memory consumption of E2NAS is the same as the single-path NAS [40, 55, 86], which is
much less than DARTS [95] and other relaxation-based differentiable NAS methods [140, 170].
Since E2NAS adopts single-path, it is very efficient – for example, the whole architecture
search phase only took 0.4 GPU days. Compared to existing differentiable NAS baselines,
E2NAS and E2NAS-R provide much better results, which, again, verifies the effectiveness of
our proposed method. Further, it is inspiring that the best-searched architecture of E2NAS-R
performed better than the most compared one-shot NAS under the same experimental settings,
with a test error of only 2.42±0.07% on CIFAR-10.

4.4.2.2 Results on CIFAR100

To verify the transferability of our best model, we directly transferred it to CIFAR-100 and
executed it without an architecture search. The experimental settings with CIFAR-100 were the
same as for CIFAR-10. The results appear in Table 4.6. E2NAS delivered a competitive result
with a test error of 16.59%, but not as competitive as its performance on the CIFAR-10 dataset.
On CIFAR-100, XNAS yielded an excellent result and PDARTS also performed well, beaten
only by the E2NAS-R variant with a test error of 15.77%, outperforming its peers by a large
margin.

4.4.2.3 Results on ImageNet

The comparison results with the ImageNet dataset are presented in Table 4.6. All weight-sharing
NAS methods transfer the searched cell architecture on CIFAR-10 to ImageNet, and we also
follow the mobile setting from [86, 95, 140] with a 224×224 input image size. The number of
initial channels was set to 48, and the network was stacked to 14 cells with a batch size of 128
and 250 training epochs.
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E2NAS delivered a competitive result with the Top1/Top5 test errors at 25.1%/7.8% given
4.69 million parameters. The FLOPs was only 490 million, which outperforms most SOTA
models. Again, a few of the baselines outperformed E2NAS, particularly XNAS and PDARTS,
which encourage the search to look for deeper cell structures. The E2NAS-R variant, which
also searches for deeper cells, achieved a competitive result of 23.9% test errors. These results,
together with the above CIFAR-100 results, demonstrate the importance of a preference for
deeper architectures so as to improve transferability.

4.4.2.4 Regularization Analysis

In this section, we analyze the regularization method in E2NAS-R, which encourages the search
to look for deeper architectures. Figs. 4.5 (a) and (b) demonstrate the best-found architectures
by E2NAS and E2NAS-R. As shown, the cell structure of the architecture found by E2NAS-R
is much deeper than the one found by E2NAS. Table 4.6 also compares the results of the two
architectures on CIFAR-10, CIFAR-100, and ImageNet datasets. As demonstrated, although
the shallow cell searched by E2NAS yielded a satisfactory result with a 2.54% test error on the
small CIFAR-10 dataset, its performance on larger datasets, CIFAR-100 and ImageNet, was
not as competitive with rates of 16.59% and 25.1%, respectively. However, the architectures
found by E2NAS-R still achieves state-of-the-art performance when transferred to the larger
datasets, with 15.77% and 23.9% on CIFAR-100 and ImageNet, respectively. These results
verify that encouraging NAS to search for deeper architectures can improve transferability in
complicated real-world search spaces.

4.5 Chapter Summary and Discussion

The framework presented in this chapter provides a means of efficiently, yet intelligently,
searching for differentiable neural architectures in a latent continuous space. A variational
graph autoencoder transforms discrete architectures into an equivalent continuous space by
injective means, while a probabilistic exploration enhancement method encourages intelligent
exploration of the search space during supernet training. In addition, the framework includes a
novel architecture complementation loss function to relieve catastrophic forgetting, along with
a theoretical demonstration that the proposed loss function provides an identical result to the
currently-accepted best-practice methods but is easier to calculate. Plus, to further improve
the transferability of the searched architectures, the architecture optimization includes a depth
regularization function that controls the depth of architectures to search for. Experiments on
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a NAS benchmark dataset and the common DARTS convolutional search space show the
effectiveness of the proposed framework.

As described, differentiable NAS methods transform the discrete architecture search prob-
lem into a continuous optimization problem, while most of them hardly guarantee the op-
timization in the latent space equals to the discrete space. The final discretization stage of
DARTS is still an open and unsolved problem, since the validation performance of a continuous
representation architecture can not exactly indicate the performance of a discrete one. There
are several recent works also try to relieve this issue, e.g. perturbation-based architecture
selection[135]. This chapter points out another promising direction, transforming discrete
architectures into an equivalent continuous space by injective means, rather than the commonly
used softmax-argmax. The exploration enhancement technique in this chapter is related to the
Chapter 2, where both of them show that enhancing the exploration can improve the predictive
ability of the supernet work. In addition, the architecture complementation part of the proposed
E2NAS also helps to overcome catastrophic forgetting, which is related to Chapter 3. The
problems, injective transformation, exploration enhancement, and catastrophic forgetting, are
three general research directions in the differentiable neural architecture search community.

85





C
H

A
P

T
E

R

5
DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH VIA

BAYESIAN LEARNING RULE

5.1 Introduction

Neural Architecture Search (NAS) [30, 82, 119] is attaining increasing attention in the deep
learning community by automating the labor-intensive and time-consuming neural network
design process. More recently, NAS has achieved the state-of-the-art results on various deep
learning applications, including image classification [133], object detection [28], stereo match-
ing [31]. Although NAS has the potential to find high-performing architectures without hu-
man intervention, the early NAS methods have extremely-high computational requirements
[53, 118, 173]. For example, in [118, 173], NAS costs thousands of GPU days to obtain a
promising architecture through reinforcement learning (RL) or evolutionary algorithm (EA).
This high computational requirement in NAS is unaffordable for most researchers and practition-
ers. Since then, more researchers shift to improve the efficiency of NAS methods [54, 86, 114].
Weight sharing NAS, also called One-Shot NAS [9, 114], defines the search space as a supernet,
and only the supernet is trained for once during the architecture search. The architecture eval-
uation is based on inheriting weights from the supernet without retraining, thus significantly
reducing the computational cost. Differentiable architecture search (DARTS) [95], which is
one of the most representative works, further relaxes the discrete search space into continuous
space and jointly optimize supernet weights and architecture parameters with gradient descent,
to further improve efficiency. Through employing two techniques, weight sharing [9, 114] and
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continuous relaxation [20, 40, 95, 140], DARTS reformulates the discrete operation selection
problem in NAS as a continuous magnitude optimization problem, which reduces the computa-
tional cost significantly and completes the architecture search process within several hours on a
single GPU.

Despite notable benefits on computational efficiency from differentiable NAS, more recent
works find it is still unreliable [23, 152] to directly optimize the architecture magnitudes.
For example, DARTS is unable to stably obtain excellent solutions and yields deteriorative
architectures during the search proceeds, performing even worse than random search in some
cases [124]. This critical weakness is termed as instability in differentiable NAS [152]. Zela et al.
[152] empirically point out that the instability of DARTS is highly correlated with the dominant
eigenvalue of the Hessian of the validation loss with respect to the architectural parameters,
where this dominant eigenvalue increases during the architecture search. Accordingly, they
proposed a simple early-stopping criterion based on this dominant eigenvalue to robustify
DARTS. On the other hand, [24, 87, 127, 161] state that directly optimizing the architecture
parameters without exploration easily entails the rich-gets-richer problem, leading to those
architectures that converge faster at the beginning while achieve poor performance at the end
of training, e.g. architectures with intensive skip-connections [33, 91].

Unlike existing works that directly optimize the architecture parameters, we formulate
the neural architecture search as a distribution learning problem for differentiable NAS. We
investigate differentiable NAS from a Bayesian learning perspective, and introduce the Bayesian
Learning rule [72, 73, 106, 111] to the architecture optimization in differentiable NAS that
considers natural-gradient variational inference (NGVI) methods to optimize the architecture
distribution, which we call BaLeNAS. We theoretically demonstrate how the framework
naturally enhance the exploration for differentiable NAS and improves the stability, and
experimental results confirm that our framework enhances the performance for differentiable
NAS. Specifically, our approach achieves state-of-the-art performance on NAS-Bench-201
[41] and improves the performance on NAS-Bench-1Shot1 [154] by large margins. To further
improve the performance and transferability in the more complicated DARTS search space, we
introduce a depth regularization based method to our framework. Specifically, our approach
achieves state-of-the-art performance on NAS-Bench-201 [41] and improves the performance
on NAS-Bench-1Shot1 [154] by large margins, and obtains competitive results on CIFAR-10,
CIFAR-100, and ImageNet datasets in the DARTS [95] search space, with test error 2.37%,
15.72%, and 24.2%, respectively. Our contributions are summarized as follows.

• Firstly, this chapter formulates the neural architecture search as a distribution learning
problem and builds a generalized Bayesian framework for architecture optimization
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in differentiable NAS. We demonstrate that the proposed Bayesian framework is a
practical solution to enhance exploration for differentiable NAS and improve stability as
a by-product via implicitly regularizing the Hessian norm.

• Secondly, to further improve the transferability, we incorporate the domain knowledge,
increasing the depth of the searched architectures, into our framework through regulariza-
tion strategies. Experiments on the common DARTS search space illustrate the benefits
of the proposed method.

• Thirdly, the proposed framework is built based on DARTS and is also comfortable to
be extended to other differentiable NAS methods with minimal modifications through
leveraging the natural-gradient variational inference (NGVI). Extensive experiments show
that our framework consistently improves the baselines with obtaining more competitive
results in various search spaces.

This chapter is based on a submission “Miao Zhang, Steven Su, Shirui Pan, Xiaojun Chang,

Li Wang, Gholamreza Haffari, Differentiable Neural Architecture Search via Bayesian Learning

Rule. Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

2021”. Miao Zhang conceived the original idea of remorfulating the architecture search into a
distribution learning problem which is solved by natural-gradient variational inference. The
BaLeNAS algorithm was originally devised by Miao Zhang. Steven Su helped Miao Zhang to
verify all derivations of theoretical parts in this paper. Miao Zhang conducted all experiments.
The first version of the paper was written by Miao Zhang with some help from Shirui Pan.
Steven Su and Shirui Pan revised the paper many times. The authors Li Wang, Xiaojun Chang
and Gholamreza Haffari provided feedback during the writing of the paper.

5.2 Preliminaries

5.2.1 Differentiable Neural Architecture Search

Differentiable architecture search (DARTS) is built on weight-sharing NAS [9, 114], where the
supernet is trained for once per the architecture search cycle. Rather than using the heuristic
methods [114, 161] to search for the promising architecture in the discrete architecture space
A , DARTS [95] proposes the differentiable NAS framework by applying a continuous relax-
ation (usually a softmax) to the discrete architecture space and enabling gradient descent for
architecture optimization. Therefore, architecture parameters αθ and supernet weights w could
be jointly optimized during the supernet training, and the promising architecture parameters
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α∗
θ

are obtained once the supernet is trained. The bilevel optimization formulation is usually
adopted to alternatively learn αθ and w:

(5.1) min
αθ∈Aθ

Lval

(
argmin

w
Ltrain(w(αθ),αθ)

)
,

and the best discrete architecture α∗ is obtained after applying argmax on α∗
θ
. Based on the

differentiable NAS framework, different relaxation methods can be adopted. For example,
NAO [99] utilizes the LSTM based autoencoder to transform the discrete architecture into a
continuous space. Several recent works further adopt the graph neural network-based autoen-
coder to learn the injective representations. Zhang et al. [158] utilize the graph autoencoder
to injectively transform the discrete architecture space into a latent space, and equivalently
perform optimization in the continuous latent space. Similarly, Yan et al. [145] propose an un-
supervised architecture representation learning method to injectively map discrete architectures
to unique representations in the latent space, and the empirical results verify its benefits for the
downstream architecture search.

As described above, the differentiable NAS first relaxes the discrete architectures into con-
tinuous representations to enable the gradient descent optimization, and projects the continuous
architecture representation αθ into discrete architecture α after the differentiable architec-
ture optimization. Taking the DARTS as example, the searched architecture parameters αθ

are continuous, while α is represented with {0, 1} after argmax. DARTS assumes that the
Lval(w∗,α∗

θ
) is a good indicator to the validation performance of α, Lval(w∗,α∗). However,

when we conduct the Taylor expansion on the local optimal α∗
θ

[23, 24], we have:

(5.2)

Lval(w∗,α∗)=Lval(w∗,α∗
θ )+Oαθ

Lval(w∗,α∗
θ )T(α∗−α∗

θ )

+ 1
2

(α∗−α∗
θ )TH (α∗−α∗

θ )

=Lval(w∗,α∗
θ )+ 1

2
(α∗−α∗

θ )TH (α∗−α∗
θ )

where Oαθ
Lval = 0 due to the local optimality condition, and H is the Hessian matrix of

Lval(w∗,αθ). We can see that the incongruence of the final continuous architecture represen-
tation and the final discrete architecture relates to the Hessian matrix’s norm. However, as
demonstrated by the empirical results in [152], the eigenvalue of this Hessian matrix increases
during the architecture search, incurring more incongruence. This phenomenon is also called
the instability of differentiable NAS [23]. Keeping the the Hessian matrix’s norm in a low level
plays a key role in robustifying the performance of differentiable NAS [152].
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5.2.2 Distribution learning based NAS

Unlike directly optimizing the architecture parameters, several recent works formulate the
differentiable NAS as a distribution learning problem by relaxing architecture parameters into
different distributions. SNAS [140] and GDAS [40] formulate the architecture as a discrete
distribution with concrete relaxation and utilize the Gumbel-softmax trick to obtain the discrete
architecture. DrNAS [24] treats the continuous architecture parameters as random variables
being modeled by a learnable Dirichlet distribution. This distribution is parameterized by a
concentration parameter β, which controls the sampling behavior and is optimized via pathwise
derivative estimators [66]. Zheng et al. [169] consider the whole search space as a joint
multinomial distribution and learn the probabilities of candidate operations among all nodes
based on the multinomial distribution learning. A common point in these previous methods
is that they formulate the architecture parameters as simple distributions in which only one
parameter needs to be learned. In this way, these learning paradigms are easy to fit with existing
DARTS codebases.

Rather than considering the above distributions, this chapter considers the more general
Gaussian distributions for the architecture parameters. By leveraging natural-gradient vari-
ational inference (NGVI), the architecture parameter distribution could be learned with by
only updating a natural parameter λ during the search. The most relevant work to ours is
BayesNAS [170], which also considers the Bayesian learning approach for neural architecture
search. BayesNAS models the architecture parameters with hierarchical automatic relevance
determination (HARD) priors, while which casts NAS as a model compression problem. The
architecture parameters is formulated as q(θ) ∼ N (µ,ψ−1), where ψ is a hyperparameter to
tune rather than a parameter to learn. Furthermore, not only the architecture parameters are
formulated as distributions, the supernet in BayesNAS is also formulated as a Bayesian Neural
Network, which is hard to train and BayesNAS could only train the supernet for one epoch.
Differently, our BaLeNAS only replaces the Adam optimizer with the Variational Adam opti-
mizer for architecture optimization in the DARTS codebase, and keeps the supernet the same.
In this way, our BaLeNAS is easy to be applied to most existing differentiable NAS codebases
with minimal modifications. After the optimization of BaLeNAS, we learns an optimized
Gaussian distribution for the architecture parameters q(α∗

θ
| µ,σ2), which is used to get the

optimal architecture α∗. In this paper, we consider a simple and direct method, which utilizes
the expectation of α∗

θ
to select the best operation for each edge through the argmax, where the

expectation term is simply the mean µ [24].
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5.2.3 Deep Learning with Bayesian Principles

Given a dataset D = {D1,D1, ...,DN} and a deep neural network with parameters θ, the most
popular method to learn θ with D is Empricial Risk Minimization (ERM):

(5.3) min ¯̀(θ) :=
N∑

i=1
`i(θ)+ηR(θ),

where `i is a loss function of i’th data example, e.g., `i =−log p(Di | θ) for classification tasks
and R is the regularization term.

In contrast, the Bayesian deep learning estimate the posterior distribution of θ, p(θ |D) :=
p(D | θ)p(θ)/p(D), where p(θ) is the prior distribution. However, the normalization constant
p(D) = ∫

p(D | θ)p(θ)dθ is difficult to compute for large DNNs. The variational inference
(VI) [50] resolves this issue in Bayesian deep learning by approximating p(θ |D) with a new
distribution q(θ), and minimizes the Kullback-Leibler (KL) divergence between p(θ |D) and
q(θ),

(5.4) argminθKL(q(θ) ∥ p(θ |D)).

When considering both p(θ) and q(θ) as Gaussian distributions with diagonal covariances:

(5.5) p(θ) :=N (θ | 0,I/δ), q(θ) :=N (θ |µ,diag(σ2)),

where δ is a known precision parameter with δ> 0, the mean µ and deviation σ2 of q can be
estimated by minimizing the negative of evidence lower bound (ELBO) [16]:

(5.6)
L (µ,σ) :=−

N∑
i=1

Eq
[
log p(Di | θ)

]+KL(q(θ) ∥ p(θ))

=−Eq

N∑
i=1

log p(Di | θ)+Eq

[
log

q(θ)
p(θ)

]
A straightforward approach is using the stochastic gradient descent to learn µ and σ2 along

with minimizing L , called as the Bayes by Backprob (BBB) [17]:

(5.7) µt+1 =µt −ςt∇̂µLt, σt+1 =σt −ϕt∇̂σLt,

where ςt and ϕt are the learning rates, and ∇̂µLt and ∇̂σLt are the unbiased stochastic gradient
estimates of L at µt and σt. However, VI remains to be impractical for learning large deep
networks. The first obvious issue is that VI introduces more parameters to learn, as it needs to
simultaneously optimize two vectors µ and σ to estimate the distribution of θ, so the memory
requirement is also doubled. More importantly, existing codebases of differentiable NAS are
designed to learn with MLE loss function and require a lot of modifications to fit the VI. For
example, we need to re-design the objective function and replace all neural networks weights
with random variables.
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5.3 Bayesian Learning Rule for Neural Architecture
Search (BaLeNAS)

5.3.1 Formulating NAS as Distribution Learning

Differentiable NAS normally considers the architecture parameters αθ as learnable parameters
and directly conducts optimization in this space. Most previous differentiable NAS methods
first optimize the architecture parameters based on the gradient of the performance, then update
the supernet weights based on the updated architecture parameters. Since architectures with
updated supernet weights are supposed to have higher performance, architectures with better
performance in the early stage have a higher probability of being selected for the supernet
training. The supernet training again improves these architectures’ performance. This is to say,
directly optimizing αθ without exploration easily entails the rich-get-richer problem [87, 161],
leading to suboptimal paths in the search space that converges faster at the beginning but
plateaued quickly [24, 127]. Introducing stochasticity and encouraging exploration are the
natural ways to resolve this problem [23, 24].

In this chapter, we formulate the architecture search as a distribution learning problem,
optimizing the posterior distribution p(αθ | D) rather than αθ. Similarly, we also consider
both p(θ) and q(θ) as Gaussian distributions as Eq.(5.5). Accordingly, the bilevel optimization
problem in Eq.(5.1) could be reformulated as the distribution learning based NAS:

(5.8)
min
µ,σ

Eq(αθ |µ,σ)Lval(w∗(αθ),αθ),

s.t. w∗(αθ)= argmin
w

Ltrain(w(αθ),αθ),

where µ and σ are the two learnable parameters for the distribution q(αθ | µ,σ) := N (αθ |
µ,diag(σ2)). Considering the variational inference and Bayesian deep learning, based on
Eq.(5.4)-(5.6), the loss function for the outer-loop architecture distribution optimization prob-
lem could be defined as:

(5.9) L (µ,σ) :=−Eq

N∑
i=1

log p(Di |αθ)+Eq

[
log

q(αθ)
p(αθ)

]

Since the architecture parameters αθ are random variables sampled from the Gaussian distribu-
tion q(αθ), the distribution learning-based method naturally encourages exploration during the
architecture search.
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5.3.2 Natural-Gradient Variational Inference for NAS

As describe in Sec.5.2.3, the traditional variational inference has double memory requirement
and needs to re-design the object function, making it difficult to fit with the differentiable NAS.
Thus, this chapter considers natural-gradient variational inference (NGVI) methods [72, 111]
to optimize the architecture distribution p(αθ |D) in a natural parameter space, which requires
the same number of parameters as the traditional learning method.

NGVI parameterizes the distribution q(αθ) with a natural parameter λ, considering q(αθ |λ)

in a class of minimal exponential family with natural parameter λ [71]:

(5.10) q(αθ |λ) := h(αθ)exp
[
λTφ(αθ)− A(λ)

]
,

where h(αθ) is the base measure, φ(αθ) is a vector containing sufficient statistics, and A(λ) is
the log-partition function.

When h(αθ)≡ 1, the distribution q(αθ |λ) could be learned by only updating λ during the
training [72, 73], and λ could be learned in the natural-parameter space by:

(5.11) λt+1 = (1−ρt)λt −ρt∇µEqt

[ ¯̀(αθ)
]
,

where ρt is the learning rate, ¯̀ is in the form of Eq.(5.3), which is also identical with the
normal architecture optimization loss function Lval . And qt is the q(αθ |λ) parameterized by
λt, µ= µ(λ) is the expectation parameter of q(αθ | λ), and the derivative ∇µEqt(αθ)

[ ¯̀(αθ)
]

is
taken at µ=µt with Markov Chain Monte Carlo (MCMC) sampling. This is also called as the
Bayesian learning rule [73].

When p(αθ) and q(αθ) are in the form of Eq.(5.5), the Variational Online-Newton (VON)
method proposed by Khan et. al. [72] shows that the NGVI update could be written with the
following update:

(5.12) µt+1 =µt −βt(ĝ(θt)+ δ̃µt)/(st+1 + δ̃),

(5.13) st+1 = (1−βt)st +βt diag[∇̂2 ¯̀(θt)],

where βt is the learning rate, θt ∼N (αθ |µt,σ2
t ) with σ2

t = 1/[N(st + δ̃)] and δ̃= δ/N. ĝ is the
stochastic estimate with respect to q through MCMC sampling that, ĝ(θt)= 1

M
∑

i∈M ∇αθ
¯̀i(αθ),

and the minibatch M contains M samples. More details are in [72]. Variational RMSprop
(Vprop) [72] further uses gradient magnitude (GM) [18] approximation to reformulate Eq.(5.13)
as:

(5.14) st+1 = (1−βt)st +βt[ĝ(θt)◦ ĝ(θt)],
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with ∇̂2
j, j

¯̀(θt) ≈
[

1
M

∑
i∈Mt g i(α

j
θ
)
]2 = [ ĝ(θ j

t )]2 [18]. The most important benefit of VON and
Vprop is that they only need to calculate one parameter’s gradient to update posterior distribu-
tion. In this way, this learning paradigm requires the same number of parameters as traditional
learning methods and easy to fit with existing codebases.

We implement the proposed BaLeNAS based on the DARTS [95] framework, the most
popular differentiable NAS baseline. Similar to DARTS, BaLeNAS also considers an Adam-like
optimizer for the architecture optimization, updating the natural parameter λ of p(θ |D) as:

(5.15) λt+1 =λt −ρt∇λLt +γt(λt −λt−1),

where the last term is the momentum. Based on the Vprop in Eq.(5.12) and (5.14), the update
of µ and σ for the Adam-like optimizer with NGVI, also called as Variational Adam (VAdam),
could be defined as following:

(5.16) µt+1 =µt −βt(ĝ(θt)+ δ̃µt)/(st+1 + δ̃)+γt

⌊
st + δ̃

st+1 + δ̃

⌋
◦ (µt −µt−1),

(5.17) st+1 = (1−βt)st +βt[ĝ(θt)◦ ĝ(θt)].

where “◦" stands for element-wise product, θt ∼ N (αθ | µt,σ2
t ) with σ2

t = 1/[N(st + δ̃)]. As
pointed out in Sec. 5.2.3 and shown in Eq.(5.16) and Eq.(5.17), the distribution q(αθ)=N (αθ |
µ,σ2) is now optimized, needing to calculate the gradient of only one parameter.

5.3.3 Implicit Regularization with MCMC Sampling

Several recent works [23, 24, 152] empirically and theoretically show that the performance of
differentiable NAS is highly related to the norm of H , the Hessian matrix of Lval(w∗,αθ),
and keeping this norm in a low level plays a key role in robustifying differentiable NAS. As
described before, we know the loss Eqt(αθ)

[ ¯̀(αθ)
]

of architecture optimization in BaLeNAS
is calculated based on MCMC sampling, showing the naturality of enhancing exploration.
Besides, Eqt(αθ)

[ ¯̀(αθ)
]

also has the naturality to enhance the stability in differentiable NAS.
When conducting the Taylor expansion, the loss function for the architecture parameters update
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Algorithm 5 BaLeNAS
Input: Dtrain, Dval
Create a supernet w with a mixed operation parametrized by αθ

1: while not converged do
2: Update µ and σ2 for q(αθ | µ,σ2) based on Eq.(5.16) and Eq.(5.17), with VAdam

optimizer.
3: Update supernet weights w based on cross-entropy loss with the common SGD opti-

mizer.
4: end while
5: Obtain discrete architecture α∗ through argmax.

Eqt(αθ)
[ ¯̀(αθ)

]
could be described as:

(5.18)

Eqt(αθ)
[ ¯̀(αθ)

]=Eq(αθ |µ,σ)Lval(w,αθ)= Eε∼N (0,σ2)Lval(w,µ+ε)

=Eε∼N (0,σ2)[Lval(w,µ)+OµLval(w,µ)Tε+ 1
2
εTH ε]

=Eε∼N (0,σ2)

[
Lval(w,µ)+ 1

2
εTH ε

]
=Lval(w,µ)+ σ2

2
Tr {H } ,

where the line 4 in Eq.(5.18) is obtained since Eε∼N (0,σ2)[OµLval(w,αθ)Tε]= Eε∼N (0,σ2)[ε]∗
OµLval(w,αθ)= 0, as ε∼N (0,σ2) is a Gaussian distribution with zero mean, and E(ε2)=σ2.
µ is the expectation parameter of q(αθ |µ,σ2), and H is the Hessian matrix of Lval(w,µ). We
can find the loss function that could implicitly control the trace norm of H similar as [23, 24],
helping stabilizing differentiable NAS.

5.3.4 Depth-Aware Regularization for BaLeNAS

Several recent works [109, 127, 171] observe that differentiable NAS prefers those shallower
cells with a larger width after searching on CIFAR-10, while these architectures achieve poor
generalization performance when transferring to large datasets. A recent study on neural
network optimization [122] gives a hint as to why most NAS methods prefer wider networks.
The authors define a simple concept as gradient confusion, where a smaller gradient confusion

tends to faster the convergence. They show that increasing the width leads to lower gradient
confusion. The theoretical analysis in [127, 171] also states that shallow cells have more smooth
landscapes and can be optimized faster than deep architectures, leading DARTS to a bias of
shallow structures.

To resolve this bias in the differentiable NAS, we could increase the depth of cells during
the architecture search. An intuitive way is to use the l0 norm to encourage the connection ci, j
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Figure 5.1: Comparison of node connection in original DARTS and depth-aware DARTS.

between node i and j during the search:

(5.19) ldepth
0 =

|C|∑
j=1

d(c j), d(c j) ∈ {0,1},

where d(c j)= 1 when c j connects node i and i−1 in the sampled architecture α based on αθ,
and |C| is the number of all candidate connections in a sampled structure α. However, this
discrete sampling is non-differentiable [40, 140], and we reparameterize αθ using the Gumbel
trick to relax the discrete architecture distribution to be continuous and differentiable, with
ᾱθ = Sigmoid((log δ− log (1−δ)+αθ)/τ). Since the l0 norm of architecture parameters is still
non-differentiable, we could not directly incorporate Eq. (5.19) as regularization term in the
loss function L . While, with applying hard-sigmoid gates on the concrete distribution, we
could make the expected l0 regularized objective differentiable with respect to the distribution
parameters [97, 171]. Following [97, 171], we first “stretch" ᾱθ to (γ,ζ) via ᾱθ = γ+ (ζ−γ)ᾱθ,
where γ< 0 and ζ > 0. Then a hard threshold gate is applied to obtain the final architecture
parameter: α̂θ =min(1,max(0, ᾱθ)). The loss function for the Eq. (5.19) could be reformulated
as:

(5.20) L
depth
0 =−

|C|∑
j=1

Sigmoid(αdepth
θ, j −τlog

−γ

ζ
),

where α
depth
θ, j is the parameter that controls the connection between node i and i−1. However,

in the DARTS codebase, there is no controlling parameters for the depth connections ci,i−1.
Thus, we convert the zero operation in the candidate operations as a connection parameter as
shown in Fig.5.1. In this way, we could encourage the depth through controlling the connection
parameters α

depth
θ, j between node i and i−1. The final loss function to encourage the deep cell

structures is then defined as:

(5.21) ¯̀(αθ)=Lval(w∗,αθ)+η1L
depth
0 (αθ),

where η1 is the regularization trade-off. The natural parameter λ is then learned in the natural-
parameter space based on Eq.(5.21) and Eq.(5.11)
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5.4 Experimental Result

In this section, we consider three different search spaces to analyze the proposed BaLeNAS
framework. The first two are NAS benchmark datasets, NAS-Bench-201 [41] and NAS-Bench-
1Shot1 [154]. The ground-truth for all candidate architectures in the two benchmark datasets
is known. The NAS methods could be evaluated without retraining the searched architectures
based on these benchmark datasets, thus greatly relieving the computational burden. The third
one is the commonly-used CNN search space in DARTS [95]. The depth regularization is only
considered in the DARTS space. We first analyze our proposed BaLeNAS in the two benchmark
datasets, then compare BaLeNAS with state-of-the-art NAS methods in the DARTS search
space and analyze the proposed regularization-based method for differentiable NAS.

5.4.1 Experiments on Benchmark Datasets

The NAS-Bench-201 [41] has a unified cell-based search space, where the cell structure is
densely-connected, containing four nodes with five candidate operations applied on each node,
resulting in 15625 architectures. NAS-Bench-201 reports the CIFAR-10, CIFAR-100, and
Imagenet performance for all architecture in this search space. The NAS-Bench-1Shot1 [154]
is built from the NAS-Bench-101 benchmark dataset [150], through dividing all architectures in
NAS-Bench-101 into 3 different unified cell-based search spaces, with containing 6240, 29160,
and 363648 architectures, respectively, and the CIFAR-10 performance for all architectures in
these three search spaces are reported. The architectures in each search space have the same
number of nodes and connections, making the differentiable NAS could be directly applied to
each search space.

5.4.1.1 Reproducible comparison on NAS-Bench-201

Table 6.1 summarizes the performance of BaleNAS on NAS-Bench-201 compared with differ-
entiable NAS baselines, where the statistical results are obtained from 4 independent search
experiments with four different random seeds. As shown in Table 6.1, our BaLeNAS achieves
the best results on the NAS-Bench-201 benchmark and greatly outperforms other baselines
on all three datasets. BaLeNAS (2nd) even achieves the near-optimal point with random seed

{100,101}, with a 94.37%, 73.22%, and 46.71% test accuracy on CIFAR-10, CIFAR-100, and
ImageNet, respectively. As described, our BaLeNAS is built based on the DARTS framework,
with only modeling the architecture parameters into distributions and introducing Bayesian
learning rule for optimization. As shown in Table 6.1, our BaLeNAS (1st) and BaLeNAS
(2nd) both outperform DARTS with first and second-order approximations by large margins,
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Table 5.1: Comparison results with state-of-the-art weight-sharing NAS approaches.

Method Test Error (%) Param FLOPs Search Architecture
CIFAR-10 CIFAR-100 ImageNet (M) (M) Cost Optimization

NASNet-A [172] 2.65 17.81 26.0 / 8.4 3.3 604 1800 RL
AmoebaNet-A [118] 3.34±0.06 - 25.5 / 8.0 3.2 526 3150 EA
ENAS [114] 2.89 18.91 - 4.6 - 0.5 RL
RandomNAS [86] 2.85±0.08 17.63 27.1 4.3 595 2.7 random
NSAS [158] 2.85±0.08 17.63 25.5 / 8.2 4.3 593 2.7 random

SNAS [140] 2.85±0.02 20.09 27.3 / 9.2 2.8 467 1.5 gradient
SETN [42] 2.69 17.25 25.7 / 8.0 4.6 601 1.8 gradient
BayesNAS [170] 2.81±0.04 - 26.5 / 8.9 3.40 - 0.2 gradient
RENAS [27] 2.88±0.02 - 24.3 3.5 6 RL&EA
MdeNAS [169] 2.55 17.61 25.5 / 7.9 3.61 500 0.16 gradient
GDAS [40] 2.93 18.38 26.0 / 8.5 3.4 538 0.21 gradient
XNAS* [109] 2.57±0.09 16.34 24.7 / 7.5 3.7 590 0.3 gradient
PDARTS [25] 2.50 16.63 24.4 / 7.4 3.4 543 0.3 gradient
PC-DARTS [142] 2.57±0.07 17.11 25.1 / 7.8 3.6 571 0.3 gradient
DrNAS [24] 2.54±0.03 16.30 24.2 / 7.3 4.0 644 0.4 gradient
DARTS+ [91] 2.50±0.11 16.28 - 3.7 - 0.4 gradient
DARTS (2nd) [95] 2.76±0.09 17.54 26.9 / 8.7 3.4 530 4 gradient

BaLeNAS 2.43±0.08 15.72 24.2 / 7.3 3.86 597 1.3 gradient
BaLeNAS w/o 2.50±0.07 16.84 25.0 / 7.7 3.82 593 1.3 gradient

“BaLeNAS w/o" indicates BaLeNAS without the depth regularization. “Param" is calculated when applied on
CIFAR-10, while “FLOPs" is based on the ImageNet. Our best single-run with BaLeNAS on CIFAR-10 achieved
2.37% test error.

verifying the effectiveness of our method. By formulating the architecture search as a distri-
bution learning problem and introducing the Bayesian learning rule to optimize the posterior
distribution, our BaLeNAS can relieve the instability and naturally enhance exploration to
avoid local optimum for differentiable NAS.

5.4.1.2 Reproducible comparison on NAS-Bench-1Shot1

We then conduct an ablation study on the NAS-Bench-1Shot1 dataset to verify the effectiveness
of our BaLeNAS further. We have compared BaLeNAS with the baseline DARTS on the three
search spaces of NAS-Bench-1Shot1 with tracking the validation and test performance of the
search architectures in every iteration. As shown in Fig. 5.2, our BaLeNAS generally outper-
forms DARTS during the architecture search in terms of validation and test error in the most
complicated search space 3, both with first and second-order approximation. More specifically,
our BaLeNAS significantly outperforms the baseline in the early stage, demonstrating our
BaLeNAS could quickly find the superior architectures and is more stable.
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(a) Comparison results with baseline using first or-
der approximation

(b) Comparison results with baseline using second
order approximation

Figure 5.2: Validation and test error of BaLeNAS and DARTS on the search space 3 of NAS-Bench-
1Shot1.

5.4.2 Experiments on DARTS Search Space

To compare with the state-of-the-art differentiable NAS methods, we applied BaLeNAS to
the typical DARTS search space [40, 86, 95] for convolutional architecture search, where all
experiment settings are following DARTS [95] for fair comparisons as the same as the most
recent works. The architecture search in DARTS space generally contains three stages: The
differentiable NAS first searches for micro-cell structures on CIFAR-10, and then stack more
cells to form the full structure for the architecture evaluation. The best-found cell on CIFAR-10
is finally transferred to larger datasets to evaluate its transferability.

5.4.2.1 Search Results on CIFAR-10

The comparison results with the state-of-the-art NAS methods are presented in Table 5.1. We set
η1 = 0.05 for regularization on the DARTS search space. The best architecture searched by our
BaLeNAS achieves a 2.37% test error on CIFAR-10, which outperforms state-of-the-art NAS
methods. We can also see that BaLeNAS outperforms DARTS by a large margin, demonstrating
the effectiveness of the proposed method. Besides, although BaLeNAS introduced MCMC
during architecture optimization, it is still efficient in the sense that the whole architecture
search phase in BaLeNAS (2nd) only took 1.3 GPU days.

5.4.2.2 Transferability Results Analysis

Following DARTS experimental setting, the best-searched architectures on CIFAR-10 are then
transferred to CIFAR-100 and ImageNet to evaluate the transferability. The evaluation setting
for CIFAR-100 is the same as CIFAR-10. In the ImageNet dataset, the experiment setting is
slightly different from CIFAR-10 in that only 14 cells are stacked, and the number of initial
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Figure 5.3: The best normal cells discovered by BaLeNAS with and without depth regularization.

channels is changed to 48. The comparison results with state-of-the-art differentiable NAS
approaches on CIFAR-100 and ImageNet are demonstrated in Table 5.1. As shown in Table2,
BaLeNAS achieves a 15.72% test error on the CIFAR-100 dataset, which is a state-of-the-art
performance and outperforms peer algorithms by a large margin. On the ImageNet dataset, the
best-discovered architecture by our BaLeNAS also achieved a competitive result with 24.2 /
7.3 % top1 / top5 test error, outperforming or on par with all peer algorithms.

5.4.2.3 Effectiveness of Depth Regularization

As described in Sec.5.3.4, we deploy a depth-aware regularization method to our BaLeNAS,
to search for superior architectures on the complicated DARTS search space. we conduct
experiments to validate the effectiveness of depth-aware regularization. Fig.5.3 (a) and (b)
show the normal cells searched by the proposed BaLeNAS with and without the proposed
depth-aware. Table 5.1 also gives the results on CIFAR-10, CIFAR-100, and ImageNet for the
two architectures. Although the shallow cell searched by BaLeNAS w/o achieves competitive
results with 2.50% test error on the small CIFAR-10 dataset, its performance is much worse
than the deeper one when transferring to larger datasets, only achieving 16.84% and 25.0%
on CIFAR-100 and ImageNet compared with 15.72% and 24.2% of the deeper one. Fig.5.4
(a) tracks the depth ratio of the searched architectures with and without depth regularization.
The proposed BaLeNAS without regularization is also likely to select shallow architectures. In
contrast, with the proposed depth-aware regularization, BaLeNAS is encouraged to search for
deep cell structures. Fig.5.4 (b) plots the validation accuracy during the architecture evaluation
on the ImageNet dataset for the two architectures. We could observe that the shallow one
is easy to be trained as it achieves better results in the early stage, while the deep one is
more promising as it obtains better performance after the training is complete. These results
suggest that encouraging differentiable NAS to search for “deeper" architectures could improve
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(a) Depth of the searched cells (b) Validation accuracy curve

Figure 5.4: (a) The depth of the searched cells during the architecture search with and without depth-
aware regularization. (b) The validation performance of searched architectures by BaLeNAS and
BaLeNAS w/o on ImageNet.

transferability in the real-world search space.

5.4.3 Ablation Study of MCMC on NAS-Bench-201

As we described in Section 5.3, one key additional hyperparameter in BaLeNAS is the sampling
number M in MCMC, and this subsection investigates how this hyperparameter affects the
performance of BaLeNAS. Table 5.2 summarizes the performance our BaLeNAS (2nd) with
different number of MCMC sampling. As shown, our BaLeNAS is very robust to the number
of MCMC sampling, where BaLeNAS achieves excellent results under different scenarios,
outperforming most existing NAS baselines. An interesting observation is that the performance
of BaLeNAS decreases with multiple samplings M > 1 in MCMC, and M = 1 achieves the
best performance. A detailed explanation can be found in the Section 3.4 of [72]. The VAdam
optimizer adopted by BaLeNAS considers a gradient magnitude (GM) approximation to update
st+1 in Eq. (5.14) that:

(5.22) ∇̂2
j, j

¯̀(θt)≈
[

1
M

∑
i∈Mt

g i(α
j
θ
)

]2

= [ ĝ(θ j
t )]2.

However, the Theorem 1 in [72] points out that the GM approximation is an unbiased estimator
of the Generalized Gauss-Newton (GGN) approximation only when M = 1, and VAdam with
M > 1 will converge fast while might result in slightly worse estimates.

5.4.4 Ablation Study on the Effect of Exploration

Several recent works [24, 127, 161] point out that directly optimizing architecture parameters
without exploration easily entails the rich-gets-richer problem, leading to those architectures
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5.4. EXPERIMENTAL RESULT

Table 5.2: Comparison results with different MCMC number for BaLeNAS on NAS-Bench-201.

MCMC number CIFAR-10 CIFAR-100 ImageNet-16-120
Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%)

M = 1 91.52±0.09 94.33±0.04 72.67±0.08 72.95±0.27 45.39±0.17 46.32±0.39
M = 2 89.71±2.12 92.75±1.87 70.25±2.92 70.43±2.45 31.63±2.15 43.15±2.95
M = 3 91.31±0.25 94.03±0.35 72.08±1.27 72.30±1.09 45.72±0.78 45.58±0.78
M = 4 90.03±0.96 93.04±1.09 68.80±1.46 69.20±1.86 43.09±2.93 43.21±2.88

DARTS (2nd) 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10
optimal 91.61 94.37 74.49 73.51 46.77 47.31

Figure 5.5: The ratio of skip-connection the searched normal cells during the architecture search in the
DARTS space.

that converge faster at the beginning while achieve poor performance at the end of training,
e.g. architectures with intensive skip-connections [33, 91]. However, when the number of
skip-connections is larger than 3, the architecture’s retraining accuracy is usually extremely low
[91, 152]. To relieve this issue, we formulate the differentiable neural architecture search as a
distribution learning problem. In this subsection, we investigate how the proposed formulation
relieves this issue. Fig. 5.5 plots the ratio of skip-connection in the searched normal cell for
BaLeNAS and DARTS (the total number of operations in a cell is 8). As shown, DARTS is
likely to select more than 3 skip-connection in the normal cell during the search. In contrast, in
the proposed BaLeNAS, the number of skip-connections is generally less than 2 in the normal
cell during the search for BaLeNAS.
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Normal cell for DARTS Reduction cell for DARTS 

Normal cell for BaLeNAS Reduction cell for BaLeNAS 

Figure 5.6: Trajectory of the Hessian norm in DARTS space.

5.4.5 Tracking of the Hessian norm

As described in Section 5.2.1, the incongruence between Lval(w∗,α∗
θ
) and Lval(w∗,α∗) is not

negligible if we could not maintain the maintains the Hessian norm at a low level during the
search. The analysis in Section 5.3.4 and Eq. (5.18) shows that the loss function of the proposed
BaLeNAS implicitly controls the trace norm of H similar as [23, 24], helping stabilizing
differentiable NAS. We plot the trajectory of the Hessian norm of BaLeNAS compared with
the vanilla DARTS in Fig. 5.6. As show, the Hessian norm in our BaLeNAS is always kept in a
low level. Although the Hessian norm of BaLeNAS also increases with the supernet training
similar as DARTS, its largest value is still smaller than the Hessian norm of DARTS in the
early stage, showing the effectiveness of implicit regularization of our BaLeNAS.

5.5 Chapter Summary and Discussion

This chapter formulates the architecture optimization in the differentiable NAS as a distribution
learning problem and introduces a Bayesian learning rule to optimize the architecture parameters
posterior distributions. We theoretically demonstrate that the proposed framework can enhance
the exploration for differentiable NAS and implicitly impose regularization on the norm of
Hessian matrix to improve the stability. We operationalize the framework based on the common
differentiable NAS baseline, DARTS, and experimental results on NAS benchmark datasets
have verified the proposed framework’s effectiveness. To further improve the transferability,
we have proposed a depth regularization methods to encourage the depth of the searched
cells. Experimental results on the typical DARTS search space validate the advantages of this
regularization method.

As we described, although Differentiable Architecture Search (DARTS) has received
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massive attention in recent years, mainly because it significantly reduces the computational
cost through weight sharing and continuous relaxation, more recent works find that existing
differentiable NAS techniques struggle to outperform naive baselines, yielding deteriorative
architectures as the search proceeds. Rather than directly optimizing the architecture parameters,
this chapter formulates the neural architecture search as a distribution learning problem through
relaxing the architecture weights into Gaussian distributions. By leveraging the natural-gradient
variational inference (NGVI), the architecture distribution can be easily optimized based on
existing codebases without incurring more memory and computational consumption. This
chapter opens up a new direction for the differentiable neural architecture search, considering
architecture search as a distribution learning problem rather than magnitude optimization, since
this reformulation can naturally enhance exploration and improve stability.
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6
DIFFERENTIABLE ARCHITECTURE SEARCH WITH

STOCHASTIC IMPLICIT GRADIENTS

6.1 Introduction

Neural Architecture Search (NAS) is an efficient and effective method on automating the process
of neural network design, with achieving remarkable success on image recognition [82, 84, 133],
language modeling [67], and other deep learning applications [28, 31, 119]. The early NAS
frameworks are devised via reinforcement learning (RL) [114] or evolutionary algorithm (EA)
[118] to directly search on the discrete space. To further improve the efficiency, several recently-
proposed works [28, 40, 95, 142] adopts the continuous relaxation to convert the operation
selection problem into the continuous magnitude optimization for a set of candidate operations,
where a recently proposed Differentiable ARchiTecture Search (DARTS) [95] has recently
become the mainstream of neural architecture search due to its efficiency and simplicity. With
a gradient-based bi-level optimization, DARTS alternately optimizes the inner model weights
and the outer architecture parameter in a weight-sharing supernet. A key challenge to the
scalability and quality of the learned architectures is the need for differentiating through the
inner-loop optimisation. By enabling the gradient descent for the architecture optimization,
DARTS significantly reduces the search cost to several GPU hours.

Despite its efficiency, more current works observe that DARTS is somewhat unreliable [23,
86, 124, 152, 159, 161] since it does not consistently yield excellent solutions, performing even
worse than random search in some cases. The recent work [152] attributes the failure of DARTS
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to its supernet training, with empirically observing that the instability of DARTS is highly
correlated to the dominant eigenvalue of the Hessian matrix of the validation loss with respect
to architecture parameters. Paper [151] also empirically showed that the supernet training
negatively impacts the correlation between the validation performance by inheriting wights
from supernet and training from the scratch. On the other hand, [136] turn to the magnitude-
based architecture selection process, who empirically and theoretically show the magnitude
of architecture parameters does not necessarily indicate how much the operation contributes
to the supernet’s performance. Other researchers [23] observe a precipitous validation loss
landscape with respect to architecture parameters, which leads to a dramatic performance drop
when discretizing the final architecture for the operation selection. Accordingly, they propose a
perturbation based regularization to smooth the loss landscape and improve the stability. Liang
et al.’s [90] solution is to introduce another simple “early stopping” criteria, where the search
procedure ends as soon as one cell has two or more skip-connections.

While there are many variants on improving the DARTS from various aspects, limited
research attention has been paid to the approximation of the architecture parameter gradient,
which is also called the outer-loop gradient or hypergradient. To fill the gap, this paper focuses
on the hypergradient calculation in the differentiable NAS. The main contribution of this work
is the development of the differentiable architecture search with stochastic implicit gradients
(iDARTS). Specifically, we first revisit the DARTS from the bi-level optimization perspective
and utilize the implicit function theorem (IFT) [10, 96], instead of the one-step unroll learning
paradigm adopted by DARTS, to calculate the architecture parameter gradient. This IFT based
hypergradient depends only on the obtained solution to the inner-loop optimization weights
rather than the path taken, thus making the proposed method memory efficient and practical
with numerous inner optimization steps. Then, to avoid calculating the inverse of the Hessian
matrix with respect to the model weights, we utilize the Neumann series [96] to approximate
this inverse and propose an approximated hypergradient for DARTS accordingly. After that, we
devise a stochastic approximated hypergradient to relieve the computational burden further,
making the proposed method applicable to the differentiable NAS. We theoretically demonstrate
that, under some mild assumptions [36, 47, 52] on the inner and outer loss functions, the
proposed method is expected to converge to a stationary point with small enough learning rates.
Finally, we verify the effectiveness of the proposed approach on two NAS benchmark datasets
and the common DARTS search space.

We make the following contributions in this chapter:

• This paper deepens our understanding of the hypergradient calculation in the differen-
tiable NAS. We reformulated the hypergradient in the differentiable NAS with the implicit
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function theorem (IFT), which can thus gracefully handle many inner optimization steps
without increasing the memory requirement.

• To relieve the heavy computational burdens, we consider a Neumann-approximation for
the IFT based differentiable NAS. Further, to make the implicit hypergradient practical
for differentiable NAS, we formulate a stochastic hypergradient with the Neumann-
approximation.

• We provide a theoretical analysis of the proposed method and demonstrate that the
proposed method is expected to converge to a stationary point when applied to differ-
entiable NAS. Extensive experiments verify the effectiveness of the proposed method
which significantly improves the performance of the differentiable NAS baseline on
the NAS-Bench-1Shot1 and the NAS-Bench-201 benchmark datasets and the common
DARTS search space.

This chapter is based on a publication “Miao Zhang, Steven Su, Shirui Pan, Xiaojun Chang,

Huiqi Li, Ehsan Abbasnejad, Gholamreza Haffari, iDARTS: Differentiable Architecture Search

with Stochastic Implicit Gradients. In International Conference on Machine Learning (ICML),

2021” [165]. Miao Zhang conceived the original idea of focusing on the hyper-gradient of bi-
level optimization framework based DARTS. The iDARTS algorithm was originally proposed
by Miao Zhang. Steven Su helped Miao Zhang to verify all derivations of theoretical parts in
this paper. Miao Zhang conducted all experiments. The first version of the paper was written
by Miao Zhang with some help from Gholamreza Haffari and Shirui Pan. Gholamreza Haffari
and Shirui Pan revised the paper many times. The authors Xiaojun Chang, Huiqi Li, Ehsan
Abbasnejad, and Gholamreza Haffari provided feedback during the writing of the paper.

6.2 Preliminaries: Hypergradient Approximation in
DARTS

Existing differentiable NAS methods mostly leverage the weight sharing and continuous relax-
ation to enable the gradient descent for the discrete architecture search, significantly improving
the search efficiency. DARTS [95] is one of the most representative differentiable NAS methods,
which utilizes the continuous relaxation to convert the discrete operation selection into the mag-
nitude optimization for a set of candidate operations. Typically, NAS searches for cells to stack
the full architecture, where a cell structure is represented as a directed acyclic graph (DAG)
with N nodes. NAS aims to determine the operations and corresponding connections for each
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node, while DARTS applies a softmax function to calculate the magnitude of each operation,
transforming the operation selection into a continuous magnitude optimization problem:

Xn = ∑
0≤s<n

|O |∑
o=1

ᾱ
(s,n)
o o(Xs), ᾱ

(s,n)
o = exp(αs,n

o )∑
o′∈O exp(αs,n

o′ )
,

where Xn is the output of node n, O contains all candidate operations, and the output of
each node is the weighted sum of its previous nodes’ outputs affiliated with all possible
operations. In this way, DARTS transforms the discrete architecture search into optimizing
the continuous magnitude α̂

s,n
o , enabling gradient descent for the architecture optimization. A

discrete architecture is obtained by applying an argmax function to the magnitude matrix after
the differentiable architecture optimization.

The optimization in DARTS is based on the bi-level optimization formulation [34, 95]:

(6.1)
min
α

Lval(w∗(α),α)

s.t. w∗(α)= argminw Ltrain(w,α),

where α is the continuous architecture representation and w is the supernet weights. We
indicate the Lval as L2 and the Ltrain as L1 in the remaining text for convenience. The nested
formulation in DARTS is the same as the gradient-based hyperparameter optimization with
bi-level optimization [46, 102, 113], where the inner-loop is to train the network parameter w
and the outer-loop is to optimize the architecture parameter α. The gradient of the outer-loop
for DARTS is then calculated as:

(6.2) ∇αL2 = (
∂L2

∂α
+ ∂L2

∂w
∂w∗(α)

∂α
).

DARTS considers the one-step unroll learning paradigm [95, 116] for the hypergradient
calculation. This is done by taking a single step in optimising w instead of the optimal w∗.

Different from the majority of existing works that attributes the failure of DARTS to its
supernet optimization [11, 152], or the final discretization with argmax [23, 135], this paper
revisits DARTS from the perspective of the hypergradient calculation ∇αL2. Rather than
considering the one-step unroll learning paradigm [44, 95], this paper utilizes the implicit
function theorem (IFT) [10, 96] to reformulate the hypergradient calculation in DARTS. In the
following subsection, we first recap the hypergradient calculation with different paradigms for
DARTS.

6.2.1 One-step Unrolled Differentiation

The one-step unroll learning paradigm, as adopted by DARTS, is commonly used in the bi-level
optimization based applications, including meta-learning [44], hyperparameter optimization
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[98], generative adversarial networks [108], and neural architecture search [95], as it simplifies
the hypergradient calculation and makes the bi-level optimization formulation practical for
large-scale network learning. As described above, the one-step unroll learning paradigm
restricts the inner-loop optimization with only one step training. Differentiating through the
inner learning procedure with one step w∗(α)= w−γ∇wL1, and obtaining ∂w∗(α)

∂α
=−γ

∂2L1
∂α∂w ,

DARTS calculates the hypergradient as:

(6.3) ∇αL DARTS
2 = ∂L2

∂α
−γ

∂L2

∂w
∂2L1

∂α∂w
,

where γ is the inner-loop learning rate for w.

6.2.2 Reverse-mode Back-propagation.

Another direction of computing hypergradient is the reverse-mode [45, 125], which trains
the inner-loop with enough steps to reach the optimal points for the inner optimization. This
paradigm assumes T-step is large enough to adapt w(α) to w∗(α) in the inner-loop. Defining Φ

as a step of inner optimization that wt(α)=Φ(wt−1,α), and defining Zt =∇αwt(α), we have:

Zt = AtZt−1 +Bt,

where At = ∂Φ(wt−1,α)
∂wt−1

, and Bt = ∂Φ(wt−1,α)
∂α

.
Then the hypergradient of DARTS with the reverse model could be formulated as:

(6.4) ∇αL Reverse
2 = ∂L2

∂α
+ ∂L2

∂wT
(

T∑
t=0

Bt At+1...AT).

Although the reverse-mode bi-level optimization is easy to implement, the memory require-
ment linearly increases with the number of steps T [45] as it needs to store all intermediate
gradients, making it impractical for deep networks. Rather than storing the gradients for all
steps, a recent work [125] only uses the last K-step (K << T) gradients to approximate the
exact hypergradient, which is called the truncated back-propagation. Based on the K-step
truncated back-propagation, the hypergradient for DARTS could be described as:

(6.5) hT−K = ∂L2

∂α
+ ∂L2

∂wT
ZT = ∂L2

∂α
+ ∂L2

∂wT
(

T∑
t=T−K+1

Bt At+1...AT).

The lemmas in [125] show that hT−K is a sufficient descent direction for the outer-loop
optimization.

Lemma 4. [125]. For all K ≥ 1, with T large enough and γ small enough, hT−K is a sufficient

descent direction that, i.e. h>
T−K∇αL2 ≥Ω(‖∇αL2‖2).
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6.3 Differentiable Architecture Search with Stochastic
Implicit Gradients

6.3.1 iDARTS: Implicit gradients differentiation.

Although hT−K significantly decreases memory requirements, it still needs to store K-step
gradients, making it impractical for differentiable NAS. In contrast, by utilizing the implicit
function theorem (IFT), the hypergradient can be calculate without storing the intermediate
gradients [10, 96]. The IFT based hypergradient for DARTS could be formulated as the
following lemma.

Lemma 5. Implicit Function Theorem: Consider L1, L2, and w∗(α) as defined in Eq.(6.1),
and with ∂L1(w∗,α)

∂w = 0, we have

(6.6) ∇αL2 = ∂L2

∂α
− ∂L2

∂w

[
∂2L1

∂w∂w

]−1
∂2L1

∂α∂w
.

This is also called as implicit differentiation theorem [96]. However, for a large neural
network, it is hard to calculate the inverse of Hessian matrix in Eq.(6.6), and one common
direction is to approximate this inverse. Compared with Eq.(6.6), the hypergradient of DARTS
[95] in Eq.(6.3), which adopts the one-step unrolled differentiation, simply uses an identity to

approximate the inverse
[

∂2L1
∂w∂w

]−1 = γI. This naive approximation is also adopted by [8, 98,
110]. In contrast, [113, 116] utilize the conjugate gradient (CG) to convert the approximation
of the inverse to solving a linear system with δ-optimal solution, with applications to the
hyperparameter optimization and meta-learning.

Recently, the Neumann series is introduced to approximate the inverse in the hyperparameter
optimization [96] for modern and deep neural networks since it is a more stable alternative
to CG and useful in stochastic settings. This paper thus adopts the Neumann series for the
inverse approximation and proposes an approximated hypergradient for DARTS accordingly.
A stochastic approximated hypergradient is further devised to fit with differentiable NAS
and relieve the computational burden, which is called Differentiable Architecture Search with
Stochastic Implicit Gradients (iDARTS). We theoretically show the proposed method converges
in expectation to a stationary point for the differentiable architecture search with small enough
learning rates. A detailed description and analysis of iDARTS follow in the next section.
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6.3.2 Stochastic Approximations in iDARTS

As described, our iDARTS utilizes the Neumann series to approximate the inverse of the
Hessian matrix for the hypergradient calculation in the IFT-based bi-level optimization of NAS.
We further consider a stochastic setting where the Neumann approximation is computed based
on minibatch samples, instead of the full dataset, enabling scalability to large datasets, similar
to standard-practice in deep learning.

This section starts by analyzing the bound of the proposed hypergradient approximation, and
then shows the convergence property of the proposed stochastic approximated hypergradient
for differentiable NAS.

Before our analysis, we give the following common assumptions in the bi-level optimiza-
tion.1

Assumption 3. For the outer-loop function L2:

1. For any w and α, L2(w, ·) and L2(·,α) are bounded below.

2. For any w and α, L2(w, ·) and L2(·,α) are Lipschitz continuous with constants Lw
2 > 0

and Lα
2 > 0.

3. For any w and α, ∇wL2(w, ·) and ∇αL2(·,α) are Lipschitz continuous with constants

L∇w
2 > 0 and L∇α

2 > 0 with respect to w and α.

Assumption 4. For the inner-loop function L1

1. ∇wL1 is Lipschitz continuous with respect to w with constant L∇w
1 > 0.

2. The function w : α → w(α) is Lipschitz continuous with constant Lw > 0, and has

Lipschitz gradient with constant L∇αw > 0.

3.
∥∥∇2

wαL1
∥∥ is bounded that

∥∥∇2
wαL1

∥∥≤ CL wα
1

for some constant CL wα
1

> 0.

6.3.2.1 Hypergradient approximation based on Neumann Series

In this subsection, we describe how to use the Neumann series to reformulate the hypergradient
in DARTS.

Lemma 6. Neumann series [96]: With a matrix A that ‖I − A‖ < 1, A−1 =∑∞
k=0(I − A)k.

1Similar assumptions are also considered in [36, 47, 51, 52].
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Based on Lemma 6, the Eq. (6.6) for the IFT based DARTS is formulated by Eq. (6.7) as
described in Corollary 1.

Corollary 1. With small enough learning rate γ< 1
L∇w

1
, the hypergradient in DARTS can be

formulated as:

(6.7)
∇αL2 = ∂L2

∂α
− ∂L2

∂w

[
∂2L1

∂w∂w

]−1
∂2L1

∂α∂w

= ∂L2

∂α
−γ

∂L2

∂w

∞∑
j=0

[
I −γ

∂2L1

∂w∂w

] j
∂2L1

∂α∂w
.

As shown in the Corollary 1, the approximated hypergradient for DARTS, denoted by
∇αL̃2 could be obtained by only considering the first K terms of Neumann approximation
without calculating the inverse of Hessian [96, 125] as,

(6.8) ∇αL̃2 = ∂L2

∂α
−γ

∂L2

∂w

K∑
k=0

[
I −γ

∂2L1

∂w∂w

]k
∂2L1

∂α∂w
.

As shown, we could observe the relationship between the proposed ∇αL̃2 and the hyper-
gradient of DARTS in Eq(6.3), which is the same as ∇αL̃2 when K = 0. In the following
theorem, we give the error bound between our approximated hypergradient ∇αL̃2 and the exact
hypergradient ∇αL2.

Theorem 1. Suppose the inner optimization function L1 is twice differentiable and is µ-

strongly convex with w around w∗(α). The error between the approximated gradient ∇αL̃2

and ∇αL2 in DARTS is bounded with
∥∥∇αL2 −∇αL̃2

∥∥6CL wα
1

CL w
2

1
µ

(1−γµ)K+1.

Theorem 1 states that the approximated hypergradient approaches to the exact hypergradient
as K increases. As described, the form of ∇αL̃2 is similar to the K-step truncated back-
propagation in Eq. (6.5), while the memory consumption of our ∇αL̃2 is only 1

K of the
memory needed to compute hT−K , as we only store the gradients of the final solution w∗.
In the following corollary, we describe the connection between the proposed approximated
hypergradient ∇αL̃2 and the approximation based on the truncated back-propagation hT−K

[125].

Corollary 2. When we assume wt has converged to a stationary point w∗ in the last K steps,

the proposed ∇αL̃2 is the same as the truncated back-propagation hT−K .
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6.3.3 Stochastic Approximation of Hypergradient

The Lemma 4 and Corollary 2 show that the approximated hypergradient ∇αL̃2 has the potential
to be a sufficient descent direction. However, it is not easy to calculate the implicit gradients
for DARTS based on Eq. (6.8) as it needs to deal with large-scale datasets in which the loss
functions are large sums of error terms:

L2 = 1
R

R∑
i=1

L i
2 ; L1 = 1

J

J∑
j=1

L
j

1 ,

where J is the number of minibatches of the training dataset Dtrain for the inner supernet
training L1, and R is the number of minibatches of the validation dataset Dval for the outer
architecture optimization L2. It is apparently challenging to calculate the gradient based on the
full dataset in each step. We therefore utilize the stochastic gradient based on individual mini-
batches in practice. That is, we consider the following stochastic approximated hypergradient,

(6.9) ∇αL̂ i
2(w j(α),α)= ∂L i

2

∂α
−γ

∂L i
2

∂w

K∑
k=0

[
I −γ

∂2L
j

1

∂w∂w

]k
∂2L

j
1

∂α∂w
.

where L i
2 and L

j
1 correspond to loss functions calculated by randomly sampled minibatches i

and j from Dval and Dtrain, respectively. This expression can be computed using the Hessian-
vector product technique without explicitly computing the Hessian matrix (see Appendix B).
Before analyzing the convergence of the proposed ∇αL̂2(w j(α),α), we give the following
lemma to show function L2 : α → L2(w,α) is differentiable with a Lipschitz continuous
gradient [36].

Lemma 7. Based on the Assumption 3 and 4, we have the function L2 : α→L2(w,α) is dif-

ferentiable with Lipschitz continuous gradient and Lipschitz constant L∇αL2 = L∇α

2 +L∇w
2 L2

w +
Lw

2 L∇αw.

Then we state and prove the main convergence theorem for the proposed stochastic approx-
imated hypergradient ∇αL̂ i

2(w j(α),α) for the differentiable NAS.

Theorem 2. Based on several assumptions, we could prove the convergence of the proposed

stochastic approximated hypergradient for differentiable NAS. Suppose that:

1. All assumptions in Assumption 3 and 4 and Corollary 1 are satisfied;

2. ∃D > 0 such that E
[‖ε‖2]≤ D ‖∇αL2‖2;
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Algorithm 6 iDARTS
Input: Dtrain and Dval . Initialized supernet weights w and operations magnitude αθ.

1: while not converged do
2: ? Sample batches from Dtrain. Update supernet weights w based on cross-entropy loss

with T steps.
3: ? Get the Hessian matrix ∂2L1

∂w∂w .
4: ? Sample batch from Dval . Calculate hypergradient ∇αL̂ i

2(w j(α),α) based on Eq.(6.9),
and update α with α←α−γα∇αL̂ i

2(w j(α),α).
5: end while
6: Obtain α∗ through argmax.

3. ∀i > 0, γαi satisfies
∑∞

i=1γαi =∞ and
∑∞

i=1γ2
αi

<∞.

4. The inner function L1 has the special structure: L
j

1 (w,α)= h(w,α)+h j(w,α), ∀ j ∈
1, ..., J, that h j is a linear function with respect to w and α.

With small enough learning rate γα for the architecture optimization, the proposed stochas-

tic hypergradient based algorithm converges in expectation to a stationary point, i.e.

lim
m→∞E

[∥∥∇αL̂ i
2(w j(αm),αm)

∥∥]= 0.

The ε is defined as the noise term between the stochastic gradient ∇αL i
2(w j(α),α) and the

true gradient ∇αL2 as:
εi, j =∇αL2 −∇αL i

2(w j(α),α).

where ∇αL i
2(w j(α),α) is the non-approximate version of Eq. (6.9) when K →∞.

Theorem 2 shows that the proposed stochastic approximated hypergradient is also a suf-
ficient descent direction, which leads the differentiable NAS converges to a stationary point.
The conditions 2-4 in Theorem 2 are common assumptions in analyzing the stochastic bi-level
gradient methods [36, 47, 51, 52]. We assume that L1 in Eq. (6.7) is µ-strongly convex with
w around w∗, which can be made possible by appropriate choice of learning rates [116, 125].
Another key assumption in our convergence analysis is the Lipshitz differentiable assumptions
for L1 and L2 in Assumption 3 and 4, which also received considerable attention in recent
optimization and deep learning literature [51, 68, 96, 101, 116].

6.3.4 Differentiable Architecture Search with Stochastic Implicit
Gradients

In this subsection, we give a whole picture of the proposed iDARTS. Different from DARTS
that alternatively optimizes both α and w with only one step in each round, iDARTS is
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Table 6.1: Comparison results with NAS baselines on NAS-Bench-201.

Method CIFAR-10 CIFAR-100 ImageNet-16-120
Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%)

ENAS [114] 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10
RandomNAS [86] 80.42±3.58 84.07±3.61 52.12±5.55 52.31±5.77 27.22±3.24 26.28±3.09
SETN [42] 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
GDAS [40] 89.88±0.33 93.40±0.49 70.95±0.78 70.33±0.87 41.28±0.46 41.47±0.21
DARTS [95] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00

iDARTS 89.86±0.60 93.58±0.32 70.57±0.24 70.83±0.48 40.38±0.593 40.89±0.68

optimal 91.61 94.37 74.49 73.51 46.77 47.31

iDARTS’s best single run achieves 93.76%, 71.11%, and 41.44% test accuracy on CIFAR-10, CIFAR-100, and
ImageNet, respectively.

supposed to train the supernet with enough steps to make sure the w(α) is near w∗(α) before
optimizing α. As described in Sec.6.3.1, we utilize the implicit function theorem to formulate

the hypergradient, where the inverse Hessian matrix
[

∂2L1
∂w∂w

]−1
is approximated through the

Neumann series, and the approximated hypergradient is called as implicit gradients. In the
deep learning community, it is apparently challenging to calculate the gradient based on the
full dataset in each step, and we therefore utilize the stochastic gradient based on individual
minibatches in practice. In this way, the final approximated hypergradient in our iDARTS
is termed as stochastic implicit gradients. The framework of our iDARTS is sketched in
Algorithm 1. Generally, it is impossible to consider a very large T for each round of supernet
weights w optimization, as the computational cost increase linear with T. Fortunately, empirical
experiments show that, with the weight sharing, the differentiable NAS can adapt w(α) to
w∗(α) with a small T in the later phase of architecture search.

6.4 Experimental Result

In Section 6.3, we have theoretically shown that our iDARTS can asymptotically compute
the exact hypergradient and lead to a convergence in expectation to a stationary point for
the architecture optimization. In this section, we conduct a series of experiments to verify
whether the iDARTS leads to better results in the differentiable NAS with realistic settings.
We consider three different cases to analyze iDARTS, including two NAS benchmark datasets,
NAS-Bench-1Shot1 [154] and NAS-Bench-201 [41], and the common DARTS search space
[95]. We first analyze the iDARTS on the two NAS benchmark datasets, along with discussions
of hyperparameter settings. Then we compare iDARTS with state-of-the-art NAS methods on
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Epoch
(a) Validation error

Epoch
(b) Test errors

Figure 6.1: Validation and test errors of iDARTS with different T and DARTS on the search space 3 of
NAS-Bench-1Shot1.

the common DARTS search space.

6.4.1 Reproducible Comparison on NAS-Bench-1Shot1

To study the empirical performance of iDARTS, we run the iDARTS on the NAS-Bench-1Shot1
dataset with different random seeds to report its statistical results, and compare with the most
closely related baseline DARTS [95]. The NAS-Bench-1Shot1 is built from the NAS-Bench-101
benchmark dataset [150], through dividing all architectures in NAS-Bench-101 into 3 different
unified cell-based search spaces. The architectures in each search space have the same number
of nodes and connections, making the differentiable NAS could be directly applied to each
search space. The three search spaces contain 6240, 29160, and 363648 architectures with the
CIFAR-10 performance, respectively. We choose the third search space in NAS-Bench-1Shot1
to analyse iDARTS, since it is much more complicated than the remaining two search spaces
and is a better case to identify the advantages of iDARTS.

Figure 6.1 plots the mean and standard deviation of the validation and test errors for
iDARTS and DARTS, with tracking the performance during the architecture search on the NAS-
Bench-1Shot1 dataset. As shown, our iDARTS with different T generally outperforms DARTS
during the architecture search in terms of both validation and test error. More specifically,
our iDARTS significantly outperforms the baseline in the early stage, demonstrating that our
iDARTS could quickly find superior architectures and is more stable.

As described, one significant difference from DARTS is that iDARTS can conduct more
than one training step in the inner-loop optimization. Figure 6.1 also analyzes the effects of
the inner optimization steps T, plotting the performance of iDARTS with different T on the
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NAS-Bench-1Shot1. As shown, the inner optimization steps positively affect the performance
of iDARTS, where increasing T helps iDARTS converge to excellent solutions faster. One
underlying reason is that increasing T could adapt w to a local optimal w∗, thus helping iDRTS
approximate the exact hypergradient more accurately. We should notice that the computational
cost of iDARTS also increases with T, and our empirical findings suggest a T = 5 achieves
an excellent compute and performance trade-off for iDARTS on NAS-Bench-1shot1. More
interesting, iDARTS with T = 1 is similar as DARTS which both conduct the inner optimization
with only one step, with the difference that iDARTS adopts the Neumann approximation while
DARTS considers the unrolled differentiation. We could observe that iDARTS still outperforms
DARTS by large margins in this case, showing the superiority of the proposed approximation
over DARTS.

6.4.2 Reproducible Comparison on NAS-Bench-201

The NAS-Bench-201 dataset [41] is another popular NAS benchmark dataset to analyze
differentiable NAS methods. The search space in NAS-Bench-201 contains four nodes with five
associated operations, resulting in 15,625 cell candidates. The search space of NAS-Bench-201
is much simpler than NAS-Bench-1Shot1, while it contains the performance of CIFAR-100,
CIFAR-100, and ImageNet for all architectures in this search space.

Table 6.1 summarizes the performance of iDARTS on NAS-Bench-201 compared with
differentiable NAS baselines, where the statistical results are obtained from independent search
experiments with different random seeds. As shown, our iDARTS achieved excellent results
on the NAS-Bench-201 benchmark and significantly outperformed the DARTS baseline, with
a 93.76%, 71.11%, and 41.44% test accuracy on CIFAR-10, CIFAR-100, and ImageNet,
respectively. As described above, iDARTS is built based on the DARTS framework, with only
reformulating the hypergradient calculation. These results in Table 6.1 verified the effectiveness
of our iDARTS, which outperforms DARTS by large margins.

Similar to the experiments in the NAS-Bench-1Shot1, we also analyze the importance of
hyperparameter T in the NAS-Bench-201 dataset. Figure 6.2 (a) summaries the performance
of iDARTS with different number of inner optimization steps T on the NAS-Bench-201. As
demonstrated, the performance of iDARTS is sensitive to the hyperparameter T, and a larger
T helps iDARTS to achieve better results while also increases the computational time, which
is also in line with the finding in the NAS-Bench-1Shot1. We empirically find that T = 4 is
enough to achieve competitive results on NAS-Bench-201.

The hypergradient calculation of iDARTS is based on the Neumann approximation in
Eq.(6.7), and one underlying condition is that the learning rates γ for the inner optimization
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Figure 6.2: Hyperparameter analysis of iDARTS on the NAS-Bench-201 benchmark dataset.

should be small enough to make
∥∥∥I −γ

∂2L1
∂w∂w

∥∥∥< 1. We also conduct an ablation study to analyze
how this hyperparameter affects our iDARTS, where Figure 6.2 (b) plots the performance of
iDARTS with different learning rates γ for the inner optimization on the NAS-Bench-201. As
shown, the performance of iDARTS is sensitive to γ, and a smaller γ is preferred, which also
offers support for the Corollary 1 and Theorem 1.

During the analysis of the convergence of iDARTS, the learning rate γα plays a key role in
the hypergradient approximation for the architecture optimization. Figure 6.2 (c) also summaries
the performance of iDARTS with different initial learning rate γα on the NAS-Bench-201. As
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Table 6.2: Comparison results with state-of-the-art weight-sharing NAS approaches.

Method
Test Error (%) Param +× Architecture

CIFAR-10 CIFAR-100 ImageNet (M) (M) Optimization

NASNet-A [172] 2.65 17.81 26.0 / 8.4 3.3 564 RL
PNAS [93] 3.41±0.09 17.63 25.8 / 8.1 3.2 588 SMBO
AmoebaNet-A [118] 3.34±0.06 - 25.5 / 8.0 3.2 555 EA
ENAS [114] 2.89 18.91 - 4.6 - RL
EN2AS [162] 2.61±0.06 16.45 26.7 / 8.9 3.1 506 EA
RandomNAS [86] 2.85±0.08 17.63 27.1 4.3 613 random
NSAS [158] 2.59±0.06 17.56 25.5 / 8.2 3.1 506 random

PARSEC [21] 2.86±0.06 - 26.3 3.6 509 gradient
SNAS [140] 2.85±0.02 20.09 27.3 / 9.2 2.8 474 gradient
SETN [42] 2.69 17.25 25.7 / 8.0 4.6 610 gradient
MdeNAS [169] 2.55 17.61 25.5 / 7.9 3.6 506 gradient
GDAS [40] 2.93 18.38 26.0 / 8.5 3.4 545 gradient
XNAS* [109] 2.57±0.09 16.34 24.7 / 7.5 3.7 600 gradient
PDARTS [25] 2.50 16.63 24.4 / 7.4 3.4 557 gradient
PC-DARTS [142] 2.57±0.07 17.11 25.1 / 7.8 3.6 586 gradient
DrNAS [24] 2.54±0.03 16.30 24.2 / 7.3 4.0 644 gradient
DARTS [95] 2.76±0.09 17.54 26.9 / 8.7 3.4 574 gradient

iDARTS 2.37±0.03 16.02 24.3 / 7.3 3.8 595 gradient

“*" indicates the results reproduced based on the best-reported cell structures with a common
experimental setting [95]. “Param" is the model size when applied on CIFAR-10, while “+×" is
calculated based on the ImageNet dataset.

shown in Figure 6.2 (c), the performance of iDARTS is sensitive to γα, where a smaller γα is
recommended, and a large γα is hardly able to converge to a stationary point. An underlying
reason may lay in the proof of Theorem 2, that choosing a small enough γα guarantees that the
iDARTS converges to a stationary point.

6.4.3 Experiments on DARTS Search Space

We also apply iDARTS to a convolutional architecture search in the common DARTS search
space [95] to compare with the state-of-the-art NAS methods, where all experiment settings are
following DARTS for fair comparisons. The search procedure needs to look for two different
types of cells on CIFAR-10: normal cell αnormal and reduction cell αreduce, to stack more cells
to form the final structure for the architecture evaluation. The best-found cell on CIFAR-10 is
then transferred to CIFAR-100 and ImageNet datasets to evaluate its transferability.

The comparison results with the state-of-the-art NAS methods are presented in Table 6.2,
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Figure 6.3: The best cells discovered by iDARTS on the DARTS search space.

and Figure 6.3 demonstrates the best-found architectures by iDARTS. As shown in Table 6.2,
iDARTS achieves a 2.37±0.03 % test error on CIFAR-10 (where the best single run is 2.35%),
which is on par with the state-of-the-art NAS methods and outperforms the DARTS baseline by
a large margin, again verifying the effectiveness of the proposed method.

Following DARTS experimental setting, the best-searched architectures on CIFAR-10 are
then transferred to CIFAR-100 and ImageNet to evaluate the transferability. The evaluation
setting for CIFAR-100 is the same as CIFAR-10. In the ImageNet dataset, the experiment
setting is slightly different from CIFAR-10 in that only 14 cells are stacked, and the number of
initial channels is changed to 48. We also follow the mobile setting in [95] to restrict the number
of multiply-add operations (“+×") to be less than 600M on the ImageNet. The comparison
results with state-of-the-art differentiable NAS approaches on CIFAR-100 and ImageNet are
demonstrated in Table 6.2. As shown, iDARTS deliveres a competitive result with 16.02%
test error on the CIFAR-100 dataset, which is a state-of-the-art performance and outperforms
peer algorithms by a large margin. On the ImageNet dataset, the best-discovered architecture
by our iDARTS also achieves a competitive result with 24.4 / 7.3 % top1 / top5 test error,
outperforming or on par with all peer algorithms. Please note that, although DrNAS achieved
outstanding performance on ImageNet, the number of multiply-add operations of its searched
model is much over 600 M, violating the mobile-setting.

6.4.4 Ablation study on the number of approximation terms

As we described before, there are two additional hyperparameters in our practical iDARTS,
the inner optimization steps T and the number of terms for the approximation in Eq.(6.8). We
have analyzed T in previous experiments. In this section, we analyze another hyperparameter
K on the NAS-Bench-1Shot1 benchmark dataset. In the first experiment, we set a default
hyperparameter T = 1 the same as DARTS for the inner supernet training to remove the bias
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Figure 6.4: Ablation study on K for iDARTS with T = 1 and T = 5 on NAS-Bench-1Shot1.

from T. From Eq.(6.8) and (6.3), we could further find that the hypergradient calculation in our
iDARTS with T = 1 and K = 0 is the same as DARTS. Figure 6.4 (a) (b) plots the performance
of iDARTS with different K on the NAS-Bench-1Shot1. As shown, our iDARTS is very robust
to K with limited training steps T = 1, where iDARTS with different K all outperform the
DARTS baseline with the same inner training steps T = 1, showing the superiority of the
proposed approximation over DARTS. Another interesting finding is that, our iDARTS with
K = 1 and T = 1 even achieve slightly more competitive results than K > 1. An underlying
reason is that, when the inner training step is too small, it is hard to achieve the local optimal
w∗ and the corresponding hypergradient is not accurate.

To further investigate the effectiveness of the proposed approximation, we consider setting
enough inner training steps with T = 5, and Figure 6.4 (c) (d) plots the performance of iDARTS
with different K on the NAS-Bench-1Shot1 under T = 5. The first impression from Figure
6.4 is that increasing inner training steps could significantly improve the performance, where
all cases with T = 5 generally outperform T = 1. Another interesting finding is that, with
enough inner training steps, the number of approximation terms K has a positive impact on
the performance of iDARTS. As shown in Figure 6.4 (c) (d), increasing K also helps iDARTS
converge to excellent solutions faster, verifying that the proposed ∇αL̂ i

2 could asymptotically
approach to the exact hypergradient ∇αL i

2 with the increase of approximation term K . Besides,
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Table 6.3: Ablation study on K for iDARTS with on NAS-Bench-201.

Method CIFAR-10 CIFAR-100 ImageNet-16-120
Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%)

DARTS(T = 1, K = 0) 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
iDARTS(T = 1, K = 1) 86.85±0.93 89.67±1.31 64.09±2.92 64.17±3.26 36.26±5.71 36.11± 5.77
iDARTS(T = 4, K = 0) 87.31±1.33 90.36±1.79 64.76±2.54 64.43±2.47 32.53±1.31 32.42±1.54
iDARTS(T = 4, K = 1) 89.30±1.47 92.44±1.14 67.88±1.86 68.17±2.81 37.11±7.79 36.61±7.47
iDARTS(T = 4, K = 2) 89.86±0.60 93.58±0.32 70.57±0.24 70.83±0.48 40.38±0.59 40.89±0.68
iDARTS(T = 4, K = 3) 89.35±0.03 92.29±0.26 68.51±0.77 68.58±1.18 42.37±0.48 42.26±0.41

we can find that, K = 2 is large enough to result in competitive performance for our iDARTS
on NAS-Bench-1shot1, which results in similar performance as K ≥ 3.

We also conduct an ablation study on NAS-Bench-201 dataset to analyse the hyperparameter
K , and Table 6.3 summarizes the performance of iDARTS on NAS-Bench-201 with a different
number of approximation term K . The results in Table 6.3 are similar to those on the NAS-
Bench-1Shot1 dataset, also showing that K has a positive impact on the performance of
iDARTS. Firstly, we can find that, with the same inner training steps T = 1 as DARTS baseline,
our iDARTS (T = 1, K = 1) with one approximation term outperform DARTS by large margins
in this case, verifying the superiority of the proposed approximation over DARTS. Secondly,
the results in Table 6.3 also demonstrate that considering more approximation terms does
indeed help improve our iDARTS to a certain degree. With enough inner training steps, the
performance of iDARTS increases with K from 0 to 2. Another interesting finding is that the
performance of iDARTS does not always increase with the K , and there is a decrease for K ≥ 3.
One underlying reason may be that, the iDARTS with smaller K brings more noises into the
hypergradient, which in turn enhances the exploration. Several recent works [23, 158] show the
importance of the exploration in the differentiable NAS, where adding more noises into the
hypergradient could improve the performance. Our experimental results suggest that a K = 2

achieves an excellent trade-off between the accuracy of hypergradient and the exploration, thus
achieving the competitive performance on the NAS-Bench-201 dataset.

6.5 Chapter Summary and Discussion

Although Differentiable ARchiTecture Search (DARTS) has recently become the mainstream of
neural architecture search (NAS) due to its efficiency and simplicity, DARTS adopts a lot of
inappropriate approximations in the estimation of architecture gradient, a.k.a. hypergradient.
With a gradient-based bi-level optimization, DARTS alternately optimizes the inner model
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weights and the outer architecture parameter in a weight-sharing supernet. A key challenge to
the scalability and quality of the learned architectures is the need for differentiating through the
inner-loop optimisation. While much has been discussed about several potentially fatal factors
in DARTS, the hypergradient has received less attention.

This chapter opens up a promising research direction for NAS by focusing on the hypergra-
dient approximation in the differentiable NAS. We introduced the implicit function theorem
(IFT) to reformulate the hypergradient calculation in the differentiable NAS, making it practical
with numerous inner optimization steps. To avoid calculating the inverse of the Hessian matrix,
we utilized the Neumann series to approximate the inverse.

With utilizing the implicit function theorem, we can tackle the hypergradient computation
in DARTS only depends on the obtained solution to the inner-loop optimization and agnostic to
the optimization path. To further reduce the computational requirements, a stochastic hypergra-
dient approximation is formulated for differentiable NAS, and we theoretically show that the
architecture optimization with the proposed method, named iDARTS, is expected to converge
to a stationary point when applied to a differentiable NAS. We based our framework on DARTS
and performed extensive experimental results to verify the proposed framework’s effectiveness.
Comprehensive experiments on two NAS benchmark search spaces and the common NAS
search space verify the effectiveness of our proposed method. It leads to architectures outper-
forming, with large margins, those learned by the baseline methods. While we only considered
the proposed stochastic approximated hypergradient for differentiable NAS, iDARTS can in
principle be used with a variety of bi-level optimization applications, including in meta-learning
and hyperparameter optimization, opening up several interesting avenues for future research.
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7
CONCLUSIONS AND FUTURE WORK

In this chapter, we first summarize the entire thesis, then we discuss the limitations of this
tehsis and provide some possible directions for future research.

7.1 Summary of Thesis

Automated Deep Learning (AutoDL) aims to build a better deep learning model in a data-driven
and automated manner, compensating for the lack of deep learning experts and lowering the
threshold of various areas of deep learning to help all the amateurs to use deep learning without
any hassle. This thesis focuses on the neural architecture search (NAS) in the AutoDL, with
addressing several issues in one-shot NAS and differentiable NAS.

Specifically, in Chapter 2, we originally focus on resolving the “rich-get-richer" problem
in supernet training for the weight-sharing neural architecture search, where a novelty search
is proposed to enhance the exploration for architecture sampling during the supernet training.
In particular, a novelty search mechanism is developed to efficiently find the most abnormal
architecture, and the single-path model is adopted to greatly reduce computational and memory
demand. Experimental results show the proposed approach could find the state-of-the-art or
competitive CNN and RNN models, and also improve the predictive ability of the supernet in
one-shot NAS. Rather than considering the validation performance-based indicator for archi-
tecture sampling, this chapter simply devises a diversity-based indicator to sample diversified
architectures for the supernet training in the one-shot NAS. As we can observe from the experi-
mental results, the proposed architecture sampling method obtains to a better predictive ability
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for the supernet in one-shot NAS, showing in the Sec.2.4.3. The underline reason is that, the
performance-based indicator usually leads to the “rich-get-richer" problem while the diversity-
based indicator has the potential to fairly train the supernet. This phenomenon suggests that the
validation performance by inheriting the weights from the supernet is deceptive, and devising
a more effective indicator for the architecture sampling or selection is a promising research
direction, which is also in line with several concurrent works [22, 105, 166].

In Chapter 3, we formulate supernet training as a constrained optimization problem to
reduce some of the negative impacts of catastrophic forgetting with one-shot NAS, and multi-
model forgetting in particular. Our strategy is to select a representative subset of constraints
with a greedy novelty search method. Then the supernet training is regularized in a feasible
region with a new novelty search-based architecture selection loss function, i.e., NSAS to
overcome multi-model forgetting. We implemented NSAS into two one-shot NAS baselines -
RandomNAS and GDAS - and compared the quality of the architecture selections with and
without the new loss function. The results of experiments on the common search space of
a neural architecture and the NAS-Bench-201 dataset show NSAS and two of its variants
improve the predictive ability of the supernet with both convolutional and recurrent cell search.
Catastrophic forgetting, which usually exists in the online learning, is also introduced into
neural architecture search in this chapter, since the supernet is trained under different paths.
Simply adding a regularization term on the supernet training can greatly improve the predictive
ability of the supernet of different NAS frameworks, as analyzed in Lemma 1 and observed
from the experimental results. It is clear that the NSAS loss function can easily increase the
predictive ability of the supernet, which, in turn, greatly improves the performance of the
architectures found by RandomNAS and GDAS. However, supernet training in one-shot NAS
is still a problem with much room for further advancements. Devising a more appropriate loss
function than the status quo appears to be a promising direction for improving the performance
of one-shot NAS methods.

Chapter 4 provides a means of efficiently, yet intelligently, searching for differentiable neural
architectures in a latent continuous space. A variational graph autoencoder transforms discrete
architectures into an equivalent continuous space by injective means, while a probabilistic
exploration enhancement method encourages intelligent exploration of the search space during
supernet training. In addition, the framework includes a novel architecture complementation
loss function to relieve catastrophic forgetting, along with a theoretical demonstration that
the proposed loss function provides an identical result to the currently-accepted best-practice
methods but is easier to calculate. Experiments on a NAS benchmark dataset and the common
DARTS convolutional search space show the effectiveness of the proposed framework. As we
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known, differentiable NAS methods transform the discrete architecture search problem into
a continuous optimization problem, while most of them hardly guarantee the optimization in
the latent space equals to the discrete space. The final discretization stage of DARTS is still an
open and unsolved problem, since the validation performance of a continuous representation
architecture can not exactly indicate the performance of a discrete one. There are several
recent works also try to relieve this issue, e.g. perturbation-based architecture selection[135].
This chapter points out another promising direction, transforming discrete architectures into
an equivalent continuous space by injective means, rather than the commonly used softmax-

argmax.

In Chapter 5, we formulate the architecture optimization in the differentiable NAS as a dis-
tribution learning problem and introduces a Bayesian learning rule to optimize the architecture
parameters posterior distributions. We theoretically demonstrate that the proposed framework
can enhance the exploration for differentiable NAS and implicitly impose regularization on the
norm of Hessian matrix to improve the stability. We operationalize the framework based on the
common differentiable NAS baseline, DARTS, and experimental results on NAS benchmark
datasets have verified the proposed framework’s effectiveness. To further improve the transfer-
ability, we have proposed a depth regularization methods to encourage the depth of the searched
cells. Experimental results on the typical DARTS search space validate the advantages of this
regularization method. Although Differentiable Architecture Search (DARTS) has received
massive attention in recent years, mainly because it significantly reduces the computational
cost through weight sharing and continuous relaxation, more recent works find that existing
differentiable NAS techniques struggle to outperform naive baselines, yielding deteriorative
architectures as the search proceeds. Rather than directly optimizing the architecture parameters,
this chapter formulates the neural architecture search as a distribution learning problem through
relaxing the architecture weights into Gaussian distributions. By leveraging the natural-gradient
variational inference (NGVI), the architecture distribution can be easily optimized based on
existing codebases without incurring more memory and computational consumption. This
chapter opens up a new direction for the differentiable neural architecture search, considering
architecture search as a distribution learning problem rather than magnitude optimization, since
this reformulation can naturally enhance exploration and improve stability.

Chapter 6 introduces the implicit function theorem (IFT) to reformulate the hypergradient
calculation in the differentiable NAS, making it practical with numerous inner optimization
steps. To avoid calculating the inverse of the Hessian matrix, we utilized the Neumann series
to approximate the inverse, and further devised a stochastic approximated hypergradient to
relieve the computational cost. We have theoretically analyzed the convergence and proved
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that the proposed method, called iDARTS, is expected to converge to a stationary point when
applied to a differentiable NAS. This chapter opens up a promising research direction for NAS
by focusing on the hypergradient approximation in the differentiable NAS. We introduced the
implicit function theorem (IFT) to reformulate the hypergradient calculation in the differentiable
NAS, making it practical with numerous inner optimization steps. We based our framework
on DARTS and performed extensive experimental results to verify the proposed framework’s
effectiveness. Comprehensive experiments on two NAS benchmark search spaces and the
common NAS search space verify the effectiveness of our proposed method. It leads to
architectures outperforming, with large margins, those learned by the baseline methods. While
we only considered the proposed stochastic approximated hypergradient for differentiable NAS,
iDARTS can in principle be used with a variety of bi-level optimization applications, including
in meta-learning and hyperparameter optimization, opening up several interesting avenues for
future research.

Generally, the thesis involves two popular paradigms in NAS, one-shot NAS and differ-
entiable NAS, where one-shot NAS performs architecture search in a discrete space while
differentiable NAS in a continuous space. In particular, we proposed a novelty driven sampling
method and formulate the supernet training as a constrained continual learning optimization
problem, to address the “rich-get-richer" problem and multi-model forgetting issue existing
in one-shot NAS. As to the differentiable NAS, we leverage a variational graph autoencoder
to relieve the non-negligible incongruence, formulating the neural architecture search as a
distribution learning problem to enhance exploration, and propose the differentiable architecture
search with stochastic implicit gradients to enable multi-step inner optimization. Despite the
two paradigms work in different spaces, they also share several common challenges. As we
described in the first part of this thesis, “rich-get-richer" and catastrophic forgetting are two
critical issues in one-shot NAS, while they also exist in the differentiable NAS where the
techniques proposed in the second part could also alleviate them. For example, the EN2AS
proposed in Chapter 2 utilized novelty search to enhance the exploration, while the BaLeNAS
proposed in Chapter 5 reformulated the architecture search into distribution learning which
naturally enhances exploration. Chapter 3 targeted on the catastrophic forgetting in one-shot
NAS and devises the NSAS loss function to overcome multi-model forgetting. More interesting,
the experimental results in Chapter 4 also showed that relieve the catastrophic forgetting in
differential NAS through an architecture complementation strategy could also improve the per-
formance. Rather than only focusing on the neural architecture search, Chapter 4 tried to reveal
some critical issues in the mathematic bilevel-optimization formulation of the differentiable
NAS, where Chapter 4 therefore proposed the an implicit function theorem based strategy,
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iDARTS, to calculate the hypergradient more accurately. More importantly, apart from neural
architecture search, iDARTS can in principle be used with a variety of bi-level optimization
applications, including in meta-learning and hyperparameter optimization, opening up several
interesting avenues for future research.

7.2 Limitations of Thesis and Future Work

The advancements of AutoDL and NAS in recent years make more people believe the AutoDL
system can beat experts in designing deep neural networks, and these advancements also raise
concerns about AutoDL hubris. Although recent several years witness the rapid development
of neural architecture search, NAS is still in the preliminary research stage, and it is still
very challenging to use it for practical applications, compared with the rapid development
and numerous application of deep neural network designed by human experts. In addition to
our study in this thesis, there are several possible pursuits on the neural architecture search.
In the following, we will describe several limitations in existing NAS community with the
discussion of possible research directions on the neural architecture search that we can make
breakthroughs in the future.

NAS with Human Knowledge. Existing NAS methods select neural networks only based
on the validation performance, making it hard to guarantee the searched architectures with
excellent transferability. Expert knowledge plays a key role in the manual-designed neural
networks, which determines goodness of architecture rather only based on the performance.
More important, the NAS methods could only find the best architecture in the search space at
most, while it is hard to determine the potential of the search space. For example, although
DARTS search space includes most human-designed neural network structures, it is hard to
know whether the desired neural network structure has been included in the search space. In our
future work, we will try to incorporate human knowledge into NAS for searching architectures
with better performance and transferability, where we focus on how to design a better search
space to help NAS methods to find more competitive architectures with efficiency.

NAS without Weight-Sharing Paradigm. In this thesis, the two NAS paradigms, one-shot
NAS and differentiable NAS, are based on the weight-sharing. While weight-sharing paradigm
is an efficient way to reduce the computational cost in NAS, more recent work find that this
strategy usually leads a sub-optimal architecture, making it impossible to find the optimal
structures for those weight-sharing paradigm based NAS methods. For example, DARTS
is unable to stably obtain excellent solutions and yields deteriorative architectures with the
search proceeding, performing even worse than random search in some cases. Furthermore,
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the validation performance by inheriting weights from the supernet could hardly indicate the
performance by training from scratch. In the future work, we will focus on other paradigms to
reduce the computational cost rather than weight-sharing, e.g., the neural architecture search
based on the weights generation and performance prediction.

NAS without Supernet Training nor Labels. More recent works found that supernet
training seems to deteriorate the performance with search progresse, and the validation perfor-
mance through inheriting weights is not a good indicator for architecture search. In addition,
although most NAS alternatively optimize the architecture parameters and model weights by
the supervision signal, (e.g., training and validation accuracy), the recent emerged unsupervised
NAS without label information [1, 83, 92, 144, 166] has been validated to achieve comparable
performance to supervised NAS methods. The above observations inspire us to discard the
supernet training and abandon the supervision signal in DARTS, with raising the question: can
we find high-quality architectures without training nor the labels? In future research, we will
focus on this interesting direction on neural architecture search.

More Applications. In Chapter 6, we only considered the proposed stochastic approximated
hypergradient for differentiable NAS, while it can in principle be used with a variety of
bi-level optimization applications, including meta-learning, graph structure learning, and
hyperparameter optimization, opening up several interesting avenues for future research. For
example, the meta-learning method can simulate the continuous learning process of experts in
designing the deep learning models. By introducing the meta-information, the performance of
neural architecture search can be further improved. Furthermore, rather than searching on the
benchmark datasets, it will be valuable if we apply the proposed NAS methods to real-world
applications, such as social media analysis, medical image processing, action recognition, and
so on.

In summary, Automatic Deep Learning (AutoDL) aims to build a better deep learning
model in a data-driven and automated manner, compensating for the lack of deep learning
experts and lowering the threshold of various areas of deep learning to help all the amateurs to
use machine learning without any hassle. AutoDL is an up-and-coming tool to take advantage
of the extracted data to find the solutions automatically. These days, the emergence of neural
architecture search (NAS) is an exciting development, which automatically builds Deep Neural
Networks for solving various tasks, including computer vision, natural language processing,
autonomous driving, and so on. However, it is worth notice that NAS is in its infancy, where
more additional theoretical guidance and experimental analysis are required. Finding out which
NAS designs can greatly improve the performance of NAS is still an open and critical research
problem. There is still a long way to go.
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A.1 Proof of Lemma 1

Lemma 1 describes the relationship between WPL and the proposed NSAS loss function. Since
the weights of current architecture θb are shared by the constraints described in Assumption
1, θ(e)

b ⊆ {θ(e)
1 ∪ ...∪ θ(e)

M }, and for every edge e in αt, we have θ
p
b = ;. Further, θi and θ j

(i, j = 1...M) are independent as the architectures are trained separately without shared weights,
as described in Assumption 2. Now the posterior probability in the WPL can be written as:

(A.1)

p(θ |D)= p(θ1...θM ,θb |D)= p(θp
1 ...θp

M ,θs
1...θs

M ,D)
p(D)

= p(θ1...θM ,D)
p(D)

= p(θ1 | θ2...θM ,D)p(θ2...θM ,D)
p(D)

= ∏
i=1:M

p(θi |D)∝ ∏
i=1:M

p(D | θi)p(θi)

= p(θ)
∏

i=1:M
p(D | θi)= p(θt)

∏
i=1:M

p(D | θi),

where θi is the weights of architecture αi in the constraint subset. As only architecture αt is
trained, p(θ) = p(θt), where θt is the weights of the current architecture αt, and θ is all the
considered weights. Eq.(A.1) derives the posterior probability without the assumption that θs

in the previous step is optimal. Hence, now, the WPL to optimize the posterior probability
p(θ |D) can be expressed as:

(A.2) LWPL(WA (αt))= εR(WA (αt))+ ∑
i=1:M

Lc(WA (αi)),
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where ε is the trade-off factor. And the proposed NSAS loss function with the WPL can be
expressed as:

(A.3)

LN(WA (αt))= (1−β)(Lc(WA (αt))+λR(WA (αt)))

+ β

M

∑
i=1:M

(Lc(WA (αi))+λR(WA (αi)))

=Lc(WA (αt))+γLWPL(WA (αt)).

A.2 Proof of Lemma 2

Lemma 2 operates on the assumption that the noise ξ is orthogonal to T and statistically
independent from the manifold. Given a new data point ᾱ, rather than directly calculating
the probability that the new points located in the distribution of the random variable A, the
probability of w̄ drawn from random variable W after coordinates rotation W = U> · A is
calculated instead:

(A.4) pA(ᾱ)= pW (w̄)= pW∥(w̄∥)pW⊥(w̄⊥).

In this way, we could calculate the two parts pW∥(w̄∥) and pW⊥(w̄⊥) to obtain the pA(ᾱ).
Beginning with

(A.5) w̄∥ =U∥>ᾱ=U∥>(ᾱ− ᾱ∥)+U∥>ᾱ∥ =U∥>ᾱ∥,

assume the noise ξ orthogonal to M , and we have U∥(ᾱ− ᾱ∥) ≈ 0. Based on Eq.(4.8) and
Eq.(A.5), we have

(A.6)
w̄∥ =U∥>D(ᾱθ)+U∥>U∥SV>(αθ − ᾱθ)+O(‖αθ − ᾱθ‖2)

=U∥>D(ᾱθ)+SV>(αθ − ᾱθ)+O(‖αθ − ᾱθ‖2)
.

Then pW∥(w̄∥) = pAθ
(U∥>D(ᾱθ)+SV>(αθ − ᾱθ)). Based on a linear transformation of the

probability density, we have

(A.7) pW∥(w̄∥)= ∣∣detS−1∣∣ pAθ
(αθ)

since V is a unitary matrix.
The next step is to calculate the second part of Eq.(4.10), which is also a component of the

noise ξ. As pW⊥(w̄⊥) is in m−n-dimensional Euclidean space, this calculation can be made by
approximating it with its average over a hypersphere S m−n−1 of radius ‖w⊥‖, where the noise
with the given intensity is assumed to be equally present in every direction. This should give

(A.8)
∫

2π
m−n−1

2

Γ( m−n
2 )

∥∥w̄⊥∥∥m−n−1
pW⊥(w̄⊥)d(‖w̄⊥‖)= 1,
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and also

(A.9)
∫

p‖W⊥‖(‖w̄⊥‖)d(‖w̄⊥‖)= 1.

Let

(A.10) p‖W⊥‖(‖w̄⊥‖)= 2π
m−n−1

2

Γ( m−n
2 )

∥∥w̄⊥∥∥m−n−1
pW⊥(w̄⊥),

where Γ(·) is the gamma function. Thus,

(A.11) pW⊥(w̄⊥)= Γ( m−n
2 )

2π
m−n

2
∥∥w̄⊥∥∥m−n−1 p‖W⊥‖(‖w̄⊥‖).

Therefor Eq.(4.10) is proved.

A.3 Proof of Lemma 3

WPL [11] regularizes learning the current architecture by maximizing p(θv,θi |D). However,
with E2NAS, two posterior probabilities need to be maximized, p1 ∗ p2 = p(ωi−1,ωi | D)∗
p(ωc

i ,ωi | D) in each step of supernet training. Hence, we need to prove that the proposed
complementation loss function in Eq.(4.12) is the same as maximizing p1 ∗ p2.

Similar to WPL [11], the shared weights between ωc
i and ωi are depicted as ωc

s, and the
private weights for the two architectures are defined as ω

p
c and ωc

i . The shared weights between
ωi−1 and ωi are also depicted as ωi−1

s , and the private weights for the two architectures are
defined as ω

p
i−1 and ωi−1

i . Further, we have ωi ∩ {ωi−1,ωc
i } = ωi, and ωi−1 ∩ωc

i = ;. From

135



APPENDIX A. APPENDIX

Bayes’ theorem, we have:

(A.12)

p1 ∗ p2 = p(ωi−1,ωi |D)∗ p(ωc
i ,ωi |D)= p(ωp

i−1,ωi−1
i ,ωi−1

s |D)∗ p(ωp
c ,ωc

i ,ω
c
s |D)

= p(ωp
i−1 |ωi−1

i ,ωi−1
s ,D)p(ωi−1

i ,ωi−1
s ,D)

p(D)
∗ p(ωp

c |ωc
i ,ω

c
s,D)p(ωc

i ,ω
c
s,D)

p(D)

= p(ωp
i−1 |ωi−1

s ,D)p(ωi−1
i ,ωi−1

s ,D)

p(D)
∗ p(ωp

c |ωc
s,D)p(ωc

i ,ω
c
s,D)

p(D)

∝ p(ωp
i−1,ωi−1

s ,D)p(ωi−1
i ,ωi−1

s ,D)

p(ωi−1
s ,D)

∗ p(ωp
c ,ωc

s,D)p(ωc
i ,ω

c
s,D)

p(ωc
s,D)

= p(ωi−1,D)p(ωi,D)
p(ωi−1

s ,D)
∗ p(ωc

i ,D)p(ωi,D))

p(ωc
s,D)

= p(ωi−1,D)p(ωi,D)p(ωc
i ,D)p(ωi,D))

p(ωi−1
s ,D)p(ωc

s,D)

= p(ωi−1,D)p(ωi,D)p(ωc
i ,D)p(ωi,D))

p(ωi,D)

= p(ωi−1)p(D |ωi−1)p(ωc
i )p(D |ωc

i )p(ωi)p(D |ωi)

= p(ωi)2 p(D |ωc
i )p(D |ωi−1)p(D |ωi),

where the conditional independence assumption p(ω1 | ω2,ωs,D) = p(ω1 | ωs,D) applies as
each discrete architecture is trained independently in Line 4.

As with WPL [11], the parameters (ωi−1
s ,ωc

s) in Line 4 are presupposed to be independent,
and, in Line 5 {ωi−1

s ,ωc
s}=ωi as ωi∩ {ωi−1,ωc

i }=ωi; p(ωi−1)p(ωc
i )= p(ωi) since only weights

ωi of architecture αi are trained in step i.

The loss function can be derived directly from Eq.(A.12)), which is the same as Eq.(4.12).
Therefore, Lemma 3 is proved.

A.4 Proof of Lemma 5

This subsection describes the proof of Lemma 5. Based on the implicit function theorem [96],
or we simply set L1(w∗,α)

∂w = 0 since the model weights w achieved the local optimal in the
training set with α, we have:

(A.13)
∂L1(w∗(α),α)

∂w
= 0,

136



A.5. PROOF OF COROLLARY 1

and we have

(A.14)

∂

∂α

(
∂L1(w∗(α),α)

∂w

)
= 0,

∂2L1

∂α∂w
+ ∂2L1

∂w∂w
∂(w∗(α))

∂α
= 0,

∂(w∗(α))
∂α

=−
[
∂2L1

∂w∂w

]−1
∂2L1

∂α∂w
.

In this way, the hypergradient could be formulated as

(A.15) ∇αL2 = ∂L2

∂α
− ∂L2

∂w

[
∂2L1

∂w∂w

]−1
∂2L1

∂α∂w
.

A.5 Proof of Corollary 1

The key in the Corollary 1 is to use the Neumann series to approximate the
[

∂2L1
∂w∂w

]−1
.

Based on the Neumann series approximation, for ‖I − A‖ < 1, we have:

(A.16) A−1 =
∞∑

k=0
(I − A)k.

Based Assumption 4.1, we have ∂2L1
∂w∂w < L∇w

1 . With γ < 1
L∇w

1
, we have

∥∥∥I −γ
∂2L1
∂w∂w

∥∥∥ < 1

[96, 125]. When we conduct the Neumann series approximation for
[

∂2L1
∂w∂w

]−1
in the optimal

point, we have:

(A.17)
[
∂2L1

∂w∂w

]−1

= γ(I − I +γ
∂2L1

∂w∂w
)−1 = γ

∞∑
j=0

[
I −γ

∂2L1

∂w∂w

] j

.

So that:

(A.18) ∇αL2 = ∂L2

∂α
−γ

∂L2

∂w

∞∑
j=0

[
I −γ

∂2L1

∂w∂w

] j
∂2L1

∂α∂w
.

A.6 Proof of Theorem 1

Based on the Eq. (6.8) and (6.7), we have

(A.19) ∇αL2 −∇αL̃2 = γ
∂L2

∂w

∞∑
j=K+1

[
I −γ

∂2L1

∂w∂w

] j
∂2L1

∂α∂w
.
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Since the L1 is µ-strongly convex, and γµI ¹ γ
∂2L1
∂w∂w ¹ I, we have

(A.20)
∞∑

j=K+1

[
I −γ

∂2L1

∂w∂w

] j

≤
∞∑

j=K+1

[
I −γµ

] j .

Based on the sum of geometric sequence, we have

(A.21)
∞∑

j=K+1

[
I −γ

∂2L1

∂w∂w

] j

≤ 1
γµ

(1−γµ)K+1.

Since ∂L2
∂w and ∂2L1

∂α∂w are bounded, we have

(A.22)
∥∥∇αL2 −∇αL̃2

∥∥6CL wα
1

CL w
2

1
µ

(1−γµ)K+1.

Therefore, Theorem 1 is proved.

A.7 Proof of Corollary 2

Based on the definitions, the hypergradient of truncated back-propagation and the proposed
Neumann approximation based hypergradient are defined in Eq.(6.4) and Eq.(6.8). When we
assume that wt has converged to a stationary point w∗ in the last K steps, we have

(A.23)

wi(α)= w j(α)= w∗(α), f or all i, j ∈ [T −K +1,T];

∂Φ(wi,α)
∂wi

= ∂Φ(w j,α)
∂w j

= ∂Φ(w∗(α),α)
∂w∗(α)

= AT , f or all i, j ∈ [T −K +1,T];

∂Φ(wi,α)
∂α

= ∂Φ(w j,α)
∂α

= ∂Φ(w∗(α),α)
∂α

= BT , f or all i, j ∈ [T −K +1,T].

Now the truncated back-propagation could be formulated as:

(A.24)
hT−K = ∂L2

∂α
+ ∂L2

∂wT
(

T∑
t=T−K+1

Bt At+1...AT)

= ∂L2

∂α
+ ∂L2

∂wT
(

K∑
t=0

BT At
T).

We have

(A.25)
AT = ∂Φ(w∗(α),α)

∂w∗(α)
= ∂(w∗−η

∂L1
∂w )

∂w∗ = I −γ
∂2L1(w∗)

∂w∂w
,

BT = ∂Φ(w∗(α),α)
∂α

= ∂(w∗−η
∂L1
∂w )

∂α
=−γ

∂2L1(w∗)
∂α∂w

.
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From the above, we have

(A.26)

hT−K = ∂L2

∂α
+ ∂L2

∂wT
(

K∑
t=0

BT At
T)

= ∂L2

∂α
−γ

∂L2

∂w

K∑
j=0

[
I −γ

∂2L1

∂w∂w

] j
∂2L1

∂α∂w

=∇αL̃2.

Therefore, Corollary 2 is proved.

A.8 Proof of Lemma 7

First, for ∀(α,α′), we have

(A.27)

∥∥∇αL2(w,α)−∇αL2(w,α′)
∥∥

=∥∥∇αL2(·,α)−∇αL2(·,α′)+∇αL2(w(α), ·)−∇αL2(w(α′), ·)∥∥
=∥∥∇αL2(·,α)−∇αL2(·,α′)+∇wL2(w(α), ·)∇αw(α)−∇wL2(w(α′), ·)∇αw(α′)

∥∥
≤∥∥∇αL2(·,α)−∇αL2(·,α′)

∥∥+∥∥∇wL2(w(α), ·)∇αw(α)−∇wL2(w(α′), ·)∇αw(α′)
∥∥ .

Then we divide Eq.(A.27) to two parts. For the first part, based on the Assumption 3.2, we
have:

(A.28)
∥∥∇αL2(·,α)−∇αL2(·,α′)

∥∥≤ L∇α

2 (α−α′).

And for the second part of Eq.(A.27), we have

(A.29)

∥∥∇wL2(w(α), ·)∇αw(α)−∇wL2(w(α′), ·)∇αw(α′)
∥∥

=∥∥∇wL2(w(α), ·)∇αw(α)−∇wL2(w(α′), ·)∇αw(α)−∇wL2(w(α′), ·)∇αw(α′)+∇wL2(w(α′), ·)∇αw(α)
∥∥

≤∥∥∇wL2(w(α′), ·)−∇wL2(w(α′), ·)∥∥‖∇αw(α)‖+∥∥∇wL2(w(α′), ·)∥∥∥∥∇αw(α)−∇αw(α′)
∥∥ .

Based Assumption 3.3, we have

(A.30)
∥∥∇wL2(w(α′), ·)−∇wL2(w(α′), ·)∥∥≤ L∇w

2

∥∥w(α)−w(α′)
∥∥ ,

and based Assumption 4.2 that we have

(A.31)
∥∥w(α)−w(α′)

∥∥≤ Lw
∥∥α−α′∥∥ , and

∥∥∇αw(α)−∇αw(α′)
∥∥≤ L∇αw

∥∥α−α′∥∥ .

Based on Assumption 3.3, we know ∇wL2(w(α′), ·) is bounded that ∇wL2(w(α′), ·)≤ Lw
2 .

∇αw(α) is also bounded by ‖∇αw(α)‖ ≤ Lw. In this way, Eq.(A.29) could be rephrased as:

(A.32)
∥∥∇wL2(w(α), ·)∇αw(α)−∇wL2(w(α′), ·)∇αw(α′)

∥∥≤ L∇w
2 L2

w
∥∥α−α′∥∥+Lw

2 L∇αw
∥∥α−α′∥∥ .
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Based on Eq. (A.27), Eq. (A.28) and (A.32) we have

(A.33)
∥∥∇αL2(w,α)−∇αL2(w,α′)

∥∥≤ (L∇α

2 +L∇w
2 L2

w +Lw
2 L∇αw)

∥∥α−α′∥∥ .

Therefore, Lemma 7 is proved.

A.9 Proof of Theorem 2

We first define the noise term between the stochastic estimate ∇αL i
2 and the true gradient

∇αL2 as:

(A.34) εi =∇αL2 −∇αL i
2 ,

and the error between the approximated hypergradient ∇αL̃2 and the exact hypergradient
∇αL2 as:

(A.35) em =∇αL2(w∗(αm),αm)−∇αL̃2(w∗(αm),αm).

We then prove that ∇αL i
2(w∗(αm),αm) is an unbiased estimate of ∇αL2(w∗(αm),αm) that:

(A.36) E[∇αL i
2(w∗(αm),αm) |αm]=∇αL2(w∗(αm),αm).

Based on IFT in Eq.(6.7), we have

(A.37) ∇αL i
2(w∗(αm),αm)= ∂L i

2(w∗(αm),αm)
∂α

− ∂L i
2(w∗(αm),αm)

∂w

[
∂2L

j
1 (w∗(αm),αm)

∂w∂w

]−1
∂2L

j
1 (w∗(αm),αm)

∂α∂w
.

So that

(A.38)

E
[
∇αL i

2(w∗(αm),αm) |αm

]
=E

∂L i
2(w∗(αm),αm)

∂α
− ∂L i

2(w∗(αm),αm)
∂w

[
∂2L

j
1 (w∗(αm),αm)

∂w∂w

]−1
∂2L

j
1 (w∗(αm),αm)

∂α∂w
|αm

 .

Based on the linear assumption for L
j

1 in the condition 4 of the Theorem 2, we have
∂2L

j
1 (w∗(αm),αm)

∂w∂w = ∂2L1(w∗(αm),αm)
∂w∂w , and

(A.39)

E
[
∇αL i

2(w∗(αm),αm) |αm

]
= 1

R

R∑
i=1

∂L i
2(w∗(αm),αm)

∂α
− 1

R

R∑
i=1

∂L i
2(w∗(αm),αm)

∂w

[
∂2L1(w∗(αm),αm)

∂w∂w

]−1 1
J

J∑
j=1

∂2L
j

1 (w∗(αm),αm)
∂α∂w

= ∂L2(w∗(αm),αm)
∂α

− ∂L2(w∗(αm),αm)
∂w

[
∂2L1(w∗(αm),αm)

∂w∂w

]−1
∂2L1(w∗(αm),αm)

∂α∂w

=∇αL2(w∗(αm),αm).
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Based on the Lemma 7, we know that ∇αL2(w∗(αm),αm) is Lipschitz continuous with
L∇αL2 = L∇α

2 +L∇w
2 L2

w +Lw
2 L∇αw. Based on Lipschitz condition, we have

(A.40)

E
[
L2(w∗(αm+1),αm+1) |αm

]≤ E
[
L2(w∗(αm),αm) |αm

]
+E

[〈∇αL2(w∗(αm),αm),αm+1 −αm
〉 |αm

]+ L∇αL2

2
E

[‖αm+1 −αm‖2]
=L2(w∗(αm),αm)+

〈
E

[∇αL2(w∗(αm),αm)
]
,−γαm E

[
∇αL i′

2 (w∗(αm),αm) |αm

]〉
+ L∇αL2

2
γ2
αm

E
[∥∥∥∇αL i′

2 (w∗(αm),αm)
∥∥∥2

]
.

From our definitions, we have

(A.41)

E
[∇αL2(w∗(αm),αm)

]= E
[∇αL̃2(w∗(αm),αm)+ em

]= E
[∇αL̃2(w∗(αm),αm)

]+E [em] ,

E
[
∇αL̂ i

2(w∗(αm),αm) |αm

]
= E

[∇αL̃2(w∗(αm),αm)−εm |αm
]= E

[∇αL̃2(w∗(αm),αm)
]
,

E
[∥∥∥∇αL̂ i

2(w j(αm),αm)
∥∥∥2 |αm

]
= E

[∥∥∇αL̃2(w∗(αm),αm)−εm
∥∥2

]
= E

[∥∥∇αL̃2(w∗(αm),αm)
∥∥2

]
+E

[‖εm‖2] ,

since E(εm)= 0. In this way, we have
(A.42)
E

[
L2(w∗(αm+1),αm+1) |αm

]≤ E
[
L2(w∗(αm),αm) |αm

]−γαm E
[∥∥∇αL̃2(w∗(αm),αm)

∥∥2
]

−γαm E
〈
em,∇αL̃2(w∗(αm),αm)

〉+ L∇αL2

2
γ2
αm

E
[∥∥∇αL̃2(w∗(αm),αm)

∥∥2
]

+ L∇αL2

2
γ2
αm

E
[‖εm‖2] .

Based on Theorem 1, we have ‖em‖ 6 CL wα
1

CL w
2

1
µ

(1− γµ)K+1. In this way, for all
∇αL̃2(w∗(αm),αm), we have

(A.43)

〈
em,∇αL̃2(w∗(αm),αm)

〉≥−CL wα
1

CL w
2

1
µ

(1−γµ)K+1 ∥∥∇αL̃2
∥∥

=−
CL wα

1
CL w

2
(1−γµ)K+1

µ
∥∥∇αL̃2

∥∥ ∥∥∇αL̃2
∥∥2

=−P
∥∥∇αL̃2

∥∥2 ,

where P =
CL wα

1
CL w

2
(1−γµ)K+1

µ‖∇αL̃2‖ . In this way, we have:

(A.44)

E
[
L2(w∗(αm+1),αm+1)

]≤ E
[
L2(w∗(αm),αm)

]−γαm(1−P)E
[∥∥∇αL̃2

∥∥2
]

+ L∇αL2

2
γ2
αm

(1+D)E
[∥∥∇αL̃2

∥∥2
]

≤ E
[
L2(w∗(αm),αm)

]−γαm[(1−P)− L∇αL2

2
γαm(1+D)]E

[∥∥∇αL̃2
∥∥2

]
.

141



APPENDIX A. APPENDIX

If we choose γαm to make (1−P)− L∇αL2
2 γαm(1+D) > 0, we have γαm < (1−P)

L∇αL2
2 (1+D)

. In

addition, since the learning rate should be positive, we should make that 1−P > 0, which could

be reached by choose appropriate γ and K that
CL wα

1
CL w

2
(1−γµ)K+1

µ‖∇αL̃2‖ < 1, where 0< 1−γµ≤ 1.
In this way, we could find that L2 is decreasing with αm, and we know that with sufficiently
large m, L2 will decrease and converge since L2 is bounded.

Furthermore, we have:

(A.45)
E

[
L2(w∗(αm),αm)

]−E
[
L2(w∗(αm+1),αm+1)

]
≥γαm[(1−P)− L∇αL2

2
γαm(1+D)]E

[∥∥∇αL̃2(w∗(αm),αm)
∥∥2

]
.

By telescoping sum, we can show that

(A.46) E
[
L2(w∗(α0),α0)

]−E
[
L2(w∗(αm),αm)

]≥ K∑
k=0

qtE
[∥∥∇αL̃2(w∗(αm),αm)

∥∥2
]

,

where qt = γαm[(1−P)− L∇αL2
2 γαm(1+D)]> 0. Since L2 is bounded, we have∑K

k=0
K→∞

qtE
[∥∥∇αL̃2(w∗(αm),αm)

∥∥2
]
<∞. In addition, based on condition 3, we have

∑K
k=0

K→∞
qt =

∞, which imply that lim
k→∞

E
[∥∥∇αL̃2(w∗(αm),αm)

∥∥]= 0, so as lim
m→∞E

[∥∥∇αL̂ i
2(w j(αm),αm)

∥∥]=
0.

Therefore, Theorem 2 is proved.
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