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Interactions between light and sound in optical waveguides are of great interest in 
the photonics and quantum computation communities, due to the potential for infor-
mation storage and transmission via acoustic and optical pulses. Such interactions are 
made possible via nonlinear optical processes such as Raman scattering and stimulated 
Brillouin scattering (SBS). SBS has been used in the past three decades for multiple ap-
plications, including optical and acoustic sensing, novel microscopy and endoscopy 
applications, microwave and optical filtering, and more recently information storage 
via acoustic waves. However, noise arising from the thermal acoustic background has 
been shown to also be amplified by the SBS p rocess. Although previous studies have 
investigated the noise properties of the SBS process in the steady-state regime, our un-
derstanding of these processes is still limited. This research intends to fill this gap by 
developing new mathematical and numerical models that capture these noise dynam-
ics in more detail, and how they impact applications such as opto-acoustic storage.

In this Thesis, we extend the theoretical analysis of SBS to short pulses by deriving 
a set of coupled SBS equations with thermal and laser noise, and investigate the noise 
properties within the undepleted pump regime. We show that in the case of a con-
stant energy pump field and lossy media, the optical signal-to-noise ratio (OSNR) has 
a minimum in the region where the interaction time of the pulses matches their transit 
time in the waveguide. Then, we develop a numerical method for solving the coupled 
stochastic partial differential equations beyond the undepleted pump approximation. 
We find that the noise properties of the fields rely on the length of the optical pulses in-
volved as well as on the net SBS gain in the waveguide. Furthermore, for short-pump, 
low gain regimes, the spontaneous Stokes field is found to be incoherently amplified, 
thus exhibiting large spatial and temporal fluctuations, w hereas f or t he long-pump, 
high gain regime the field is amplified coherently, resulting in a smooth field but with 
large variations in peak power between independent realizations. Similar observa-
tions were made for the stimulated scattering case using a Stokes seed. Finally, we per-
form numerical simulations of Brillouin storage under different modulation schemes, 
namely amplitude storage and phase storage, and find that phase storage offers longer 
storage times as a result of phase encoding being more robust to noise than ampli-
tude encoding, in accordance with the additive-white-Gaussian-noise (AWGN) model 
of discrete communication theory.
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Chapter 1

Background Theory of Stimulated
Brillouin Scattering

1.1 Introduction

Light is at the center of multiple modern technologies and applications. From elec-
trical energy generation through photovoltaics, light-emitting diodes and displays, to
the transmission of data at the speed of light in optical fibers; light has played a crucial
role in driving forward many technologies that were inconceivable before the inven-
tion of the laser in the 1960s [1, 2]. In the past few decades, the growth of these tech-
nologies has been considerably enhanced by the field of nanophotonics — in which
light is investigated in micro or nano-scale structures where the spatial confinement
can considerably change the way in which the light waves propagate — owing to new
advancements in nanofabrication technologies.

To understand the importance of nanophotonics in the modern era, we must first
look back in time to the early 20th century when the true nature of light began to be
understood. The discovery of photons began with the first experimental observations
of the so-called photoelectric effect — the emission of electrons when electromagnetic
radiation is incident on a material — by Heinrich Hertz in 1887 [3], although the phe-
nomenon was not well understood at the time due to the lack of an atomic theory to
explain the interactions between light and matter. In later years, following the discov-
ery of the electron by J. J. Thompson in 1897 [4], Phillip Lenard expanded Hertz’s ex-
perimental work on the photoelectric effect in which he demonstrated that for a given
frequency of ultraviolet radiation, the maximum kinetic energy of the emitted elec-
trons depends on the metal used, rather than on the intensity of the ultraviolet light.
He also demonstrated that for each metal there is a minimum light frequency necessary
to induce the emission of electrons, regardless of the intensity [5].

In 1905, Albert Einstein published his paper “On a heuristic viewpoint concerning
the production and transformation of light”, in which he proposed the idea of light
quanta or photons, and qualitatively showed how this could be used to explain the
photoelectric effect [6]. In this paper, he postulated that light is a beam of particles
whose energies E are related to their frequencies ν according to the formula E = hν,
where h is Planck’s constant. When that beam is directed at a metal, the photons col-
lide with the atoms and if the frequency is sufficient to scatter an electron, this leads
to the photoelectric effect. His work, along with that of Max Planck and many oth-
ers, presented a major breakthrough in the physics of light, ultimately leading to the
development of photonics as its own field of study. In later decades, new discoveries
regarding the interaction between light and matter were made, leading to new insights
into the field of nonlinear optical processes, which Brillouin scattering is a part of.

Brillouin scattering is a nonlinear optical process in which light and sound waves
interact inside a propagation medium, which can be in a solid, liquid or gaseous
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state [7, 8]. In this process, photons interact with acoustic phonons; a quasi-particle
characterized by the collective excitation of the atomic lattice. Photons can either
absorb or emit acoustic phonons, and in the process also scattering either frequency
down-shifted photons (Stokes) or frequency up-shifted photons (anti-Stokes) [9]. When
the process is driven by a laser at a high enough intensity, the interaction between op-
tical waves of the same wavelength results in the formation of a coherent interference
pattern — which propagates at the speed of sound in that particular medium — as a
result of two physical mechanisms: electrostriction and photoelasticity. When a feed-
back loop is created between the interacting light and sound waves, we refer to the
process as stimulated Brillouin scattering (SBS). One can compare the SBS process to
a moving Bragg grating [10], where the regions of compression or rarefaction intro-
duced by the interference pattern between the optical waves generate variations in the
refractive index, as shown in Fig. 1.1.

FIGURE 1.1: Illustration of the Brillouin scattering process, with an acoustic wave acting
as a moving Bragg grating that reflects some of the pump energy (with frequency ω1 back

in the form of a Stokes field (with frequency ω2).

Brillouin scattering was first theorized by the French physicist Léon Brillouin in 1922,
in the context of electromagnetic wave scattering of X-rays from acoustic vibrations
in a dielectric medium [11], at around the same time in which Raman scattering was
being investigated for the first time [12]. The same phenomenon was also investi-
gated independently by Mandelstam [13], so the phenomenon is sometimes referred
to as Brillouin-Mandelstam scattering. In this theoretical work on X-ray scattering from
acoustic vibrations, Brillouin explored the following ideas:

1. Presume that a light ray with wavevector Si is incident upon a transparent medium
which gives rise to a scattered light ray Ss. In this scenario, only acoustic waves
that travel in the direction of the vector Ss−i = Ss − Si will contribute to the
scattering process.

2. The acoustic waves travelling in this direction must also possess a wavelength
which is close to the wavelength of the incident and scattered light rays. Mathe-
matically, this means that the regions of maximum density in the acoustic waves
must be separated by a distance Λ = λ/||Ss−i||, where λ is the optical wave-
length of the scattered light and ||Ss−i|| is the length of the vector Ss−i. This
condition is also known as the Bragg condition [14].

It was proposed by Brillouin then that a reflected light ray would arise due to the
presence of the elastic waves in the medium, and that according to the Doppler effect,
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the scattered light frequency fs would occur at two frequencies around the incident
frequency fi described by the equation

fs = fi

[
1± 2n

va

c
sin
(

θ

2

)]
, (1.1)

where c is the speed of light in a vacuum, va is the group velocity of the acoustic wave,
n is the refractive index of the medium, and θ is the scattering angle. Brillouin also
proposed a way to test this theory experimentally by using artificially excited elas-
tic waves in a liquid by a quartz crystal driven by a high-frequency oscillator (i.e. in
the radio-frequency regime), and in the following years between 1925−1938 the first
experimental observations of this phenomenon were achieved by different researchers
including Gross, Debye and Raman [15, 16, 17, 18, 19]. The experiments confirmed Bril-
louin’s predictions of the scattered light frequency shifts, but also observed that mul-
tiple orders of diffraction were present. Later investigations found that the diffraction
orders arising from the Brillouin scattering process depended not only on the material
used, but also on the orientation of the crystals inside the structure [20].

Up until the 1960s, the investigation of Brillouin scattering was limited to what is
known as spontaneous Brillouin scattering (see Section 1.2), arising from the thermal
fluctuations in the propagation medium. With the invention of the laser in the 1960s,
and the first experimental demonstration of a Ruby laser by Maiman [21], it was now
possible to induce stimulated Brillouin scattering, a feedback process first demonstrated
experimentally in quartz and sapphire crystals in 1964 by Chiao et al [22]. Following
these results, Kroll developed a theoretical framework for describing the mechanisms
giving rise to SBS via the process of electrostriction [23]. This was followed by the
work of Shen and Bloembergen [24] who proposed a solution for the coupling of in-
finite plane Stokes and anti-Stokes waves satisfying appropriate boundary conditions
on a plane-parallel Raman cell, finding qualitative explanations for the earlier experi-
mental observations of SBS. Further theoretical models of SBS were extended shortly
afterwards by Tang, who looked at saturation and pump depletion effects [25], and
investigations on the phonon lifetime and its impact on SBS by Pohl et al [26]. Later in
1972, a landmark paper by Ippen and Stolen experimentally demonstrated how back-
ward SBS was induced in glass optical fibers even at low pump powers, not only limit-
ing the amount of narrow-band power that is transmissible in the fiber, but also causing
damage to the fiber when the peak power of the amplified back-scattered pulse greatly
exceeded the input power [27]. These initial investigations led to further research on
the suppression of SBS, as at the time it was only seen as a hindrance for optical com-
munications and other applications. At the same time, SBS was found to have vari-
ous useful applications, as demonstrated with the first Brillouin lasers [28, 29]. Other
works also looked at different waveguide structures and the role of moving boundaries
on SBS [30, 31, 32], such as the effect light scattering by surface ripples in thin films.

Over the course of the next four decades, SBS found new applications in photonics,
with new growth spurred in this field by the development of compact-sized waveg-
uide structures and photonic chips [7, 33, 34, 35, 36, 37]. These micron-sized structures
allowed for for better control of the electromagnetic and acoustic modes, which led to
discoveries in which SBS was now a useful process instead of just a nuisance. Some
notable recent applications of SBS include: narrow-band RF and optical signal filtering
and processing [38, 39, 40, 41], phase conjugation and precision spectroscopy and sens-
ing [42, 43, 44, 45], novel laser sources and resonators [46, 47, 48, 49, 50], Brillouin mi-
croscopy and micro-mechanic measurements [51, 52], pulse compression [53, 54, 55],
Brillouin scattering in photonic crystal fibers and bandgap filters [56, 57, 58], and in
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recent developments of opto-acoustic pulse storage and memory [59, 60, 61, 62, 63].
However, one of the key challenges limiting the application of SBS is the coupling
of thermal noise (at room temperature or higher) to the optical and acoustic fields.
Thermal noise has been known to significantly hinder the performance of SBS-based
devices [64, 65, 66, 67], and a general theoretical framework for describing and simu-
lating this noise is still needed for improving existing technologies.

In this thesis we study the noise mechanisms in Brillouin scattering, particularly
in what is known as backward stimulated Brillouin scattering (BSBS). We numerically
simulate optical and acoustic waves in the presence of this noise, and investigate its
impact on performance and information retrieval accuracy in opto-acoustic memory
storage. In the remainder of this Chapter, we focus on the physics of Brillouin scatter-
ing, outlining the main areas of research which are yet to be expanded, including the
noise dynamics arising from the SBS interaction.

1.2 Physics of Brillouin scattering

FIGURE 1.2: Frequency spectra for the Stokes and Anti-Stokes transitions in Brillouin scat-
tering, and energy transition diagrams for Stokes and anti-Stokes processes. The Bril-
louin process shifts the optical frequencies of the scattered fields with respect to the pump
frequency ωp by the Brillouin frequency Ω, with Stokes frequency ωs < ωp and Anti-
Stokes frequency ωas > ωp. The scattered spectra also become broadened, with Brillouin

linewidth ∆νB associated with the acoustic phonon lifetime of the medium.

Brillouin scattering originates from the interaction of electromagnetic waves with prop-
agating acoustic waves. In a quantum mechanical picture [8], incident photons (often
referred to as pump photons) are annihilated and photons with a shifted frequency are
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created. This shifted frequency is determined by one of two possible Brillouin transi-
tions [68, 8, 69] (see Fig. 1.2):

1. In the Stokes transition, a high-frequency photon is annihilated and both a lower-
frequency Stokes photon and an acoustic phonon are created.

2. In the anti-Stokes transition, a lower-frequency photon absorbs a phonon and
creates a higher-frequency photon.

In a semi-classical picture, the Brillouin scattering process is defined as follows: an
optical wave induces changes to the density of the propagation medium in the form
of an acoustic wave, which is mediated by the process of electrostriction [55, 70, 71,
72], while the changes in density modifies the permittivity (and therefore refractive
index) of the material via a process called photoelasticity [73, 74]. Electrostriction is
a property of all dielectric materials that arises from the application of an external
electromagnetic field, in which the electromagnetic field causes a atomic displacements
in the propagation medium. The accumulation of these small displacements across
the bulk of the material then leads to strains in the direction of the applied field [75].
When two electromagnetic waves interfere and form a beat-pattern in the medium,
regions of high and low light intensity are generated. Then, electrostriction generates
a force towards the high-intensity region, leading to a periodic compression of the
material, and a density wave is formed. At the same time, the reverse process takes
place: material compression causes the dielectric permittivity — and consequently the
refractive index — to change, through photoelasticity [76, 77]. The density variations
propagate at a speed — which is dictated by the difference in frequencies between
the two optical waves — relative to the frame of reference of the pump. When the
induced wave speed matches the acoustic wave speed, a resonance is induced and
consequently some of the pump’s energy is scattered into the Stokes field according to
the Bragg condition [14], with its frequency Doppler-shifted by an amount Ω (known
as the Brillouin shift) [11].

Electrostriction and photoelasticity are not the only processes that can lead to Bril-
louin scattering. For instance, when Brillouin scattering occurs in a solid medium, the
radiation pressure arising from internal reflection of the optical fields at the waveguide
boundaries can lead to a moving-boundary effect, in which transverse elastic waves
propagate across the surface of the solid. This effect is enhanced when the solid ma-
terial is free-standing or surrounded by a gaseous medium, but can in some cases be
suppressed by embedding the guiding medium (also referred to as the core) inside
of a solid cladding [69]. By contrast, Brillouin scattering in liquids does not lead to a
moving-boundary effect, as the radiation pressure arising from the boundary reflec-
tions is not strong enough to induce it [78].

To understand the interaction between optical and acoustic fields, or conversely
between optical photons and acoustic phonons; it is useful to start with an ansatz for
the fields in a three-dimensional space with position vector r and time t, namely:

Ep(r, t) = Ap(r, t)ei(kp·r−ωpt) + c.c. (pump), (1.2)

Es,as(r, t) = As,as(r, t)ei(ks,as·r−ωst) + c.c. (Stokes/anti-Stokes), (1.3)

U(r, t) = B(r, t)ei(q·r−ωpt) + c.c. (acoustic), (1.4)

where Ep,s,as represent the pump, Stokes or anti-Stokes electric fields respectively, U
is the displacement field of the medium, Ap,s,as and B are functions describing the
envelope and modal fields of the optical and acoustic waves respectively, and c.c. is
the complex conjugate. In order to fulfill the conservation of momentum in the Stokes
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FIGURE 1.3: Illustration of the Stokes scattering process (left) and anti-Stokes scattering
process (right). Stokes scattering: the incident pump photon with wavevector kp and
frequency ωp interacts with a forward moving acoustic phonon with wavevector q and
frequency Ω and creates a Stokes photon with wavevector ks and frequency ωs = ωp−Ω.
Anti-Stokes scattering: the pump interacts with an acoustic phonon propagating in the op-
posite direction and generates an anti-Stokes photon with wavevector kas and frequency

ωas = ωp + Ω. The scattering angle in both cases is denoted by θ.

case, the scattered Stokes photon must have a wavevector ks = kp− q, where ks corre-
sponds to the Stokes optical field, kp corresponds to the pump (incident optical field)
and q correspond to the acoustic phonons or sound waves in the medium. In this
interaction, the incident pump photon is annihilated in the medium and creates one
Stokes photon and one acoustic phonon. From conservation of energy we require that
the pump frequency satisfy ωp = ωs + Ω, where ωs is the Stokes frequency and Ω is
the acoustic frequency. Consequently, the Stokes photon is down-shifted (red-shifted)
in frequency. In a similar manner for anti-Stokes scattering, the incident pump photon
absorbs an incoming acoustic phonon, and creates an anti-Stokes photon. From conser-
vation of momentum, we require that the anti-Stokes wavevector satisfy kas = kp + q,
and from conservation of energy the anti-Stokes frequency is given by ωas = ωp + Ω.
In this latter case, the anti-Stokes photon is up-shifted (blue-shifted) in frequency, as
illustrated in Fig. 1.2. The frequency profile of the scattered Stokes or anti-Stokes has
a linewidth ∆νB, and the Brillouin frequency shift with respect to the pump’s center
frequency (ωp) is given by Ω [79]. In general Brillouin scattering experimental setups,
the Brillouin linewidth ∆νB is of the order of < 100 MHz, while the Brillouin shift is of
the order of < 20 GHz (with the exception of diamond, which is of the order of ∼ 70
GHz) [68, 80].

Depending on the mode of initiation, Brillouin scattering can be classified into two
main types: spontaneous and stimulated. In this Section, we will describe the physical
mechanisms giving rise to each type, and their consequences on certain applications.

1.2.1 Spontaneous Brillouin scattering

Spontaneous Brillouin scattering arises from the interaction between incident light and
thermally excited acoustic waves in the propagation medium. By thermally excited
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acoustic waves, we are referring to incoherent acoustic fluctuations in the propaga-
tion medium that are present at any temperature above absolute zero. These thermal
fluctuations lead to small changes in the optical properties of the medium, such as the
dielectric permittivity ε, which may arise from fluctuations in thermodynamic quanti-
ties such as the pressure, entropy, density, or temperature of the material [68].

In a lot of Brillouin scattering experiments however, spontaneous Brillouin scat-
tering is used for describing the process in which only a pump laser field is present
in the interaction, but there is no input optical seed or signal [44], and this means that
any measured output Stokes (or anti-Stokes) signal is a result of the scattering of pump
photons by thermally excited phonons in the medium. For the remainder of this Thesis,
we will use this latter definition of spontaneous scattering, but will make the necessary
distinctions where appropriate.

1.2.2 Stimulated Brillouin scattering

FIGURE 1.4: Illustration of the SBS process inside a solid material (Fig. from [81]). Starting
from the top figure then going clockwise: a pump and probe are introduced at opposite
ends of the waveguide with similar frequencies. Their interference compresses the ma-
terial via electrostriction, exciting an acoustic wave in the material. This acoustic wave

reflects some of the pump energy backwards.

In contrast with spontaneous Brillouin scattering, stimulated Brillouin scattering (SBS)
is characterized by a feedback process between the pump and the Stokes (or anti-
Stokes) optical fields. For example, when an incident optical pump field interferes
with an input optical seed (at the Stokes or anti-Stokes frequency), an interference pat-
tern between the two waves is generated [68]. This interference induces strains in the
material by coherently displacing the atoms in the lattice through electrostriction. It
should be noted that SBS can be initiated not just by an optical seed field, but also
by the scattering of pump photons by a thermal acoustic background, which is often
referred to as spontaneous SBS [64, 68]. However, this is not to be confused with reg-
ular spontaneous Brillouin scattering. The key difference between the two is that in
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SBS, the pump interacts with the acoustic field as well as the scattered Stokes/anti-
Stokes field, whereas in spontaneous Brillouin scattering the pump interacts with the
thermally excited acoustic field only. A summary of the SBS process is illustrated in
Fig. 1.4.

An important feature of SBS is that it is possible to control the amount of inter-
ference between pump and signal fields by tuning the input pump power into the
propagation medium, with more pump power leading to greater amplification of the
signal field (e.g. Stokes or anti-Stokes) [70].

Brillouin scattering is also classified into two types based on the direction of propa-
gation of the two optical fields with respect to each other, namely forward Brillouin
scattering (FBS) and backward stimulated Brillouin scattering (BSBS), as shown in
Fig. 1.5. In BSBS, two counter-propagating optical waves exchange energy via an
acoustic wave whose wavevector is oriented along the propagation direction of the
pump (Stokes process), and in the opposite direction to the pump (anti-Stokes pro-
cess). This coupling requires a large acoustic wavevector q in the waveguide direction,
and as a result the acoustic waves inside the core are usually very close to pure longi-
tudinal plane waves [69]. Since the optical wavevectors are very close in magnitude
and the scattering angle is close to 180o, the acoustic frequency in the backward SBS
case can be approximated by the frequency-wavenumber relation Ω ≈ 2k0va, where
k0 = 2π/λ as the maximum optical wavenumber and va is the acoustic group ve-
locity. By contrast, in forward Brillouin scattering, two co-propagating optical waves
couple to an acoustic wave that has a finite frequency but a very small wavevector q.
Another important difference between the two types of scattering is that in BSBS, the
pump can provide exponential gain to the Stokes field, whereas in FBS the interaction
between pump and Stokes generates an interference pattern that results in an acoustic
wave, but the energy is exchanged periodically between the three without providing
any amplification [69].

FIGURE 1.5: Illustration of (a) backward stimulated Brillouin scattering (BSBS) and (b) for-
ward Brillouin scattering (FBS) in an arbitrary medium in the Stokes process configuration

(i.e. acoustic wave propagates in the direction of the pump).

To avoid confusion between Stokes and anti-Stokes processes, we will for the remain-
der of this thesis refer to the pump wavevector and frequency as (k1, ω1), and the
Stokes wavevector and frequency as (k2, ω2).



1.2. Physics of Brillouin scattering 9

1.2.3 Guided modes in SBS

So far we have described the behaviour of SBS in a general context and how it is initi-
ated. However, in order to achieve specific guided modes in both the electromagnetic
and elastic cases in a particular waveguide — and therefore ensure that the feedback
loop between the optical and acoustic fields is achieved — it is important to choose ap-
propriate materials. For optical modes, it generally suffices that the refractive index of
the waveguide (also referred to as the waveguide core) be greater than the surround-
ing material (referred to as the cladding) [69]. Confined acoustic modes can also be
supported in a waveguide depending on the material composition. Acoustic waves
have stricter conditions for propagation than electromagnetic waves, due to the pres-
ence of shear waves, pressure (or longitudinal) waves and Rayleigh or surface waves.
This means that there are more mechanisms in acoustic waves in which energy can
be exchanged or lost. One way to achieve acoustic wave confinement in a material is
by total internal reflection (TIR), for which the acoustic wave speed within the core
must be less than the speed in the cladding [69]. When this condition is satisfied, no
energy is transferred from the core to the cladding. However, if this condition is not
satisfied, longitudinal waves in the core can lose energy to the cladding in the form
of shear waves. TIR can be achieved by using a strong mechanical contrast between
the two materials, i.e. choosing core and cladding materials with significantly different
densities or stiffness. Under these conditions it is possible to excite backward SBS in
the waveguide. In the case of FBS, however; it is necessary to ensure that very little
energy is lost to the cladding. This can be achieved by isolating the waveguide from its
surroundings as much as possible, such as suspending the waveguide in air; thereby
creating a large acoustic impedance mismatch (defined as the resistance of a medium
to applied pressure or density waves) between the core and its surroundings. These
conditions are important for tailoring SBS for integrated photonic chip applications, as
we shall see in Section 1.3.

1.2.4 Brillouin gain in the SBS process

A common measure of the efficiency of the SBS process is the Brillouin gain G, which
is dependent upon the waveguide geometry and material parameters (such as acoustic
phonon decay rate) [70, 76]. This is a dimensionless factor that relates the input Stokes
seed power P2(L) (assuming it propagates from z = L to z = 0) to the output Stokes
seed power P2(0) via the equation

P2(0) = P2(L)eG. (1.5)

The Brillouin gain is generally measured in continuous-wave (CW) setups, in which
the optical fields (both pump and Stokes seed) have a constant input power while the
lasers are operating. For this reason, we can consider the system to be in a steady-state.
Within this regime, the SBS coupled equations for the counter-propagating pump and
Stokes powers, namely P1 and P2, are [66]

dP1

dz
= −g(∆)P1P2 − αP1, (1.6)

dP2

dz
= −g(∆)P1P2 + αP2, (1.7)

where α is the optical attenuation of the waveguide (in m−1) and g(∆) is the SBS gain
parameter (in m−1W−1), which is a function of the frequency detuning ∆ = ω2−ω1 +
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FIGURE 1.6: Stokes power P2(z) and pump power P1(z) along a 5 km optical fiber, using
g0 = 0.83 m−1W−1, ∆ = 0, P1(0) = 1 and α = 0.2 dB/km, produced with the analytic
solutions to (1.6) and (1.7) in [66]. (a) shows the steady-state powers for a Stokes seed of

10 mW, while (b) uses a Stokes seed of 50 mW.

Ω from the Brillouin center line [76]. This function can be shown to be Lorentzian [82]

g(∆) = g0
Γ2

Γ2 + ∆2 , (1.8)

where g0 is the maximum SBS gain parameter for the waveguide, and is sometimes
written in the literature as gB/Aeff where Aeff is the effective area of the waveguide
core and gB is the Brillouin gain coefficient (m/W). The parameter Γ is the decay rate of
the phonons, related to the acoustic lifetime via τa = 1/Γ, which occurs due to the loss
of energy of the acoustic wave via irreversible scattering into numerous other phonon
states. The Brillouin spectral linewidth is generally in the order of magnitude of a few
tens of MHz, corresponding to acoustic lifetimes of a few nanoseconds [70, 44, 69];
meaning that the gain profile of g(∆) is highly localized at the phase matched Stokes
frequency ω2 = ω1 −Ω. Analytic solutions to the equations (1.6) and (1.7) have been
found [66], and some examples are shown in Fig. 1.6. The dimensionless SBS gain G
is then defined as a combination of the length L, peak pump power P1(0) and SBS
gain parameter g0 as G = g0P1(0)L. However, this relation only holds true when we
are operating in the steady-state regime and when the input seed Stokes is not strong
enough to deplete the pump, as we shall see next.

1.2.5 Undepleted pump regime

Because the SBS process involves an energy exchange between pump and Stokes, where
the pump loses energy and the Stokes gains energy; it is often useful to make an ap-
proximation when the Stokes seed power is much lower than the pump [70]. This
approximation is called the undepleted pump approximation (UPA), and consists of
assuming that the energy depleted from the pump is negligible. Under such assump-
tion, the nonlinear interaction in (1.6) is neglected, leading to the analytic solution for
the forward-propagating pump in the steady-state:

P1(z) = P1(0)e−αz. (1.9)
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FIGURE 1.7: Analytic solutions of the output Stokes power P2(0) for different input Stokes
powers P2(L) and input pump powers P1(0), using g0 = 0.83 m−1W−1, ∆ = 0 and α = 0.2
dB/km on a 5 km optical fiber. Solid curves include pump depletion while the dotted

curves use the UPA in (1.10).

Using this result, the solution for the Stokes power in (1.7) is written as

P2(z) = P2(L) exp {g0P1(0)Leff(L− z)− α(L− z)} , (1.10)

where the effective length function Leff(ξ) is defined as

Leff(ξ) =
1
α

(
1− e−αξ

)
. (1.11)

A comparison of output Stokes power as a function of input Stokes power for different
pump inputs is shown in Fig. 1.7. Here we see the points at which the UPA solution de-
viates from the real solution with pump depletion, which depends on the input pump
power. This is because the amplification provided by the pump is nonlinear, which
means there is a certain threshold in which the Stokes field becomes large enough to
deplete the pump, as shown in Fig. 1.6, and the UPA is no longer valid. This threshold
varies with the waveguide parameters as well as the input pump energy [70]. Never-
theless, the UPA is still very useful for understanding the SBS process when the Stokes
seed powers are low, as we shall see in Chapter 4.

1.3 On-chip SBS

SBS for photonic applications is used predominantly in two types of structures: optical
fibers and integrated photonic chips. Optical fibers range anywhere between a few me-
ters to a few kilometers in length, whereas photonic chips are generally a few centime-
ters in length, and the waveguide core cross-section dimensions are in the sub-micron
range. Up until the 1990s, SBS applications were limited to optical fibers, mainly due
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to the unavailability of more advanced fabrication methods that could be used for pro-
ducing micrometer-scale photonic waveguides on chips. However, with improving
technologies in recent decades, SBS found new applications in short-scale photonic
chips, only a few tens of centimeters in size [83]. The theoretical framework for on-
chip SBS was laid out by [34], and predictions for a giant enhancement of the Brillouin
gain were made through numerical simulations of a suspended silicon nanophotonic
waveguide. In this research, computations of the SBS gain in both backward and FBS
(see Fig. 1.8) demonstrated that at the nanoscale, the radiation pressure becomes so
high that it introduces new types of SBS nonlinearities, and that the backward and for-
ward Brillouin processes are enhanced by several orders of magnitude when there is a
coherent combination of radiation pressure and electrostrictive forces in the medium.
In addition, the researchers also demonstrated a 10−100 fold increase in SBS gain by
cooling the nanoscale silicon waveguides to low temperatures.

FIGURE 1.8: Computed SBS contributions from electrostriction (ES) and radiation pressure
(RP) as the waveguide dimension a is varied from 0.2−10 microns (for b = 0.93a). (a)
Backward SBS gain resulting from ES (red), RP (green), and the coherent combination of
both ES and RP (blue). (b) An identical set of curves for forward Brillouin scattering. The
conventional microscope SBS theory (gray curves) underestimates the BSBS gain by up to

2 orders of magnitude. Image and caption from [34].

The first experimental demonstration of such a large enhancement of SBS gain in pho-
tonic chips was performed by [33] in a 7-cm long chalcogenide waveguide with cross-
section 4 µm × 850 nm, and a measured Brillouin shift and linewidth of 7.72 GHz and
34 MHz respectively. This followed from earlier measurements of SBS in chalcogenide
fibers [85] where very large Brillouin gain coefficients in the range of gB ≈ 10−10− 10−9

m/W were achieved due to its high refractive index (n = 2.44− 2.81). In this work,
the recorded Brillouin gain coefficient was gB ≈ 0.715× 10−9 m/W, at least 100 times
larger than the corresponding gain coefficients in silicon single-mode fibers [66]. Fur-
thermore, they achieved a 16 dB probe gain for a 300 mW continuous-wave (CW)
pump, as shown in Fig. 1.9.

Similar experiments on a silicon waveguide [86] also demonstrated the predictions
in [34]. Here, researchers made the first demonstration of Brillouin nonlinearities and
Brillouin gain in silicon waveguides, using a novel class of hybrid photonic–phononic
waveguides. The forward Brillouin scattering nonlinear susceptibilities were mea-
sured to be more than 1,000 times stronger than any previous waveguide system. Later
experiments in a 2.9 cm long continuously suspended Brillouin-active silicon waveg-
uide [35] demonstrated a net amplification of over 5 dB for 60 mW pump powers (see
Fig. 1.10), which represented a 30-fold improvement in net amplification over previous
systems.
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FIGURE 1.9: (a) Concept diagram of on-chip SBS showing the interaction of the pump
(solid) with frequency ωp with an acoustic wave of frequency ΩB, resulting in the gen-
eration of a backscattered signal at ωs = ωp − ΩB. (b) Scanning Electron Microscope
(SEM) image of a typical rib chalcogenide waveguide. (c) Characterisation of SBS using
the backscattered signal and (d) output pump power and filtered Stokes power as a func-

tion of the average input pump power. Image and caption from [33].

Later computations [87] found that strong gradient forces improve the efficiency of
Brillouin scattering in narrow silicon slot waveguides. SBS was found to be very ef-
ficient because the fundamental mechanical flexural mode could be excited. The re-
searchers predicted that a 20 dB gain was feasible with 50 mW on-chip pump power
over 1 mm propagation length, with gain coefficient of 105 m−1W−1. These predictions
were later confirmed experimentally [84] through a novel opto-acoustic nanodevice,
consisting of a series of suspended silicon wires with suspension length of 25.4 µm, as
shown in Fig. 1.11. In these experiments, researchers demonstrated a modest (0.5 dB)
net Brillouin gain with high efficiencies of up to 104 m−1W−1, consistent with earlier
theoretical predictions. In addition, they found that fabrication disorder of the waveg-
uide (such as in the waveguide width), broadens and splits the phonon resonances
in some cases. Furthermore, it was found that the acoustic quality factor (i.e. a di-
mensionless parameter that describes how underdamped an oscillator/resonator is, or
how resistant it is to energy losses due to damping) strongly decreases as the number
of suspended silicon beams increases.

However, despite all of these advancements in chip-based SBS, noise still remains
a challenge in nanoscale devices. Furthermore, the role of noise in pulsed SBS is not
yet well understood [67, 88], and is important for applications such as opto-acoustic
memory storage in which short pulses of a few hundreds of picoseconds in duration
must be used.
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FIGURE 1.10: (a) Brillouin gain spectra obtained for different pump powers. (b) Plots of
the peak gain (red), linear loss (dash) and total loss (green) versus on-chip pump power at
1550 nm. (c) Net amplification as a function of pump power (threshold for amplification

is 5 mW). Image and caption from [35].

1.4 Applications of SBS

In this Section, we discuss some of the main applications of SBS which are relevant
to this Thesis. In particular, we focus on applications such as signal filtering, narrow-
linewidth sources and opto-acoustic storage, in which noise has a large impact on per-
formance and scalability.

1.4.1 Optical signal filtering and amplification

Due to the narrow linewidth of the SBS process [44], it has been used in a variety of mi-
crowave photonic (MWP) filters. The first application of on-chip SBS for MWP filters
was done by Marpaung et al [89]. In this research, the first chip-based MWP bandstop
filter with ultrahigh suppression was achieved, also with resolution in the megahertz
range, 0−30 GHz frequency tuning and high stopband rejection of more than 55 dB,
using an ultra-low Brillouin gain (1−4 dB) from a compact centimeter-scale chalco-
genide chip as described in Fig. 1.12. This application demonstrated that it is possible
to create compact high-performance signal filters without the usual trade-offs between
key parameters, such as tuning range, resolution and suppression, thereby leading the
way towards energy-efficient and reconfigurable MWP signal processors for wireless
communications. Similar filtering capabilities were testes in the RF regime [90], where
they demonstrated a photonic-phononic emitter-receiver (PPER) in a silicon/silicon-
nitride hybrid structure, and studied the frequency response of coherent information,
showing a high dynamic range (70 dB), high Q-factor, wide rejection bandwidth (1.9
GHz) and high selectivity (bandwidth of 3 MHz, low shape factor of 5 and slope of
20/3 dB/MHz).
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FIGURE 1.11: (a) Impression of a silicon-on-insulator waveguide with a series of suspen-
sions and anchors. (b) SEM micrograph of an actual suspension of length Ls = 25.4 µm
held by La = 4.6 µm long anchors. (c) Photonic (top) and phononinc (bottom) travelling
modes. (d) Brillouin process converts pump photons with energy-momentum (h̄ωp, h̄kp)
into redshifted probe (Stokes) photons (h̄ωpr, h̄kpr) and phonons (h̄Ω, h̄K). (e) An exam-
ple of a Brillouin gain resonance with on/off gain of 1.4 dB and quality factor Qm = 728
and an on-chip input power of 26 mW. (f) Scan of on/off gain with pump power, with a

Brillouin gain coefficient G̃ = 6561 W−1m−1. Image and caption from [84].

FIGURE 1.12: SBS-based integrated microwave photonic filter. (a) Artist’s impression of
a future monolithic-integrated high-suppression and reconfigurable SBS MWP filter in a
silicon chip. VOA, variable optical attenuator; TW-DPMZM, traveling wave dual-parallel
Mach–Zehnder modulator; Ge-PD, germanium high-speed photodetector. (b) Topology
of the filter. (c) Near-phase modulation signals (opposite-phase, unequal-amplitude side-
bands) were generated and processed using SBS gain spectrum, leading to a highly se-
lective filter. (d) In the conventional filter, a single-sideband spectrum was generated and
processed using the SBS loss/absorption spectrum, resulting in a filter with low selectivity.

Image and caption from [89].

SBS has been used to build a variety of photonic amplification devices [91] by using
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a large pump power acting on a small seed (Stokes) signal. Notably, recent experi-
ments [92] showed that it is possible to enhance the Brillouin amplification process
by harnessing an intermodal Brillouin interaction within a multi-spatial-mode silicon
racetrack resonator. The researchers achieved upwards of 20 dB net Brillouin amplifi-
cation in silicon, enhancing performance in silicon waveguides by a factor of 30 with
modest (∼15 mW) continuous-wave (CW) pump powers. Additionally, they showed
that the same system can behave as a unidirectional amplifier providing more than 28
dB of optical non-reciprocity without insertion loss.

1.4.2 Narrow-linewidth sources

FIGURE 1.13: (a) Schematic of a Brillouin laser based on photonic chip, (b) micrograph
of the As2S3 (chalcogenide) waveguides (top view) with vertical tapers, (c) numerically
calculated acoustic and optical modes in the waveguide. Plot (d) shows the Stokes power
versus input pump power (markers), with the inset showing the back-scattered optical-

spectrum analyzer (OSA) spectra. Image and caption from [93].

The development of on-chip SBS allowed for a large enhancement in the SBS gain,
making it now possible to create narrow-linewidth optical sources by exploiting this
nonlinear process. For instance, a small-scale Brillouin laser using a chalcogenide
waveguide was first demonstrated experimentally by [93] as shown in Fig. 1.13. In
this experiment, the Stokes signal was generated in a 7 cm-long, 4 µm-wide As2S3 rib
waveguide with an effective area of 2.3 µm2, and circulated in a ring fiber cavity con-
taining the chip. Through this, they achieved a 100 kHz linewidth laser, with a reduced
lasing threshold of 360 mW (five times lower than the calculated single-pass Brillouin
threshold), and a slope efficiency of 30%.

Another notable advancement in Brillouin laser technologies was achieved by [94],
in which the authors demonstrated a sub-Hertz (∼0.7 Hz) fundamental linewidth Bril-
louin laser in a Si3N4 waveguide platform (as shown in Fig. 1.14), bringing laser de-
signs to the integrated chip scale. In addition, their design supported low losses be-
tween 405−2350 nm wavelengths and low-phase-noise.

1.4.3 Brillouin sensing and microscopy

Stimulated Brillouin scattering has found numerous applications in sensing. This is
because SBS is strongly dependent on the physical properties of the guiding medium:
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FIGURE 1.14: (a) Measured S1 (1st Stokes order) power as a function of pump power. (b)
Sub-threshold spontaneous emission spectrum. (c) Measurement of the S1 single-sided
frequency noise and (d) linewidth evolution of S1 from ∼1 MHz spontaneous linewidth
below threshold to∼0.7 Hz fundamental linewidth above threshold at the onset of S2 (2nd

Stokes order) lasing. Image and caption from [94].

the scattered light experiences a frequency shift ∆νB proportional to the acoustic ve-
locity within the medium, which is proportional to properties such as temperature
and strain [95]. One such application is Brillouin optical-fiber time domain analysis
(BOTDA), in which the temperature and strain distribution across an optical fiber can
be measured by accessing only one end of the fiber [96, 97, 98, 99, 100]. In a similar way,
Brillouin optical-fiber frequency-domain (BOFDA) was used to make temperature and
strain measurements with a spatial resolution of 3 m over a 1 km fiber, finding strong
correlations with the Brillouin frequency shift [101], as shown in Fig. 1.15. Further
improvements to these techniques were performed over the next decade, with higher
spatial and spectral resolution achieved by [102]. Here, fully resolved measurements
of the Brillouin frequency shift of a 5 cm spot perturbation at the far end of a 5 km fiber
were performed, achieving a frequency resolution of 3 MHz, and using a 500 ps (5 cm)
π phase shift pulse.

SBS has also been used in the characterization of optical microfibers and nanofibers
as a non-destructive method, offering sensitivites as high as a few nanometers in fiber
diameters ranging from 500 nm to 1.2 µm, valid for all optical wavelengths and arbi-
trary glass materials [42]. These characterization techniques have also been extended
to small silicon-chalcogenide photonic waveguides, in which the localized Brillouin
response of the structure is highly sensitive to geometrical variations [43, 103], with
experimentally demonstrated spatial resolutions of 500 µm which are able to detect
feature sizes down to 200 µm, by using the Brillouin optical correlation domain analy-
sis technique (BOCDA) [104].

The same principles used for Brillouin sensing have also been applied in the field of
microscopy and endoscopy, enabling much higher resolution microscopy [51, 105]. Be-
cause SBS provides a non-invasive way of probing the acoustic response of a material,
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FIGURE 1.15: (a) Pump-probe-laser configuration for the measurement of the Stokes
linewidth in a BOFDA experiment. Measured temperature (b) and strain (c) dependence

of the Brillouin frequency shift. Image and caption from [101]. ©1997 IEEE.

it is possible to extract elastic properties of delicate biological materials which would
be impossible otherwise [106]. One such example was the probing of a human eye
in vivo [107]. In this experiment, the authors constructed a Brillouin optical scanner
safe for human use, by employing CW laser light at 780 nm and at a low power of 0.7
mW. Using a single scan along the optical axis of the eye, the axial profile of Brillouin
frequency shift was obtained with a pixel acquisition time of 0.4 s and axial resolution
of about 60 µm, showing the depth-dependent biomechanical properties in the cornea
and lens. Another example was the application of SBS for the measurement of the elas-
tic properties of multiple types of spider silk [108], which allowed the authors to obtain
the entire stiffness tensors, refractive indices, and longitudinal and transverse sound
velocities.

1.4.4 Opto-acoustic memory storage

Because acoustic waves propagate at a speed at least 6 orders of magnitude lower than
electromagnetic waves in a medium, the acoustic field can be considered to be sta-
tionary in the space during the interaction of optical pulses [69]. The acoustic lifetime
in the nanophotonic waveguides used for SBS is generally in the range of nanosec-
onds [44], which is a long time on optical scales. This effect makes it possible to build
opto-acoustic memory storage devices based on SBS, where an optical data pulse in-
teracts with an optical write-pulse, creating an acoustic hologram in which the original
data is temporarily stored [59, 109, 110]. Then, an optical read-pulse interacts with the
acoustic pulse to generate another optical pulse, thus retrieving the original data, as
illustrated in Fig. 1.16.

Opto-acoustic storage via SBS was first investigated experimentally by [59] in a
room-temperature optical fiber, in which 2-nanosecond-long data pulses were effec-
tively stored in an acoustic wave for up to 12 ns, using 1.5-nanosecond long read-
/write pulses. In this experiment, up to 29% readout efficiency (defined as the ratio
of the retrieved data power to the input data power) was achieved at 4 ns storage
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FIGURE 1.16: (a) An optical data pulse (pump) gets depleted by a strong counter-
propagating write pulse (Stokes), storing the data pulse as an acoustic wave (b). (c) In
the retrieval process, a read pulse depletes the acoustic wave, converting the data pulse

back into the optical domain (d).

FIGURE 1.17: Measurements and numerical simulations of stored light via SBS. (A) shows
experimental results for a 2-ns-long rectangular-shaped data pulse, and (C) shows the cor-
responding theoretical simulations. (B) shows the case of a 2-ns-long smooth data pulse,
with the corresponding simulations shown in (D). The retrieved pulses are shown with
a multiplication factor of 2 to the right of the dashed vertical line. Image and caption

from [59].

times as shown in Fig. 1.17, and noting that higher storage efficiency might be possi-
ble in materials with longer acoustic lifetimes. It was also found that optimal storage
is achieved when the read/write pulses are shorter than the shortest data pulse, and
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FIGURE 1.18: Data and retrieved pulses for two values of control pulse power. (a) Control
pulse power = 78 W. For unchirped pulses the retrieved pulse amplitude is negligible. With
chirped pulses the output is significant. (b) Control pulse power = 183 W. The retrieved
pulse in the case of chirped input is stronger and narrower than for the unchirped case.
The read pulse delay is 7 ns. Pulse retrieval efficiency versus (c) read and write pulse
area and (d) power for chirped and unchirped Gaussian pulses. Adapted with permission

from [61] ©The Optical Society.

that the pulse area for the read/write must obey certain conditions [59] based on the
waveguide properties. Similar experiments [109] achieved 13% readout efficiency for
8−25 ns storage times.

Later theoretical investigations found that the storage efficiency could be further
enhanced through the use of chirped pulses [60, 61], which relaxed the conditions for
maximum retrieval efficiency outlined in earlier work [59], in which the read/write
pulse area must be equal to an odd integer multiple of π/2 (see Fig. 1.18). In this work,
approximate analytic solutions to the three-wave interaction in the steady-state were
found, and the results demonstrated that the use of chirped pulses in SBS based storage
improves retrieval efficiency just as it improves population transfer in the adiabatic
rapid passage in two-level atom systems.

Building on the previous work in opto-mechanical resonator storage [111, 112]; in-
vestigations on non-reciprocal storage in micro-ring resonators were performed, achiev-
ing light storage in an circulating acoustic wave with a lifetime up to 10 µs [113]. More
recently, successful opto-acoustic storage in higher-gain chalcogenide waveguides be-
tween 9−24 cm in length was experimentally demonstrated, with readout efficiencies
of 15−32% after 3.5 ns [62]. Finally, more recent experiments used the coherent refresh-
ing of acoustic phonons [63], as shown in Fig. 1.19. This technique achieved on-chip
storage times of up to 40 ns, or four times the acoustic lifetime, with potential exten-
sions up to the µs regime.

1.5 The role of noise in SBS

Despite the multiple applications of SBS in modern photonics, recent advances in the
development of a general theory of SBS dating back to the 1990s have demonstrated
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FIGURE 1.19: (a) An optical write pulse converts the information of an optical data stream
to an acoustic wave. (b) Acoustic wave propagates and decays with the acoustic lifetime.
(c) Acoustic wave dissipates leading to information loss. (d) Optical refresh pulses at
ωrefresh = ωdata transfer energy to the acoustic phonons. (e) Optical read pulse converts
the information back to the optical domain, and the delayed optical information exits the
waveguide. (f) Experimental setup and (g) experimental results for increasing retrieval

efficiency using phonon refreshing. Images and captions from [63].

that background noise due to thermal fluctuations in the waveguide can negatively im-
pact signal integrity in optical communication systems [64, 65, 66, 70, 114, 115]. This is
due to background thermal phonons contributing to the amplified spontaneous emis-
sion of Stokes photons when a pump field propagates through the waveguide. This
noise then combines with the input signal or Stokes seed, and generates a noisy output
signal.

The first work on SBS noise was published by Boyd et al. [64], in which they pre-
sented a theoretical framework for modelling thermal fluctuations in SBS, by incor-
porating an additive white noise term into the acoustic equation, finding solutions to
the Stokes field in the CW undepleted pump regime, and also performing numerical
integrations for depleted pumps. They specifically looked at the relation between two
quantities: the product ΓTt in which Γ is the phonon damping rate, and Tt is the transit
time of the optical fields in the waveguide, as well as the single-pass gain G = gILL
with g is the SBS gain coefficient, IL is the pump intensity and L is the fiber length,
with numerical simulations shown in Fig. 1.20. They found that the fluctuations in
the Stokes output are more prominent for small ΓTt, in which the transit time is much
shorter than the time scale 1/Γ on which the Stokes intensity fluctuations occur. In this
research, they concluded that since the degree of pump depletion can change consider-
ably during the time duration of a fluctuation, this tends to smooth out the fluctuations
in the output Stokes intensity.

Later experiments in [65] confirmed these observations, and also found that large
Stokes fluctuations would be observed whenever ΓTt > G, since this regime would
be limited by gain saturation and thus the fluctuations in the Stokes field cannot be
suppressed. However, if ΓTt < G then the fluctuations are diminished.
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FIGURE 1.20: Fluctuations in the Stokes output intensity for the case ΓTt = 20, as predicted
by the numerical integration of the equations described in the paper. As the single-pass
gain G = gIL(0)L is increased, the mean reflectivity increases and the fluctuations become

suppressed due to pump depletion effects [64].

A few years later, Ferreira et al. [66] expanded the original theoretical model in [64]
by including the effect of optical loss into the underlying equations, which was previ-
ously neglected, as well as taking into account the signal detuning from the Brillouin
line center and the depletion of the pump. In these computations, it was shown that
the amplified spontaneous emission noise is reduced at higher signal (Stokes seed)
levels and that detuning the signal reduces the amplifier gain in the linear regime and
increases the spontaneous noise power in the saturation regime. Additionally, it was
found that the analytical approximation commonly used to describe the effective band-
width of the amplified spontaneous emission spectrum was inadequate both for low
and for high values of the pump power and of the amplifier length.

Despite shedding some light on the dynamics of noise in SBS, these initial theo-
retical models assumed that the optical and acoustic fields are weakly guided, such
as in optical fibers, and that the pump operates under the quasi-continuous or CW
wave regime, which at the time was very common in experimental setups. However,
with the advent of more compact waveguides over the next decade, the noise models
would need to be updated in order to account for different geometries and operat-
ing conditions. The theoretical work of Kobyakov et al. [116] extended the distributed
fluctuating source model from [64] with the addition of an opto-acoustic effective area
using scalar modal fields, allowing for the analysis of noise in structures beyond op-
tical fibers. In this work, an exact formula for the back-reflected power generated by
the stimulated Brillouin scattering in media with loss was derived, focusing on quasi-
CW pulses and weak guidance, and provided a more accurate prediction of the back-
scattered SBS signal which was shown to be 2−3 dB higher than the level calculated
with the previous models.

The study of SBS noise then focused on applications such as SBS lasers and micro-
ring resonators in the following years [117, 67, 49, 50]. For instance, Loh et al. [117]
developed a theoretical model, consisting of a set of coupled-mode equations that
accurately describe the steady-state behavior and noise dynamics of an SBS micro-
ring laser. They found that the coupling between the forward, backward, and density
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waves results in a complex noise response to amplitude or phase perturbation, with
the intrinsic limits of SBS laser noise degraded by a noisy pump due to the transfer of
pump noise into the SBS wave. Nevertheless, it was also demonstrated in this study
that these effects are mitigated with the use of micro-cavities with higher Q factors.

Noise and dynamics in forward Brillouin interactions have also been studied [67].
In this study, the authors looked at the spatio-temporal dynamics of spontaneous and
stimulated forward Brillouin scattering (FBS), by incorporating the optomechanical
coupling produced from boundary effects and photoelastic effects, using a general
Hamiltonian framework. The authors established a connection between the power
spectral density of spontaneously scattered light in FBS and the nonlinear coupling
strength, showing that noise-initiated FBS is forbidden in the majority of experimen-
tal systems, due to the single-pass gain G being negative for a large class of devices.
Similarly, noise and dynamics in cascaded order Brillouin lasers was investigated by
Behunin et al. [49]. Here, the authors formulated a theoretical model based on the cou-
pled mode dynamics governed by electrostriction and the fluctuation-dissipation the-
orem, from which they obtained analytical formulas describing the steady-state power
evolution and accompanying noise properties such as: phase noise, relative-intensity
noise, and power spectra for beat notes of cascaded laser orders. In this study, it was
found that cascading can enhance laser noise, resulting in a broader emission linewidth
and larger intensity fluctuations with increased power, and that higher-coherence laser
emission can be achieved if indefinite cascading can be prevented.

FIGURE 1.21: Simulated (blue solid line) and analytical (black dashed line) SBS laser (a)
frequency noise and (b) RIN for a pump power of 1 mW and pump detuning of 0 Hz [117].

So far, theoretical frameworks have been established for backward and forward Bril-
louin scattering in the steady-state regime, with useful analytical formulas for com-
puting noise properties associated with the SBS process. However, the models have
focused on steady-state regimes of operation or quasi-CW pulses, either in the con-
text of SBS amplification in fibers or in the context of lasers and micro-ring resonators.
Thus far, a general theoretical framework for SBS noise in the case of optical pulses
of arbitrary shape and size has not been formulated, and is still of importance for ac-
curately predicting and characterizing the noise in modern integrated SBS waveguide
experiments [118, 119, 62].
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FIGURE 1.22: Fundamentals of Brillouin lasing: (a) Energy conservation and (b) wave vec-
tor phase matching requirements. Brillouin coupling mediated (c) optical amplifier and (d)
energy transfer, (e) Ring resonator-based Brillouin laser. (f) Illustration of a cascaded Bril-
louin laser. A laser of frequency ωpump and linewidth ∆νpump pumps an optical resonator.
Light in the ω0 mode (blue) can scatter to ω1 (red) by emitting a phonon. When lasing, the
ω1 optical mode can act as a pump for higher Stokes orders. Relative-intensity noise of
the first Stokes order (g) prior to cascaded lasing, (h) cascaded lasing to two Stokes orders,
and (i) cascaded lasing to three Stokes orders. Gray dashed line (i) is the theory curve from

(g) included for comparison. Images and captions from [49].

1.6 The main problems addressed in this thesis

The work on SBS noise thus far has primarily focused on steady-state systems or CW
regimes, and has been investigated in the context of specific devices such as lasers,
micro-ring resonators and amplifiers. In order to further understand the dynamics of
noise and how it interacts with the SBS process, we need to look at the case of short
optical pulses and how the noise couples to the optical and acoustic fields in nanoscale
photonic waveguides where the SBS gain is significantly higher than in fibers but so
are the optical losses. In particular, we are interested in investigating what the physi-
cal mechanisms behind thermal noise in nanophotonic waveguides are, how this noise
is amplified through the SBS interaction and how it manifests in the output optical
pulses, namely in terms of amplitude and phase noise, signal-to-noise ratio (SNR) and
other measures of signal integrity. Furthermore, we would also like to develop numer-
ical methods for simulating thermal and laser noises, as well as solving the transient
SBS equations for pulses of arbitrary shape and size as they interact with different
noise sources. These numerical methods can then be applied to the simulation of real-
istic SBS devices and systems, such as Brillouin-based opto-acoustic storage, in order
to predict the impact noise will have in them.

In this thesis we present both a theoretical framework for noise dynamics in back-
ward SBS, as well as numerical methods for solving the transient SBS equations with a
variety of noise sources, with particular focus on thermal noise and laser phase noise.
We concentrate on the noise dynamics in pulsed SBS interactions, which have so far
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not been investigated in depth, and study how the noise impacts the integrity of infor-
mation retention in Brillouin-based storage.

The Thesis is broken down as follows: in Chapter 2, we derive the coupled-mode
SBS equations from Maxwell’s equations and the elastodynamic equations, and discuss
the parameters associated with the modal fields and how they may be computed nu-
merically. We also demonstrate how the well-known steady-state SBS equations for the
pump and Stokes powers can be recovered from the general transient SBS equations
derived here. This Chapter is also supplemented by background material in Appendix
B, which gives an overview of elasticity theory.

In Chapter 3, we develop a mathematical theory of thermal noise in SBS by comput-
ing the energy of the acoustic field in the long-time limit, and using the equipartition
theorem and fluctuation-dissipation theorem to relate the noise strength to the acoustic
loss in the medium. We then develop a model for laser phase noise which simulates
phase fluctuations as a Brownian motion, with variance proportional to the intrinsic
laser linewidth. This Chapter is supplemented by Appendices A and C, which present
an overview of random variables, a rigorous derivation of Brownian motion, and an
overview of white noise and stochastic differential equations.

Chapter 4 develops a general theory of stochastic dynamics in pulsed backward
SBS, and finds analytic solutions to the Stokes power in the undepleted pump regime,
including thermal noise. These analytic expressions are then used for investigating
the effect of pulse width and optical loss on the optical signal to noise ratio (OSNR)
in a chalcogenide waveguide. We find that the OSNR has a minimum peak near the
region in which the interaction time between the optical pulses matches their transit
time across the waveguide, as a result of longer pump pulses compensating for the
linear optical losses of the medium.

Chapter 5 expands on the theoretical work from Chapter 4 and develops a numeri-
cal method for solving the three coupled mode SBS equations with both thermal noise
and input laser phase noise. The method is used for simulating pulses in a high SBS
gain waveguide, and we find that for short pump regimes, the spontaneous Stokes
field is incoherently amplified with large spatio-temporal fluctuations, whereas for the
long-pump regime the Stokes field is amplified coherently, resulting in a smooth field
with large variations in peak power. Furthermore, Appendix D described a MATLAB
code that implements the numerical method derived in Chapter 5.

Chapter 6 applies the numerical methods developed to simulating Brillouin based
storage with short pulses in the 100−150 ps range, by using a set of low-power pump
data pulses, and high-power Stokes read/write pulses, which deplete energy from the
pump field and transfer it to an acoustic wave which temporarily stores the amplitude
and phase information of the original optical field. We compare the performance of
information encoding of two schemes: phase storage and amplitude storage. In this
investigation, we find that phase storage allows for longer storage times than ampli-
tude storage as it is more robust to thermal noise. We also find that increasing the
read/write pulse energy also increases the maximum storage time attainable, and that
the error rate in the retrieved data increases when the retrieval efficiency of the setup
decreases.

Chapter 7 presents a summary and outlook of the current research, and discusses
some future directions that can add to the work presented in this Thesis.
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Chapter 2

Mathematical Theory of Stimulated
Brillouin Scattering

2.1 Overview

The SBS interaction is mathematically described by a set of three coupled partial differ-
ential equations, two for the optical envelope fields and one for the acoustic envelope
field. To derive these equations we need to combine the effects of electromagnetic
waves in a continuous dielectric medium as well as elastic waves arising from two
sources: thermal fluctuations in the medium, micro-strains and refractive index varia-
tions induced by electrostriction, photoelasticity and radiation pressure from the opti-
cal fields. Derivations of these coupled equations in the noiseless case have been made
elsewhere [76, 8, 68, 120]. Here, we adopt a similar procedure as in [76] but use a ma-
trix notation method to simplify the computations, before adding the noise functions
at the end.

2.2 Electromagnetic equations

We describe the classical propagation of light using Maxwell’s equations in a continu-
ous medium, which are covered in detail elsewhere [121, 122, 123, 124, 125]. We will
use the following form of Maxwell’s equations throughout this Thesis:

∇× E = −∂B
∂t

, (2.1)

∇×H =
∂D
∂t

+ J, (2.2)

∇ ·D = ρfree, (2.3)
∇ · B = 0, (2.4)

with electric field E, displacement field D, magnetising field H, current density J and
free charge density ρfree, along with the constitutive relations for the displacement and
magnetic fields respectively

D = εE + Pnl, (2.5a)
B = µH + M, (2.5b)

where Pnl is the nonlinear polarisation term, ε = ε0εr is the permittivity of the medium,
µ is the permeability and M is the magnetic moment. In the case of non-magnetic
materials, we set M = 0. In addition, we assume free charges and free currents in the
medium such that J = 0 and ρfree = 0 [120]. This reduces Maxwell’s equations, along
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with their constitutive relations, to only two: one for E and one for H

∇× E = −µ
∂H
∂t

, (2.6)

∇×H =
∂(εE)

∂t
+

∂Pnl

∂t
. (2.7)

We now assume Pnl = ∆εE under a non-dispersive treatment, given that the variation
in frequency ∆ω is small; where ∆ε is a change in the permittivity [76]. Orienting the
longitudinal axis of the guiding medium along the z-axis allows us to separate the curl
operator into two terms

∇× = ∇⊥ ×+ẑ× ∂z, (2.8)

where ∇⊥× is the curl with respect to only x and y. This then leads to the coupled
equations

∂t(εE)− ẑ× ∂zH−∇⊥ ×H = −∂tP, (2.9)
∂t(µH) + ẑ× ∂zE +∇⊥ × E = 0. (2.10)

In a manner analogous to the derivation of the electromagnetic reciprocity relations
in [126], we write our system of equations in matrix form as

∂t

(
ε 0
0 µ

) [
E
H

]
+ ∂z

[
0 −ẑ×

ẑ× 0

] [
E
H

]
+

[
0 −∇⊥×
∇⊥× 0

] [
E
H

]
= −∂t

[
∆ε 0
0 0

] [
E
H

]
.

(2.11)
To simplify the equations, we borrow notation from quantum mechanics and write

∂tE |Ψ⟩+ ∂zP |Ψ⟩+D|Ψ⟩ = −∂t∆ε|Ψ⟩, (2.12)

with

E =

(
ε 0
0 µ

)
; P =

[
0 −ẑ×

ẑ× 0

]
; D =

[
0 −∇⊥×
∇⊥× 0

]
, (2.13)

and |Ψ⟩ =
[
E H

]T. Next, we expand

|Ψ(x, y, z, t)⟩ = A1(z, t)|Ψ1(x, y)⟩ei(β1z−ω1t) + A2(z, t)|Ψ2(x, y)⟩ei(β2z−ω2t) + c.c., (2.14)

where the modal fields |Ψk(x, y)⟩ =
[
ek(x, y), hk(x, y)

]T must satisfy the modal wave
equation

− iωkE |Ψk⟩+ iβkP |Ψk⟩+D|Ψk⟩ = 0, (2.15)

Next, we perform an integral over the entire cross-sectional plane with infinitesimal
area element dA, using the following definition:

⟨ψ|O|ψ⟩ =
∫

dA ψ∗(x, y)Oψ(x, y), (2.16)

for some mathematical operator O. This is similar to computing the expected value of
an observable quantity in quantum mechanics whose associated operator is O [127].
Applying this formula to Ψk using the operators E and P yields

⟨Ψk|E |Ψk⟩ =
∫

dA
[
e∗k h∗k

]
·
(

ε 0
0 µ

) [
ek
hk

]
=
∫

dAe∗k · (εek) + h∗k · (µhk) = Ek,
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⟨Ψk|P |Ψk⟩ =
∫

dA
[
e∗k h∗k

]
·
[

0 −ẑ×
ẑ× 0

] [
ek
hk

]
=
∫

dAe∗k · (−ẑ× hk) + h∗k · (ẑ× ek)

=
∫

dA [−ẑ · (hk × e∗k ) + ẑ · (ek × hk)]

= 2ℜ
(∫

dA(ek × h∗k )z

)
= Pk.

In other words, Ek is the electromagnetic modal energy and Pk is the modal power:

Ek = ⟨Ψk|E |Ψk⟩, (2.17a)
Pk = ⟨Ψk|P |Ψk⟩. (2.17b)

Next, we substitute

|Ψ⟩ = A1eiϕ1(z,t)|Ψ1⟩+ A2eiϕ2(z,t)|Ψ2⟩+ c.c.,

where ϕ1,2(z, t) = β1,2z−ω1,2t; into equation (2.12), and using the relations

∂t(A1eiϕ1) = (∂t A1 − iω1 A1)eiϕ1 = eiϕ1(∂t − iω1)A1,

∂z(A1eiϕ1) = (∂z A1 + iβ1 A1)eiϕ1 = eiϕ1(∂z + iβ1)A1,

and D|Ψk⟩ = iωkE |Ψk⟩ − iβkP |Ψk⟩, we obtain

∂tE
(

A1eiϕ1 |Ψ1⟩+ A2eiϕ2 |Ψ2⟩+ c.c.
)
+ ∂zP

(
A1eiϕ1 |Ψ1⟩+ A2eiϕ2 |Ψ2⟩+ c.c.

)
+D

(
A1eiϕ1 |Ψ1⟩+ A2eiϕ2 |Ψ2⟩+ c.c.

)
= −∂t∆ε

(
A1eiϕ1 |Ψ1⟩+ A2eiϕ2 |Ψ2⟩+ c.c.

)
,

which simplifies to

eiϕ1 (E∂t +P∂z) A1|Ψ1⟩+ eiϕ2 (E∂t +P∂z) A2|Ψ2⟩+ c.c.

= −∂t

[
∆εeiϕ1 A1|Ψ1⟩+ ∆εeiϕ2 A2|Ψ2⟩+ c.c.

]
, (2.18)

Next, we make an ansatz for the elastic field in a manner similar to the method in
Appendix B.2:

U(x, y, z, t) = B(z, t)u(x, y)ei(qz−Ωt) + c.c. (2.19)

where u(x, y) is the modal displacement field and B(z, t) is the envelope field in the
direction of propagation. For SBS, we assume that the variation in permittivity for the
medium ∆ε(x, y, z, t) is then linearly related to the displacement field U, and is defined
as

∆ε(x, y, z, t) = B(z, t)ei(qz−Ωt)∆ε⊥(x, y) + c.c., (2.20)

where the function ∆ε⊥(x, y) gives the change in permittivity of the medium along the
cross-section on the xy−plane. Here, we set q = β2 − β1 and Ω = ω2 − ω1, and this
simplifies the expression to

∆ε(x, y, z, t) = B(z, t)ei(ϕ2−ϕ1)∆ε⊥(x, y) + c.c. (2.21)
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Next, we write

∂t∆ε
(

A1eiϕ1 |Ψ1⟩+ A2eiϕ2 |Ψ2⟩+ c.c.
)
= ∂t

[ (
Bei(ϕ2−ϕ1)∆ε⊥ + B∗ei(ϕ1−ϕ2)∆ε∗⊥

)
×(

A1|Ψ1⟩eiϕ1 + A∗1 |Ψ1⟩∗e−iϕ1 + A2|Ψ2⟩eiϕ2 + A∗2 |Ψ2⟩∗e−iϕ2
) ]

The right-hand side of (2.18) then becomes

RHS = −∂t

[
eiϕ1 B∗∆ε∗⊥A2|Ψ2⟩+ eiϕ2 B∆ε⊥A1|Ψ1⟩

]
= −eiϕ1 (∂tB∗A2∆ε∗⊥|Ψ2⟩+ B∗∂t A2∆ε∗⊥|Ψ2⟩ − iω1B∗∆ε∗⊥A2|Ψ2⟩)
− eiϕ2 (∂tBA1∆ε⊥|Ψ1⟩+ B∂t A1∆ε⊥|Ψ1⟩ − iω2B∆ε⊥A1|Ψ1⟩) ,

In SBS experiments, the width of the field’s envelope is generally a few orders of mag-
nitude longer than the optical carrier frequencies [44]. This means that only those
terms in Eq. (2.18) which are multiples of these carrier frequencies will contribute sig-
nificantly to this expression. In other words, we apply what is known as the slowly-
varying envelope approximation (SVEA) [128]:

∂tB∗A2∆ε∗⊥|Ψ2⟩+ B∗∂t A2∆ε∗⊥|Ψ2⟩ ≪ iω1B∗∆ε∗⊥A2|Ψ2⟩,
∂tBA1∆ε⊥|Ψ1⟩+ B∂t A1∆ε⊥|Ψ2⟩ ≪ iω2B∆ε⊥A1|Ψ1⟩,

which in turn allows us to write the approximate expression

RHS ≈ iω1eiϕ1 B∗∆ε∗⊥A2|Ψ2⟩+ iω2eiϕ2 B∆ε⊥A1|Ψ1⟩. (2.22)

At this stage, we can now equate terms containing the same phase on the left-hand
side and right-hand sides of (2.18), namely eiϕ1 or eiϕ2 , which leads to

eiϕ1 (E∂t +P∂z) A1|Ψ1⟩+ c.c. = iω1eiϕ1 B∗∆ε∗⊥A2|Ψ2⟩+ c.c.,

eiϕ2 (E∂t +P∂z) A2|Ψ2⟩+ c.c. = iω2eiϕ2 B∆ε⊥A1|Ψ1⟩+ c.c.

Multiplying each equation by either e−iϕ1 or e−iϕ2 respectively, we can now neglect
the complex conjugate terms by using the rotating-wave approximation (RWA) [129]:
effectively, oscillatory terms such as e−2ϕ1,2 vary considerably faster than ei(0), so we
write:

eiϕ1 (E∂t +P∂z) A1|Ψ1⟩ = iω1eiϕ1 B∗∆ε∗⊥A2|Ψ2⟩ (2.23)

eiϕ2 (E∂t +P∂z) A2|Ψ2⟩ = iω2eiϕ2 B∆ε⊥A1|Ψ1⟩. (2.24)

The next step in our derivation consists of multiplying (2.23) by ⟨Ψ1| and (2.24) by
⟨Ψ2|, and applying the results from earlier ⟨Ψk|E |Ψk⟩ = Ek and ⟨Ψk|P |Ψk⟩ = Pk we
obtain the following pair of equations:

(E1∂t + P1∂z) A1 = iω1⟨Ψ1|∆ε∗⊥|Ψ2⟩B∗A2, (2.25)
(E2∂t + P2∂z) A2 = iω2⟨Ψ2|∆ε⊥|Ψ1⟩BA1. (2.26)
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Finally, we can define the inner product terms on the right as coupling constants Q̃1
and Q̃2:

⟨Ψ1|∆ε∗⊥|Ψ2⟩ =
∫

dA
[
e∗1 h∗1

]
·
[

∆ε∗⊥ : 0
0 0

] [
e2
h2

]
=
∫

dAe∗1 · (∆ε∗⊥ : e2) = Q̃1,

(2.27a)

⟨Ψ2|∆ε⊥|Ψ1⟩ =
∫

dA
[
e∗2 h∗2

]
·
[

∆ε⊥ : 0
0 0

] [
e1
h1

]
=
∫

dAe∗2 · (∆ε⊥ : e1) = Q̃2,

(2.27b)

where : denotes the double-contraction operator (also known as the double dot-product)
of two tensors T : U = TijUji. This then leads to the coupled optical equations in SBS

∂A1

∂z
+

E1

P1

∂A1

∂t
=

iω1Q̃1

P1
B∗A2, (2.28a)

∂A2

∂z
+

E2

P2

∂A2

∂t
=

iω2Q̃2

P2
BA1. (2.28b)

2.3 Elastodynamic equation

Having derived (2.28a) and (2.28b) for the optical envelope fields A1 and A2 respec-
tively, we are now required to find an equation for the acoustic envelope field B so
we can solve for the other two. This can be done by establishing a relation between
the displacement field U(x, y, z, t) (or alternatively the velocity field V(x, y, z, t) =
∂tU(x, y, z, t)) and the coupling of the two optical fields E1 and E2 via electrostriction.
We shall begin with the general elastodynamic equation:

ρ
∂V
∂t

= ∇ · T + f, (2.29)

where ρ is the medium’s density, V is the velocity field of the continuous medium, T
is the stress tensor and is the sum of all external applied force densities. This equation
is complemented by the constitutive relation:

S :
∂T
∂t

= ∇sV + S : η :
∂

∂t
∇sV. (2.30)

where S is the compliance tensor and η is the viscosity tensor (see Appendix B for
derivation and details). Here the Nabla operator follows the Voigt convention outlined
in (B.10)

∇· = ∇⊥ ·+∂zẑ· =

∂x 0 0 0 0 ∂y
0 ∂y 0 0 0 ∂x
0 0 0 ∂y ∂x 0

+

0 0 0 0 ∂z 0
0 0 0 ∂z 0 0
0 0 ∂z 0 0 0

 , (2.31)

∇s = ∇s,⊥ + ∂zẑ =



∂x 0 0
0 ∂y 0
0 0 0
0 0 ∂y
0 0 ∂x
∂y ∂x 0

+



0 0 0
0 0 0
0 0 ∂z
0 ∂z 0
∂z 0 0
0 0 0

 . (2.32)
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Next, we assume that the compliance tensor S and viscosity tensor η are constant in
time, which leads to the matrix equation

∂

∂t

[
S : 0
0 ρ

] [
T
V

]
+

∂

∂z

[
0 −ẑ
−ẑ· 0

] [
T
V

]
+

[
0 −∇s,⊥
∇s,⊥· 0

] [
T
V

]
+

[
0 −S : η : ∂

∂t∇s
0 0

] [
T
V

]
=

[
0
f

]
. (2.33)

We can further simplify the equation by making use of the following notation

∂tE |Φ⟩+ ∂zP |Φ⟩+D|Φ⟩+ Υ|Φ⟩ = |F⟩, (2.34)

with

E =

[
S : 0
0 ρ

]
; P =

[
0 −ẑ
−ẑ· 0

]
; D =

[
0 −∇s,⊥
∇s,⊥· 0

]
; Υ =

[
0 −S : η : ∂

∂t∇s
0 0

]
,

(2.35)

|Φ⟩ =
[

T
V

]
; |F⟩ =

[
0
f

]
. (2.36)

We now introduce the ansatz

|Φ⟩ = B(z, t)|ϕ(x, y)⟩ei(qz−Ωt) + c.c., (2.37)

where |ϕ(x, y)⟩ =
[
t(x, y), v(x, y)

]T , leading to the equation

(∂tB− iΩB) eiθE |ϕ⟩+ (∂z + iq) BeiθP |ϕ⟩+ BeiθD|ϕ⟩+ BeiθΥ|ϕ⟩+ c.c. = |F⟩, (2.38)

where θ = qz − Ωt. In the absence of sources and damping forces, the modal field
|ϕ(x, y)⟩must satisfy the modal wave equation

− iΩE |ϕ⟩+ iqP |ϕ⟩+D|ϕ⟩ = 0, (2.39)

so making use of this in equation (2.38) yields

eiθ (∂tEB|ϕ⟩+ ∂zBP |ϕ⟩) + Υ
(

B|ϕ⟩eiθ
)
= |F⟩. (2.40)

We will now use this equation to find values for ⟨ϕ|E |ϕ⟩ and ⟨ϕ|P |ϕ⟩, in a similar
way to the electromagnetic case. First, we take

⟨ϕ|E |ϕ⟩ =
∫ [

t∗ v∗
]

:
[

S : 0
0 0

] [
t
v

]
dA =

∫ [
t∗ v∗

]
:
[

S : t
ρv

]
dA

=
∫ [

t∗ · (S : t) + ρ||v||2
]

dA =
∫ (

ϵ : t∗ + ρ||v||2
)

dA = Ea,

where ρ(x, y) denotes the density of the medium across the transverse plane and Ea is
the acoustic mode energy:

Ea = ⟨ϕ|E |ϕ⟩. (2.41)
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Similarly

⟨ϕ|P |ϕ⟩ =
∫ [

t∗ v∗
]

:
[

0 −ẑ
−ẑ· 0

] [
t
v

]
dA =

∫ [
t∗ v∗

]
:
[
−ẑv
−ẑ · t

]
dA

=
∫

[t∗ : (−ẑv) + v∗ · (−ẑ · t)]dA =
∫

((−v · t∗) · ẑ + ẑ · (−t · v∗))dA

= 2ℜ
(
−
∫

v · t∗dA
)
= Pa,

which is the average power per acoustic cycle:

Pa = ⟨ϕ|P |ϕ⟩. (2.42)

Now, expanding the Υ matrix as

Υ = ∂t (Υ⊥ + ∂zΥz) =
∂

∂t

([
0 S : η : ∇⊥
0 0

]
+ ∂z

[
0 S : η : ẑ
0 0

])
, (2.43)

results in

ΥBeiθ |ϕ⟩ = ∂t (Υ⊥ + ∂zΥz) Beiθ |ϕ⟩
= ∂t(Beiθ)Υ⊥|ϕ⟩+ ∂t∂z(Beiϕ)Υz|ϕ⟩
= eiθ [(∂t − iΩ)BΥ⊥|ϕ⟩+ ∂z (∂t − iΩ)Υz|ϕ⟩] ,

and using the fact that Ω is generally very large in the context of the optical time-scales
(e.g. Ω−1 is of the order of nanoseconds while ω−1 is of the order of picoseconds) [44,
69], we neglect the time-derivatives such that

ΥBeiθ |ϕ⟩ = −iΩBeiθΥ⊥|ϕ⟩ − iΩ (∂z + iq) BeiθΥz|ϕ⟩.

Using a similar argument for q, we neglect ∂z to obtain

ΥBeiθ |ϕ⟩ = −iΩ (Υ⊥ + iqΥz) |ϕ⟩Beiθ . (2.44)

It follows that
⟨ϕ|ΥBeiθ |ϕ⟩ = −iΩB⟨ϕ|Υ⊥ + iqΥz|ϕ⟩ = AB, (2.45)

where the constant A is an acoustic power loss quantity that arises from the material’s
viscosity and stiffness (e.g. it is proportional to the damping of the medium), and is
defined in terms of the modal fields t(x, y) and v(x, y) as

A = −iΩ⟨ϕ|Υ⊥ + iqΥz|ϕ⟩ = −iΩ
∫

dA
[
t∗ v∗

]
(Υ⊥ + iqΥz)

[
t
v

]
. (2.46)

Combining all the above results, and using a rotating-wave approximation to eliminate
complex conjugate terms, we obtain

Ea∂tB + Pa∂zB +AB = ⟨ϕ|F⟩e−iθ . (2.47)
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2.3.1 External forces and noise

Now, we must specify the force |F⟩ explicitly. First, we shall define a force density in
the form of a linear multiplicative coupling between the optical fields as

f = felectrostriction + fthermal, (2.48)

where felectrostriction comes from the electrostrictive force coupling between the two op-
tical fields, namely

felectrostriction = c(x, y)A∗1(z, t)A2(z, t)ei(qz−Ωt) + c.c., (2.49)

for an arbitrary modal function c(x, y), and fthermal comes from the background thermal
noise in the waveguide,

fthermal = ρ
√

σ̃R(z, t)ei(qz−Ωt)v(x, y) + c.c., (2.50)

where R(z, t) is a complex-valued stochastic field that describes the fluctuations in
space-time of the thermal acoustic background and has units of m−1/2s−1/2, while
ρ(x, y) is the equilibrium density of the medium with respect to the xy−plane. The
parameter σ̃ is related to the strength of the noise. Next, we write

⟨ϕ|F⟩e−iθ =
∫ [

t∗ v∗
] [0

f

]
e−iθdA

= A∗1(z, t)A2(z, t)
∫

v∗(x, y) · c(x, y)dA + ρ
√

σ̃R(z, t)
∫
|v(x, y)|2dA

= iΩQ̃a A∗1 A2 + iΩQ̃R
√

σ̃R,

with
Q̃a = −

i
Ω

∫
v∗(x, y) · c(x, y)dA; Q̃R = − i

Ω

∫
ρ|v(x, y)|2dA. (2.51)

In backwards SBS, we can set

Q̃a =
Q̃1 + Q̃∗2

2
, (2.52)

by using a thermodynamic argument [76]. The factor Q̃R has been chosen to match the
modal energy of the acoustic field via

Q̃R = − i
Ω

∫
ρ|v(x, y)|2dA = −i

Ea

Ω
. (2.53)

Therefore, the elastodynamic equation now yields the slowly-varying envelope acous-
tic wave equation

∂B
∂z

+
Ea

Pa

∂B
∂t

+
A
Pa

B =
iΩQ̃a

Pa
A∗1 A2 +

iΩQ̃R
√

σ̃

Pa
R(z, t). (2.54)
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Therefore, we arrive at the coupled SBS equations for the three-wave interaction

∂A1

∂z
+

E1

P1

∂A1

∂t
=

iω1Q̃1

P1
B∗A2, (2.55a)

∂A2

∂z
+

E2

P2

∂A2

∂t
=

iω2Q̃2

P2
BA1, (2.55b)

∂B
∂z

+
Ea

Pa

∂B
∂t

+
A
Pa

B =
iΩQ̃a

Pa
A∗1 A2 +

iΩQ̃R
√

σ̃

Pa
R(z, t). (2.55c)

However, it is important to note that the relationship Pi = Eivi holds for all three
waves, which leads to the simplified equations

∂A1

∂z
+

1
v1

∂A1

∂t
=

iω1Q̃1

P1
B∗A2, (2.56a)

∂A2

∂z
+

1
v2

∂A2

∂t
=

iω2Q̃2

P2
BA1, (2.56b)

∂B
∂z

+
1
va

∂B
∂t

+
1
2

αacB =
iΩQ̃a

Pa
A∗1 A2 +

iΩQ̃R
√

σ̃

Pa
R(z, t), (2.56c)

where αac = 2A/Pa is the acoustic loss coefficient (in units of m−1). This is related to
the acoustic decay rate Γ = vaαac = 2π∆νB, where ∆νB is the Brillouin linewidth and
τa = 1/Γ is the acoustic lifetime of the phonons. The SBS equations presented above
can be extended to include the effect of optical loss α1,2 by adding a linear term to the
optical envelope field equations, such that

∂A1

∂z
+

1
v1

∂A1

∂t
+

1
2

α1 A1 =
iω1Q̃1

P1
B∗A2, (2.57a)

∂A2

∂z
+

1
v2

∂A2

∂t
+

1
2

α2 A2 =
iω2Q̃2

P2
BA1, (2.57b)

∂B
∂z

+
1
va

∂B
∂t

+
1
2

αacB =
iΩQ̃a

Pa
A∗1 A2 +

iΩQ̃R
√

σ̃

Pa
R(z, t). (2.57c)

It should be noted that these SBS coupled equations are valid for single-mode cases,
since it is possible to select the acoustic mode by tuning the input laser frequencies [130].
This model can further be extended by including additional acoustic fields with their
own opto-acoustic coupling constants and potentially different noise properties [131].

2.4 Backward SBS equations

In the case of backward SBS, we can make further simplifications to the underlying
equations by noting that v2 = −v1 and α2 = −α1, and letting v1 = v and α1 = α we
write

∂A1

∂z
+

1
v

∂A1

∂t
+

1
2

αA1 =
iω1Q̃1

P1
B∗A2, (2.58a)

∂A2

∂z
− 1

v
∂A2

∂t
− 1

2
αA2 =

iω2Q̃2

P2
BA1, (2.58b)

∂B
∂z

+
1
va

∂B
∂t

+
1
2

αacB =
iΩQ̃a

Pa
A∗1 A2 +

iΩQ̃R
√

σ̃

Pa
R(z, t). (2.58c)
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A further simplification to eliminate the modal powers P1,2,a consists of defining a
new set of envelope fields a1,2 =

√
P1,2 A1,2 and b =

√
PaB, all of which have units of√

Watts such that the total field powers are given by P1,2(z, t) = |a1(z, t)|2 and Pa(z, t) =
|b(z, t)|2. This leads to the new set of coupled SBS equations

∂a1

∂z
+

1
v

∂a1

∂t
+

1
2

αa1 =
iω1Q̃1√
P1P2Pa

a2b∗,

∂a2

∂z
− 1

v
∂a2

∂t
− 1

2
αa2 =

iω2Q̃2√
P1P2Pa

a1b,

∂b
∂z

+
1
va

∂b
∂t

+
1
2

αacb =
iΩQ̃a√
P1P2Pa

a∗1a2 +
iΩQ̃R

√
σ̃√

Pa
R(z, t),

and making the substitutions Qj = Q̃j/
√
P1P2Pa and introducing the new constant√

σ = iΩQ̃R
√

σ̃/
√
Pa (with units of

√
J/m) we get

∂a1

∂z
+

1
v

∂a1

∂t
+

1
2

αa1 = iω1Q1a2b∗, (2.59a)

∂a2

∂z
− 1

v
∂a2

∂t
− 1

2
αa2 = iω2Q2a1b, (2.59b)

∂b
∂z

+
1
va

∂b
∂t

+
1
2

αacb = iΩQaa∗1a2 +
√

σR(z, t). (2.59c)

The coupling constants Q1,2,a are computed by finding the EM and acoustic modal
fields for the desired waveguide geometry and material. The norm squared of these
complex-valued quantities is defined as

|Qj|2 =
1

2v2vaρ0Ω2
1(

Aoa
eff

)2 , (2.60)

where Aoa
eff is the opto-acoustic effective area, expressed as

1(
Aoa

eff

)2 =

∣∣∫ e1 · (∆ε(x, y)e2)dA
∣∣2∫

ε||e1||2dA
∫

ε||e2||2dA
∫ ρ

ρ0
||u||2dA

, (2.61)

where ρ(x, y) is the density deviation of the medium in the transverse plane from its
equilibrium density ρ0, ∆ε(x, y) is the change in permittivity tensor and ε is the equi-
librium permittivity of the medium. The integration here is done across all of the
transverse space in (x, y). From conservation of energy [76], we can relate the three
constants as follows: Q1 = −Q∗2 and Qa = Q∗2 . The quantity ∆ε(x, y) is defined implic-
itly in terms of the displacement mode u(x, y) (which may be computed from v(x, y))
as

∆(ε(x, y)−1) = p : ∇su. (2.62)

where p is the photoelasticity tensor. Under symmetric permittivity tensor assump-
tions, it is possible to write a direct relationship for a relative background permittivity
εr [76]

∆(ε(x, y)) = −ε2
rp : ∇su. (2.63)

The computation of the modes can be done analytically only in the simplest of cases,
such as a linear isotropic dielectric cylindrical waveguide, and in practice these modes
must be computed numerically. There exist different numerical methods for this pur-
pose, for instance in the electromagnetic case one can use a finite difference method
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such as [132]. For the acoustic case, one can use an eigenmode equation method as
in [133]. The method used in this thesis for computing these field quantities is the fi-
nite element method described in [134], which makes use of the open source program
NumBAT [135].

2.4.1 Steady-state equations

Although the coupling constants Q1,2,a can be computed explicitly by using a numeri-
cal solver for the modal fields as described previously, it is often useful to relate these
quantities to a parameter which can be computed directly from experimental measure-
ments, such as the SBS gain parameter g0 (in m−1W−1) that we introduced in Chapter
1. This can be done by looking at the steady-state form of equations (2.59a)−(2.59c)
and neglecting the thermal noise term (R(z, t) = 0), so that we can focus purely on the
nonlinear interaction between the envelope fields a1,2 and b.

To simplify these equations, we first recognize that in nanophotonic waveguides of
length in the range of 5−50 cm, the time-scale of the SBS interaction is of the order of a
few nanoseconds up to a few hundreds of nanoseconds [44]. Within this time window,
the acoustic field only propagates along the waveguide by a few tens or hundreds of
microns. This means that the spatial drift of b is negligible in the time-scale of interest,
so we can use the approximation ∂zb → 0 [64, 68]. Then, we eliminate the transient
nature of the envelop fields by setting ∂t → 0 in all three equations, implying we are
now operating in the steady-state. This leads to the following approximation for the
acoustic field:

b(z) ≈ 2iΩQ∗2
αac

a∗1(z)a2(z), (2.64)

which in turn leads to the two optical field equations:

∂a1

∂z
= −1

2
αa1 −

2ω1Ω|Q2|2
αac

P2a1,

∂a2

∂z
=

1
2

αa2 −
2ω2Ω|Q2|2

αac
P1a2.

The next step is to express the two equations entirely in terms of the field powers
P1(z) = |a1(z)|2 and P2(z) = |a2(z)|2. This is achieved by exploiting the property of
complex-valued functions

∂| f |2
∂z

=
∂

∂z
[ f f ∗] = f

∂ f ∗

∂z
+ f ∗

∂ f
∂z

, (2.65)

leading to

∂P1

∂z
= −αP1 −

4ω1Ω|Q2|2
αac

P1P2,

∂P2

∂z
= αP2 −

4ω2Ω|Q2|2
αac

P1P2.

Finally, we would like to relate these expressions to the SBS gain parameter g0 in units
of m−1W−1. By using the expression

g0 =
4vaω2Ω|Q2|2

Γ
, (2.66)
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where Γ = vaαac is the acoustic decay rate, and ω1 ≈ ω2; we arrive at the steady-state
equations in Section 1.2.3

∂P1

∂z
= −αP1 − g0P1P2,

∂P2

∂z
= αP2 − g0P1P2.

The main advantage of expressing Q1,2,a in terms of g0 as we have done here is that we
can now focus on the impact of the overall SBS gain on the optical and acoustic fields,
as opposed to having to compute the modal fields explicitly for a particular waveguide.
These expressions involving g0 can in fact be extended to the transient case, as we shall
see later in Chapters 4 and 5.
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Chapter 3

Noise Mechanisms in Stimulated
Brillouin Scattering

3.1 Overview

In the previous Chapter, we discussed how to derive the coupled SBS equations for the
pump, Stokes and acoustic envelope fields, or a1(z, t), a2(z, t) and b(z, t) respectively.
We also introduced a random thermal force density in the form of a complex-valued
stochastic process R(z, t), scaled by a thermal noise parameter σ. In this Chapter, we
present a mathematical framework for simulating this thermal noise, and relate its
strength to the temperature and acoustic losses in the waveguide via the fluctuation-
dissipation theorem. We then present a mathematical model for laser phase noise
which can be incorporated into the boundary conditions of Eq. (2.59a)−(2.59c), and
how it is related to the laser’s intrinsic linewidth. The bulk of this work will be used
later in Chapters 4−6 to analyse the impact of noise on SBS within different scenarios.

It should be noted that from this Chapter onwards we use the definition of the
expectation operator ⟨·⟩ as described in Appendix A, where ⟨X(t)⟩ represents the en-
semble average of a stochastic process X(t) at each point in t over an infinite number
of independent realizations, and is related to the probability density function p(x, t) of
the random variable X(t) as

⟨X(t)⟩ =
∫ ∞

−∞
x(t)p(x, t)dx. (3.1)

3.2 Thermal noise

Thermal fluctuations in an optical waveguide can give rise to small changes in the
permittivity of the medium [64, 65, 68], thereby impacting the optical fields that prop-
agate through it by scattering photons spontaneously. We begin our model by defining
R(z, t) as a complex-valued normally distributed process with zero mean ⟨R(z, t)⟩ = 0
and auto-correlation function [64]

⟨R(z, t)R∗(z′, t′)⟩ = δ(z− z′)δ(t− t′), (3.2)

where δ(·) denotes the Dirac-delta function. This is what is known as white noise,
which has a constant spectral density (for more details on white noise and stochastic
processes, see Appendix C on Brownian motion). R(z, t) becomes a Brownian motion
when integrated with respect to z or t. Next, we note that in Eq. (2.59c):

∂b
∂z

+
1
va

∂b
∂t

+
1
2

αacb = iΩQaa∗1a2 +
√

σR(z, t), (3.3)
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FIGURE 3.1: Illustration of an arbitrary waveguide with a cross-sectional slice of thickness
∆z.

the constant parameter σ represents the noise strength of the thermal fluctuations in
the waveguide. It is essential that this quantity be related to the waveguide proper-
ties, such as temperature and acoustic loss. To derive such a relationship, we first take
∂zb→ 0 as the propagation of the acoustic wave over the optical time-scales is negligi-
ble [68] (i.e. in the scale of a few nanoseconds, the acoustic field only propagates over
a few micrometers, which is a very small portion of any waveguide longer than a few
centimeters). With this simplification, we then consider the acoustic envelope field bj at
a set of discrete positions along the waveguide zj, separated by a small uniform width
∆z, such that bj = b(zj) as shown in Fig. 3.1. Then, we define the thermal noise field in
each waveguide slice as R̃j, and we assume it to be statistically independent between
any two distinct slices due to the fact that white noise contains the same statistical
properties across the waveguide (e.g. zero mean and constant variance). Additionally,
we neglect the opto-acoustic coupling (i.e. setting the input laser fields to zero) so that
the bj field is only impacted by the thermal noise.

These simplifications lead to the following equation for the acoustic envelope field
in the jth slice in the waveguide:

dbj

dt
+

1
2

Γbj = va
√

σjR̃j(t), (3.4)

where σj = σ/∆z and Γ = vaαac. We choose R̃j(t) to be complex-valued so that thermal
noise introduces both amplitude and phase fluctuations into the acoustic field, which
is also complex-valued. In that sense, R̃j(t) can be written as a linear combination of

two statistically independent real-valued processes R̃(1,2)
j (t):

R̃j(t) =
R̃(1)

j (t) + iR̃(2)
j (t)

√
2

, (3.5)

with the properties

⟨R̃j(t)⟩ = 0, ⟨R̃(1)
j (t)R̃(2)

j (t)⟩ = 0, ⟨R̃j(t)R̃∗j (t
′)⟩ = δ(t− t′). (3.6)
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It should be noted here that since R̃j(t) is only delta-correlated in time, it has units of
s−1/2, and σj has units of J/m2. Equation (3.4) then has the solution

bj(t) = bj(0)e−
1
2 Γt + va

√
σj

∫ t

0
e−

1
2 Γ(t−t′)R̃j(t′)dt′, (3.7)

and thus the mean squared amplitude can be found via

⟨|bj(t)|2⟩ = |bj(0)|2e−Γt + v2
aσj

∫ t

0

∫ t′

0
e−

1
2 Γ(2t−t′−t′′)⟨R̃j(t′)R̃∗j (t

′′)⟩dt′′dt′, (3.8)

and using ⟨R̃j(t)R̃∗j (t
′)⟩ = δ(t− t′) one finds

⟨|bj(t)|2⟩ = |bj(0)|2e−Γt + v2
aσj

∫ t

0

∫ t′

0
e−

1
2 Γ(2t−t′−t′′)δ(t′ − t′′)dt′′dt′

= |bj(0)|2e−Γt + v2
aσj

∫ t

0
e−Γ(t−t′) dt′

= |bj(0)|2e−Γt +
vaσj

αac

(
1− e−Γt

)
,

which in the limit t→ ∞ yields the steady-state expression

⟨|bj(t)|2⟩∞ =
vaσj

αac
. (3.9)

This quantity represents the average acoustic power of the noise field. Using the
equipartition theorem [136], we note that the total energy of the system can be defined
in terms of the quantity kBT, where kB is the Boltzmann constant and T is the tempera-
ture of the propagation medium. We can then relate the quantity ⟨|bj(t)|2⟩∞/va to the
thermal energy per slice ∆z as:

1
va
⟨|bj(t)|2⟩∞ =

σj

αac
=

kBT
∆z

, (3.10)

which then yields

σj =
kBTαac

∆z
. (3.11)

Then, we obtain the value for σ based on the slice thickness ∆z

σ = σj∆z = kBTαac. (3.12)

This expression implies that the noise strength is directly proportional to both the tem-
perature and the acoustic loss of the medium, which is consistent with the fluctuation-
dissipation theorem [137]. Here, σ plays a similar role to the noise strength defined
in the Boyd paper [64] denoted as Q, which is linearly proportional to the waveguide
temperature and acoustic phonon decay rate.

3.3 Properties of the thermal acoustic background

Now, we will derive the statistical properties of the thermal acoustic background. Start-
ing with Eq. (3.4), we now turn to b(z, t) in a continuum picture and include the effect
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of optical fields (i.e. input laser fields are now back on). This allows us to write

1
va

∂b
∂t

+
1
2

αacb = iΩQaa∗1a2 +
√

σR(z, t). (3.13)

This equation is then formally integrated in time by using the integrating factor method
(or simply using the Green’s function associated with the left-hand side operator),
which yields the solution

b(z, t) = ivaΩQa

∫ t

−∞
e

1
2 Γ(s−t)a∗1(z, s)a2(z, s)ds + D(z, t), (3.14)

where D(z, t) is

D(z, t) = va
√

σ
∫ t

−∞
e

1
2 Γ(s−t)R(z, s)ds. (3.15)

Function D(z, t) represents the acoustic field in the absence of optical waves, and thus
contains all the statistical properties of the background thermal field. To derive its sta-
tistical properties we first note that R(z, t) was previously defined as a normally dis-
tributed random process, and since the integrand in (3.15) is deterministic; this means
D(z, t) will also be a normally distributed process [138]. The mean value of D(z, t) is
found by applying the expectation operator to (3.15). Since R(z, t) has zero mean and
the integral is a linear operator, we arrive at the result

⟨D(z, t)⟩ = va
√

σ
∫ t

−∞
e

1
2 Γ(s−t) ⟨R(z, s)⟩ds = 0. (3.16)

The next statistical property of interest is the auto-correlation function at two points in
space (z, z′) and two points in time (t, t′). To do this, we will make use of the following
property of Dirac-delta functions:∫ a

0

∫ b

0
f (s, s′)δ(s− s′)ds′ds =

∫ min{a,b}

0
f (s, s)ds. (3.17)

Then, we take the expectation of D(z, t)D∗(z′, t′):

〈
D(z, t)D∗(z′, t′)

〉
= v2

aσ

〈∫ t

−∞
e

1
2 Γ(s−t)R(z, s)ds

∫ t′

−∞
e

1
2 Γ(s−t′)R∗(z′, s)ds

〉
= v2

aσ

〈
e−

1
2 Γ(t+t′)

∫ t

−∞
e

1
2 ΓsR(z, s)ds

∫ t′

−∞
e

1
2 ΓsR∗(z′, s)ds

〉
= v2

aσe−
1
2 Γ(t+t′)

∫ t

−∞

∫ t′

−∞
e

1
2 Γ(s+s′) 〈R(z, s)R(z′, s′)

〉
ds′ds

= v2
aσe−

1
2 Γ(t+t′)

∫ t

−∞

∫ t′

−∞
e

1
2 Γ(s+s′)δ(z− z′)δ(s− s′)ds′ds

= v2
aσδ(z− z′)e−

1
2 Γ(t+t′)

∫ min{t,t′}

−∞
eΓsds

=
vaσ

αac
δ(z− z′)e−

1
2 Γ(t+t′)

[
eΓs
]min{t,t′}

−∞

=
vaσ

αac
δ(z− z′)e−

1
2 Γ(t+t′)+Γ min{t,t′}.

Here we used the stochastic Fubini theorem [139, 140] to combine the product of the
two integrals D(z, t) into a double integral. The expression in the exponent can be
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further simplified by taking t < t′, which yields〈
D(z, t)D(z′, t′)

〉
=

vaσ

αac
δ(z− z′)e−

1
2 Γ|t−t′|. (3.18)

This expression shows that the noise term D(z, t) is δ-correlated in space as expected,
but behaves as a random walk in time, so its temporal evolution at each point z de-
pends on the past history of D(z, t). Furthermore, this process is classified as an
Ornstein-Uhlenbeck process [141], which means that as time increases, the function
D(z, t) eventually reaches a point of thermal equilibrium. We can further investigate
the properties of D(z, t) by looking at its power spectral density (PSD). Following the
definition of stochastic processes in Appendix A, we can classify D(z, t) as a stationary
process in time because its auto-correlation function in (3.18) depends only on the dif-
ference of two times t− t′. Therefore, we can compute the PSD of D by applying the
Wiener-Khinchin theorem [142, 143]

SD(z, z′, ω) =
1

2π

∫ ∞

−∞
eiω(t−t′) 〈D(z, t)D(z′, t′)

〉
d(t− t′)

=
1

2π

vaσ

αac
δ(z− z′)

∫ ∞

−∞
e−

1
2 Γ|t−t′|eiω(t−t′)d(t− t′)

=
1
π

vaσ

αac
δ(z− z′)

Γ/2
(Γ/2)2 + ω2 .

This means that the spectral density of D(z, t) at each point z is a Lorentzian with
linewidth Γ, corresponding to the acoustic phonon lifetime τa = 1/Γ in the propaga-
tion medium.

3.4 Laser phase noise

Another important source of noise in SBS systems is the noise introduced by the lasers
at the ends of the waveguide. Phase noise in the input optical fields a1 and a2 originate
from the spontaneous emission events within the laser system. Models for laser noise
can vary drastically depending on the type of laser, but many mathematical models
assume a random phase that behaves as a random walk in time and is related to the
laser’s intrinsic linewidth [144, 145, 146, 147]. To understand how this works, let us
begin with a fully monochromatic laser with central frequency ω0. If such a theoretical
laser could exist, we would represent its power-spectral density (PSD) as

S(ω) =
1
2
[δ(ω + ω0) + δ(ω−ω0)] , (3.19)

such that no other oscillating components are present in the frequency spectrum. In
this sense, the laser would output an optical field cos(ω0t) that consists of a single con-
tinuous wave of frequency ω0. For mathematical simplicity and without loss of gener-
ality, we shall consider only the positive frequencies of S(ω), by defining a complex-
valued quantity x(t) = e−iω0t. In reality, lasers will possess a spectrum with more than
one frequency due to spontaneous emission, which makes this S(ω) not appropriate
for physical simulations. Therefore, we must think of a more realistic model containing
a non-zero linewidth: the full-width at half-maximum (FWHM) of the spectral density
S(ω). We shall denote this as ∆Ω (rad/s), or equivalently ∆ν = ∆Ω/2π (Hz). The PSD
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may therefore be expressed in terms of the Lorentzian function

S(ω) =
1
π

∆Ω/2
(∆Ω/2)2 + (ω−ω0)2 . (3.20)

where ∆Ω is the FWHM in frequency space. Using the Wiener-Khinchin theorem (see
Appendix A for details), which entails taking the inverse Fourier transform of S(ω),
one finds the two-time auto-correlation function

rx(τ) = ⟨x(t)x∗(t− τ)⟩ = e−iω0τe−
1
2 ∆Ω|τ|, (3.21)

where τ is the lag-time between x(t) and its complex-conjugate. By letting τ = t− t′,
one finds that the exponential term e−

1
2 ∆Ω|t−t′| must correspond to the auto-correlation

of some stochastic process z(t), namely ⟨z(t)z∗(t′)⟩ = e−
1
2 ∆Ω|t−t′|. We may equivalently

express this process in terms of a stochastic phase function ϕ(t), such that〈
ei[ϕ(t)−ϕ(t′)]

〉
= e−

1
2 ∆Ω|t−t′|. (3.22)

One possible candidate for ϕ(t) is the Brownian motion

ϕ(t) =
√

∆ΩW(t), (3.23)

where W(t) is a standard Wiener process with zero mean and variance t. It also has
the property W(t) −W(s) ∼ N (0, |t − s|), where N (µ, σ2) is a normally distributed
random variable with mean µ and variance σ2. To test if this process satisfies the con-
dition

〈
ei[ϕ(t)−ϕ(t′)]

〉
= e−

1
2 ∆Ω|t−t′|, we use the following property of Wiener processes

(see Appendix A):

ϕ(t)− ϕ(t′) =
√

∆Ω
(
W(t)−W(t′)

)
∼
√

∆Ω N (0, |t− t′|), (3.24)

where the expression X(t, t′) ∼ N (0, |t− t′|) indicates that the random process X(t, t′)
has a normal probability distribution with zero mean and variance |t− t′|. This then
leads to the quantity 〈

ei[ϕ(t)−ϕ(t′)]
〉
=
〈

ei
√

∆ΩN (0,|t−t′|)
〉

,

and making the substitution ζ = i
√

∆Ω, this becomes the Moment-Generating Func-
tion (MGF) of the variable N (0, |t − t′|) with respect to the parameter ζ. Using the
properties of normal random variables outlined in Appendix A.3.1, we compute the
MGF as 〈

ei
√

∆ΩN (0,|t−t′|)
〉
= e−

1
2 ∆Ω|t−t′|, (3.25)

which satisfies the condition in Eq. (3.22). We can simulate this phase noise numerically
by using the following approximation of the Wiener process:

W(t) =
∫ t

0
dW(t) ≈

N

∑
n=1

∆Wn, (3.26)

where ∆Wn ∼
√

∆tNn(0, 1). In this sense ϕ(t) is a random walk that can be computed
using the Euler-Mayurama scheme [148]

ϕ(tn+1) = ϕ(tn) +
√

∆Ω∆Wn. (3.27)
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FIGURE 3.2: Variance (top) and ⟨eiϕ(t)⟩ (bottom) for multiple independent realizations of
ϕ(t). On the left hand side: ensemble average over 100 realizations, right hand side: en-

semble average over 1,000 realizations.

The analytic mean and variance of ϕ(t) are

⟨ϕ(t)⟩ = 0, (3.28)〈
ϕ2(t)

〉
= ∆Ωt. (3.29)

A comparison of the numeric and analytic statistical properties of ϕ(t) for 10,000 inde-
pendent samples is shown in Fig. 3.2.
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Chapter 4

Noise and Pulse Dynamics in
Backward Stimulated Brillouin
Scattering

4.1 Overview

This Chapter is based on the contents of the research paper

Oscar A. Nieves, Matthew D. Arnold, M. J. Steel, Mikołaj K. Schmidt, and
Christopher G. Poulton, "Noise and pulse dynamics in backward stimu-
lated Brillouin scattering," Opt. Express 29, 3132-3146 (2021).

Here derive a theoretical model for SBS noise for pulses in integrated optical waveg-
uides with high-contrast materials. We focus on amplitude noise arising from the
thermal phonon field, because in backwards SBS experiments this process has been
observed to be significantly stronger than phase noise [149, 150]. Furthermore, we ex-
plore the dependence of the noise on the waveguide and pulse properties. We find
that in the regime where the pump is undepleted by the SBS process, it is possible to
derive analytic results for the absolute level of noise, as well as for the signal-to-noise
ratio, even for time-varying pulses of arbitrary shape. Since numerical computation of
ensemble averages are expensive, an analytic model that computes the SBS noise prop-
erties of pulses is extremely useful for the design of SBS-active devices. We use this
analytic model to explore the impact of pulse and waveguide properties on the noise
and optical signal-to-noise ratio (OSNR), and discuss the implications of these results
in SBS experiments, where it is often advantageous to minimize the Stokes noise.

4.2 Theory and formalism

We consider backward SBS interactions in a waveguide of finite length L oriented along
the z-axis (see Fig. 4.1): a pump pulse with angular frequency ω1 is injected into the
waveguide at z = 0 and propagates in the positive z-direction, while a signal pulse
is injected at z = L and propagates in the negative z-direction. The signal pulse has
frequency centred around the Brillouin Stokes frequency ω2 = ω1−Ω, which is down-
shifted from the pump by the Brillouin shift Ω, and has a spectral width that lies en-
tirely within the Brillouin linewidth. When these two pulses meet, the pump transfers
energy to the signal field, resulting in coherent amplification of the signal around the
Brillouin frequency. At the same time, as the pump moves through the waveguide,
it interacts with the thermal phonon field and generates spontaneous Stokes photons
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which also propagate in the negative z-direction. This spontaneous Stokes field com-
bines with the coherent signal to form a noisy amplified output field centered around
the Stokes frequency.

FIGURE 4.1: Propagation of two Gaussian pulses along a waveguide consisting of sub-
strate (yellow) and core (light blue) dielectrics. L denotes the total length of the waveguide
medium. The input fields in (a) overlap in (b), resulting in an exchange of energy between
the pump and Stokes through the acoustic field, whereby the pump’s energy is depleted
by the Stokes. The spontaneous Stokes noise generated by the pump interacting with the
thermal phonon field combines with the coherent signal in (b), leading to a noisy output

field at the Stokes frequency in (c).

The noise transferred to the signal from the thermal field is computed by solving for
the optical envelope fields a1,2 and acoustic envelope field b (all in units of

√
Watts) in

Eq. (2.59a)−(2.59c), namely:

∂a1

∂z
+

1
v

∂a1

∂t
+

1
2

αa1 = iω1Q1a2b∗, (4.1a)

∂a2

∂z
− 1

v
∂a2

∂t
− 1

2
αa2 = iω2Q2a1b, (4.1b)

∂b
∂z

+
1
va

∂b
∂t

+
1
2

αacb = iΩQaa∗1a2 +
√

σR(z, t). (4.1c)

The boundary conditions for the pump and signal fields are applied by specifying the
input values a1(0, t) and a2(L, t) respectively. These boundary conditions can be de-
terministic, as is the case in our calculations, or stochastic if laser noise is incorporated
into the model. The analytic results presented in this Chapter are valid for both cases.

4.2.1 Noise under the undepleted pump approximation

An analytic solution to equations (2.59a)−(2.59c) exists under the undepleted pump
approximation, which is valid for the case in which the signal power P2 remains much
smaller than the pump power P1. We also assume that the depletion of the pump by
the thermal field is negligible compared to optical loss [66]. The equation for the pump
envelope is therefore

∂a1

∂z
+

1
v

∂a1

∂t
+

α

2
a1 = 0, (4.2)
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which, for an input field ap(t) =
√

Pin
pump(t) at z = 0 has the solution

a1(z, t) = ap

(
t− z

v

)
e−αz/2, (4.3)

by the method of characteristics. Next, we simplify (3.14) further by using a separation
of time-scales in the integral: since τa = 1/Γ is large compared to the characteristic
timescales of the optical envelope fields; this allows us to use the following Markov
approximation [50]:

a∗1(z, s)a2(z, s) ≈ a∗1(z, t)a2(z, t)e−i∆(s−t), (4.4)

where ∆ is a detuning parameter relative to the center of the Brillouin gain profile writ-
ten as ∆ = ω2 − ω1 + Ω. This approximation is valid in the regime where the optical
pulse widths τp,s < τa, where the phonon decay rate is slow compared to the propa-
gation of the photons in the waveguide, and provided that the pump is undepleted.
Taking a∗1(z, t)a2(z, t) out of the integral in (3.14) yields the approximate expression for
the acoustic envelope field

b(z, t) ≈ i
vaΩQa

Γ/2− i∆
a∗1(z, t)a2(z, t) + D(z, t). (4.5)

Now we can eliminate the elastic field by substituting (4.5) into (4.1b), which yields

∂a2

∂z
− 1

v
∂a2

∂t
+

1
2
[g(∆)P1(z, t)− α] a2 = iω2Q2a1(z, t)D(z, t), (4.6)

where g(∆) is the usual SBS gain parameter in (m−1W−1)

g(∆) =
2vaω2Ω|Q2|2

Γ/2− i∆
= g0

Γ/2
Γ/2− i∆

, (4.7)

with g0 = g(0). Equation (4.6) is then solved by making a variable transformation to
the frame of reference that is co-propagating with the Stokes field [151], namely ξ = z
and τ = t + z/v. The partial derivatives in the new coordinate system (ξ, τ) are

∂

∂t
=

∂ξ

∂t
∂

∂ξ
+

∂τ

∂t
∂

∂τ
=

∂

∂τ
, (4.8)

∂

∂z
=

∂ξ

∂z
∂

∂ξ
+

∂τ

∂z
∂

∂τ
=

∂

∂ξ
+

1
v

∂

∂τ
. (4.9)

Upon substituting these derivatives into Eq. (4.1b) we obtain

∂a2

∂ξ
+

1
2
[g(∆)P1(ξ, τ − ξ/v)− α] a2 = iω2Q2a1(ξ, τ − ξ/v)D(ξτ − ξ/v), (4.10)

Identifying the integrating factor

I(ξ, τ) = exp
{
−1

2

∫ L

ξ

[
g(∆)P1

(
ξ ′, τ − ξ ′

v

)
− α

]
dξ ′
}

, (4.11)
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leads to the equation∫ L

ξ

∂

∂ξ ′
[
a2(ξ

′, τ)I(ξ ′, τ)
]

dξ ′ = iω2Q2

∫ L

ξ
I(ξ ′, τ)a1

(
ξ ′, τ − ξ ′

v

)
D
(

ξ ′, τ − ξ ′

v

)
dξ ′,

(4.12)
The left-hand side of Eq. (4.10) is a2(L, τ)I(L, τ)− a2(ξ, τ)I(ξ, τ). Then, using a2(L, τ)
as the input boundary condition for the Stokes field, and introducing the cumulative
net gain function

G̃N(ξ, ξ ′, τ) = exp
{

1
2

∫ ξ ′

ξ

[
g(∆)P1

(
ξ ′′, τ − ξ ′′

v

)
− α

]
dξ ′′

}
. (4.13)

we write the solution for the Stokes envelope field at the point ξ as

a2(ξ, τ) = a2(L, τ)G̃N(ξ, L, τ)

− iω2Q2

∫ L

ξ
G̃N(ξ, ξ ′, τ)a1

(
ξ ′, τ − ξ ′

v

)
D
(

ξ ′, τ − ξ ′

v

)
dξ ′. (4.14)

Finally, we switch back to the coordinate system (z, t) by replacing τ in the above
equation by τ = t + z/v, which yields the solution for the Stokes envelope field

a2(z, t) = a2(L, t)GN(z, L, t)

− iω2Q2

∫ L

z
GN(z, z′, t)a1

(
z′, t +

z− z′

v

)
D
(

z′, t +
z− z′

v

)
dz′, (4.15)

where the net gain function is expressed as

GN(z, z′, t) = exp
{

1
2

∫ z′

z

[
g(∆)P1

(
η, t +

z− η

v

)
− α

]
dη

}
, (4.16)

for z < z′. The modulus squared |GN(z, z′, t)|2 of this function gives the net cumulative
gain in the Stokes power between z and z′, taking into account the effect of optical
losses. As the distance between z and z′ increases, both the amplification from the
pump and the optical loss increase. However, for any time t in which the pump pulse
P1(z, t) lies outside the domain [z, z′], optical loss dominates over the SBS amplification.

We compute the total, noisy, Stokes power by considering the Stokes envelope as a
sum of two contributions: a coherent signal field, which is the Stokes in the absence of
any thermal noise, and a spontaneous Stokes field which contains all the contributions
from the background thermal noise. This is expressed by separating the two terms in
Eq. (4.15) as a2(z, t) = asig

2 (z, t) + aspo
2 (z, t) where

asig
2 (z, t) = a2(L, t)GN(z, L, t), (4.17)

aspo
2 (z, t) = −iω2Q2

∫ L

z
GN(z, z′, t)a1

(
z′, t +

z− z′

v

)
D
(

z′, t +
z− z′

v

)
dz′. (4.18)

The ensemble-average of the total Stokes power is then

⟨P2(z, t)⟩ =
〈

Psig
2 (z, t)

〉
+
〈

Pspo
2 (z, t)

〉
=

〈∣∣∣asig
2 (z, t)

∣∣∣2〉+
〈∣∣aspo

2 (z, t)
∣∣2〉 , (4.19)

where the relation
〈

asig
2 aspo

2

〉
= 0 holds since the input laser noise in asig

2 and thermal
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noise in aspo
2 are statistically independent from each other. The average signal power

is computed by taking the ensemble average of the input field defined by the noisy
boundary condition a2(L, t)〈

Psig
2 (z, t)

〉
=
〈
|a2(L, t)|2 |GN(z, L, t)|2

〉
. (4.20)

Here GN is taken inside the ensemble average because it is dependent on the pump P1,
which may contain input laser noise. The spontaneous Stokes power is

Pspo
2 (z, t) =

αac

4
ω2

Ω
g0

∫ L

z
GN(z, z′, t) a1

(
z′, t +

z− z′

v

)
D
(

z′, t +
z− z′

v

)
dz′

×
∫ L

z
G∗N(z, z′′, t) a∗1

(
z′′, t +

z− z′′

v

)
D∗
(

z′′, t +
z− z′′

v

)
dz′′. (4.21)

This product of integrals can be cast as a double-integral by applying the stochas-
tic Fubini theorem [139]. A sufficient condition for this to hold is that the integrand
in (4.18) be square-integrable and finite [140]. This condition holds since D(z, t) reaches
a steady-state after a short time t [137] and both a1 and GN are bounded functions [152].
The spontaneous power becomes

Pspo
2 (z, t) =

αac

4
ω2

Ω
g0

∫ L

z

∫ L

z
GN(z, z′, t)G∗N(z, z′′, t)a1

(
z′, t +

z− z′

v

)
×

a∗1

(
z′′, t +

z− z′′

v

)
D
(

z′, t +
z− z′

v

)
D∗
(

z′′, t +
z− z′′

v

)
dz′′dz′. (4.22)

The relation ⟨a1(z, t)D(z, t)⟩ = ⟨a1(z, t)⟩⟨D(z, t)⟩ = 0 holds since the laser noise in
a1 and the thermal noise in D are not coupled to each other, so they are statistically
independent. Taking the ensemble average of both sides of (4.22) yields
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Finally, using σ = kBTαac and Γ = vaαac we obtain the ensemble averaged spontaneous
Stokes power:

〈
Pspo

2 (z, t)
〉
=

kBTΓ
4
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Ω
g0

∫ L

z

〈
P1

(
z′, t +
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v

) ∣∣GN(z, z′, t)
∣∣2〉dz′. (4.23)
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Equation (4.23) is one of the main results in this Chapter. It gives the ensemble-averaged
spontaneous Stokes power, which is proportional to the pump power P1(z, t) multi-
plied by the net gain over the length of the waveguide. As the temperature increases,
more spontaneous phonons are generated, leading to more collisions of phonons with
pump photons. The annihilation of these photons then creates spontaneous Stokes
photons, which amplifies the Stokes noise in the medium. The integration from z to L
indicates that as the pump propagates through the medium, there is an accumulation
of spontaneous Stokes photons propagating in the opposite direction.

Once this spontaneous power has been calculated, a useful measure to quantify
the integrity of the Stokes signal detected at the waveguide output is the OSNR. This
is computed by taking the ratio of the average coherent signal power to spontaneous
noise power over a specified bandwidth [153]. In time-domain, the OSNR may be
calculated over an arbitrary but suitably long time period T0 using the time averaged
powers

OSNR =

∫ T0
0

〈
Psig

2 (0, t)
〉

dt∫ T0
0

〈
Pspo

2 (0, t)
〉

dt
. (4.24)

In the following calculations, using a Gaussian pulse we choose T0 as four times the
intensity full width at half maximum (FWHM).

4.3 Results for a chalcogenide SBS chip

FIGURE 4.2: Numerical simulation of the Stokes noise inside a 23.7 cm long waveguide.
(a) Temporal evolution of the total Stokes power across the waveguide for a single run
of the numerical method (gray). The dashed black line represents the ensemble-averaged
expression for the total Stokes power being the sum of Eqs. (4.20) and (4.23), while the
solid magenta line is the pump pulse, scaled down from its original peak power of 110
mW. (b) Several independent runs of the Stokes field (gray), with the numerical ensemble

average (blue) and the analytic ensemble average (dashed black), at t = 1.8 ns.

Figure 4.2 shows the ensemble-averaged signal power and spontaneous Stokes power
computed using Eqs (4.20) and (4.23). These calculations assume a dielectric waveg-
uide at temperature 300 K of length 23.7 cm and SBS gain coefficient g0 = 423 m−1W−1,
which corresponds to the SBS chip structure used in [154] at zero detuning (∆ = 0). We
consider a Gaussian pump pulse with peak power 110 mW and FWHM of 200 ps, and
a Gaussian signal pulse with peak power 10 nW and FWHM of 200 ps. The optical
pump frequency is fixed at 200 THz, while the acoustic frequency is set to 7.6 GHz,
with a Brillouin linewidth of ∆νB = 30 MHz. The linear optical loss is 0.05 dB/cm.



4.3. Results for a chalcogenide SBS chip 53

Equations (4.1a)–(4.1c) are solved numerically using the method described in detail in
Chapter 5.

For these simulations, the numerical grid consists of 600 points in z and 900 points
in t. These values were chosen, using convergence tests in the absence of noise, to
ensure an error in the gain of under 1%. We see in Fig. 4.2(a) that as the pump prop-
agates through the waveguide, a noisy Stokes field is generated that trails the leading
edge of the pump pulse. This field combines with the input signal, with the resulting
noisy Stokes field further amplified by the pump. Figure 4.2(b) shows the total Stokes
power as a function of z at t = 1.8 ns, where the dashed black line represents the ana-
lytic solution to (4.23) added to the coherent Stokes power in (4.20), and the blue line
is a numerical ensemble average over 20 independent runs of the numerical method.
Eq. (4.23) contributes approximately 3 nW of Stokes power across the length of the
waveguide, while Eq. (4.20) contributes 10 nW at z = 23.7 cm which is amplified as it
moves towards z = 0.

FIGURE 4.3: Time-averaged Stokes noise power, coherent signal power and OSNR for a
dielectric waveguide of length L = 23.7 cm. Plots (a)−(c) are for α = 0.01 dB/cm, while
plots (d)−(f) are for α = 1.0 dB/cm. The signal pulse is a Gaussian with FWHM of 200 ps
and peak power of 100 nW. The pump consists of a rectangular pulse with constant energy,
ranging from Pp0 = 5 mW (τp = 10 ns) to Pp0 = 5 W (τp = 10 ps). The vertical dashed lines
mark the point at which the interaction time between pump and signal becomes equal to

the transit time of the signal pulse.

We now use (4.23) to study the effect on the noise of the tunable properties of the
pump such as peak power and pulse duration, and how this may interact with fixed
parameters such as waveguide length and optical loss. We consider a Gaussian signal
pulse with FWHM of 200 ps, and a rectangular pump pulse of width τp that varies
between 10 ps−10 ns. The total pulse energy of the input pump field is kept constant,
while the peak power Pp0 varies with the pulse width, ranging from Pp0 = 5 mW (τp =
10 ns) to Pp0 = 5 W (τp = 10 ps). In all the calculations, the output Stokes field at z = 0
is averaged over a time period of 800 ps, which is four times the signal FWHM and
contains more than 99.7% of the pulse’s energy. The results for the spontaneous Stokes
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power, signal power and OSNR are shown in Fig. 4.3. We observe in Fig. 4.3(a) and (b)
that the Stokes noise and signal powers remain constant for pump widths τp ≲ 3 ns
before decreasing. In this low optical loss case, the near-constant values of the Stokes
noise and signal power can be attributed to the constant energy in the pump pulse, as
shown in Fig. 4.4: for short pulse-lengths, the signal and the pump interact entirely
within the waveguide. As the pump pulse becomes longer than the waveguide and its
peak power decreases, the Stokes field is able to interact with less of its energy inside
the medium, resulting in less amplification of the Stokes. The signal and spontaneous
fields fall off at different rates with respect to τp because the signal is proportional to the
net gain squared |GN |2 via (4.20), while the spontaneous Stokes power is proportional
to the pump power P1 multiplied by |GN |2 via (4.23). The gain |GN |2 decreases with
larger τp because more of the pump pulse lies outside of the interaction region, and at
the same time P1 decreases while its peak power is lowered for longer τp, causing the
spontaneous Stokes to decrease more rapidly than the signal. This results in an OSNR
figure which increases with τp, as shown in Fig. 4.3(c).

FIGURE 4.4: Snapshots of the pump and Stokes powers with varying pump width and
peak power at a fixed time t, with optical loss α = 0.01 dB/cm. The powers in (b), (d) and

(f) are calculated using Eq. (4.20) and (4.23). The input pump energy is kept constant.

For the high optical loss case shown in Fig. 4.3(d)−(f), we observe a maximum in both
the Stokes noise and signal powers for a critical value of τp, before decreasing with
longer pump lengths as in the lower loss case. This results in a minimum in the OSNR;
this minimum occurs because the optical loss is dominant in the regions inside the
waveguide that are not covered by the pump (see Fig. 4.5). As the pump becomes
wider, the pump coverage inside the waveguide increases, compensating for the losses
incurred at the uncovered regions. This results in higher amplification of the Stokes de-
spite the peak pump power decreasing with larger τp. However, this increased ampli-
fication vanishes once the pump pulse becomes longer than the waveguide, in which
case the Stokes power decreases in a similar manner to the low-loss case.

The emergence of the OSNR minimum in Fig. 4.3(f) is a function of the optical loss
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FIGURE 4.5: Snapshots of the pump and Stokes powers with varying pump width and
peak power at a fixed time t, with optical loss α = 0.5 dB/cm. The powers in (b), (d) and

(f) are calculated using Eq. (4.20) and (4.23). The input pump energy is kept constant.

α, the pump pulse width τp and the waveguide length L. This is shown as a contour
plot in Fig. 4.6; we see that for smaller losses there is no maximum peak in the spon-
taneous noise power, and therefore no minimum in the OSNR. Below this value the
Stokes power and OSNR follow the behavior of Fig. 4.3(a)−(c), staying approximately
constant for short pump pulses, then decreasing and increasing respectively for higher
values of τp. However, once the loss reaches a critical value, the noise power devel-
ops a maximum at approximately the point in which the interaction time τi between
pump and signal is equal to the transit time L/v. This corresponds to a minimum in
the OSNR, because making τp longer than the transit time results in a reduced level of
noise, since the spontaneous Stokes decreases more rapidly than the amplified signal.
The value τmax that maximizes the noise corresponds to the pump-length when the in-
teraction time τi satisfies τi = L/v and can be computed as follows: first, we compute
an effective pulse-width τeff using the equation∫ τeff/2

0
P1(0, t)dt =

1
2

f̃
∫ ∞

−∞
P1(0, t)dt, (4.25)

where 0 ≤ f̃ ≤ 1 represents the fraction of the total energy in the pump that is con-
tained within τeff. In our calculations, we set f̃ = 0.95. The interaction time between
the pulses is τi = τeff/2 because the signal and pump counter-propagate at the same
speed, so the time of overlap is halved. This gives an approximation of the value τp for
which the maximum amount of pump energy is able to interact with the signal, before
it no longer fits inside the structure.

This noise behavior is not restricted to rectangular pump pulses. In Fig. 4.6(c) and
(d), we observe the same behavior when using a Gaussian pump pulse, and again the
same maximum in the Stokes noise can be observed. Here, some of the pump’s energy
is more localized near the central peak, while the long tails of the pulse contain a very
small portion of the energy. This limits the region inside the waveguide in which the
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FIGURE 4.6: Contour plot of the Stokes noise power (a) and the OSNR (b) as functions of
the rectangular pump width τp and optical loss α, for constant energy pump pulses. Plots
(c) and (d) are for Gassuan pump pulses of varying FWHM τp. The black curve denotes
where the maximum in the noise power occurs for each loss α. The horizontal dashed line
denotes when the interaction time of the pump and Stokes is equal to the transit time of
the signal pulse. The cross indicates the value of α below which the maximum peak in the

noise power vanishes.

FIGURE 4.7: Stokes noise power (a) and OSNR (b) for a rectangular pump pulse using a
constant peak pump power.

amplification from the pump is able to compensate for the optical losses, and results in
a maximum Stokes noise peak that occurs at a smaller τp compared to the rectangular
pump case.

Finally, we compute the effects of the noise and OSNR in the case where the pump
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pulse has a fixed peak power. Both the spontaneous Stokes noise and signal power in-
crease with τp, reaching a steady state for τp longer than the transit time of the waveg-
uide. This results in the OSNR decreasing until reaching a constant value for larger τp,
as shown in Fig. 4.7(b). This occurs due to the pump pulse covering more of the waveg-
uide as τp gets larger: initially there is more energy injected into the SBS medium, but
as soon as the pump pulse becomes comparable in size to the waveguide; the amount
of pump energy that interacts with the Stokes field reaches a constant value. This then
leads to a steady-state for both the signal and spontaneous Stokes powers.

4.4 Validity of the analytic model

FIGURE 4.8: Plots for the signal percentage error in the OSNR (a) and signal gain (b). All
the plots are represented as functions of the input signal energy as a percentage of the
input pump energy, over a range of signal powers between 1 nW−1 mW relative to a 300
mW input pump at a fixed optical attenuation of 0.3 dB/cm. The dashed vertical lines
represent the point at which the near-constant gain begins to decrease, indicating that the

pump is being depleted by the Stokes field.

We now estimate the region of validity of our analytic model, by considering an SBS
chalcogenide chip with length 23.7 cm, with a Gaussian pump pulse of Pp0 = 300 mW
and fixed optical loss of α = 0.3 dB/cm. The energy in both the pump and signal
input fields is given by the expressions E1 =

∫ ∞
−∞ P1(0, t)dt and E2 =

∫ ∞
−∞ P2(L, t)dt

respectively. For each ratio of energies E2/E1 where E2 ≤ E1 we compute the relative
error in the OSNR using both the analytic model in (4.23) and the numerical solver for
Eqs (4.1a)−(4.1c).

In Fig. 4.8(a) we see that the ONSR error remains below 2% when the signal energy
relative to the pump is small, but increases suddenly for larger signal powers. This
occurs because of pump depletion, which was neglected in Eq. (4.23) in deriving the
analytic model: as the pump becomes depleted, some of its energy gets transferred
to the spontaneous Stokes as well as to the signal, enhancing the coupling between
the fields. This results in some of the spontaneous Stokes energy feeding back into
the pump, making the multiplicative noise more dominant than the additive noise in
Eq. (4.23). This means that as the pump becomes depleted, there is less spontaneous
Stokes generated from the thermal background than coherent Stokes amplified from
the input signal, even though both fields increase as the pump power increases. This
is in line with previous studies [155, 156] which considered variance in the reflected



58 Chapter 4. Noise and Pulse Dynamics in Backward Stimulated Brillouin Scattering

Stokes beam in the absence of an input signal (i.e. for purely spontaneous SBS): these
studies found that the relative strength of the spontaneous Stokes field was reduced
compared to the coherent field once the pump power began to be depleted. For the
analytic model, the departure from the undepleted regime results in an error in the
OSNR, as shown in Fig. 4.8(a). The analytic model is therefore expected to yield accu-
rate results provided the pump remains undepleted. To extend the study of the noise
dynamics of SBS interactions beyond the undepleted pump regime, and to study other
features such as phase noise, it is necessary to solve Eqs. (4.1a)−(4.1c) numerically,
following the procedure shown in Chapter 5.

4.5 Conclusion

In this Chapter, we have developed a general mathematical model for solving the dy-
namical SBS equations in the presence of thermal noise. We present a simple analytic
model in the undepleted pump regime whereby the amplitude noise in the Stokes
field can be computed for pulses of arbitrary shape and size, which is useful in Bril-
louin signal processing. The analytic results show that in the case of a constant energy
pump field and lossy media, the OSNR has a minimum peak near the region in which
the interaction time of the pulses matches the transit time of the signal in the waveg-
uide. This occurs as the spontaneous Stokes noise increases towards a maximum value,
which results from longer pump pulses compensating for the linear optical losses in
the medium. Once the pump pulse becomes longer than the waveguide, the loss dom-
inates again as less pump energy fits inside the SBS medium. This behaviour of the
OSNR is mediated by the pump energy, pump shape, waveguide length and optical
loss, making it important to choose the right parameter combination to maximize the
OSNR in a specific device.
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Chapter 5

Numerical Simulation of Noise in
Pulsed Brillouin Scattering

5.1 Overview

This Chapter is based on the contents of the research paper

Oscar A. Nieves, Matthew D. Arnold, Michael J. Steel, Mikołaj K. Schmidt,
and Christopher G. Poulton, "Numerical simulation of noise in pulsed Bril-
louin scattering," J. Opt. Soc. Am. B 38, 2343-2352 (2021)

Here we present a numerical method by which the transient SBS equations with ther-
mal noise can be solved for pulses of arbitrary shape and size, in arbitrary waveguide
geometries, which allows us to extend the noise analysis in Chapter 4 beyond the un-
depleted pump approximation (UPA). We apply this method to the case of a short
chalcogenide waveguide and use the model to compute the statistics of the output
envelope fields. We examine the dynamics of the noise when the Stokes arises sponta-
neously from the thermal field, and for the case when it is seeded with an input pulse
at the far end of the waveguide. We demonstrate the transition from the low-gain,
short pulse case, in which noise is amplified by the pump, to the high gain, long pulse
regime in which coherent amplification occurs. In this latter situation, we show that
while the output pulses remain smooth, significant fluctuations in the peak powers
arising from the thermal field can persist. We also show that, within the framework of
this model, phase noise from the pump only has a significant impact on Stokes noise
when the laser coherence time matches the time scales of the pulses involved in the
interaction. Finally, we investigate the convergence of this numerical method, and find
that it yields linear convergence in both the average power and variance of the power
for three fields in the SBS interaction, which is in agreement with the Euler-Mayurama
scheme for solving stochastic ordinary differential equations.

5.2 Numerical method

5.2.1 The SBS equations

We consider backward SBS interactions in a waveguide of finite length L along the
z-axis as shown in Fig. 5.1. The spectrum of the signal pulse is centered around the
Brillouin Stokes frequency ω2 = ω1−Ω, which is down-shifted from the pump by the
Brillouin shift Ω, and its spectral extent lies entirely within the Brillouin linewidth ∆νB.
The interaction can be modelled using three envelope fields for the pump (a1(z, t)),
Stokes (a2(z, t)) and acoustic field b(z, t), according to the equations (4.1a)−(4.1c) we
also saw in Chapter 4, with stochastic boundary conditions a1(0, t) and a2(L, t). As
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FIGURE 5.1: Illustration of the SBS interaction, showing the pump, Stokes and acoustic
powers on a photonic chip waveguide. In (a), the pump and Stokes pulses are injected
into opposite ends of the waveguide, and the acoustic field is made up of random thermal
fluctuations. In (b), the optical fields have interacted inside the waveguide, the Stokes
depletes the pump to gain some energy, and the rest of the energy goes to the acoustic

field.

before, we apply apply the limit ∂zb → 0 to (4.1c), which simplifies into (3.14). Upon
substituting (3.14) into (4.1a) and (4.1b), and assuming that the fields a1,2 are every-
where zero for t < 0, we obtain the pair of equations

∂a1

∂z
+

1
v

∂a1

∂t
+

1
2

αa1 = iω1Q1a2(z, t)D∗(z, t)

− 1
4

g1Γa2(z, t)
∫ t

0
e−

Γ
2 (t−s)a1(z, s)a∗2(z, s)ds, (5.1)

∂a2

∂z
− 1

v
∂a2

∂t
− 1

2
αa2 = iω2Q2a1(z, t)D(z, t)

− 1
4

g2Γa1(z, t)
∫ t

0
e−

Γ
2 (t−s)a∗1(z, s)a2(z, s)ds, (5.2)

where g1 = g0ω1/ω2, g2 = g0, and the SBS gain parameter g0 = 4vaω2Ω|Q2|2/Γ (with
units of m−1W−1) as defined in Chapter 4.

The approach of the numerical method is to solve (5.1) and (5.2) in a step-wise
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manner to find the optical fields; the optical fields at each time step are then substituted
into (3.14) to obtain the acoustic envelope field, and the process is repeated. At each
time step the solution requires calculation of the thermal noise function D(z, t) which
behaves as a random walk in time while remaining white in space. The optical equa-
tions are solved with the input boundary conditions a(0, t) = ap(t) and a(L, t) = as(t);
in general, these boundary conditions may be stochastic to account for noise in the
input lasers. In the following we first describe the approach taken to compute the ther-
mal noise function, then discuss the inclusion of noise into the boundary conditions,
before describing the iterative algorithm itself.

It should be noted that it is also possible to solve (4.1a)−(4.1c) directly without
integrating the acoustic envelope field in time first (as in (3.14)), and this procedure
would yield the same results. However, since the thermal background field is assumed
to be in an equilibrium state by t = 0, this alternative method would require simulating
the acoustic envelope field for a very long time t < 0. This is computationally less
efficient and poses no advantages over the present method.

5.2.2 Computing the thermal noise function

The function D(z, t) contains all the thermal noise information about the system. To
model D(z, t) numerically, we note that its evolution in time corresponds to an Ornstein-
Uhlenbeck process [157]. Equation (3.15) can be written in Itô differential form [158]
as

dD(zj, t) = −1
2

ΓD(zj, t)dt + va
√

σR(zj, t)dt, (5.3)

where the z axis is discretized on the equally spaced grid zj with spacing ∆z. We
know that R(zj, tn)dt = 1√

∆z
dWj(tn) where dWj(tn) is the standard complex-valued

Wiener increment in time, and the scaling factor arises from the Dirac-delta nature
of the continuous-space auto-correlation function of D(z, t). The complex increment
dWj(t) is a linear combination of two independent real Wiener processes

dWj(t) =
1√
2

[
dW(1)

j (t) + idW(2)
j (t)

]
, (5.4)

where
〈

dW(p)
j (t)dW(q)

j (t)
〉
= δpqdt, where δpq is the Kronecker delta. Integrating (5.3)

from 0 to t yields the analytic solution

D(zj, t) = e−
1
2 ΓtD0(zj) + va

√
σ

∆z

∫ t

0
e−

Γ
2 (t−s)dWj(s), (5.5)

where D0(zj) is the cumulative random walk from t = −∞ up to t = 0. This quantity
is calculated using

D0(zj) =
1√
2

[
N (1)

zj

(
0,

vaσ

αac∆z

)
+ iN (2)

zj

(
0,

vaσ

αac∆z

)]
, (5.6)

whereN (1,2)
zj (0, vaσ/αac∆z) are normal random variables with zero mean and variance

vaσ/(αac∆z), independently sampled at each zj. Numerically, we can compute the inte-
gral in (5.5) as follows: first, we note that since the integrand is a deterministic function
of time, and dWj(s) is a normally distributed stochastic process, the integral is also a
normally distributed stochastic process. Secondly, dWj(s) is a complex-valued process,
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so the integral can be split into two statistically independent real-valued integrals∫ t

0
e−

Γ
2 (t−s)dWj(s) =

1√
2

∫ t

0
e−

Γ
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j (s) + i
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j (s), (5.7)

each of these real integrals will have the same statistical properties, namely〈∫ t

0
e−

Γ
2 (t−s)dW(q)

j (s)
〉

= 0. (5.8)

The variance is derived using the Itô isometry property [159]〈(∫ t

0
X(s)dW(s)

)2
〉

=

〈∫ t

0
X2(s)ds

〉
. (5.9)

The proof of this identity is as follows: let the Itô integral be approximated by a discrete
sum such as ∫ t

0
X(s)dW(s) ≈∑

k
X(sk)∆Wk

where all the discrete Wiener steps ∆Wk are statistically independent from one another,
namely ⟨∆Wj∆Wk⟩ = δjk∆t where δjk is the Kronecker-delta. Here the assumption is
that X(t) and W(t) are statistically independent. The expected value of the square of
this integral can then be written as〈(∫ t
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,

which concludes the proof. Using this isometry property of Itô integrals, we then write〈(∫ t

0
e−

Γ
2 (t−s)dW(q)

j (s)
)2
〉

=
1
Γ
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1− e−Γt
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which leads to the result for the variance

Var
[∫ t

0
e−

Γ
2 (t−s)dW(q)

j (s)
]
=

1
Γ

(
1− e−Γt

)
. (5.11)
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FIGURE 5.2: Multiple independent realizations (dashed grey) of the modulus squared of
the thermal function |D(zj, t)|2 at an arbitrary position zj, the numerical ensemble average
over 20 realizations (red) and the analytic ensemble average (blue). We use a temperature

of T = 300 K, va = 2500 m/s, τa = 5.3 ns, ∆z = 0.79 mm and ∆t = 6.43 ps.

This means the integral can be computed as a normal random variable as

∫ t

0
e−

Γ
2 (t−s)dWj(s) ∼

√
1− e−Γt

2Γ

[
N (1)

zj,t (0, 1) + iN(1)
zj,t (0, 1)

]
, (5.12)

where N (1,2)
zj,tn

(0, 1) is a standard normal random number sampled independently at
each point (zj, tn). Thus, we simulate (5.5) as a random walk using discrete increments
in time ∆t

D(zj, tn+1) = e−
1
2 Γ∆tD(zj, tn) + γ(∆t)

[
N (1)

zj,tn
(0, 1) + iN (2)

zj,tn
(0, 1)

]
, (5.13)

where

γ(∆t) = va

√
σ (1− e−Γ∆t)

2∆zΓ
, (5.14)

and setting the initial value as D(zj, t0) = D0(zj). Fig. 5.2 shows multiple realizations
of D(zj, t) at an arbitrary point zj and its ensemble average.

5.2.3 Noisy boundary conditions

Input laser noise can be an important feature in SBS experiments. In the context of
the SBS envelope equations, it enters in the form of random phase fluctuations at the
inputs of the waveguide, namely z = 0 for the pump field and z = L for the Stokes
field. We simulate this laser phase noise in the input fields by modeling the boundary
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conditions as

a1(0, tn) = ap(tn) =
√

Pin
1 (tn)eiϕ1(tn), (5.15)

a2(L, tn) = as(tn) =
√

Pin
2 (tn)eiϕ2(tn), (5.16)

where Pin
1 (t) and Pin

2 (t) are deterministic envelope shape functions for the pump and
Stokes fields respectively representing input power from the lasers. The variables
ϕ1(t) and ϕ2(t) are stochastic phase functions modeled as zero-mean independent
Brownian motions. The variation in the phase ϕ(t) is related to the laser’s intrinsic
linewidth ∆νL, or conversely the coherence time τcoh = 1/(π∆νL), via the expres-
sion

〈
[ϕ(t + τ)− ϕ(t)]2

〉
= 2π∆νL|τ|, where τ = t′ − t for the two times t′ and

t [144, 145, 146]. Following a similar numerical procedure to [147], we compute ϕj(t)
as

ϕj(t) =
√

2π∆νL

∫ t

0
dWj(s), (5.17)

where dW(s) is a real-valued Wiener process increment in time. To generate the ran-
dom walk numerically, we cast this integral as an Itô differential equation dϕj(t) =√

2π∆νLdWj(t), which is discretized using an Euler-Mayurama [148] scheme as

ϕj(tn+1) = ϕj(tn) +
√

2π∆νL
√

∆t Ntn(0, 1), (5.18)

where Ntn(0, 1) is a standard normally distributed random number sampled at each
tn. A simulation of a single realization of the noisy boundary conditions is shown in
Figure 5.3.

FIGURE 5.3: Single realization of the noisy boundary conditions. The plots show (a) pump
power, (b) pump phase, (c) Stokes power and (d) Stokes phase. Both pulses are Gaussian

with FWHM of 2 ns. The laser linewidth used here is ∆νL = 100 MHz.

(a) (b)

(c) (d)
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5.2.4 The numerical algorithm

We now present the main numerical algorithm of this paper. The algorithm consists
of two consecutive steps: first, we solve Eqs. (4.1a) and (4.1b) in the absence of optical
loss or nonlinear interactions. In other words, we solve the following pair of advection
equations

∂a1

∂z
+

1
v

∂a1

∂t
= 0, (5.19)

∂a2

∂z
− 1

v
∂a2

∂t
= 0. (5.20)

With the boundary conditions a1(0, t) = ap(t) and a2(L, t) = as(t), these have the
elementary solutions

a1(z, t) = ap

(
t− z

v

)
, (5.21)

a2(z, t) = as

(
t− L− z

v

)
. (5.22)

Setting the numerical grid parameter ∆z = v∆t further simplifies (5.21) and 5.22 to

a1(zj, tn) ← a1(zj−1, tn−1), (5.23)

a2(zj, tn) ← a2(zj+1, tn−1), (5.24)

such that the optical fields are shifted in space by exactly ∆z during each time iteration.
The envelope field b(z, t) is assumed to remain stationary in space during each time
step, as is typical in the context of SBS experiments involving pulses [82]. After the
fields are shifted across the waveguide, we solve the time evolution equations at each
point zj independently; i.e. we solve

1
v

∂a1(zj, t)
∂t

= −1
2

αa1(zj, t)− 1
4

g1Γa2(zj, t)I∗1,2(zj, t) + iω1Q1a2(zj, t)D∗(zj, t), (5.25)

1
v

∂a2(zj, t)
∂t

= −1
2

αa2(zj, t) +
1
4

g2Γa1(zj, t)I1,2(zj, t)− iω2Q2a1(zj, t)D(zj, t), (5.26)

where the interaction integral I1,2(zj, t) is computed as

I1,2(zj, tn) =
∆t
2

e−
Γ
2 n∆t

[
I1,2(zj, tn−1) + a∗1(zj, tn−1)a2(zj, tn−1)e

Γ
2 (n−1)∆t

+ a∗1(zj, tn)a2(zj, tn)e
Γ
2 n∆t

]
. (5.27)

To integrate the envelope fields a1 and a2 in time, we use an Euler-Mayurama scheme [160],
which yields the following finite-difference equations

a1(zj, tn+1) =

[
1− vα∆t

2

]
a1(zj, tn)− v∆t

[
g1ΓI∗1,2(zj, tn)

4
− iω1Q1D∗(zj, tn)

]
a2(zj, tn),

(5.28)

a2(zj, tn+1) =

[
1− vα∆t

2

]
a2(zj, tn) + v∆t

[
g2ΓI1,2(zj, tn)

4
− iω2Q2D(zj, tn)

]
a1(zj, tn).

(5.29)
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The acoustic field is computed at each zj and tn+1 after computing a1,2, via the equation

b(zj, tn+1) = ivaΩQa I12(zj, tn+1) +
√

∆zD(zj, tn+1). (5.30)

The factor
√

∆z in front of the thermal noise function D is used so that the acoustic
noise scales only with respect to the physical parameters such as va, σ and αac, and
not with respect to the numerical grid parameters (∆z) which would otherwise lead
to non-physical results. Once all the fields are computed at tn+1, we repeat the drift
steps in (5.23) and (5.24) and the entire process is iterated until the optical fields have
propagated across the waveguide. The steps of this numerical method are given in
Algorithm 1.

Algorithm 1 Numerical algorithm

1: Compute D(zj, tn) for all tn
2: Compute ϕ1,2(tn) for all tn
3: Set a1,2 = 0 inside z ∈ [0, L]
4: for n = 1 to Nt − 1 do ▷ Nt = size of time grid
5: Insert noisy boundary conditions in a1,2 at tn
6: Shift optical fields a1,2 in space by ∆z
7: Compute interaction integral I1,2(zj, tn)
8: Compute a1,2(zj, tn+1) from a1,2(zj, tn)
9: Compute b(zj, tn+1)

end for

5.2.5 Statistical properties of the fields

The iterative scheme in Algorithm 1 computes a single realization of the SBS interaction
given a specific set of input parameters. We must repeat this process M times with
the same input parameters to build an ensemble of M independent simulations, from
which statistical properties may be calculated. For instance, the true average of the
power for all three fields (P1,2 for the optical fields and Pa for the acoustic field) may be
calculated as

〈
P1,2(zj, tn)

〉
=
〈∣∣a1,2(zj, tn)

∣∣2〉 ≈ 1
M

M

∑
m=1

∣∣∣a(m)
1,2 (zj, tn)

∣∣∣2 , (5.31)

〈
Pa(zj, tn)

〉
=
〈∣∣b(zj, tn)

∣∣2〉 ≈ 1
M

M

∑
m=1

∣∣∣b(m)(zj, tn)
∣∣∣2 , (5.32)

where m refers to a specific realization of each process. Similarly, we compute the
standard deviation in the power at each point (zj, tn) as

std
[
P1,2(zj, tn)

]
=

√〈[
P1,2(zj, tn)

]2
〉
−
〈

P1,2(zj, tn)
〉2, (5.33)

std
[
Pa(zj, tn)

]
=

√〈[
Pa(zj, tn)

]2
〉
−
〈

Pa(zj, tn)
〉2. (5.34)

The standard deviation is useful when comparing with experiments, since it gives a
quantitative measure of the size of the power fluctuations in the measured optical
fields.
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5.3 Results and Discussion

We demonstrate the numerical method by simulating the SBS interaction of the three
fields with both thermal noise (T = 300 K, ∆νB = 30 MHz) and laser noise (∆νL = 100
kHz), using a chalcogenide waveguide of length 50 cm, with the properties in Table 5.1.
Although our formalism includes optical loss through the factor α, we have chosen
α = 0 in the simulations to focus on the effect of net SBS gain and pulse properties on
the noise. Here we study the noisy SBS interaction in two different cases: spontaneous
scattering and stimulated scattering, and investigate the effects of pump width and
SBS gain on the noise properties of the Stokes field.

Parameter Value Paramter Value

Waveguide length L 50 cm Peak pump power 1 W
Waveguide temperature T 300 K Peak Stokes power 0−1 mW

Refractive index n 2.44 Laser linewidth ∆νL 100 kHz
Acoustic velocity va 2500 m/s Pump pulse FWHM 0.5−5 ns

Brillouin linewidth ∆νB 30 MHz Stokes pulse FWHM 1 ns
Brillouin shift Ω/2π 7.7 GHz Grid size (space) Nz 1001

Brillouin gain parameter g0 423 m−1W−1 Grid size (time) Nt 2601
Optical wavelength λ 1550 nm Step-size ∆t 4.07 p

TABLE 5.1: Simulation parameters using a chalcogenide waveguide of the type shown
in [154].

5.3.1 The spontaneous Brillouin scattering case

We first consider the situation in which there is no input Stokes field from an exter-
nal laser source, and the Stokes arises purely from the interaction between the pump
and the thermal field — this situation is customarily referred to as spontaneous or
spontaneously-seeded Brillouin scattering. We specify a Gaussian pump pulse of varying
widths and constant peak power, with input phase noise (∆νL = 100 kHz). Setting the
waveguide temperature at 300 K and the pump FWHM of 2 ns, in Fig. 5.4(a)−(c) we
see that the thermal acoustic field interacts with the pump to generate an output Stokes
signal. At the same time, the Stokes field depletes some of the pump and amplifies the
acoustic field, which leads to more Stokes energy being generated. The noisy character
of the Stokes field in Fig. 5.4(b) is due to the incoherent thermal acoustic background,
which generates multiple random Stokes frequencies. In this short-pump regime, the
SBS amplification is small, and the generated Stokes field remains incoherent.

As we increase the width of the pump to 5 ns, the net SBS gain in the waveguide
also increases. In this long-pump regime, the (spontaneously-generated) Stokes field
is amplified coherently, as shown in Fig. 5.5(b). However, it should be noted that, al-
though the Stokes output becomes smooth, there is significant variation in the peak
Stokes power from one independent realization to the next, as illustrated in Fig. 5.6(a)
and (b). The standard deviation of the Stokes power over multiple independent real-
izations increases with longer pump pulses, as shown in Fig. 5.5(e).

As the pump becomes very long we approach the CW regime, in which the pump
power ramps up quickly at z = 0 and is kept at a constant value. If the waveguide is
sufficiently long, the spontaneously generated Stokes field is amplified coherently until
pump depletion begins to take effect, initially at z = 0 and then throughout the length
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FIGURE 5.4: Waterfall plots for a single numerical realization of (a) pump power, (b) Stokes
power and (c) acoustic power in the spontaneous scattering case, using a Gaussian pump
of FWHM 2 ns and peak power of 1 W. Plots (d)−(f) show the standard deviation of the
field powers at each point (z, t), calculated from 100 independent realizations of the SBS

interaction.

of the waveguide, until both Stokes and pump fields relax into the steady-state config-
uration in which the pump decreases exponentially, as shown in Fig. 5.8(a)−(b). When
such a steady state is reached, the depletion induced by the spontaneously-seeded
Stokes may inhibit Brillouin scattering from an input Stokes pulse injected at z = L.

Returning to the pulsed case, we investigate the effect of increasing the peak pump
power, and therefore the overall SBS gain, on the amplification of the spontaneous
Stokes field. Figure 5.7 shows how the Stokes spectral linewidth increases for input
pump powers between 0.1−2 W for a Gaussian pump pulse with fixed FWHM of
5 ns. The increase in linewidth occurs due to the transition from linear to nonlin-
ear SBS amplification: in the linear amplification regime, the spontaneously generated
Stokes field retains a constant temporal width while its peak power increases with in-
put pump power. In the nonlinear amplification regime, the Stokes field undergoes
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FIGURE 5.5: Waterfall plots for a single numerical realization of (a) pump power, (b) Stokes
power and (c) acoustic power in the spontaneous scattering case, using a Gaussian pump
of FWHM 5 ns and peak power of 1 W. Plots (d)−(f) show the standard deviation of the
field powers at each point (z, t), calculated from 100 independent realizations of the SBS

interaction.

temporal compression as a result of the central peak of the pulse being amplified faster
than the tails. Beyond 2 W of peak pump power, the spectral linewidth of the Stokes
field narrows as pump depletion becomes significant, because the Stokes field is pre-
vented from uniformly experiencing exponential gain throughout the waveguide, an
effect which is also observed in the CW pump case [161].

5.3.2 The effect of laser phase noise

Our previous simulations included laser phase noise corresponding to a laser linewidth
of 100 kHz in the pump. This is equivalent to a coherence time of τcoh = 3.2 µs,
which is at least 100 times larger than the characteristic time of the SBS interaction
in Fig. 5.4−5.8. For this reason it is understandable that no contribution from the laser
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FIGURE 5.6: Multiple independent realizations of the spontaneously generated Stokes
power across the waveguide for (a) 2 ns wide pump and (b) 5 ns wide pump. These

snapshots are taken at the time when the peak of the pump pulse reaches z = 50 cm.

(a)

(b)

(d)

(c)

FIGURE 5.7: Spontaneously generated Stokes field (at z = 0) over 500 independent re-
alizations, using a 5 ns Gaussian pump pulse and varying input peak pump power. (a)
ensemble averaged Stokes power normalized by the maximum power at each input pump
power, (b) FWHM of the Stokes in time domain. (c) normalized power spectral density

(PSD) of the Stokes field, and (d) Stokes FWHM in frequency domain.
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FIGURE 5.8: Waterfall plots for a single numerical realization of (a) pump power and (b)
Stokes power in the spontaneous scattering case, using a CW pump with 1 W peak power

and a laser linewidth of 100 kHz.

FIGURE 5.9: Waterfall plots for a single numerical realization of (a) pump power and (b)
Stokes power in the spontaneous scattering case, using a CW pump with 1 W peak power

and a laser linewidth of 100 MHz.

phase noise to the optical or acoustic fields was observed. The contribution of laser
phase noise can however be observed if the linewidth of the pump is suffiently broad.
We therefore consider the CW-pump regime with zero Stokes input power, with a laser
linewidth of 100 MHz, which corresponds to a coherence time of 3.2 ns (Fig. 5.9). We
see a significant contribution from the laser phase noise in the form of amplitude fluc-
tuations, which are completely absent in the 100 kHz linewidth case (Fig. 5.8). From
this we infer that when the laser coherence time τcoh is comparable to the pulse widths
τp,s, the fluctuations in the phase are fast enough to be transferred to the envelope of
the pulse. However, when τcoh ≫ τp,s, the noisy character of the envelope fields will
vanish. This has important implications for the case of pulsed SBS: phase noise can
only play a significant role in the interaction if τcoh ≤ τp,s. For lasers with a relatively
small linewidth, such as in the kHz range, phase noise will only become a significant
effect when operating in the long-pulse or CW regime.

5.3.3 The stimulated Brillouin scattering case

We now examine the case of seeded Brillouin scattering, in which a Stokes signal is
injected at z = L. We first consider a 1 mW peak power Stokes pulse of FWHM 1 ns in
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FIGURE 5.10: Waterfall plots for a single numerical realization of (a) pump power, (b)
Stokes power and (c) acoustic power in the stimulated scattering case, using a Gaussian
pump pulse of width 2 ns and peak power 1 W. The input Stokes pulse has width 1 ns and
peak power 1 mW. Plots (d)−(f) show the standard deviation in the fields at each point

(z, t) for 100 independent realizations of the SBS interaction.

the same chalcogenide waveguide as before. The pump is a Gaussian pulse of constant
peak power of 1 W, with a width of 2 ns. As can be seen in Fig. 5.10, the Stokes pulse
remains smooth throughout the interaction, and although the standard deviation over
100 independent realizations is approximately 1.4% of the peak value, there are no
visible fluctuations in the power across space or time in Fig. 5.10(b). A closer look at
multiple individual realizations in Fig. 5.11(a) reveals that there is a measurable level of
variation in the Stokes power, although each individual realization of the Stokes field is
smooth. By increasing the pump width to 5 ns as shown in Fig. 5.11(b), we also increase
the standard deviation in the Stokes, however each independent realization appears
smoother compared to Fig. 5.11(a). This further demonstrates how in the longer pump,
high SBS gain regime, the amplification of the Stokes is sufficient to cancel random
phase differences in the Stokes field, as we observed in the spontaneous scattering
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FIGURE 5.11: Multiple independent realizations of the Stokes power across the waveguide
for (a) 2 ns wide pump and (b) 5 ns wide pump, shown at the time where the pump pulse

peak reaches z = 50 cm.

case in Fig. 5.5.

5.3.4 Convergence of the method

Convergence in the noiseless case

We first test our numerical method against a known analytic solution for steady-state
optical fields, as outlined in [66]. To achieve this, we set all the noise sources in our
algorithm to zero, including thermal and input phase noise, and simulate constant
power envelope fields a1 and a2 in the same chalcogenide waveguide using a 100 mW
pump and 1 mW Stokes, with α = 0.01 dB/cm optical attenuation. The fields are
simulated for a sufficiently long time so that they reach a steady-state, in this case 650
ns. The overlaid plots between the analytic solutions from [66] and our numerical
solutions are shown in Fig. 5.12 for a step-size ∆t = 4.07 ps.

The convergence plots are shown in Fig. 5.13. As it can be seen, the convergence
rate for the pump and Stokes powers is linear with the step size ∆t, which is expected
from the Euler-Mayurama scheme reducing to a simple Euler method in the noiseless
case [148].

Convergence with noise

We now study the convergence of the numerical method by looking at the statistical
properties of the power in each field at fixed points on (z, t). We use a default minimum
step-size in time ∆tmin = 40.7 fs against which we compare the results for larger step-
sizes ∆t. We compute the relative error in the power and variance of the power, taken
over 1,000 independent realizations. These results correspond to what is known as
weak convergence in stochastic differential equations [148], where the mean value of a
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FIGURE 5.12: Comparison of the analytic solutions to the pump and Stokes power
from [66] and the numerical solutions computed using the method presented in this Chap-

ter.

FIGURE 5.13: Noiseless SBS convergence plots for the pump and Stokes power. The rela-
tive error in the powers are calculated at the waveguide outputs, namely z = 0 for P2 and

z = L for P1, using the analytic values calculated from [66] as the reference.

random quantity, in our case the power, converges at a specific rate with respect to the
step-size used.

The results for the convergence computations are shown in Fig. 5.14. As expected
from the Euler-Mayurama scheme [148], the convergence rate is at most linear for the
mean power of all three fields. A similar rate of convergence is recorded for the vari-
ance in each power, showing a one-to-one error reduction with step-size. Although
some higher order methods exist which implement higher order Taylor expansions
and Runge-Kutta schemes [148, 162, 163, 164], these methods only work with ordinary
stochastic differential equations; numerical methods for partial stochastic differential
equations are an active area of research in applied mathematics [165].
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FIGURE 5.14: Convergence plots showing the relative error in the ensemble averaged pow-
ers (a)−(c) and in the variance of the powers (d)−(f), as a function of the step-size ∆t used
in the numerical grid. The reference step-size used is ∆tmin = 40.7 fs. The calculations are
based on a sample size of 1,000 independent simulations of the fields. The test problem
consists of two optical Gaussian pulses for the pump and Stokes of width 1 ns, with peak
powers pump 100 mW (pump) and 10 µW (Stokes). The statistical properties of P1, P2 and
Pa are calculated from P1(L, tmax), P2(0, tmax) and Pa(L/2, tmax) respectively, where tmax
is the time at which the peaks of the optical pulses reach the opposite ends of the waveg-
uide. The computations include thermal noise in the waveguide at temperature 300 K, and
input laser phase noise with linewidth 100 kHz. The waveguide properties are given in

Table 5.1.

5.4 Conclusion

We have presented a numerical method by which the fully-dynamic coupled SBS equa-
tions in both CW and pulsed scenarios with thermal and laser noise can be solved. The
method offers linear convergence in both the average power and variance of the power
of the optical and acoustic fields, with variances that do not depend on step-size. From
our simulations, we find that the noise properties of the fields rely on the length of the
optical pulses involved as well as on the net SBS gain in the waveguide. For short-
pump, low gain regimes, the spontaneous Stokes field is incoherently amplified and
exhibits large spatial and temporal fluctuations, whereas for the long-pump, high gain
regime the field is amplified coherently, resulting in a smooth field but with large varia-
tions in peak power between independent realizations. Similar observations are made
for the stimulated scattering case using a Stokes signal. We also find that laser phase

(a) (d)

(b) (e)

(c) (f)
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noise does not play a significant role in the SBS interaction unless the laser coherence
time is comparable to the characteristic time-scales of the SBS interaction.
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Chapter 6

Noise in Brillouin Based Storage

6.1 Overview

This Chapter is based on the contents of the research paper:

Oscar A. Nieves, Matthew D. Arnold, M. J. Steel, Mikołaj K. Schmidt, and
Christopher G. Poulton, “Noise in Brillouin based information storage",
Opt. Express 29, 39486-39497 (2021)

In this Chapter, we apply the theoretical and numerical models from Chapters 4 and 5
to simulate Brillouin based storage, accounting for the effects of thermal noise and laser
phase noise. We compare the impact of noise on both amplitude and phase encoded
storage of information, by using a small pump power and a large Stokes seed power.
We quantify the retrieval efficiency and accuracy in the form of the packet error rate
(PER) of 8-bit sequences. We find that phase storage offers a significant improvement in
the duration with which information can be stored without degradation due to thermal
noise. We examine this effect in more detail by computing the effect of thermal noise
on the amplitude and phase of a phase-encoded signal, and find that although the
variance in amplitude and phase increases at the same rates, the phase information is
more robust to noise in accordance with the additive-white-Gaussian-noise (AWGN)
model of discrete communication theory.

6.2 Introduction

Opto-acoustic memory storage consists of temporarily storing information encoded
from an optical wave into an acoustic wave inside some propagation medium. This
process is facilitated by SBS as follows (see Fig. 6.1): an optical data pulse at the pump
frequency interacts with an optical “write” pulse (at the Stokes frequency), creating an
acoustic hologram where the original data is temporarily stored [59, 109, 166]; an opti-
cal ”read” pulse at the Stokes frequency can then be used to regenerate the original data
pulse. Brillouin-based opto-acoustic information storage has been demonstrated ex-
perimentally in fibres [59] as well as more recently in on-chip experiments [109, 113, 62,
166, 110, 63], with storage times ranging up to 40 ns [63]. Opto-acoustic storage, how-
ever, will inevitably be limited by noise, which exists because of the presence of ther-
mal phonons in the waveguide, as well as being an inherent feature of the lasers used in
the data and read/write pulses. At room temperatures, it is known that thermal noise
significantly degrades the quality of Brillouin processes [64, 65, 66, 67, 49, 82], and it can
be expected that it will also place limits on information retrieval efficiency in Brillouin
storage experiments, measured as the amount of power that can be retrieved from the
acoustic field after a certain time. This has been experimentally measured [110, 59],
however while noise has been observed as a feature of these experiments, it is not yet
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clear how noise impacts the accuracy of the information retrieval. Furthermore, most
studies (except, notably, [62]) have focused on amplitude encoded storage, in which
bits of information are stored in individual pulses. Alternatively, phase encoded stor-
age may offer higher storage efficiency and be less sensitive to noise. A quantitative
understanding of the impact of noise on the storage of both amplitude and phase in-
formation is needed for the further development of practical Brillouin-based storage
devices.

FIGURE 6.1: Illustration of the opto-acoustic storage achieved via SBS, neglecting the ef-
fects of noise, and using amplitude shift-keying (amplitude storage). Storage process in
(a) and (b): data pulses are depleted by the write-pulse, exciting an acoustic wave inside
the waveguide, with some energy gained by the write-pulse. Retrieval process in (c) and
(d): a read-pulse interacts with the acoustic wave, both become depleted and the energy is
used to regenerate the original sequence of data pulses. The retrieval efficiency is limited

by the acoustic lifetime of the phonons.

6.3 Methods

Following the formalism in Chapters 4 and 5 for solving the SBS equations (4.1a)−(4.1c)
numerically, we define the input optical fields at the ends of the waveguide by stochas-
tic boundary conditions, namely a1(0, t) = adata(t)eiϕ1(t) for the data pulse, and the
read/write pulses combined into a2(L, t) = [aread(t) + awrite(t)] eiϕ2(t), where ϕ1,2(t) are
random phase terms modelled as Brownian motions. We also set the pump frequency
ω1 larger than the Stokes frequency ω2, so that the pump transfers energy to the Stokes
field. In non-storage SBS setups [82, 131] the pump has higher input power Pp0 than the
Stokes Ps0 and thus behaves as an amplifier. However, in the case of Brillouin storage,
we require Pp0 ≪ Ps0 so that the read/write pulse can completely deplete the pump,
which contains the data to be stored. Optimum storage requires two conditions on
the read/write pulse. First, the read/write pulses must be at least as short in duration
as the shortest data pulse. Second, the pulse area for the read/write pulse, defined
as [59, 61]

Θw =

√
g0v
8τa

∫ ∞

−∞
aread/write(t)dt, (6.1)
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must obey the condition Θw = (m + 1/2)π where m = 0, 1, 2, .... This is because
once the data pulse is depleted completely, the transfer of energy reverses and the data
pulse is regenerated [60, 61, 167]. The dependence of the pulse-area on τa may seem
deceptive at first, but since g0 is also dependent on τa these two effects cancel out.

The storage efficiency thus tells us how effective the storage system is, and may
be defined as the ratio of the total output data power |aout(t)|2 to the total input data
power |adata(t)|2 [62]:

ηsto =

∫ τdata
0

〈
|aout(t)|2

〉
dt∫ τdata

0

〈
|adata(t)|2

〉
dt

, (6.2)

where ⟨X(t)⟩ = 1
N ∑N

n=1 Xn(t) is the ensemble average of a function X(t) over N in-
dependent runs, and τdata is the duration of the data train. Because the acoustic wave
decays in time at a rate 1/τa, ηsto decreases with longer storage times, reducing the effi-
ciency in addition to the effects of noise. We define the storage time τsto as the temporal
delay between the write and read pulses.

Parameter Value Parameter Value

Waveguide length L 30 cm Peak read/write power 0.5−10.5 W
Waveguide temperature T 300 K Data packets 256

Refractive index n 2.44 Data stream duration τdata 2.44 ns
Acoustic velocity va 2500 m/s Bit duration τbit 300 ps
Acoustic lifetime τa 10.2 ns Data pulse width τ1 150 ps
Brillouin shift Ω/2π 7.8 GHz Read pulse width τ2 100 ps

Brillouin gain parameter g0 411 m−1W−1 Grid size (space) Nz 800
Optical wavelength λ 1550 nm Grid size (time) Nt 2797
Laser linewidth ∆νL 100 kHz Step-size ∆z 375 µm

Peak data power 10 mW Step-size ∆t 3.05 ps
Optical loss α 0.1 dB/cm

TABLE 6.1: Parameters used in this study. Physical parameters correspond to a chalco-
genide waveguide [154].

For our simulations we use the parameters summarized in Table 6.1. We assume a high
gain chalcogenide waveguide, of the type used in previous SBS experiments [154]. We
store individual 8-bit packets one at a time, consisting of all 256 possible unique 8-bit
sequences. Each packet corresponds to 8 individual pulses in the amplitude storage
case, and 4 phases in the phase storage case, as shown in Fig. 6.2.

It should be noted that the model used here (Eq. (4.1a)−(4.1c)) makes the assump-
tion of the slowly-varying envelope approximation (SVEA) and rotating-wave approx-
imation (RWA) [82, 76]. Because the acoustic frequencies used in SBS experiments
are typically in the range of a few GHz [44, 69], the optical pulses simulated must be
longer than a few hundred picoseconds in duration so that these approximations re-
main valid [168]. Therefore, we limit our simulations to pulses no shorter than 100 ps,
for both for the data and read/write cases. We have chosen to focus on the storage
of 8-bit sequences because they can fit inside a 30 cm chalcogenide waveguide with-
out being too short for a 7.8 GHz Brillouin frequency shift, since the acoustic pulses
generated from 300 ps optical bits are approximately 3.7 cm in length.
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FIGURE 6.2: Illustration of how the 8-bit sequence x = 11010010 is encoded in the numeri-
cal simulation. Amplitude storage: (a)−(b) input power and phase, (c)−(d) output power
and phase after some storage time. Phase storage: (e)−(f) input power and phase, (g)−(h)
output power and phase after some storage time. Here we use thermal noise at T = 300

K.

6.3.1 Data encoding

The two storage schemes used in this paper — amplitude and phase storage — are
summarized in Fig. 6.2. Each bit is defined as having a duration τbit. For amplitude
storage, we encode ones into Gaussian pulses of the same peak power Pp0, while zeros
are represented by gaps of duration τbit. For phase storage, we use the same scheme
as in quadrature phase-shift keying (QPSK) with gray coding [169], where bit pairs are
assigned a unique phase, namely 11 = 45o, 01 = 135o, 00 = 225oand 10 = 315o. For
a given input information packet, we quantify the retrieval accuracy in both storage
schemes via the packet error rate (PER). This is similar to the bit error rate (BER) of
a binary stream, except that we count correct 8-bit packets as opposed to counting
individual correct bits. Therefore, the PER is the ratio of correctly retrieved packets
with respect to the input data, and has a value 0 ≤ PER ≤ 1.

In the amplitude storage case, we encode bits=1 into Gaussian pulses of full-width
at half-maximum (FWHM) τ1, while bits=0 are represented by gaps of duration τbit in
the data sequence. Mathematically, we represent this by the formula

adata(t) =

√√√√Pp0

N

∑
n=1

β̃n(t) cos
(

π

τbit
(t− ∆τn)

)
exp

{
−4 ln(2)

(t− ∆τn)2

τ2
1

}
, (6.3)

where Pp0 is the peak power of the pulses, ∆τn is the delay of the nth pulse in the se-
quence and τ1 is the full-width at half-maximum (FWHM) of each pulse representing a
1. The cosine function is used here in order to prevent individual pulses from overlap-
ping with one another. For a data-stream starting at t = 0, the successive pulse delays
are calculated as ∆τn = (2n− 1)τbit/2 for n = 1, 2, 3, ..., N. By default, we choose all
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FIGURE 6.3: Constellation diagrams used in phase storage. These plots are done on the
complex plane, where the modulus of each point corresponds to the normalized power
of the signal, and the argument corresponds to the phase of the signal. (a) ideal system:
each point lies at exactly 45ofrom the horizontal line in either direction, and on the circle of
radius 1. (b) Effect of noise in the detected signal: amplitude noise shifts the points in the
radial direction, while phase noise shifts the points in the angular direction, and the color

scheme shows the regions of higher or lower density of points.

pulses to have a phase of 0o. In the retrieval stage, the output data power |aout(t)|2 is
separated into equal intervals of length τbit. We use a dynamic threshold technique:
initially, a threshold power Pthresh is set. Then, we record the output power at the
center of the bit period, and a single bit is read as 0 if |a(n)out(t)|2 < Pthresh and as 1 if
|a(n)out(t)|2 ≥ Pthresh [170], for all 256 data packets. This process is repeated for different
values of Pthresh until the total PER has been minimized, which is then selected as the
PER for that particular simulation.

In the phase storage case, we encode bit-pairs into 4 different phases, as shown in
Fig. 6.3(a). The phase itself is described mathematically as

φdata(t) =
π

4

[
1 + 2

N/2

∑
m=1

θmrect
(

t− (2m− 1)τbit

2τbit

)]
, (6.4)

where θm = {0, 1, 2, 3}, and each value corresponds to the bit pairs {11, 01, 00, 10},
which correspond to increments of 90ostarting at 45o. For instance, in a bit sequence
11001100, the corresponding values are θ = {0, 2, 0, 2}. Therefore, the duration of each
unique phase in φdata(t) is 2τbit, which means PS has twice the information bandwidth
of AS [169]. To make the model more realistic without phase discontinuities from sym-
bol to symbol, we pass φdata(t) through a Gaussian filter of temporal full-width half-
maximum τfilter, so the actual phase in the data pulse becomes

ϕdata(t) =
∫ t

0
φdata(t′) exp

{
−4 ln(2)

(t− t′)2

τ2
filter

}
dt′. (6.5)

To emulate the effect of the modulators used in SBS experiments, we set the filter to
have a frequency FWHM of 5 GHz, or equivalently τfilter = 88 ps. The envelope of the
data pulse in the phase storage case consists of an analytical smooth rectangular (ASR)
pulse as described in [171]. Therefore, the pulse is described mathematically as

adata(t) =
√

Pp0

2

[
erfc

(
γ̃(t− δdata)− τ1/2

∆0

)
− erfc

(
γ̃(t− δdata) + τ1/2

∆0

)]
eiϕdata(t),

(6.6)
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where δdata is the delay of the center of the data pulse, γ̃ = 10.81τ1/∆0 is a chirp-
dependent parameter and ∆0 = 0.0067τ1 controls how quickly the pulse ramps up
from 0.

In the retrieval stage, |aout(t)|2 is separated into equal intervals of length 2τbit. We
extract the phase from the amplified output signal as:

ϕout(t) = tan−1 (Im [aout(t)] /Re [aout(t)]) (6.7)

As with the case of amplitude storage, we assume ideal detector conditions and record
the phase at the center of the 2τbit period, such that if 0o< ϕout(t) <90o, we read the
output bit-pair as 11, if 90o< ϕout(t) < 180owe read the bit-pair as 01 and so on. In
phase storage, we use another measure of signal integrity based on the constellation
diagram data: let z(m)

out represent a single point on the constellation diagram correspond-
ing to the mth bit-pair in the binary sequence (such as 00), with magnitude

∣∣∣z(m)
out

∣∣∣ and
phase ϕm

z . The relative variances in each point can be found via

Var
[∣∣∣z(m)

out

∣∣∣] = 〈∣∣∣z(m)
out

∣∣∣2〉− 〈∣∣∣z(m)
out

∣∣∣〉2
, Var

[
ϕ
(m)
out

]
=

〈(
ϕ
(m)
out

)2
〉
−
〈

ϕ
(m)
out

〉2
. (6.8)

6.4 Results and Discussion

6.4.1 Effect of thermal noise

We investigate the effect of varying the read/write pulse peak power between 0.5−10.5
W, while maintaining a read/write pulse width of 100 ps. We include thermal noise
into the waveguide at 300 K, but neglect the input laser phase noise by setting the laser
linewidth ∆νL to zero. In the amplitude storage case, we use Gaussian data pulses with
10 mW peak power and pulse width 150 ps, while in the phase storage case we use a
rectangular pulse of duration 2.44 ns, and phase intervals of duration 600 ps. Each
bit of optical information is 300 ps in length for both amplitude and phase storage.
The results of the simulations are shown in Fig. 6.4. First, we observe in Fig. 6.4(a)
and (b) that the storage efficiency in both storage schemes is higher as we increase the
peak write pulse power, as the pulse area is lower than the optimum value given by
Eq. (6.1). Second, we see in Fig. 6.4(c) and (d) that lower peak write powers lead to
increased PER, thus reducing the maximum storage time achievable in both encoding
schemes. This occurs because at lower peak read/write powers — which also cor-
responds to the lower storage efficiency regime — the coherent output data field is
less distinguishable from the amplified spontaneous noise arising from the interaction
between the read/write pulse and the thermal background fluctuations in the waveg-
uide [82, 131]. Consequently, this increases the probability of retrieving the wrong data
sequence at the waveguide output (z = L).

Similarly, we see an increase in PER in both AS and PS schemes with increasing
τsto, as shown in Fig. 6.4(c) and (d). This occurs because in the time between the write
and read-process, the acoustic wave containing the stored information decays at a rate
1/τa. As τsto increases, the acoustic wave gets closer to the background thermal noise,
increasing the fluctuations in the retrieved data field during the read-process. This ef-
fect is more clearly illustrated in Fig. 6.5, where the constellation points spread out in
both radial and angular directions, indicating an increase in both amplitude and phase
noise in the retrieved data field. In Fig. 6.6 we see that the rate of increase in the vari-
ance of the phase and amplitude of each encoding scheme is the same for the first 40
nanoseconds. However, in Fig. 6.4(f) we see that the PER in the phase storage case
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FIGURE 6.4: Simulations of Brillouin storage with thermal noise only, for varying read-
/write pulse peak power and different storage times in amplitude storage and phase stor-
age. Panels (a) and (b) show the storage efficiency of the two schemes, (c) and (d) the
packet error rates, (e) and (f) illustrate the storage efficiency and PER at 3 W peak write
power. The dashed horizontal line in (c) and (d) indicates the τsto at which data packet
errors begin to occur, and the arrows in (d) show that this threshold is pushed further back

in time.

begins to increase at longer τsto compared to the amplitude storage case, suggesting
that phase-encoded data is more robust to thermal noise and hence allows for longer
storage times. This occurs because the phase variations are primarily constrained to
a single quadrant on the constellation plots (as shown in Fig. 6.5), whereas the am-
plitude variations reach the noise floor more rapidly. Consequently, the probability
of detecting the wrong bit of information in the amplitude is higher compared to the
phase. This is the same observation that would be expected from the additive white
Gaussian noise (AWGN) model in discrete communication theory, where the probabil-
ity of bit error for phase-shift-keying (PSK) is lower than for amplitude-shift-keying
(ASK) [172, 173]. In addition, phase encoding allows the transfer of more bits per sym-
bol, and this means that the pulse-size constraints imposed by the SVEA and RWA can
be further relaxed.

6.4.2 Effect of laser phase noise

We now investigate the effect of adding input laser phase noise, at a linewidth of 100
kHz, with the same pulse and thermal noise parameters as before. We generate the
phase noise in the data pulses and read/write pulses independently so they are statis-
tically uncorrelated, but have the same mean and variance properties. Fig. 6.7 shows
the results for storage efficiency and PER for both encoding schemes. The plots in
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FIGURE 6.5: Constellation diagrams for the thermal noise only case, at 3 W peak write
power. (a) and (b) show the amplitude storage plots at two storage times (3.66 ns is the
minimum storage time achievable in this configuration) for a binary bit 1, while (c) and (d)

show the phase storage plots for a binary bit pair 11.

FIGURE 6.6: Relative variance in the amplitude and phase of the constellation data in
Fig. 6.5 as a function of storage time. The dashed lines mark the storage times correspond-

ing to the constellation diagrams in Fig. 6.5.

Fig. 6.7(a)−(d) look very similar to Fig. 6.4(a)−(d), indicating that laser phase noise
does not have a significant impact on the storage efficiency or PER. This is consistent
with previous work on SBS noise in short pulses [131], where it was found that laser
phase noise only has a significant impact on the SBS process when the laser coherence
time (τcoh = 1/π∆νL) is comparable in magnitude to the SBS interaction time. Next, the
constellation diagram results in Fig. 6.8 reveal that the input laser phase noise broadens
the variance in the phase of the retrieved data field, making the distribution of constel-
lation points slightly more elliptical compared to the thermal noise only case. This is
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FIGURE 6.7: Simulations of Brillouin storage with both thermal and laser phase noise, for
varying read/write pulse peak power and different storage times in amplitude storage
and phase storage. Panels (a) and (b) show the storage efficiency of the two schemes, (c)
and (d) the packet error rates, (e) and (f) illustrate the storage efficiency and PER at 3 W
peak write power. The dashed horizontal line in (c) and (d) indicates the τsto at which
data packet errors begin to occur, and the arrows in (d) show that this threshold is pushed

further back in time.

also shown in Fig. 6.9, where the rates of increase for the amplitude and phase vari-
ances still remain approximately the same for the first 40 nanoseconds of storage time.
This occurs because at this regime of powers for the data pulses, the SBS process acts
as a linear amplifier, hence the total noise in the retrieved data is a linear combination
of the waveguide thermal noise and the laser phase noise from the inputs.

6.5 Conclusion

We have numerically simulated the Brillouin storage of different data packets with
thermal and laser noise, using amplitude storage and phase storage techniques in a
photonic waveguide. Through these computer simulations, we have shown that phase
encoded storage allows for longer storage times than amplitude encoded storage. This
is because phase encoding is more robust to noise than amplitude encoding, in ac-
cordance with the additive-white-Gaussian-noise model of discrete communications
theory [172]. It is therefore possible to increase Brillouin storage time by encoding in-
formation into the phase of the data field, without having to change the waveguide
or laser properties. Furthermore, because phase storage techniques can encode more
bits per symbol than amplitude storage [169, 172], one can use longer optical pulses
without loss of data capacity.
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FIGURE 6.8: Constellation diagrams for the thermal noise and laser phase noise case, at 3
W peak write power. (a) and (b) show the amplitude storage plots at two storage times
(3.66 ns is the minimum storage time achievable in this configuration) for a binary bit 1,

while (c) and (d) show the phase storage plots for a binary bit pair 11.

FIGURE 6.9: Relative variance in the amplitude and phase of the constellation data in
Fig. 6.8 as a function of storage time. The dashed lines mark the storage times correspond-

ing to the constellation diagrams in Fig. 6.8.
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Chapter 7

Summary and Outlook

7.1 Summary

In this Thesis, we have developed a general mathematical framework for simulating
the stochastic dynamics in backward SBS, with special emphasis on pulses. By build-
ing on previous work done in the context of steady-state or continuous-wave (CW)
operation, we have extended our analysis to short pulses, and investigated the noise
properties in the undepleted pump regime, which is outlined in [82]. In this research,
we showed that in the case of a constant energy pump field and lossy media, the op-
tical signal-to-noise ratio (OSNR) has a minimum in the region where the interaction
time of the pulses matches their transit time in the waveguide. It was found that as the
spontaneous Stokes noise increases towards a maximum value, the OSNR decreases,
resulting from longer pump pulses compensating for the linear optical losses in the
medium. Additionally, it was found that once the pump pulse becomes longer than the
waveguide, the loss dominates due to less pump energy fitting inside the propagation
medium. Therefore, we concluded that the OSNR is mediated by the pump energy,
pump shape, waveguide length and optical loss, making it important to choose the
right parameter combination to maximize the OSNR in a specific device.

The theoretical framework [82] for thermal noise was also extended to include laser
phase noise, and a numerical solver for the coupled stochastic SBS equations was de-
veloped [131]. Using a splitting method in which the drift of the optical fields and
the nonlinear interaction are solved separately during each time iteration, the method
demonstrated linear convergence in both the ensemble averaged power and variance
in the power of the envelope fields. We then used this method to investigate the role
of pulse properties on the noise levels in a chalcogenide waveguide. We found that
the noise properties of the fields rely on the length of the optical pulses involved as
well as on the net SBS gain in the waveguide. For short-pump, low gain regimes, the
spontaneous Stokes field is found to be incoherently amplified, thus exhibiting large
spatial and temporal fluctuations, whereas for the long-pump, high gain regime the
field is amplified coherently, resulting in a smooth field but with large variations in
peak power between independent realizations. Similar observations were made for
the stimulated scattering case using a Stokes seed. In addition, we found that laser
phase noise does not play a significant role in the SBS interaction unless the laser co-
herence time is comparable to the characteristic time-scales of the SBS interaction.

The numerical method developed in this Thesis was more recently implemented
in the simulation of Brillouin storage under different modulation schemes, namely
amplitude storage (AS) and phase storage (PS), under the presence of thermal noise.
Using a data sequence of 8-bits in a 30 cm chalcogenide waveguide using picosecond
pulses, we investigated the effect of pulse properties on the retrieval efficiency after
different storage times. Additionally, we investigated the accuracy of the retrieved
data with respect to the input data stream by looking at the packet error rate (PER) of
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8-bit sequences in each scheme (AS and PS). Through these simulations, we found that
phase storage offers longer storage times than amplitude storage, as a result of phase
encoding being more robust to noise than amplitude encoding, in accordance with the
additive-white-Gaussian-noise (AWGN) model of discrete communication theory.

7.2 Outlook and future directions

The present Thesis has introduced a new mathematical framework for modelling ther-
mal noise in SBS for short pulses, as well as a numerical method by which the SBS
coupled equations (4.1a)−(4.1c) can be solved, and an analysis of how phase and am-
plitude storage schemes are impacted by SBS noise in Brillouin-based storage. Despite
these models being quite general, there remain some aspects of these noise dynamics
which could be expanded upon. In this Section, we outline some possible extensions
to the theory which may be of use in future research.

7.2.1 Higher accuracy numerical methods

In this Thesis, we developed a numerical method for solving the SBS coupled equations
with thermal and laser phase noise. The method uses a split-approach in which the
optical fields are shifted in space during each time iteration, and then the nonlinear
interaction is solved using the time-evolution equations. The method uses an Euler-
Mayurama scheme for the time-evolution step involving thermal and laser noise. As a
result, the method offers linear convergence in both the ensemble averaged power and
the variance in the power of the fields.

One important challenge in these simulations is that higher order methods for
stochastic partial differential equations (SPDEs) are still an active area of research [165].
Although Runge-Kutta methods exist for ordinary stochastic differential equations, it
is unlikely that these methods will work on SPDEs given that the noise properties are
different in space and in time. As research in this area progresses, new methods may
arise, in which case new numerical schemes for solving the SBS equations with noise
might become possible.

Another challenge in the computational realm is that Monte Carlo simulations are
quite computationally expensive, and from several years of doing these computations
on the large UTS high-performance computing cluster (iHPC) we found that more than
100 independent realizations of the envelope fields must be solved in order to obtain
good estimates for the statistics of the fields, namely ensemble averages and variance.
Depending on the scale of the problem and the numerical resolution required, such
computations can take several days, or even weeks, to complete, especially when us-
ing very fine step-sizes. And this is all using parallel-computing on multi-core ma-
chines. It is possible that GPU-computing may offer an accelerated way of performing
all these Monte Carlo runs simultaneously, thereby shortening the computation time
needed [174, 175, 176]. However, we have so far not tested such methods, and their
application may require the use of lower-level programming languages like C++ for
optimum performance.

7.2.2 Multi-modal noise dynamics

One area for further investigation is, quite naturally, the extension of the mathematical
theory to other types of SBS, such as forward SBS, cascaded SBS and inter-modal SBS.
So far, our mathematical methods have focused on single-mode operation, based on
the fact that we can select a certain Brillouin frequency by tuning the input laser fields.
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However, it would be interesting to see how the noise properties may differ when more
than one acoustic mode is involved in the interaction. A possible way to model this is
to include additional envelope equations into the coupled SBS equations. For instance,
if we wanted to include 2 acoustic modes with respective envelope fields b1,2(z, t) then
one could potentially write

∂a1

∂z
+

1
v

∂a1

∂t
+

1
2

αa1 = iω1Q1a2b∗, (7.1)

∂a2

∂z
− 1

v
∂a2

∂t
− 1

2
αa2 = iω2Q2a1b, (7.2)

∂b1

∂z
+

1
va,1

∂b1

∂t
+

1
2

αac,1b1 = iΩ1Qa,1a∗1a2 +
√

σ1R1(z, t), (7.3)

∂b2

∂z
+

1
va,2

∂b2

∂t
+

1
2

αac,2b2 = iΩ2Qa,2a∗1a2 +
√

σ2R2(z, t), (7.4)

each with their own coupling constants Qa,j, group speeds va,j, frequencies Ωj and so
on. Additionally, one could assign different noise properties σj to each mode. In this
sense, it is also possible that the noises from different modes may be correlated to one
another, by which we establish〈

Ri(z, t)R∗j (z, t)
〉
= κijδ(z− z′)δ(t− t′), (7.5)

for some constant κij. Similarly, one could explore the effect of three or more acoustic
modes, but this would potentially pose further computational challenges. Investiga-
tions on mode division and cross-correlated noises are potentially useful for future
applications of SBS in optical signal processing, particularly in applications such as
multi-plexing.

7.2.3 Extensions on noise and ultra-short pulses

In the work done in this Thesis, we assumed that the optical pulses introduced into
the waveguide are long enough so that the slowly-varying envelope-approximation
(SVEA) remains valid (i.e. the width of the field’s envelope is a few orders of magni-
tude longer than the carrier frequencies). However, as has been suggested in recent
theoretical works [168], the SVEA breaks down once the temporal width of the pulses
gets close to period of oscillations associated with the Brillouin shift in the waveguide,
which means that modified versions of Eq. (4.1a)−(4.1c) are required. Additionally,
they found that short pulses in SBS can excite other nonlinearities, like the Kerr non-
linearity via self-phase modulation (SPM) and cross-phase modulation (XPM), which
is dependent upon the peak power used and the waveguide material, and this could
potentially change the noise properties being modelled.

Another possible extension to the theory of SBS noise could be to include the effect
of heating on the waveguide as a result of the interacting optical fields. For instance,
what happens when we use ultra-short pulses with very higher peak power in an SBS
interaction? Does the thermal noise behave any differently from our equilibrium tem-
perature model?. One approach for this would be to make the thermal noise parameter
σ dependent upon the temperature T, and make the temperature itself dependent on
space and time such as T(z, t). In this sense, if one can find a relation between T(z, t)
and the optical envelope fields, this would change the behaviour of the thermal noise
field in the waveguide, with regions of higher noise corresponding to regions of higher
temperature.
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Appendix A

Probability and Random Processes

In this Appendix we present the central mathematical tools that are used throughout
this Thesis.

A.1 Random variables

A random variable X is characterized by a set of random outcomes ω ∈ Ω, where Ω is
the set of all possible outcomes. It can be discrete or continuous. In the discrete case, it
is sampled from a probability mass function obeying the property

N

∑
k=1

pk = 1, (A.1)

and in the continuous case it obeys∫ ∞

−∞
p(x)dx = 1. (A.2)

Probability distributions p(x) must therefore be continuous and bounded. To derive
specific statistical properties of X, one can use the formula for the moments of X

⟨Xn⟩ =
{

∑N
k=1 xn

k pk (discrete),∫ ∞
−∞ xn p(x)dx (continuous),

(A.3)

where ⟨·⟩ denotes the expectation operator. For a general random function f (X) with
probability density function p(x), the expectation value is

⟨ f (X)⟩ =
∫ ∞

−∞
f (x)p(x)dx. (A.4)

We will also use ⟨X(t)⟩ to denote the ensemble average of a stochastic process X(t),
namely the average of the function at each point in t across N independent realizations
of X(t). Lastly, it is important to point out that the expectation operator is linear and
has the property:

⟨[a f + bg] (x)⟩ = a ⟨ f (x)⟩+ b ⟨g(x)⟩ , (A.5)

for arbitrary constants a and b.

A.1.1 Variance and standard deviation

Variance is another concept that allows us to establish bounds on how much a random
variable X deviates from its mean. If the deviation from the mean is very large, then
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we say X is very unpredictable, or highly volatile. If the deviation is very small, then
we would expect any arbitrary sample of X to be close to its mean value. Standard
deviation is the squared root of the variance. Mathematically, the variance of a random
variable X is defined by the formula

Var [X] =
〈
(X− ⟨X⟩)2〉 . (A.6)

However, it is often more useful to use the form

Var [X] =
〈

X2〉− ⟨X⟩2 , (A.7)

For a discrete random variable, this is equivalent to

Var [X] =
N

∑
n=1

x2
n pn −

(
N

∑
n=1

xn pn

)2

, (A.8)

and for a continuous random variable

Var [X] =
∫ ∞

−∞
x2 f (x)dx−

(∫ ∞

−∞
x f (x)dx

)2

, (A.9)

from which we can calculate the standard deviation
√

Var[X]. The variance as a math-
ematical operator has the following properties:

1. Var [c] = 0 where c is a constant. The reason is that c has only a single value, so
there are no deviations from this value, it is definite and unique.

2. Var [cX] = c2Var [X], often referred to as the scaling property.

3. Var [aX + bY] = a2Var [X] + b2Var [Y] + 2 cov [X, Y], where cov [X, Y] is the covari-
ance between X and Y.

A.1.2 Covariance

The covariance of two random variables X and Y is a measure of their joint variability.
When normalized in a certain way, it can be used as a measure of the linear relation
between the two variables, with higher values representing a stronger relationship.
The covariance is given by

cov [X, Y] = ⟨(X− ⟨X⟩) (Y− ⟨Y⟩)⟩ . (A.10)

Alternatively, it may be expressed as

cov [X, Y] = ⟨XY⟩ − ⟨X⟩ ⟨Y⟩ , (A.11)

which is also applicable to random vectors X and Y

cov[X, Y] =
〈

XYT
〉
− ⟨X⟩ ⟨Y⟩T . (A.12)

In the special case where the covariance is 0, we can write

⟨XY⟩ = ⟨X⟩ ⟨Y⟩ . (A.13)

This means that the two variables are statistically independent.
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A.1.3 Correlation

The correlation of two random variables, also known as the correlation coefficient, is
a measure of how strong the linear relationship between them is. It takes on a value
between -1 and 1, with -1 representing perfect decreasing linear dependence, and 1
perfect increasing linear dependence. It can be calculated using

corr(X, Y) =
cov [X, Y]√

Var[X]Var[Y]
. (A.14)

A.1.4 Combinations of random variables

Consider a random variable Z which is a linear combination of two random variables
X and Y, such that

Z = aX + bY, (A.15)

for some constants a and b. The mean of Z is given by

⟨Z⟩ = a ⟨X⟩+ b ⟨Y⟩ . (A.16)

The variance of Z depends on the covariance between X and Y. If X and Y are statisti-
cally independent, then variance is

Var[Z] = a2Var[Z] + b2Var[Y]. (A.17)

This last result can be extended to a sum of multiple independent random variables,
namely

Var

[
N

∑
k=1

ckXk

]
=

N

∑
k=1

c2
kVar[Xk]. (A.18)

A.2 Normal random variables

Normal random variables are used in many fields of statistics and science. A normal
random variable is defined by the probability density function

p(x) =
1√

2πσ2
exp

{
− (x− µ)2

2σ2

}
, (A.19)

and a random variable sampled from this distribution is denoted as X ∼ N (µ, σ2).
Basically, this is a Gaussian function which is completely symmetric about the mean
value µ, and whose width depends on the variance σ2. Normal random variables have
some important properties. One of these is the scaling property, which states that

N (µ, σ2) = µ + σN (0, 1), (A.20)

where N (0, 1) is a standard normal random variable of mean zero and variance 1.
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A.3 Moment-generating functions

A moment-generating function corresponding to a random variable X is defined as
follows

MX(t) =
〈

etX
〉
=

{
∑∞

k=1 etxk pk if X is discrete∫ ∞
−∞ etx p(x)dx if X is continuous

(A.21)

Thus, for continuous probability distributions, one can show that the nth moment cen-
tred around 0 is given by

⟨Xn⟩ =
∫ ∞

−∞
xn p(x)dx = lim

t→0

∫ ∞

−∞
p(x)

(
d
dt

)n

etxdx = lim
t→0

(
d
dt

)n

MX(t), (A.22)

so by knowing the moment-generating function MX(t), we can easily find expressions
for the nth moments using differentiation.

A.3.1 MGF of normal random variables

For the normally distributed random variable X ∼ N (µ, σ2) with probability density
function

ρ(x) =
1√

2πσ2
exp

{
− (x− µ)2

2σ2

}
,

the moment-generating function (MGF) is given by

MN (t) =
1√

2πσ2

∫ ∞

−∞
exp

{
tx− (x− µ)2

2σ2

}
dx.

Integrating the function using the Gaussian integral result
∫ ∞
−∞ e−ax2

dx =
√

π/2 we
obtain

MN (t) = exp
{

µt +
σ2t2

2

}
(A.23)

From this, we can find the mean and variance by taking the first and second moments
and using the fact that limt→0 MN (t) = 1

⟨X⟩ = lim
t→0

dMN (t)
dt

= lim
t→0

[(
µ + σ2t

)
MN (t)

]
= µ,

〈
X2〉 = lim

t→0

d2MN (t)
dt2 = lim

t→0

[
σ2MN (t) +

(
µ + σ2t

)2
MN (t)

]
= σ2 + µ2,

which leads to the result

Var[X] =
〈

X2〉− ⟨X⟩2 = σ2. (A.24)

A.4 Stochastic processes

A stochastic process x(t) is a discrete or continuous sequence of random variables
which obey a specific function with respect to well-defined probability distributions.
For each point in time t, the value x(t) is sampled from a known probability distri-
bution. A simple example of a discrete stochastic process is the random walk pro-
cess: consider a particle whose position in n-dimensional space is denoted by x. At
each discrete time increment ∆t, the position of the particle at time t + ∆t is computed
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by adding a random space increment ∆r (e.g. arising from a random external force).
Mathematically this is expressed as:

xn+1 = xn + ∆rn, (A.25)

where ∆rn is sampled from a specific distribution at each point in time tn. Let us now
consider a one-dimensional random walk in which some external normal force of vari-
ance σ2∆t (implying the variance increases linearly with time)

xn+1 = xn + σ
√

∆tN (0, 1). (A.26)

This is an example of Brownian motion, due to the random increment being normally
distributed. As ∆t → 0, the discrete process x(t) approaches a continuous stochastic
process. Fig. A.1 shows multiple independent realizations of this random walk.

FIGURE A.1: Five independent realizations of the random walk xn+1 = xn + σ
√

∆tN(0, 1)
for σ = 0.2 and initial condition x0 = 0.

A.4.1 Wiener processes

A Brownian motion, sometimes called a Wiener process W(t), is a normally distributed
random process described as the cumulative sum of multiple independent random
increments dW(s) over a time interval s ∈ [0, t], namely [177]

W(t) =
∫ t

0
dW(s). (A.27)

The infinitesimal element dW(s) has properties

⟨dW(t)⟩ = 0;
〈
dW2(t)

〉
= dt, (A.28)

In a discrete sense, we may also define this as

∆W(t) = W(tk+1)−W(tk) =
√

∆t N (0, 1), (A.29)
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where ∆t = tk+1 − tk. This means that the Wiener process W(t) can be sampled from a
normal distribution in the context of the difference at two times s and t

W(t)−W(s) =
√
|t− s| N (0, 1). (A.30)

A.4.2 Auto-correlation functions

The auto-correlation function (ACF) of a stochastic process x(t) gives the relation of the
value of the process at some time t with respect to another time t′, generally expressed
through the lag-time τ as τ = t− t′. In general, this gives a measure of how well we
can predict the behaviour of x at t′ provided we know the behaviour of x at t, and is
found mathematically as

rx(t, t′) =
〈

x(t)x∗(t′)
〉

. (A.31)

A.4.3 Stationarity and the Wiener-Khinchin theorem

A process x(t) is said to be stationary if its statistical properties do not vary with time.
Analytically, we can test if a process is stationary by looking at its ACF rx(t, t′): if it
is reducible to a function of the time difference τ = t− t′, such that rx(t, t′) = rx(τ),
then x(t) is stationary. In this sense, the ACF is symmetric about τ such that rx(τ) =
rx(−τ). One of the most important implications of this property is that the power-
spectral density (PSD) of x(t) is given by the Wiener-Khinchin theorem [143, 142]

S(ω) =
〈
|X(ω)|2

〉
=

1
2π

∫ ∞

−∞
rx(τ)eiωτdτ. (A.32)

A.4.4 Non-stationary processes

Most random processes found in nature are non-stationary. This means that the sta-
tistical properties of the process x(t) change with time. Analytically, if the ACF is not
reducible to a single variable of the time difference rx(t, t′) ̸= rx(τ), then x(t) is non-
stationary. This has several important implications when it comes to analysing the
spectral density of x(t) in frequency-space: for any non-stationary process, the spec-
tral density is time-varying. This means that taking the Fourier transform of rx(t, t′)
does not explicitly give the PSD of x(t), but rather a function of t and ω

S(t, ω) =
1

2π

∫ ∞

−∞
rx(t, t′)eiωt′dt′. (A.33)

One may then compute the PSD of x(t) by integrating S(t, ω) in time, namely

〈
|X(ω)|2

〉
=
∫ ∞

−∞
S(t, ω)dt. (A.34)

Special care must be taken with this expression, as for stationary processes it may lead
to infinite values. In that case it is necessary to apply a band-pass filter on S(t, ω).
For this reason, with non-stationary processes it is often more appropriate to use the
following definition of the PSD

S(ω) =
〈
|X(ω)|2

〉
=

1
2π

〈∣∣∣∣∫ ∞

−∞
x(t)eiωtdt

∣∣∣∣2
〉

, (A.35)

which is also more straight-forward to calculate numerically.
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Appendix B

Elasticity Theory

Elasticity theory studies the relationship between the forces applied to an object and
the resulting deformations. In this Appendix we provide a brief overview of the theory
of elasticity, focusing on the fundamental concepts which are required to follow the
derivations in this Thesis, especially the content in Chapter 2.

We begin our discussion by describing the deformations in an object due to applied
forces. The deformations in an object can be quantified in terms of a displacement field
u(X, t) (in units of meters) which is a function both space X (noting here that X refers to
the position vector of a specific point in space in any coordinate system) and time t. For
instance, if you imagine a lattice of atoms in a solid, then the displacement field u tells
you by how much each atom in the lattice moves from its equilibrium position when
an external force is applied to the object. Displacements in the atomic lattice can also
be induced by periodic excitations in the lattice, namely travelling elastic (or acoustic)
waves. This same description of atomic displacements applies to a continuum picture
of infinitesimally small particles, which is the basis of our treatment in this Thesis.

Displacements in a continuous medium (which can be a solid or a fluid) also lead to
what is called strain, a dimensionless property that quantifies how much the particles
in the medium are displaced from their original positions. When external forces are ap-
plied to a continuous medium, particles exert internal forces unto one another, creating
something called stress in the medium. Stress is a physical quantity similar to pressure,
and is also measured in Pascals (or force per unit area). Stresses and strains can be fur-
ther classified into two types: normal and shear. A normal stress refers to the reaction
of a continuous medium to a force applied perpendicular to some cross-sectional area,
while a shear stress refers to the reaction of the medium to a force component that runs
parallel to some cross-sectional area. The same definition applies to shear and normal
strains. For further explanations on stresses and strains, see [178].

We now turn our attention to a displacement field u(X, t) of a set of particles in a
solid medium, at the generalized coordinates X and time t. This displacement field is
also exrpessible as u(X, t) = L(X, t)− X, where L is the displaced position vector. We
can also write this in differential form as du(X, t) = dL(X, t)− dX. Via the chain rule
of partial derivatives, we also write

du(X, t) =
∂u(X, t)

∂X1
dX1 +

∂u(X, t)
∂X2

dX2 +
∂u(X, t)

∂X3
dX3, (B.1)

where ∂tu(X, t)dt = 0 under the assumption that the displacements are defined at
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constant time [179]. In Cartesian coordinates, we write the displacements in three di-
mensions in matrix formdux(dX, t)

duy(dX, t)
duz(dX, t)

 =


∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂y

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z


dx

dy
dz

 = ∇u dX, (B.2)

where ∇u denotes the displacement gradient. The strain field ϵ is defined as

ϵij(X, t) =
1
2

(
∂ui

∂Xj
+

∂uj

∂Xi
+

∂uk

∂Xi

∂uk

∂Xj

)
, (B.3)

where i, j, k = x, y, z (for Cartesian coordinates), and we have assumed the Einstein
summation convention of repeated indices:

∂uk

∂Xi

∂uk

∂Xj
=

n

∑
k

∂uk

∂Xi

∂uk

∂Xj
. (B.4)

In the case of very rigid materials, the displacement gradient is generally very small,
such that the quadratic terms in (B.3) are negligible. This leads to the linearized strain-
displacement relation [179]

ϵij(X, t) =
1
2

(
∂ui

∂Xj
+

∂uj

∂Xi

)
. (B.5)

The strain-displacement relation can also be written in vector form

ϵ = ∇su, (B.6)

where ϵ is a rank-2 tensor with Cartesian components

ϵ =

ϵxx ϵxy ϵxz
ϵyx ϵyy ϵyz
ϵzx ϵzy ϵzz

 , (B.7)

where the main diagonal components ϵxx, ϵyy and ϵzz are the normal strains, and the
rest are shear strains. Due to the symmetry properties of the strain tensor (ϵij = ϵji, as
implied by (B.5)), it is customary to express the strain using Voigt-notation [179] as

ϵV =



ϵ1
ϵ2
ϵ3
ϵ4
ϵ5
ϵ6

 =



ϵxx
ϵyy
ϵzz

2ϵyz
2ϵxz
2ϵxy

 . (B.8)
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In this notation, (B.6) is written in matrix form as

ϵ1
ϵ2
ϵ3
ϵ4
ϵ5
ϵ6

 =



∂x 0 0
0 ∂y 0
0 0 ∂z
0 ∂z ∂y
∂z 0 ∂x
∂y ∂x 0


ux

uy
uz

 . (B.9)

Therefore, we can write the Nabla operator in Voigt notation as

∇V
s =



∂x 0 0
0 ∂y 0
0 0 ∂z
0 ∂z ∂y
∂z 0 ∂x
∂y ∂x 0

 . (B.10)

In a similar manner to the strain tensor, the stress tensor T is defined as

T =

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

 . (B.11)

The diagonal components Txx, Tyy and Tzz represent the normal stresses, while the
rest are shear stresses. From this tensor, we can calculate the traction force ftraction
(defined as the external force applied to some cross-sectional area) acting on a surface
normal to some unit vector n̂ as T · n̂. It is therefore of interest to derive a translational
dynamic equation for elastic waves in a solid medium, by incorporating the effect of
these stresses. First, we consider a vibrating particle of arbitrary shape in the material,
with infinitesimal volume δV and surface area δs. The total traction force across the
surface is then

ftraction =
∫

δs
T · n̂ ds =

∫
δV
∇ · T dV, (B.12)

which is obtained via the divergence theorem. Next, consider a set of external forces
acting on the particle, denoted as

∫
δV fdV. Finally, the inertial force of the particle is

given by Newton’s 2nd law, namely
∫

δV ρ∂tvdV where ρ is the density and v is the
particle’s velocity. The balanced force equation across the particle’s surface is∫

δV
ρ

∂v
∂t

dV =
∫

δV
∇ · T dV +

∫
δV

fdV. (B.13)

Taking the limit as δV → 0 yields the so-called elastodynamic equation [180]

ρ
∂v
∂t

= ∇ · T + f. (B.14)

The stress tensor must also obey the constitutive relation

S :
∂T
∂t

= ∇sv, (B.15)

where S is the rank-4 compliance tensor (which is inversely proportional to the stiffness
tensor C, measuring the material’s resistance to deformation), and : is the double dot
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product defined as
A : B = ∑

i,j
AijBji. (B.16)

The stress tensor can also be described in terms of the rank-4 stiffness tensor C [181]

T = C : ϵ. (B.17)

If we want to include medium damping into the equation, which is related to the 4-
rank viscosity tensor η, we may write [182]

T = C : ϵ+ η :
∂ϵ

∂t
, (B.18)

and using the relation ϵ = ∇su we obtain

S :
∂T
∂t

= S :
∂

∂t

[
C : ϵ+ η : ∇s

∂

∂t
v
]
= (S : C) :

∂ϵ

∂t
+ S : η :

∂

∂t
∇sv,

and using the identity S : C = 1 leads to the constitutive relation

S :
∂T
∂t

= ∇sv + S : η :
∂

∂t
∇sv. (B.19)

The elastodynamic equation in (B.14) admits certain types of wave solutions, depend-
ing on the boundary conditions imposed, and these include: longitudinal waves (com-
pression and elongation), shear waves and torsional waves [180].
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Appendix C

Brownian Motion

To develop an understanding for how thermal noise and other noise mechanisms play
a role in Brillouin scattering, we need to first understand the basics of how noise arises
in physical contexts. In this section, we present a general theory of Brownian motion,
starting with Albert Einstein’s original derivation from 1906, and extending it to the
theory of stochastic calculus and Langevin equations.

C.1 Brownian motion as diffusion of particles

The theory of Brownian motion was first investigated by Albert Einstein in 1905 in
his paper “Investigations on the theory of the Brownian movement" [183], which ex-
plained the experimental observations made by botanist Robert Brown with regards to
the random movement of pollen particles immersed in a liquid. In this paper, Einstein
noted the following approach: first we assume that there is an ensemble of n particles
suspended in a liquid. In an interval of time τ, suppose that the x coordinates of each
of these particles changes by ∆, where ∆ is a real random variable that is different for
each particle. Using the laws of probability, we postulate that the number of particles
dn which experience a displacement between ∆ and ∆+d∆ during the interval τ obeys
the equation

dn = nϕ(∆)d∆, (C.1)

where ϕ(∆) is a probability distribution obeying
∫ +∞
−∞ ϕ(∆)d∆ = 1. Because the par-

ticles should have equal probability of moving left or right, the distribution must be
symmetric ϕ(∆) = ϕ(−∆). Then, let’s assume that the number of particles per unit
volume is given by f (x, t). We would like to calculate the distribution of particles at
time t + τ from the distribution at t. For this, we assume the time evolution of the par-
ticle displacement is Markovian, that is: the value of the process at t + τ only depends
on the value at t and not on the entire past history. We can also think of this as follows:
f (x, t+ τ) must result from all possible sample paths f (x+∆, t) for some random vari-
able ∆, such that we know for certain that f (x, t + τ) is equal to the ensemble average
of all such paths taken at t. Mathematically, we can write this in the form

f (x, t + τ) = ⟨ f (x + ∆, t)⟩∆ =
∫ +∞

−∞
f (x + ∆, t)ϕ(∆)d∆, (C.2)

where ⟨·⟩∆ is the ensemble average or expectation operator with respect to the variable
∆. Now, for small τ, we can write

f (x, t + τ) = f (x, t) + τ
∂ f
∂t

. (C.3)
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Similarly, we can expand f (x + ∆, t) as a Taylor series in ∆ as

f (x + ∆, t) = f (x, t) + ∆
∂ f (x, t)

∂x
+

∆2

2!
∂2 f (x, t)

∂x2 + · · · . (C.4)

Substituting (C.3) and (C.4) into (C.2) yields

f (x, t) + τ
∂ f
∂t

=
∫ +∞

−∞
f (x, t)ϕ(∆)d∆ +

∫ +∞

−∞
∆

∂ f (x, t)
∂x

ϕ(∆)d∆

+
∫ +∞

−∞

∆2

2!
∂2 f (x, t)

∂x2 ϕ(∆)d∆ + · · · . (C.5)

It is important to note that we can extract all the derivatives of f on the right-hand side
from the integrals, such that

f (x, t) + τ
∂ f
∂t

= f (x, t)
∫ +∞

−∞
ϕ(∆)d∆ +

∂ f (x, t)
∂x

∫ +∞

−∞
∆ϕ(∆)d∆

+
∂2 f (x, t)

∂x2

∫ +∞

−∞

∆2

2!
ϕ(∆)d∆ + · · · . (C.6)

Because we defined ϕ(∆) = ϕ(−∆), all odd moments of ∆ will vanish. Furthermore,
using the property

∫ +∞
−∞ ϕ(∆)d∆ = 1, letting D = 1

τ

∫ +∞
−∞

∆2

2 ϕ(∆)d∆ and truncating the
series up to 2nd order, we end up with the equation

∂ f
∂t

= D
∂2 f
∂x2 . (C.7)

As it turns out, this is just a diffusion equation, with the diffusion constant D. It should
be noted that we have assumed here that all the particles have the same displacement
x, but as Einstein pointed out this is not a necessary condition, since the displacements
of individual particles should be mutually independent [183].

The solution to this equation gives the probability distribution of the particle dis-
placement x as a function of time. Multiple approaches can be employed, but here
we will focus on the Fourier transform method [184]. First, we assume that the initial
distribution of some particle at t = 0 is deterministic, such that x(0) = x0 and thus it
can be represented as a shifted Dirac-delta function as f (x, 0) = δ(x− x0). First, let us
define the solution in terms of the Fourier-transform pairs

f (x, t) =
1√
2π

∫ ∞

−∞
f̂ (k, t)eikxdk,

f̂ (k, t) =
1√
2π

∫ ∞

−∞
f (x, t)e−ikxdx,

We will also make use of the properties

1√
2π

∫ ∞

−∞

∂ f (x, t)
∂x

e−ikxdx = ik f̂ (k, t), (C.8a)

1√
2π

∫ ∞

−∞

∂2 f (x, t)
∂x2 e−ikxdx = −k2 f̂ (k, t), (C.8b)

1√
2π

∫ ∞

−∞

∂ f (x, t)
∂t

e−ikxdx =
∂ f̂ (k, t)

∂t
. (C.8c)
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Applying the Fourier transform in k to both sides of (C.7) yields

∂ f̂ (k, t)
∂t

= −k2D f̂ (k, t).

Using separation of variables with respect to t, this equation has solution

f̂ (k, t) = Ae−k2Dt, (C.9)

for an arbitrary constant A. Now, to recover the original solution, we apply the Fourier
transform to the initial condition f (x, 0) = δ(x− x0)

f̂ (k, 0) =
1√
2π

∫ ∞

−∞
f (x, 0)e−ikxdx =

1√
2π

∫ ∞

−∞
δ(x− x0)e−ikxdx =

e−ikx0

√
2π

,

which leads to

f̂ (k, t) =
e−ikx0

√
2π

e−k2Dt =
1√
2π

e−(Dtk2+ix0k).

Finally, we apply the inverse Fourier transform to f̂ (k, t) to recover the original solu-
tion

f (x, t) =
1√
2π

∫ ∞

−∞
f̂ (k, t)eikxdk =

1√
4π2

∫ ∞

∞
e−Dtk2+i(x−x0)kdk.

Completing the square on the right-hand side exponent leads to

f (x, t) =
1√
4π2

exp
{
− (x− x0)2

4Dt

} ∫ ∞

−∞
exp

{
−Dt

(
k− i(x− x0)

2Dt

)2
}

dk.

Finally, we use the change of variable η = k − i(x−x0)
2Dt and the well-known result∫ ∞

−∞ e−ax2
dx =

√
π/a, we obtain

f (x, t) =
1√

4πDt
exp

{
− (x− x0)2

4Dt

}
. (C.10)

This is just a normal probability density function with mean x0 and variance σ2 = 2Dt.
In fact, as Einstein pointed out in his derivation, the mean-squared displacement for a
particle with x0 = 0 is given by ⟨x2(t)⟩ = 2Dt, and the arithmetic mean (or root-mean-
square displacement) is

λx(t) =
√
⟨x2(t)⟩ =

√
2Dt. (C.11)

The main implication of this result is that the mean displacement of the particle is
proportional to

√
t. This is what is known as Brownian motion, and it forms the basis of

the more general theory of stochastic calculus by which we can model physical systems
with noise. An example of how the probability distribution in (C.10) evolves in time is
given in Fig. C.1(a).

C.1.1 Brownian motion and stochastic differential equations

Now that we understand Brownian motion as a zero-mean normally distributed pro-
cess with variance proportional to t, we can discuss the differential equations used to
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FIGURE C.1: (a) Evolution of the probability density function p(x, t) of a Brownian particle
in (C.10) using x0 = 0 and D = 0.15. (b) Single trajectory of a Brownian particle by solv-
ing (C.14) numerically with step-size ∆t = 0.02 s, showing the 99% confidence intervals

with standard deviation
√

2Dt.

model this random movement. We assume the reader is familiar with the theory of
random variables, which is covered in Appendix A.

Let us define W(t) as a stochastic process with statistical properties ⟨W(t)⟩ = 0 and
⟨W2(t)⟩ = t, as well as the auto-correlation function ⟨W(t)W(s)⟩ = min(s, t). This is
known as a standard Wiener process in the stochastic calculus literature [138, 177]. In
this same spirit, we can define an infinitesimal increment dW(t) = W(t + dt)−W(t)
with properties ⟨dW(t)⟩ = 0 and ⟨dW2(t)⟩ = dt, since the process is uncorrelated at
different times. Following the Itô calculus [152], we can model a stochastic differential
equation as

dx(t) = µ(x, t)dt + σ(x, t)dW(t), (C.12)

where µ(x, t) and σ(x, t) are the drift and volatility components, respectively. Here
we can give this equation a simple physical interpretation: In the absence of noise
(e.g. neglecting the σ term), this reduces to an ordinary differential equation where
x(t) is a deterministic trajectory of the particle. However, introducing a noise term
σ(x, t)dW(t) now makes that trajectory random, given that at every time step dt the
particle may be nudged by a random force proportional to

√
dt, just as one might

expect from Einstein’s original analysis. This Itô equation is also connected to the
Fokker-Planck equation (FPE) [185, 186, 187]

∂ρ(x, t)
∂t

= − ∂

∂x
[µ(x, t)ρ(x, t)] +

1
2

∂2

∂x2

[
σ2(x, t)ρ(x, t)

]
, (C.13)

where ρ(x, t) is the probability density function of x(t). We can thus model a Brownian
motion as in (C.10) via the stochastic differential equation

dx(t) =
√

2DdW(t), (C.14)

subject to x(0) = x0. Using µ(x, t) = 0 and σ(x, t) =
√

2D, we find through (C.13)
that the probability density function of x(t) in this case is given by (C.10). A numerical
simulation of (C.14) is shown in Fig. C.1(b), using finite time increments ∆t.
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C.1.2 Langevin equations

In real physical systems, we often deal with Langevin-type equations such as

dx
dt

= µ(x, t) + σ(x, t)ξ(t), (C.15)

where ξ(t) is a random force term. It is therefore necessary to establish a link be-
tween (C.12) and (C.15). Assuming ξ(t) is itself normally distributed, which corre-
sponds to the case of white noise, then this implies that ξ(t) = dW(t)/dt. However,
the Wiener process W(t) is nowhere differentiable, so this definition must be used with
caution. The key is to establish the statistical properties of ξ(t). It is easy to demon-
strate that ⟨ξ(t)⟩ = 0 given that both the expectation operator and the differential
operator are linear. Another useful statistical measure is the two-time auto-correlation
function ⟨ξ(t)ξ(s)⟩. To derive an expression for this, we resort to the theory of gen-
eralized functions: let Tφ [ f ] =

∫
f (t)φ(t)dt be a generalized function acting on f (t),

with kernel φ(t). It follows that such a functional possesses the following derivative
property [188, 189]:

T′φ [ f ] = −Tφ

[
f ′
]

, (C.16)

in other words, we can write∫
f (t)

dφ(t)
dt

dt = −
∫

φ(t)
d f (t)

dt
dt. (C.17)

Let us now define a functional with Wiener process kernel W(t) as

TW [ f ] =
∫ ∞

0
f (t)W(t)dt. (C.18)

Here we also make the assumption that limt→∞ f (t) = 0. Then by the linearity prop-
erty of the expectation operator ⟨·⟩ [177], we obtain

⟨TW [ f ]⟩ =
〈∫ ∞

0
f (t)W(t)dt

〉
=
∫ ∞

0
f (t)⟨W(t)⟩dt = 0. (C.19)

From this result, as well as using the stochastic Fubini theorem [140], we obtain the
expectation value of a product of these generalized functions, namely

⟨TW [ f ] TW [g]⟩ =
〈∫ ∞

0
f (t)W(t)dt

∫ ∞

0
g(s)W(s)ds

〉
=

〈∫ ∞

0

∫ ∞

0
f (t)g(s)W(t)W(s)dsdt

〉
=
∫ ∞

0

∫ ∞

0
f (t)g(s)⟨W(t)W(s)⟩dsdt

=
∫ ∞

0

∫ ∞

0
f (t)g(s)min(s, t)dsdt.
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Now, using the property in (C.16), we write〈
T′W [ f ] T′W [g]

〉
=
〈

TW
[

f ′
]

TW
[
g′
]〉

=

〈∫ ∞

0

d f (t)
dt

W(t)dt
∫ ∞

0

dg(s)
ds

W(s)ds
〉

=

〈∫ ∞

0

∫ ∞

0

d f (t)
dt

dg(s)
ds

W(t)W(s)dsdt
〉

=
∫ ∞

0

∫ ∞

0

d f (t)
dt

dg(s)
ds
⟨W(t)W(s)⟩dsdt

=
∫ ∞

0

∫ ∞

0

d f (t)
dt

dg(s)
ds

min(s, t)dsdt

=
∫ ∞

0

d f (t)
dt

∫ t

0
s

dg(s)
ds

dsdt +
∫ ∞

0
t
d f (t)

dt

∫ ∞

t

dg(s)
ds

dsdt

=
∫ ∞

0

d f (t)
dt

[
tg(t)−

∫ t

0
g(s)ds

]
dt +

∫ ∞

0
t
d f (t)

dt

[
lim
s→∞

g(s)− g(t)
]

dt

= −
∫ ∞

0

d f (t)
dt

∫ t

0
g(s)dsdt

= −
[

lim
t→∞

[
f (t)

∫ t

0
g(s)ds

]
−
∫ ∞

0
f (t)

d
dt

∫ t

0
g(s)ds

]
=
∫ ∞

0
f (t)g(t)dt.

This last expression can also be written as∫ ∞

0
f (t)g(t)dt =

∫ ∞

0

∫ ∞

0
f (t)g(s)δ(t− s)dsdt.

By the same property in (C.16), we write

〈
T′W [ f ] T′W [g]

〉
=

〈∫ ∞

0
f (t)

dW(t)
dt

dt
∫ ∞

0
g(s)

dW(s)
ds

ds
〉

=

〈∫ ∞

0

∫ ∞

0
f (t)g(s)

dW(t)
dt

dW(s)
ds

dsdt
〉

=
∫ ∞

0

∫ ∞

0
f (t)g(s)

〈
dW(t)

dt
dW(s)

ds

〉
dsdt,

from which we obtain the relation〈
dW(t)

dt
dW(s)

ds

〉
= δ(t− s). (C.20)

Henceforth, the white noise term ξ(t) has auto-correlation function

⟨ξ(t)ξ(s)⟩ =
〈

dW(t)
dt

dW(s)
ds

〉
= δ(t− s). (C.21)

This result has very important implications in the theory of stochastic dynamics. It
tells us that ξ(t) is statistically uncorrelated at any two different times, and this is what
is defined as white noise.
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Appendix D

MATLAB Numerical Solver

In this Appendix, we show how to implement the SBS solver for the backward SBS
coupled equations presented in Chapter 3 are solved, namely

∂a1

∂z
+

1
v

∂a1

∂t
+

1
2

αa1 = iω1Q1a2b∗, (D.1)

∂a2

∂z
− 1

v
∂a2

∂t
− 1

2
αa2 = iω2Q2a1b, (D.2)

∂b
∂z

+
1
va

∂b
∂t

+
1
2

αacb = iΩQaa∗1a2 +
√

σR(z, t). (D.3)

We use the numerical algorithm outlined in Chapter 5, which is also explained in detail
the paper [131]. The code is available on:

https://github.com/oscarnieves100/MATLAB-Simulations/

in the MATLAB script SBS_solver.m, along with documentation inside the script. Here
we will briefly discuss what the input parameters are, namely:

function [a1,a2,b,zv,tv] = SBS_solver(phase_noise,thermal_noise,L,fwhm_p,...
fwhm_s,va,n,Nz,Pp0,Ps0,tau_a,nu_laser,lambda,f_ph,chirp1,chirp2,...
alpha_dBpcm,T,g0,Q2)

The first parameters phase_noise and thermal_noise correspond to either 1 or 0 each (true or
false), indicating whether the user desires to include laser phase noise in the boundary condi-
tions and thermal noise in the waveguide, respectively. The next argument L is the length of
the waveguide in meters. fwhm_p and fwhm_s are the temporal full-width at half-maximums
of the pump and signal (Stokes seed) respectively (assuming Gaussian pulses) in seconds. va
is the acoustic group velocity of the medium in m/s, n is the optical refractive index (e.g. ap-
proximately 2.44 for chacogenide), and Nz is the grid-size in space. The peak powers for the
pump and signal (Stokes seed) are Pp0 and Ps0 respectively in Watts. tau_a is the acoustic life-
time of the medium (in seconds), nu_laser is the laser’s intrinsic linewidth in Hertz, lambda is
the wavelength of the laser source in meters, f_ph is the acoustic phonon frequency in Hertz
(which should correspond to the Brillouin frequency shift typically between 1−10 GHz). The
parameters chirp1 and chirp2 are the constant chirp of pump and seed Stokes pulses respec-
tively in GHz/ns. alpha_dBpcm is the optical attenuation in dB/cm (typically for materials like
chalcogenide, this will be in the range of 0.1−0.5 dB/cm). T is the temperature of the medium
in Kelvin, g0 is the SBS gain parameter in m−1W−1 (and is waveguide dependent, also changes
with the acoustic loss or acoustic lifetime), and Q2 is the Stokes overlap integral in s·m−1W−1/2.

Out of all these parameters, Q2 is not necessary, as it can be estimated from the value of
g0 and the other parameters entered. Similarly, the other overlap integral coupling constants
(namely Q1 and Qa) are calculated from Q2.

The outputs here are the envelope fields for the pump, Stokes and acoustic field (a1, a2 and
b respectively), which are given as arrays in space z and time t. The other two outputs are the
vector zv which contains the spatial grid points starting at 0 and going up to L, while tv is the
vector of points in time for the simulation (the function implicitly makes the simulation long
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enough so that the input optical pulses have exited the waveguide in the end). An example of
how to implement this function and produce some waterfall plots and animations is given in
SBS_solver_example.m on:

https://github.com/oscarnieves100/MATLAB-Simulations/
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