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The transitional free convection flow and heat transfer within attics in cold 

climate are investigated using three-dimensional numerical simulations for a 

range of Rayleigh numbers from 103 to 106 and height-length ratios from 0.1 

to 1.5. The development process of free convection in the attic could be 

classified into three stages: an initial stage, a transitional stage and a fully 

developed stage. Flow structures in different stages including transverse and 

longitudinal rolls are critically analyzed in terms of the location and 

strength of convection rolls and their impacts on the heat transfer. The 

transition to unsteady flow and asymmetry flow in the fully developed stage 

is discussed for the fixed height-length ratio 0.5. Various flow regimes are 

given in a bifurcation diagram in the parameter space of Rayleigh numbers 

(102<Ra<107) for height-length ratios (0.1<A<1.5). The time series of heat 

transfer rate through the bottom wall is quantified for different height-length 

ratios. The overall heat transfer rate for the low Prandtl fluid (Pr=0.7) 

could be enhanced based on three-dimensional flow structure. 

Key words: Transitional flow; Rayleigh number; Convection roll; Height-

length ratio; attic space 

1. Introduction  

Thermal convection is an important mechanism of flow and heat transfer in nature and 

technology [1-7]. The work about thermal flows in attics is of basic meaning for the realizing of 

thermal convection system, and also of actual significance for the architecture of thermal comfort in 
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buildings. A number of research works have been devoted to free convection and heat transfer in 

attics[8-11]. 

The flow in attics is potentially unstable for the cold climate. The experiment showed that 

transitional convection flows may proceed at a high Rayleigh number(Ra) under the cold climate 

[12,13]. Additionally, the relation between the Nusselt number and the height-length ratio at various 

Rayleigh numbers was quantified [14-16]. Poulikakos and Bejan [17] did experiments on the cold 

climate problem for high Rayleigh numbers. They also obtained some elementary scales of transient 

free convection[18]. As the Rayleigh number increases, the free convection flow in the attic space 

experiences a transitional process from symmetry to asymmetry phenomenon in the cold climate 

[20,21].  

Multiple states occurred in attics for the cold climate involving two different fluids (Pr = 0.7 and 

Pr = 7). Lei et al. conducted the schlieren experiment with the water fluid medium [23,24]. Cui et.al 

[25] simulated the development process of free convection flows with Pr = 7 in the section-attic cavity 

in the cold climate in a wide range of Rayleigh numbers [26,27]. These three-dimensional studies 

above mentioned are focused on the water medium. How does Prandtl number (Pr) affect the 

appearance of multiple flow states? Do numerous steady states exist for the air medium (Pr = 0.7)? 

What is the role of Ra and height-length ratio on the symmetry spoiling phenomenon leading to 

asymmetric flow for the air medium? However, the research on the above questions is not very clear. 

Our work attempt to clarify the problems for free convection within the attic space for the cold 

climate. In this numerical research, the transient development of free convection in attic space is 

observed for Ra = 10
6
. The infulence of Ra on three-dimensional flow, asymmetry and unsteady flow 

is researched. We also considered the effect of height-length ratio. The research is expected to provide 

ideas for building thermal design and achieve the purpose of energy saving.    

2. Computational model and procedure 

The physical system consisted of an attic space of height H, length 2L, and depth W full of air 

medium as illustrated in Fig. 1. The inner walls of the attic are set as non-sliding walls. Initially, the 

temperature of air in the attic was T0. At an initial time, the bottom wall is heated and keeps it at a 

higher temperature TH, while the two top walls are cooled and stay at a lower temperature TC. The 

other two vertical walls are insulated. We assumed that the medium behaves as an ideal gas. The 

thermal conductivity , specific heat capacity, and viscosity are set as constants and calculated at the 

reference temperature T0 = (Th+Tc)/2. It have been demonstrated that three-dimensional Navier-Stokes 

equations and energy equation with Boussinesq approximation could describe well free convection in 

attics. The scales are summarized as follows: x, y, z  H; t  H2
/(Ra

1/2
); (T–T0)  (Th–Tc); u, v, w  

Ra
1/2

/H; and -1
p/x, -1

p/y, -1
p/z  2

Ra/H3
. The non-dimensional governing equations are 

expressed as follows: 

0
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  

  
  

, 

(1) 

2 2 2

2 2 21/2
( )

pu u u u Pr u u u
u v w

t x y z x x y zRa

      
       

       
, 

(2) 

2 2 2

2 2 21/2
( )

pv v v v Pr v v v
u v w PrT

t x y z y x y zRa

      
        

       
, 

(3) 



 3 

2 2 2

2 2 21/2
( )

pw w w w Pr w w w
u v w

t x y z z x y zRa

      
       

       
, 

(4) 

2 2 2

2 2 21/2

1
+ ( )

T T T T T T T
u v w

t x y z x y zRa

      
    

      
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(5) 

 

 
Fig.1. Schematic diagram of computational domain and boundary conditions for A = 0.5[25]  

It is expected that free convection flows and heat transfer in attics were controlled by three non-

dimensional numbers: the Rayleigh number (Ra), the Prandtl number (Pr) and the height-length ratio 

(A) [29], which are defined as: 








3( )
R h cg T T H
a

, 




Pr

, 


H

A
L . 

(6) 

Finite volume method was used to solve the governing equations (1) ~ (5), and the pressure-

velocity coupling problem was solved by using the SIMPLE scheme. Table 1 showed results of mesh 

and time step dependence experiments for A = 0.5.We also do similar grid and time step tests for other 

models with various ratios and Rayleigh numbers. Here, We'll define the mean Nussel number(Nu) in 

the quasi-steady stage as [17]: 





1

Nu
SS

T
dS
n

. 
(7) 

Three different non-uniform and symmetric meshes (LHW) 1103041, 1414151 and 

1715161 and two time steps 0.01 and 0.02 were tested. In order to balance the problem of 

calculation cost with the accuracy of results of different grids and time steps, the grid of 1414151 

cells and the time step of 0.02 were adopted in this work. 

Table 1. Correlation test results of mesh and time step for A = 0.5 

Number 
Mesh 

LHW 
Time step 

Ra = 10
7， 

Variation of Nu (%) 

1 1103041 0.02 1.75 

2 1414151 0.02  

3 1715161 0.02 0.41 

4 1414151 0.01 0.30 

For further verification, the numerical simulation results of the work are compared with the 

antecedent experiments in Ref. [20], which is shown in Fig. 2. Clearly, the computational result agree 

well with the experimental result in Fig. 2(b) in Ref. [18]. The quantitative contrast between the 

numerical test and other published experimental test [13] is also carried out as seen in Fig. 3. At the 

same position, the temperature difference is less than 10%。 
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(a) Numerical flow pattern  (b) Experimental flow pattern  

Fig. 2. The comparsion of numerical and experimental results[14] for Ra = 710
4 
and A = 0.5 

 
Fig. 3. Contrast between numerical test and the published experimental result [13] for Ra = 

2.2ⅹ10
5
, A = 1 and Pr = 0.7 

3. Transition of Free convection flows 

3.1. Transient development of nature convection  

The development of transient nature convection for Pr = 0.7 consists of an early, a transitional 

and a fully development stage, as shown in Fig. 4., which is similar to that for Pr = 7 [25]. The initial 

stage becomes shorter, and the transitional stage exists earlier and lasts for a long time more than 

10s.The Nu for Pr = 0.7 has larger oscillation and approximately twice than that for Pr = 7 in the 

quasi-steady stage. 

 

Fig. 4. Time series of Nu for different Prandtl numbers, A = 0.5 and Ra = 10
6
(The red dash dot 

line is for Pr = 7[25]. The black solid line is for Pr = 0.7) 

What is the difference of flow structures in different stages for different Prandtl numbers? As 

shown in Fig. 5 (a), the characteristics of the flow in the early stage is the formation of a thermal 

boundary layer around the wall surfaces. During transition stage, the intrusion flow near the bottom 

surface begins to form at t = 8, as shown in Fig. 5(b). Oppositely moving intrusion streams meet to 

form upward moving thermal plumes.We can find that the heated plumes ascend in the middle of the 

attic, and cooled plumes descend near the tip region from Fig.5(c). Compared with the large Prandtl 

number fluid, the small Prandtl number fluid develops slowly [26,27]. In fully developed stage, the 

flow is unsteady and three-dimensional, which is more complex than that for Pr=7. The flow 
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characteristics in the quasi-steady stage will be discussed in the following portion on the basis of the 

observation of numerical simulation results. 

 
(a) t = 2 

 
(b) t = 8 

 
(c) t = 25 

 
(d) t = 2800 

Fig. 5. Temperature iso-surfaces at different times for Ra = 10
6
 and A = 0.5 . The bule 

temperature iso-surface is T = -0.3, the red temperature iso-surface is T = 0.3 

3.2. Effect of Rayleigh numbers 

For small Rayleigh numbers, the temperature field is stratified, and there are two symmetric 

transverse rolls in the flow field, as seen in Fig.6. For Ra = 10
4
, the isotherms are no longer parallel, 

and one transverse roll increases and moves toward the center. The short longitudinal rolls form near 

the tip of the bottom. As Ra goes up, the three-dimensional flow characteristics become more obvious. 

The longitudinal rolls exist over the entire bottom surface.  

The difference of flow configuration in the full development stage shows that the evolution 

from approximately two-dimensional to three-dimensional and from symmetry to asymmetry. The 

following paragraphs will describe the convective rolls, asymmetric flows and unsteady flows in the 

evolutionary stage. 

Ra = 10
3
 Ra = 10

4
 Ra = 10

5
 

   

   

Fig. 6. Temperature iso-surfaces and streamlines in the attic space at t = 2800 in the quasi-

steady stage for A = 0.5. The bule surface is the temperature iso-surface of T = -0.3, the red surface is 

the temperature iso-surface of T = 0.3 

3.2.1 Onset of Convection rolls 

We will observe the convection rolls from different sections of the attic space. When the Ra is 

low (Ra = 10
3
), the temperature structure of the air in the attic is stratified, and the thermal boundary 

layer shape (from T = -0.5 to T = -0.4) is very clear in Fig.7. The flow is driven by buoyancy force 

near the inclined wall, and the flow is in the state of steady laminar and its intensity is weak. The weak 

basic flow is considered as a two-dimensional flow in the attic space.  

As Ra increases (Ra = 10
4
) , one of transverse rolls increases in size and move toward the 

middle of the attic. Another transverse roll remains but diminishes in size. The secondary transverse 
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roll forms in the corner region near the large convective roll. The apparent asymmetry is clearly 

different from that of water medium [26]. When Ra further increases above the critical value, the flow 

patterns become more asymmetric and the number of secondary vortices have a tendency to increase. 

For Ra = 10
5
, the secondary transverse roll breaks up and occupys the entire tip region. 

At Ra = 10
6
, the asymmetry phenomenon is obvious. The secondary transverse rolls increase in 

number, appear throughout the attic space and superimpose on two large transverse rolls. These 

transverse rolls have reduced length and irregular shape. In this case, the boundary layers at the region 

of inclined surface and bottom surface become thinner. 

Ra z = 1 z = 1.5 

10
3
 

  

10
4
 

  

10
5
 

  

10
6
 

  

 

Fig. 7. Isotherms and streamlines in the xy-cross section at different locations in the fully 

developed stage (t = 2800) for A = 0.5  

In order to observe longitudinal rolls, Fig. 8 shows isothermals and streamlines in different yz-

cross sections with Ra from 10
3
 to 10

5
. For Ra = 10

3
, they are similar to those for the water medium 

(see [32-34] for details). As Rayleigh number increases, weak cells appear nearby two vertical walls in 

the yz-cross section (x = 0.5) when Ra is 10
4
. With the Ra further development, longitudinal rolls 

appear near the vertical sidewalls, as seen in the yz-cross section (x = 1) for Ra = 105. The length of 

longitudinal rolls is not large, because the longitudinal rolls don’t exist in the plane x = 1. The 

horizontal flow at the bottom of the region, creating longitudinal convection rolls, like the formation 

mechanism of Rayleigh-Bénard-Poiseuille flow[23]. However, the longitudinal rolls in attics are more 

irregular in shape than that for the water medium, especially for higher Rayleigh numbers. 

 

Ra x = 0.5 x = 1 x = 1.5 
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10
6
 

 
 

 

 

Fig. 8. Isotherms and streamlines in the yz-cross section at different locations in the fully 

developed stage (t = 2800) for A = 0.5  

Fig. 9 shows dependence of the averaged vorticity for different Rayleigh numbers.We define the 

mean vorticities in x-, y- and z-direction in the quasi-steady stage as [24]: 


 

 
 

1
x V

w v
dV

V y z
, 

(8)  

1
y V

w u
dV

V x z


 
 

 
, 

(9) 


 

 
 

1
z V

v u
dV

V x y
, 

(10)  t x y z     
. (11) 

 

Here, We can use the vorticity of x, t and z to quantitatively describe longitudinal rolls, 

transverse rolls and total rolls respectively (also see [24]). When Ra is less than 10
3
, the magnitude of 

vorticity is almost zero. The onset of RB convection rolls lead to an increase in vorticity z around 

RaTR = 10
3
 for A = 0.5. Moreover, the critical Rayleigh number at the start of longitudinal rolls is 

about RaLR = 1.310
4
, which is smaller than that for the water medium. The strength of the total rolls 

significantly increase around Ra = 310
4
, and the value of z is lower than that for the water medium.  

3.2.2 Transition to asymmetry flow 

The asymmetry flow in the attic space is obvious in Fig. 7. As a results of pitchfork bifurcation, 

the transition from symmetry to asymmetry flows around the geometric central plane 

appears[29,21,24,25]. As defined in the previous study [21], the asymmetry flow in the attic is 

calculated use the degree I: 

 





2

2

[ ( , , ) ( , , )]

4 [ ( , , )]

V

V

T x y z T x y z dV
I

T x y z dV
. 

(12) 

Fig. 10 shows the values of I with different Rayleigh numbers at range of Ra = 10
2
 to 10

7
. 

Clearly, I significantly increases around RaI = 910
3
. This implies that the critical Rayleigh number 

RaI from symmetry to asymmetry flows is smaller than that for the water medium. The value of I 

quantifying the asymmetry flow is almost 3-orders higher than that of water medium.  

  
Fig. 9. The dependence between mean vorticity 

and the Rayleigh number for A = 0.5 and Pr = 0.7 

Fig. 10. The dependence between the degree of 

symmetry I and Rayleigh numbers, A = 0.5 
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3.2.3 Transition to oscillatory convection 

In this section, the height-length ratio of the attic is 0.5. The numerical results show that there is 

no oscillation in the states of the three transverse rolls at Ra = 310
4
. The temperature at the 

monitoring points in Fig.11(a) has not changed over time. Small perturbations appear in the 

temperature time series at Rayleigh number 3.410
4
, as illustrated in Fig. 11(b). The meaning is the 

transition from steady to unsteady flow state occurs around RaUS = 3.410
4
. 

For observing the characteristics of unsteady flow and demonstrate its transition to turbulence, 

Fig. 11(c) shows the PSD(power spectrum density) of the periodic flow in the full development stage 

for Ra = 3.410
4
, and the main frequency (fp = 0.0004) and harmonic frequencies are clear. The peak 

frequency on the spectrum is consistent. As the Rayleigh number increases, the flow is still periodic, 

but the peak frequency changes with fp = 0.0011 at P1 and fp = 0.0005 at P3(P3

) for Ra =410

4
(see 

Figs. 11 (d,e)). In addition, subharmonic frequencies appear in the spectrum diagram.  

The chaotic flow appears near Ra = 510
4
. The temperature time series and the corresponding 

PSD are plotted in Figs. 11(f,g). There is no clear dominant peak frequency and harmonic frequency in 

this mode. This indicates that the flow occurs chaotic. The Rayleigh number of flow transition to 

chaos in the attic with water medium is one order of magnitude higher than that of air medium. 

Current studies show that the change of Prandtl number has a significant effect on the critical Rayleigh 

number of flow evolution, its construction,frequency time evolution and space evolution. 

 

 
(a) 

 
(b) 

 

 
(c)  

 

 
(d)  

 

 
(e)  

 

 
(f)  
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(g) 

 

Fig. 11. Temperature time series and PSD of the convection at P1 (0, 0.5, 1), P3 (-0.54, 0.11, 1), 

P3’ (0.54, 0.11, 1) with different Rayleigh numbers. (a) Ra = 310
4
, (b) and (c) Ra = 3.410

4
, (d) and 

(e) Ra = 410
4
, (f)and(g) Ra = 510

4
. 

3.3. Flow regime 

According to the above analysis, it can be obtained that the two-dimensional symmetric steady-

state firstly appears in the triangular attic under low Rayleigh numbers, as shown in Region I in Fig. 

12. Region I can be divided into a Basic flow region. The flow in this region is driven by the fluid near 

the cooling inclined walls and forms two symmetrical transverse convective rolls with opposite 

rotational directions. As Rayleigh number increases, the Rayleigh-Bénard(RB) instability strengthens 

the intensity of the transverse convective rolls, and the instability in the triangular attic with the lower 

height-length ratio makes the convective rolls bifurcating into many pairs. 

For small height-length ratio (A < 0.5) and large height-length ratio (A > 1.1) of the attic space, 

as the Rayleigh number gets bigger, the flow presents a three-dimensional symmetric steady 

state(Region II), followed by the three-dimensional asymmetric steady state(Region III). The three-

dimensional flow in the attic with small height-length ratio is mainly the longitudinal convective rolls, 

while the three-dimensional flow in the attic with large height-length ratio is mainly the RB 

convective cell. With the increases of Rayleigh number in the attic that the height-length ratio between 

0.5 and 1.1, the flow firstly presents a two-dimensional asymmetrical steady state(Region IV), and 

then a three-dimensional asymmetrical steady state(Region III). 

For all height-length ratios, as the Rayleigh number continues to grow, the flow in attics 

presents a turbulent state, as shown in Region V. The critical Rayleigh number of this state is 

positively correlated with the height-length ratio. 

 

 

Fig. 12. A state diagram of the observed patterns in triangular cavities with different Rayleigh 

numbers and height-length ratios and Pr = 0.7. Region I is the two-dimensional symmetrical steady 

flow, Region II is the three-dimensional symmetrical steady flow, Region III is the three-dimensional 
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asymmetrical steady flow, Region IV is the two-dimensional asymmetrical steady flow and Region V 

is the three-dimensional asymmetrical unsteady flow  

4. Heat transfer 

As the height-length ratio increase, the evolution tendency of Nusselt number over time is 

similar, seen in Fig.13. However, the time reaching the quasi-steady state is gradually delayed, and the 

value of Nusselt number gradually is increased. In the fully developed stage, the fluid flow is unsteady 

for A = 0.1 and 0.2. For the attic with smaller height-length ratio, the flow reaches an unsteady state at 

lower Ra number. 

As shown in Fig.14, the Nusselt number of the bottom surface is slightly larger than that of the 

top surface, which is analogous to the two-dimensional simulation result [24]. The Nusselt number 

increases as the Rayleigh number increases. How does the Nusselt number change with Rayleigh 

number? The fitting results of three-dimensional numerical simulations are higher than Nu ~ Ra
1/3

, 

which is accordance with the heat transfer law in RB convection [35,36]. This maybe caused by the 

existence of longitudinal convection rolls in the attics. 

 
 

Fig. 13. The Nusselt number of the bottom 

wall changes over time for different height-length 

ratios at Ra = 10
4
 

Fig. 14. Graph of the Nusselt number as a 

function of the Rayleigh number at the bottom 

wall and the top wall for A = 0.5 and Pr = 0.7 

5. Conclusions 

This paper focuses on the evolution of different flow states and their impact on the physics of 

heat transfer in attics. The transient stages are relatively earlier than those for the water medium. In the 

quasi-steady stage, the three-dimensional flow structures in the quasi-steady stage depend on what the 

Rayleigh number is. These Rayleigh numbers including RaTR, RaLR and RaI are lower than those for 

the water medium. Nevertheless, the asymmetry phenomenon is more obvious due to the large scale 

movement of the transverse rolls. The transition to an unsteady flow state largely depends on the 

appearance of three-dimensional flow. The critical Rayleigh number of the unsteady phenomenon in 

the attic space is significantly lower than that for larger Prandtl number. In the Ra-A regime diagram, 

the two-dimensional asymmetrical steady flow state exists, which is not observed in other studies. 

Heat transfer rate in attic space increase as the height-length ratio and Rayleigh number increase. The 

relation between Nu and Ra is higher than Nu ~ Ra
1/3

. It demonstrates that the flow structure in three 

dimensions is helpful in heat transfer.  
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For the first time, the distribution of flow patterns in the attic space has been shown in the 

control parameter space based on numerical simulation, which has guiding significance for 

understanding the flow mechanism in the cavity. The variation of heat transfer law in the attic with the 

aspect ratio and Ra number is given, which is instructive to the thermal design of buildings. Further 

experimental results of three-dimensional flow structure in attics will be given in the future.    
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Nomenclature  

A height-length ratio 

g gravitational acceleration [ms–2] 

H, L, W height, half length and width of the attic(m) 

k thermal conductivity(Wm-1K-1) 

n coordinate normal to the wall 

Nu Nusselt number  

Nub Nusselt number of the bottom  

Nut Nusselt number of the top  

p nondimensional pressure 

Pr Prandtl number 

Ra  Rayleigh number 

RaI  critical Rayleigh number for appearance of the asymmetry flow 

RaLR  critical Rayleigh number for appearance of longitudinal rolls 

RaTR  critical Rayleigh number for transverse rolls dominated by RB convection   

RaUS  critical Rayleigh number for appearance of the unsteady flow 

s coordinate along the wall 

S area of the wall(m2) 

t nondimensional time scale 

T nondimensional temperature 

T0 initial temperature(K) 

Tc, Th temperatures of the cold inclined top and the hot bottom(K) 

u, v, w nondimensional x-, y- and z-velocity 

V volume of the attic(m3) 

Ωt the total averaged magnitude of vorticity(s-1) 

Ωx, Ωy,Ωz the averaged magnitude of vorticity in the x- , y-and z-direction(s-1) 

x, y, z nondimensional coordinate 

Greek symbols 

 coefficient of thermal expansion(mK-1) 

T temperature difference between the bottom and the top wall(K) 

 thermal diffusivity(m2s-1) 

 kinematic viscosity(Nsm-2) 
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 medium density(kgm-3) 
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