Protozoan predation drives the adaptive evolution of *Vibrio cholerae*

by

Md Mozammel Hoque

The thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Under the supervision of A/Prof. Diane McDougald

University of Technology Sydney Faculty of Science The iThree Institute

January 2022

Certificate of original authorship

I, Md Mozammel Hoque declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Science at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature:

Production Note: Signature removed prior to publication.

Date: 15th January 2022

Table of contents

Acknowledgements	vi
Publications and conference presentations associated with this thesis	vii
List of Figures	viii
List of Tables	ix
Abbreviations	Х
Abstract	1
Chapter One: General Introduction and Literature Review	3
1.1 General Introduction	4
1.2 Vibrio cholerae: the causative agent of cholera	5
1.3 Factors contributing to pathogenesis	7
1.4 Regulatory network of virulence	8
1.5 Environmental persistence and adaptation	11
1.6 Genomics and genetic diversity	13
1.7 Protozoa: major grazers of bacteria in the environment	14
1.8 Mechanisms of bacterial resistance to protozoan grazing	16
1.9 Protists as a reservoir and vehicle for transmission of pathogenic bacteria	18
1.10 Evolution of bacterial virulence in response to protozoan predation	19
1.11 Adaptive evolution of Vibrio cholerae in response to protozoan predation	21
1.12 Chapter synopsis and project aims	22
Chapter Two: Adaptation of Vibrio cholerae in an amoeba host drives trade-offs of	
virulence traits and enhanced colonisation in zebrafish	25
2.1 Introduction	26
2.2 Materials and methods	28
2.2.1 Organisms and growth conditions	28
2.2.2 Experimental co-adaptation of V. cholerae with A. castellanii	29
2.2.3 Intracellular survival assays	29
2.2.4 Competition assays	30
2.2.5 Motility assays	30
2.2.6 Quantification of biofilm biomass	30
2.2.7 Protease assay	31

2.2.8 Haemolysin assay	31
2.2.9 Generation and complementation of <i>flrA</i> mutant	32
2.2.10 Scanning electron microscopy	32
2.2.11 Fluorescent tagging	33
2.2.12 Adult zebrafish infection and histology	33
2.2.13 Statistical analysis	34
2.3 Results	34
2.3.1 Increased intracellular survival of amoeba-adapted isolates	35
2.3.2 Increased competitive fitness of amoeba-adapted isolates	35
2.3.3 Virulence related phenotypes of amoeba-adapted isolates	38
2.3.4 Amoeba-adapted isolates with A213V and V261G mutations in <i>flrA</i>	40
2.3.5 Changes in virulence-associated phenotypes	41
2.3.6 Adaptation leads to enhanced colonisation of an aquatic host	45
2.3 Discussion	47
Chapter Three: Increased iron acquisition and oxidative stress tolerance in a Vibrio	
cholerae flrA mutant confers resistance to amoeba predation	50
3.1 Introduction	51
3.2 Materials and methods	53
3.2.1 Organisms and growth conditions	53
3.2.2 Intracellular survival assay	53
3.2.3 Generation of mutants	53
3.2.4 RNA extraction and sequencing	53
3.2.5 Transcriptomics analysis	54
3.2.6 Oxidative stress sensitivity assay	55
3.2.7 Catalase activity assay	55
3.2.8 Quantitative real-time PCR (qRT-PCR) assay	55
3.2.9 Statistical analysis	56
3.3 Results	56
3.3.1 The flagellar transcriptional regulator <i>flrA</i> mutant	56
3.3.2 It is the loss of motility that is responsible for reduced uptake by amoeba	57
3.3.3 Transcriptome of the $\Delta flrA$ mutant during predation by amoeba	58
3.3.4 Differential expression of type VI secretion genes	61
3.3.5 KEGG pathway analysis of up- and down-regulated genes	62

3.3.6 The $\Delta flrA$ mutant showed increased oxidative stress resistance	64
3.3.7 The Δ <i>flrA</i> mutant exhibits increased growth in iron-limited condition	66
3.4 Discussion	66
Chapter Four: Adaptation of <i>Vibrio cholerae</i> in an amoeba host leads to mutations in the flagellar transcriptional regulator, <i>flrA</i>	70
4.1 Introduction	71
4.2 Materials and methods	73
4.2.1 Organisms and growth conditions	73
4.2.2 Experimental co-evolution of V. cholerae in A. castellanii	73
4.2.3 Extraction of genomic DNA	73
4.2.4 Sequencing and genomic analysis	74
4.2.5 Amplification refractory mutation system (ARMS)-PCR	74
4.2.6 Functional classification of the mutated genes	75
4.2.7 Data availability	75
4.3 Results	75
4.3.1 Dynamics of mutations arising in <i>V. cholerae</i> during co-incubation	75
4.3.2 Long-term predation by amoeba drives mutations in conserved regions	80
4.3.3 Temporal mutation of flrA during co-adaptation	82
4.3.4 Functional classification of mutated genes	83
4.3.5 Analysis of the genes under selection	85
4.4 Discussion	86
Chapter Five: General Discussion and Future perspective	89
5.1 Prelude	90
5.2 Adaptation strategies during long-term co-evolution	91
5.3 Fitness trade-off and evolution of virulence	93
5.4 Shift from antagonistic to neutral interaction	95
5.5 Potential impact of global warming on the evolution of virulence	96
5.6 Conclusion	97
Supplementary Information	99
References 1	18

Acknowledgments

First of all, I like to thanks to Almighty Allah (The Most Gracious, The Most Merciful) for everything I achieved and to enable me to work on my thesis to the best of my abilities.

It is a great pleasure to express my best regards, profound gratitude, and sincere appreciation to my supervisor Associate Professor Diane McDougald. Thank you very much for allowing me to work in this excellent project and to support me in every step involved in my Ph.D. candidature. I am very much fortunate that I got such an excellent supervisor like you. Also, afraid at the same time that, perhaps I will never find a supervisor like you. You are simply awesome.

Next, I would like to thanks my co-supervisor Associate Professor Maurizio Labbate and Professor Scott Rice for their guidance and valuable advice throughout the entire period of time study. I wish to convey my indebtedness to Dr. Stefan Ohelers and his team facilitating collaboration on zebra fish model. He always had the time to give prompt and generous support throughout the course of this study. I am deeply grateful to my lab mates Dr. Parisa Noorian and Dr. Gustavo Espinoza-Vergara who were always beside me with their sincere help and continuous support.

I am thankful to Professor Gary Meyers and Associate Professor Iain Duggin for many stimulating discussions and their valuable suggestion during my candidature assessment. I am greatly thankful to Dr. Shuyang Sun for his initiative advice on conducting my work. I would like to convey my heightened appreciation to all of my former teacher particularly my childhood tutor Late. Mr. Animesh Kumar Saha and Ms. Suchona.

Finally, I wish to offer heartfelt thanks to my family particularly my wife Sima, my kid Arshi, my parents, my brother Sohag and all friends and colleagues for their invaluable affection, inspiration, encouragement, best wishes, sacrifice and all sorts of support for completion of this study.

Author The iThree institute, Faculty of Science University of Technology Sydney January, 2022

Publications and conference presentations associated with this thesis

Publications

Hoque MM, Noorian P, Espinoza-Vergara G, Manuneedhi Cholan P, Kim M, Rahman MH, *et al.* (2021) Adaptation to an amoeba host drives selection of virulence-associated traits in *Vibrio cholerae*. **The ISME Journal**. <u>https://doi.org/10.1038/s41396-021-01134-2</u>

Hoque MM, Noorian P, Espinoza-Vergara G, Ismail MH, Rice SA, McDougald D. Increased iron acquisition and oxidative stress tolerance in a *Vibrio cholerae flrA* mutant confers resistance to amoeba predation. (Manuscript under preparation)

Other Publications

Espinoza-Vergara G, Noorian P, Silva-Valenzuela CA, Raymond BBA, Allen C, **Hoque MM**, *et al.* (2019) *Vibrio cholerae* residing in food vacuoles expelled by protozoa are more infectious in vivo. Nature Microbiology. <u>https://doi.org/10.1038/s41564-019-0563-x</u>

Espinoza-Vergara G, **Hoque MM**, McDougald D and Noorian P. (2020) The Impact of Protozoan Predation on the Pathogenicity of *Vibrio cholerae*. Frontiers Microbiology. 11:17. <u>https://doi.org/10.3389/fmicb.2020.00017</u>

Leong W, Poh WH, Williams J, Lutz C, **Hoque MM**, Poh YH *et al.* (2022) Adaptation to an amoeba host leads to *Pseudomonas aeruginosa* isolates with attenuated virulence. Applied and Environmental Microbiology. aem0232221. <u>https://doi.org/10.1128/aem.023222-21</u>

Conference presentations

M. Mozammel Hoque, Parisa Noorian, Gustavo Espinoza-Vergara, Pradeep Manuneedhi Cholan, Mikael Kim, Maurizio Labbate, Scott A. Rice, Mathieu Pernice, Stefan H. Oehlers, Diane McDougald. Presentation title: Protozoan predation drives trade-off of virulence traits in *Vibrio cholerae* leads to enhance colonization in zebrafish. Conference: Australian Society for Microbiology Annual Scientific Meeting 2021, Virtual Meeting, Held on 31st May to 3rd June 2021.

M. Mozammel Hoque, Parisa Noorian, Gustavo Espinoza-Vergara, Diane McDougald. Presentation title: Protozoan predation drives the adaptive evolution of *Vibrio cholerae*. Conference: 54th US-Japan Joint Panel Conference on Cholera and Other Bacterial Enteric Infections, Osaka, Japan. Held on 10th to 13th December 2019.

List of Figures

Figure 1.1 Vibrio cholerae quorum sensing circuits	10
Figure 2.1. Intracellular survival and competitive fitness of adapted and non-adapted isolates.	37
Figure 2.2. Virulence phenotypes of adapted and non-adapted isolates	39
Figure 2.3. Scanning electron micrograph showing presence or absence of flagellum on <i>V. cholerae</i>	41
Figure 2.4. Altered phenotypes in adapted isolates are due to mutations in <i>flrA</i>	43
Figure 2.5. Principal component analysis of the four virulence phenotypes	44
Figure 2.6. Enhanced colonisation of adapted isolates in a zebrafish infection model	46
Figure 3.1. Intracellular growth kinetics, survival and uptake of Δ flrA mutant and wild type in amoeba	57
Figure 3.2. Transcriptional analysis of $\Delta flrA$ mutant compared to the wild type strain during amoeba predation, reveals up-regulation of iron acquisition genes	60
Figure 3.3. Expression of type VI secretion genes in the $\Delta f lr A$ relative to wild type	61
Figure 3.4. KEGG pathway analysis of the differentially expressed genes in $\Delta flrA$ mutant compared to the wild type	63
Figure 3.5. Oxidative stress resistance is due to increased catalase activity and KatB expression	65
Figure 3.6. Growth of wild type and Δ flrA under iron-limited conditions	66
Figure 4.1. Mutations in adapted and non-adapted populations and isolates	78
Figure 4.2. Unique mutations in coding regions of adapted populations	79
Figure 4.3. Schematic representation of the non-synonymous mutations affecting the conserved region of the FlrA protein	81
Figure 4.4. Temporal appearance of the A213V (C638T) mutation in <i>flrA</i> gene during adaptation	83
Figure 4.5. Functional annotation of mutated genes in adapted and non-adapted populations	84
Figure 4.6. The genes with nsSNP and sSNP in adapted and non-adapted populations	86
Supplementary Figure 1. Non-synonymous mutations in coding regions of adapted and non- adapted isolates	99
Supplementary Figure 2. Amino acid sequence alignment of the FlrA protein	101

List of Tables

Supplementary Table 1. List of strains, plasmids, and primers 104
Supplementary Table 2. Unique genes mutated in adapted and non-adapted populations at three different time points
Supplementary Table 3. Common genes mutated in adapted and non-adapted populations sequenced at three different time points107
Supplementary Table 4. Unique genes mutated in adapted and non-adapted isolates sequenced at three different time points
Supplementary Table 5. Common genes mutated in adapted and non-adapted isolates sequenced at three different time points

Abbreviations

AI	Autoinducer
ANOVA	Analysis of variance
ARMS	Amplification refractory mutation system
ATCC	American type culture collection
BLAST	Basic Local Alignment Search Tool
С	Celsius
cAMP	Cyclic adenosine monophosphate
CI	Competition index
COGs	Cluster of orthologous groups
c-di-GMP	Cyclic di-guanosine monophosphate
CFU	Colony forming unit
CLSM	Confocal laser scanning microscopy
cm	Centimetre
СТ	Cholera toxin
DNA	Deoxyribonucleic acid
g	Gravitational force
GFP	Green fluorescent protein
h	Hour
HAP	Hemagglutinin protease
HMDS	Hexamethyldisilazane
НТН	Helix turn helix
INDELS	Insertion and Deletions
KEGG	Kyoto Encyclopedia of Genes and Genomes
LB	Lysogeny Broth
min	Minute
ml	Millilitre
μl	Microlitres
mm	Millimetre
mM	Millimolar
μΜ	Micromolar
MOI	Multiplicity of infection

NCBI	National Center for Biotechnology Information
nM	Nanomolar
NO	Nitric oxide
NSS	Nine salts solution
nsSNPs	Non-synonymous single nucleotide polymorphisms
OD	Optical density
PAMP	Pathogen-associated molecular pattern
PBS	Phosphate buffer saline
PCA	Principal Component Analysis
PCR	Polymerase chain reaction
PYG	Proteose yeast extract
QS	Quorum sensing
qRT-PCR	Quantitative real-time polymerase chain reaction
rpm	Revolutions per minute
ROS	Reactive oxygen species
RNS	Reactive nitrogen species
RNA	Ribonucleic acid
RT	Room temperature
SD	Standard deviation
SEM	Scanning Electron Microscopy
SNP	Single nucleotide polymorphisms
sSNPs	Synonymous single nucleotide polymorphisms
T6SS	Type VI secretion system
ТСР	Toxin-coregulated pili
VPS	Vibrio polysaccharide
WHO	World Health Organization
WT	Wild type

Abstract

Abstract

Protozoa are unicellular eukaryotic organisms that play an important role in controlling bacterial population structure and composition in the environment. Heterotrophic protozoa survive by feeding on bacteria. Many pathogenic bacteria are capable of resisting predation and some are able to multiply inside of these hosts. To resist predation, bacteria have evolved many mechanisms or defensive traits and often these traits contribute to the persistence of the pathogen in the environment and give rise to virulence upon encounter with human and animal hosts.

The waterbourne bacterium, *Vibrio cholerae*, is the etiological agent of the disease cholera and shares an ecological niche with the free-living amoeba, *Acanthamoeba castellanii*. Here, the experimental evolution of the model pathogen *V. cholerae* with *A. castellanii* was performed for three months with the aim to increase our understanding of the effects of long-term protozoan predation on the evolution of virulence-related traits and how that impacts environmental persistence.

Long-term adaptation with the amoeba host leads to phenotypic and genetic variability in V. cholerae. Late-stage amoeba adapted V. cholerae showed trade-offs among multiple phenotypic traits that contribute to their enhanced intracellular survival and fitness in amoeba. Whole genome sequencing and mutational analysis revealed that these altered phenotypes and improved fitness were linked to non-synonymous mutations in conserved regions of the flagellar transcriptional regulator, *flrA*. Transcriptomic analysis of the $\Delta flrA$ mutant revealed that increased iron acquisition, oxidative stress resistance and metabolic co-ordination are also associated with improved intracellular survival and fitness. Additionally, adaptation with the amoeba host result in V. cholerae isolates that exhibited an increased capacity to colonise zebrafish, establishing a connection between protozoan predation and enhanced environmental persistence.

The results presented here highlight multiple adaptation strategies acquired by the pathogen when under intense grazing pressure. Predation pressure drives the accumulation of beneficial mutations that serve as key drivers of the adaptation process and enhance commensalism with the host protozoa. Further, this study provides an important contribution to the understanding of the adaptive traits that evolve in pathogens under predatory pressure, and how these adaptive traits impact colonisation of eukaryotic hosts.