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ABSTRACT

Neurons usually converse through electrochemical signals
and pooled neuronal firings feasibly be recorded on the scalp
through the medium of electroencephalogram (EEG). EEG
waveforms are recorded, analysed and categorized across di-
rectives concerning a Brain-Computer Interface (BCI). Dete-
riorated signal to noise ratio and non-stationarities stand as a
paramount obstacle in steady decoding of EEG. Appearance
of non-stationarities across EEG patterns notably upset the
feature waveforms thus worsening the functioning of detection
block and as a whole the Brain Computer Interface. Stationary
Subspace schemes bring to light subspaces within which data
distribution persists stably over time. Current work focuses
on the development of a novel spatial transform based feature
extraction scheme to address nonstationarity in EEG signals
recorded against a drowsiness detection problem (a machine
learning regression scenario). The presented approach: F-DIV-
IT-JAD-WS derived features distinctly surpassed DivOVR-
FuzzyCSP-WS based standard features across RMSE and CC
performance criteria pair. We construe that the propounded
feature derivation approach based on F-DIV-IT-JAD-WS will
usher a significant attention in researchers who are developing
algorithms for signal processing, specifically, for BCI regres-
sion scenarios.

Index Terms— Brain Computer Interface (BCI), Elec-
troencephalogram (EEG), Stationary Subspace Analysis
(SSA), Reaction Time (RT) prediction, Divergence One ver-
sus Rest Fuzzy Common Spatial Patterns Within Session
(DivOVR-FuzzyCSP-WS), Common Spatial Patterns (Fuzzy
CSP), Drowsiness

1. INTRODUCTION

Electroencephalogram (EEG), comprises neuro-physiological
patterns collected non-invasively from scalp while being de-
ployed to transform and decrypt the directives of a brain-
computer interface (BCI). It is one of the most economical
brain-imaging techniques in comparison to FMRI, MEG. Ow-
ing to the reasons of possessing large temporal resolution and

being economical, it offers huge scope to decrypt the com-
mands in a Brain-Computer Interface (BCI). BCI offers for
specific control instruction communication linking the brain
and an external device via brain signal activity. There are
three major paradigms within BCI namely, the Motor Imagery
(MI) [1], Steady State Visual Evoked Potentials (SSVEP) and
P300 [2]. MI refers to imagining bringing about activity con-
cerning a part of human anatomy as contrary to directing true
body motion in stimuli based EEG experiments. MI builds on
the evidence that brain activation is subject to reduction and
switch on corresponding brain regions albeit in reality mobi-
lizing a body part. The common spatial pattern (CSP) method
[3] is a potential spatial transform which explores to locate a
discerning subspace escalating one class variance albeit cur-
tailing the another concurrently to categorize the movement
gestures. Motor Imagery (MI) (eg: decoding thoughts of imag-
ination of left or right hands) is a prominent BCI paradigm
implemented often to command BCIs. A BCI pipeline is com-
posed of preprocessing (data-preparation), feature extraction
and classification or regression blocks. Motor imagery influ-
ences a portion of the neurons, yet transitions in several of
such tasks can transform the corresponding surface electrode
composite brain data. Because of the existence of significant
aggregate of stimulus-irrelevant outputs, EEG waveforms carry
noisy and are nonstationary thereby making BCI communica-
tion and command decoding to be a challenging task. Data
preparation module comprises spatial transforms stage which
are operated to enhance the signal to noise ratio (SNR) and
markedly bring out features for MI states. Common Spatial
Patterns (CSP) [3] approach exists to be an extensively applied
block to carry on spatial transformations in a two class MI.
In general, BCIs are constrained via substantial alterations
based on individual’s state, one as well as the other within
and across sessions in addition to noise and artefacts. The
vanilla CSP scheme by-no-means adapted along the line of
nonstationarities [4], also performed poorly due to the above
alterations. Several approaches (both unsupervised [5] and
supervised (simultaneous streamlining of discriminability and
stationarity) [6]) are proposed to extract stationary parts for
EEG MI classification. Other works in this direction comprise



of [7], where in spatial transforms are optimized using diver-
gence. In addition, robustified subspace transforms are dealt
with in [8]. CSP remains primarily designed towards a bi-
nary class problem. Methods akin to One-Versus-Rest (OVR)
CSP [9], coupled binary classification followed by selective
picking [1], CSP accompanied by spatial vector picking [10]
and non-Euclidean frameworks [11]were outlined for feature
extraction and multiclass classification. Stationarity augmen-
tation schemes mentioned in [7] have not been adapted for
machine learning problems outside binary classes. Recently,
in [12, 13], a sound theoretical framework had been proposed
with commensurate validation conducted for multiclass MI.
In [14], dispersion within each class was used as a measure
for quantifying the incorporation of non-stationarity and prun-
ing the insignificant channels to enhance the performance of
BCI. Recently, in [15] an approach based on non-stationarity
was developed for EEG regression problems. Sleeplessness
instigating Driver debility has been tagged by US NHTSA
to be essential cause of many highway calamities [16]. It is
a problem of more severe intensity than that of driving with
distraction or driving consuming alcohol. Henceforth, there
is a prompt need to undertake and put in place solutions for
driver security. Uncertainties induced by factors alike arti-
facts, nonstationarities reduce the accuracy of EEG-based BCI
systems [17]. Fuzzy logic based models address these issues
efficiently as reported in earlier works [18, 15]. In addition
to BCI, the application domains of fuzzy logic to address un-
certainties expands to several areas like traffic life cycles [19]
and networked control systems [20]. In this research paper, we
further deploy fuzzy modeling approach for BCI. The machine
learning problem for driver-drowsiness detection is an EEG
based Reaction-Time prediction task [15, 21]. The schemes
mentioned above in the introduction are pertaining to EEG MI
classification. Yet, the nonstationarities aligned along EEG
streams stand unaddressed for regression problems. Meth-
ods developed so far are for ML classification scenarios like
for binary MI. EEG assisted Reaction-Time (RT) forecasting
[22, 21, 23] stands reported to be an EEG signal processing
and machine learning regression scenario. Different adapta-
tions devoted to CSP alike DivOVR-FuzzyCSP-WS [15] and
FuzzyCSP [21, 24] comprise the existing spatial transform as-
sociated feature derivation skeletons for regression. FuzzyCSP
stands reposed alike divergence problem through calculation
of filters optimizing a divergence cost [25]. The prediction rate
of regression is to a great extent affected through the medium
of non-stationarities within attribute (feature) admeasurements
as demonstrated in [26, 27]. Thinking along similar lines, we
hereby introduce non-stationarities with considerable success
within the EEG regression.

In this paper, we demonstrate a bunch of contributions
as notified underneath: (1) We broaden the divergence based
study [7] for regression. (2) We came up with a new sta-
tionarity inclusive spatial transformation paradigm for feature
computation within EEG regression. Established as such, we

put forward F-Div-IT-JAD-WS, a stationarity encompassing
spatial transform which is equally valid for two and more
fuzzy classes. (3) The optimal transform so obtained retains
stationarity within session as well as enhances the forecasting
ability of regression.

This work is further organized as follows. Section 2 exam-
ines the EEG persistent attention task while duplicating actual
drowsiness situation. Section 3 introduces a fundamental con-
ceptualization comprising divergence stationed scheme for
regression. Section 4 puts together divergence framework for
combined streamlining of stationarity and forecasting power
of model. Section 5 provides implementation specifics and
a short analysis. Section 6 concludes the present paper and
presents prospective directives.

2. DATA OF DRIVING SESSIONS

We elaborate driver demeanor and brain dynamics obtained
from a 90-minute persistent-attention task (PAT) performed
in a driving simulator. EEG signal trials with complementary
trial-wise reaction time values from 11 subjects are listed in
an individual session. The database has been already tested
in several works [21, 24] as a benchmark for EEG regression.
Brain signal data comprises time-series segments X ∈ RC×T

((C, T ) indicate total signal electrodes and Time samples re-
spectively) with its complementary reaction time data (Y ).
Data description and experimental details can be found in
section 1 of [28].

3. PROPOSED METHOD

In [7], authors proposed a KL divergence characterization
concerning CSP for MI classification. For EEG machine learn-
ing regression, as presented in [15, 21, 24], Neural Networks
[22] and LASSO [24] algorithms existed and implemented
on characterizing attributes extracted from fuzzy CSP [24].
The frameworks proposed here for continuous variable pre-
diction are analogous to well known classification problems
and are incumbent against the EEG inference in the role of a
time series. Grosse-Wentrup et al. [10] came up with Joint
Approximate Diagonalization (JAD) framework coupled via
information theoretic spatial transform selection guidelines to
choose spatial transforms for classification.

3.1. Joint Approximate Diagonalization (JAD) and its
Information theoretic interpretation (Motor Imagery for
Multiple Classes)

Spatial filtering by Joint approximate diagonalization (JAD)
scheme is a prevailing alternative to One Versus Rest- Com-
mon Spatial Patterns (OVR-CSP) (cf. [29]) for classification
of MI with multiple classes. Assuming an EEG data of K
different classes, CSP by JAD computes a spatial transform
Z ∈ RK×K that diagonalizes the individual class covariance



matrices (cf. section 2 equation (4) of [12]). Further, an In-
formation theoretic interpretation of the JAD framework for
multiclass motor imagery can be found in the work of [12] (cf.
section 2 equation (5)-(9)).

3.2. Fuzzy Divergence Information Theoretic Joint Ap-
proximate Diagonalization (F-DIV-IT-JAD)

Here, in this section, we propose Fuzzy Divergence Informa-
tion Theoretic Joint Approximate Diagonalization for regres-
sion. We come up with a new objective function for regression
using fuzzy covariance matrices.

If K denotes the number of fuzzy classes, assume
K ≥ 2. The important suppositions comprise: the con-
ditional probability of every fuzzyclass is Normal distribution
i.e. N (0,Σ1) · · · N (0,ΣK) considering all K fuzzy classes
(Σ1 · · ·ΣK are the fuzzy class covariance matrices).

We describe the subsequent preliminaries of normalized
fuzzy covariance and KL divergences in the section 2 of the
supplementary [28]. Readers are suggested to go through it
before going forward in this formulation.

Gouy Paeiller et al.[30] has put forward an Information
Theoretic (IT) explanation about JAD. As per the JAD scheme,
we compute the matrix transform that together decomposes
(via diagonalization) the class covariance matrices. This has
been dealt with through minimization of the KL divergences
across the pair: altered covariances (modified through trans-
formation) with a corresponding diagonalized version.

If X is a matrix and Σ is a diagonal matrix, then by
Pythagorean split one obtains:

Dkl(X ‖ Σ) = Dkl(X ‖ diag(X)) +Dkl(diag(X) ‖ Σ)
(1)

Here, diag(X) denotes a matrix whose diagonal values are
equal to diagonal values of X. To optimize Dkl(X ‖ Σ), the
term Σ is to be same as diag(X) (because KL divergence is
greater than zero). Thus, retrieving the diagonal matrix Σ as
diag(X). The mathematical framework of IT-JAD is indicated
below as

F (Z) =

K∑
c=1

µcDkl(Z
ᵀΣcZ ‖ diag(ZᵀΣcZ)) (2)

Z∗ = arg min
Z

F (Z) (3)

where K is # fuzzy classes (# different transforms com-
binedly decomposed using diagonalization). µc presents the
fuzzy membership of belongingness of EEG trials to class c.
The transform Z stands split into a multiplication of an orthog-
onal matrix and a whitening transform Zᵀ = RW [31]. We
can edit (2) in terms of orthogonal transform R as indicated
here:

J(R) =

K∑
c=1

µcDkl(RΣc

′′
Rᵀ ‖ diag(RΣc

′′
Rᵀ)) (4)

Fig. 1. Fuzzy membership distribution of output Reaction
Time

such that Σc

′′
= WΣcW

ᵀ

K∑
c=1

WΣcW
ᵀ = I (5)

The objective is to minimize J(R) so that RΣc

′′
Rᵀ is

close to a diagonal representation.
Examine J̃1(R) which is the cardinal term in (2) and µ1

be some constant.

J̃1(R) = Dkl(RΣ1

′′
Rᵀ ‖ diag(RΣ1

′′
Rᵀ))

= (log(det(RΣ1

′′
Rᵀ)−1diag(RΣ1

′′
Rᵀ)))

+ tr(diag(RΣ1

′′
Rᵀ)−1RΣ1

′′
Rᵀ)︸ ︷︷ ︸

constant

= −log(det(RΣ1

′′
Rᵀ) + log(det(diag(RΣ1

′′
Rᵀ))) + C

The derivative of J̃1(R) w.r.t square matrix R as it may be
written from [32] as

∇RJ̃1(R) = −2R−1 + 2diag(RΣ1

′′
Rᵀ)

−1
RΣ1

′′
(6)

The gradient value in (6) could be reproduced to calculate the
derivative of (4). The unified gradient can be further applied
to optimize R on an orthogonal manifold. After J(R) is op-
timized (convergence norms fulfilled), one can compute the
spatial filters with Zᵀ = RW. Further, the spatial transforms
are sorted (i.e. column vectors of Z) based on mutual informa-
tion filter pruning condition [10]. We selected best 2∗K filters
after the sorting, which are further used for Feature Extraction
for regression.

4. REGRESSION FORTIFYING STATIONARITY

In previous works (for example: [7]), regularization terms
are integrated into the objective for optimizing stationarity
of EEG signal within session. In this section, we include
stationarity into the JAD objective to deal with within session
non-stationarities, while stationarity is optimized across every
fuzzy class (appropriate definition of G(Z)). We work with
an EEG based driving scenario while analyzing stationarity
within session for every subject.



Fig. 2. RMSE of F-DIV-IT-JAD on 11 subjects.

Fig. 3. CC of F-DIV-IT-JAD on 11 subjects.

Fig. 4. RMSE and CC (both in seconds) concerning F-DIV-IT-
JAD on 11 subjects (λ is a hyper-parameter).

G(Z) = λ

(
1

KN

K∑
c=1

N∑
i=1

µi,cDkl(Z
ᵀΣi,cZ ‖ ZᵀΣcZ)

)
(7)

Here, N presents # trials per individual fuzzy class. In (7),
Σj,c and Σc indicates the trialwise and classwise covariances.

By means of this, we frame a combined objective coopera-
tively enhancing the pair prediction and stationarity.

δ(Z) = (1− λ)F (Z) + λG(Z) (8)

Here, λ prevails as a regularizing scaler. The optimization
approach followed comprises subspace scheme with gradient
descent against an orthogonal spatial structure (cf. algorithm
1 page 5 of [7]). In (8), the regularization term is added, as
long as one is minimizing the pair, the prediction alongside

the group stationarity. Optimal filter Z∗ is obtained through
as:

Z∗ = arg min
Z

δ(Z) (9)

We hereby propose an enhanced subspace approach for
this optimization problem.

R∗ = arg min
R

(1− λ)F (R) + λG(IdR) (10)

In (10), entire subspace has been retreaded for the combined
approximate diagonalization description, nevertheless, opti-
mizing stationarity requires selection of appropriate subspace
by premultiplying R with IdR. In essence, we have obtained
joint diagonalization objective together with stationarity invok-
ing objective against the preliminary d elements peculiar to
the filter. Above method is denoted as ‘F-DIV-IT-JAD-WS’ or
plainly ‘F-DIV-IT-JAD’. ‘WS’ stands for Within Session.

5. ANALYSIS RESULTS AND DISCUSSION

We apply 8-fold cross-validation to evaluate the prediction
performance of the feature sets pertaining to different spa-
tial filtering schemes F − DIV − IT − JAD − WS and
DivOV R−FuzzyCSP −WS (baseline method introduced
in [15]) respectively.

Using the spatial transform Z computed through several
schemes of spatial filtering undertaken in the preceeding sec-
tions, the transformed EEG segment is derived:

X
′′

= ZXk. (11)

In this place, X
′′
i represents ith consecution pertaining to X

′′

Xk is the EEG data subsequent to transitioning by PREP [24].
Spatial transforms comprise the rows of matrix Z, through

which we compute the eventual features, F=

 F1

..
FFM

 where

each Fi is given by log10
‖X

′′
i‖

2∑FM
j=1 ‖X

′′
j‖2

Integrating F-DIV-IT-

JAD and DivOVR-FuzzyCSP-WS generated feature vector
F through LASSO block resulted in the mean RMSE and
CC presented in illustrations 2 and 3. Moreover, features
enumerated from DivOV R − FuzzyCSP −WS baseline
and flowed as a consequence of LASSO regression directing
to baseline mean performance values in illustrations 2 and 3.

Illustrations 2 and 3 indicate in particular F−DIV −IT−
JAD distinctly surmounted DivOV R−FuzzyCSP −WS
doubly with respect to mean value of performance measures.

Further, we indicate the utility pertaining to change in
regularization parameter λ against performance measures (cf.
plot 4). Illustrations 2 and 3 indicate that novel F −DIV −
IT − JAD scheme attained smaller RMSE and largest CC in
contrast with standard DivOV R− FuzzyCSP −WS [15].



The outputs are 0.14 and 0.74 seconds respectively. Detection
pipeline presented so far can calculate the driver reaction time
by an average RMSE of 0.14 seconds. By way of explanation,
it is indicated that the deviation in the predicted driving range
stands to be 3.9 m subject to a rate of 100 kmph. Also, λ = 0.5
directed us to the optima of mean performance measures.

Finally, Unpaired t-test disclosed probabilistically relevant
(p < 0.01) performance for F − DIV − IT − JAD over
DivOV R− FuzzyCSP −WS.

6. CONCLUSION AND FUTURE WORK

Current manuscript contains description of a novel divergence
based Joint Approximate Diagonalization for regression. A
novel loss function for regression has been formulated using di-
vergence, JAD and fuzzy covariances. Later, we also proposed
a corresponding stationarity objective as a novel term. Fi-
nally, a conjoint optimization is conducted to generate optimal
spatial filters.

In future, we shall look into the objectives of generalizing
across session and across subjects conjointly with our proposed
approach.
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Klaus-Robert Müller, “Finding stationary subspaces in
multivariate time series,” Physical review letters, vol.
103, no. 21, pp. 214101, 2009.

[6] Wojciech Samek, Klaus-Robert Müller, Motoaki Kawan-
abe, and Carmen Vidaurre, “Brain-computer interfacing
in discriminative and stationary subspaces,” in Engineer-
ing in Medicine and Biology Society (EMBC), 2012 An-
nual International Conference of the IEEE. IEEE, 2012,
pp. 2873–2876.

[7] Wojciech Samek, Motoaki Kawanabe, and Klaus-Robert
Müller, “Divergence-based framework for common spa-
tial patterns algorithms,” IEEE Reviews in Biomedical
Engineering, vol. 7, pp. 50–72, 2014.

[8] Wojciech Samek and Klaus-Robert Müller, “Tackling
noise, artifacts and nonstationarity in BCI with robust
divergences,” in 2015 23rd European Signal Processing
Conference (EUSIPCO). IEEE, 2015, pp. 2741–2745.

[9] Benjamin Blankertz, Guido Dornhege, Christin Schafer,
Roman Krepki, Jens Kohlmorgen, K-R Muller, Volker
Kunzmann, Florian Losch, and Gabriel Curio, “Boost-
ing bit rates and error detection for the classification of
fast-paced motor commands based on single-trial EEG
analysis,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 11, no. 2, pp. 127–131,
2003.

[10] Moritz Grosse-Wentrup and Martin Buss, “Multiclass
common spatial patterns and information theoretic fea-
ture extraction,” IEEE transactions on Biomedical Engi-
neering, vol. 55, no. 8, pp. 1991–2000, 2008.

[11] Alexandre Barachant, Stéphane Bonnet, Marco Congedo,
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