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Real-time Estimation of the Strength Capacity of the Upper Limb

for Physical Human-Robot Collaboration
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Abstract— In physical Human-Robot Collaboration (pHRC),
having an estimate of the operator’s strength capacity can
help implement control strategies. Currently, the trend is to
integrate devices that can measure physiological signals. This is
not always a viable option, especially for highly dynamic tasks.
For pHRC tasks, the physical interaction point usually occurs
at the operator’s hand. Therefore, a musculo-skeletal model was
used to have a real-time estimation of the strength capacity of
the operator’s upper limb. First, the model has been simplified
to reduce the complexity of the problem. The model was used
to obtain offline estimations of the strength capacity, that were
then curve-fitted to enable real-time estimation. An experiment
was carried out to compare the results of the approximated
model with human data. Results suggest that this method for
estimating the strength capacity of the upper limb is a viable
solution for real-time applications.

I. INTRODUCTION

Physical Human-Robot Collaboration (pHRC) happens

when a human and a robot are in physical contact and

willingly exchange forces to complete a common task.

An example is shown in Fig. 1, with a human physically

interacting with a robot for pHRC, the ANBOT [1]. Given

the close proximity between human and robot during pHRC,

any information obtained on the human operator can provide

metrics for improving safety, efficacy and efficiency.

For physically-demanding applications, the strength ca-

pacity of the human co-worker represents useful informa-

tion. Attempts to understand the underlying mechanisms

of the human body resulted in the creation of musculo-

skeletal models based on live and cadaveric data [2]. Recent

literature has worked towards the integration of musculo-

skeletal models with exoskeleton control [3]. This includes

reducing the dimensionality of muscles in the human body

to provide quasi-one-to-one correspondence for controlling

an exoskeleton [4]. Further works have shown the feasibility

of targeted muscle force estimation [5], with physiological

criteria in their model based on Surface Electromyography

(sEMG) to control an assistive exoskeleton [6].

Early works looked at Artificial Neural Networks to esti-

mate endpoint force under different conditions [7]. With the

aim of estimating and managing muscle fatigue in pHRC,

Peternel et al. [8] used a complex bio-mechanical model

offline to train a Gaussian Progress Regression (GPR) that

could map joint configurations and end-point forces (on the

hand) to muscle forces. The online system would then use

the obtained GPR-based model. This system still requires
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Fig. 1. A human operator physically interacting with a collaborative robot
called ANBOT [1].

the human joint configuration and the interaction forces with

the robot. More recently, the estimation of strength capacity

has been framed as a transfer learning and deep learning

problem, using sEMG to train the deep neural networks [9].

The placement of sEMG electrodes is difficult and sig-

nals present a high noise-to-signal ratio and numerous ar-

tifacts [10]. If the collaborative task is highly dynamic, the

sEMG sensors are likely to move with respect to the muscles

they are recording from. Human musculo-skeletal models are

usually complex high dimensional models that require long

computational times to be solved. This is the main reason

behind the lack of systems that use such models in the control

system of collaborative robots.

Due to the limitations of sEMG and the challenges as-

sociated with bio-mechanical models, a simplification of a

musculo-skeletal model of the upper limb [11] is proposed

for online estimation of the operator’s strength capacity. The

model of the upper limb is chosen with the understanding

that many physically demanding jobs apply a load to that

limb, such as drilling, jack-hammering, abrasive blasting,

and heavy manual handling. Peternel et al. [12] used the

GPR model with a similar purpose, but to estimate the

muscle fatigue, which still requires the configuration of

the upper limb joints. Individual physiological differences

between people have a big impact on their strength capacity.

Model parameters are set to represent the average human’s

physiology based on demographic surveys. The magnitude

of the estimated strength capacity is not regarded as the

most valuable outcome of this work. This work aims to

find an estimate of the strength capacity trend with respect

to the pose of the upper limb. The model is simplified, to

reduce its complexity, during the offline estimation of the



strength capacity around the limb workspace, as described

in Section II-A. The data is fitted to a curve for real-time

estimation, and validated through an experiment performed

with a collaborative robot, as presented in Section II-B.

II. METHODOLOGY

A. Estimation of the Strength Capacity

A musculo-skeletal model [2] is used to estimate the

strength of a human arm, with a previously developed

optimisation procedure [13], [14]. OpenSim [15] was used as

a platform for the bio-mechanical the model. The dynamic

equation of the upper limb can be formulated as follows:

H(q)q̈ +C(q, q̇) + τG(q) = τ + JTu · FE (1)

The elements of (1) are defined as: H is the inertia matrix,

q, q̇, q̈ and τG are the vectors of the joint positions, veloci-

ties, accelerations and gravitational torques, respectively, C

is the matrix describing the Coriolis and centrifugal effects,

τ is the vector of the musculo-tendon unit torques, J is the

Jacobian matrix mapping velocities from the skeletal joints

to the hand and FE is the magnitude of the external force

multiplied by the unity vector u, direction of the force.

For slow motions, static conditions can be assumed, and

inertial, centrifugal, and Coriolis effects can be approximated

to zero. A Hill-type model is used for musculo-tendon units,

as a combination of active and passive elements:

τG = Kτa− τP + r · FE (2)

In (2), r is the vector used to transform the external

load into joint torques. The torques generated by the passive

element of the musculo-tendon units are represented as τP .

The active force of the musculo-tendon units is given by

Kτa, where Kτ is a matrix whose elements are coefficients

of the torques generated by the active elements of muscles

transformed to the joint space. a is the muscle activation

vector which is constrained by 0 ≤ ai ≤ 1. Excluding the

external force and its direction, all the parameters in (2)

are calculated from the aforementioned musculo-skeletal

model [2]. To find the maximal load sustainable by the

human arm, the solution suggested by [13] is used:

S = max[FE ] =
[τGi − τPi

ri

]

−min
[Kτi

ri
a
]

(3)

The objective function in (3) is obtained with i being the

element corresponding to the arguments where |r| is at its

maximum. The optimisation problem is constrained by:

[

Kτ −
r

ri
Kτi

]

a = τG − τP + r ·
[τPi − τGi

ri

]

(4)

To solve the optimisation problem, a primal-dual interior-

point optimisation method ( [16]) is used.

The calculation of the strength capacity is a computa-

tionally demanding process. To simplify the process, the

external force is considered unidirectional. In many tasks, the

load that a person has to sustain has a main direction. The

Fig. 2. Three dimensions used to discretise the human operational
workspace.

direction u of the external force was assumed to be from the

capitate bone in the hand to the centre of the thorax. This

assumption was given by the application used to validate

this method. The human arm can be approximated as a 7-

degrees-of-freedom (DoFs) kinematic chain: three DoFs in

the shoulder, one in the elbow and three in the wrist. In

this work, precision tasks are not considered, hence the wrist

joint can be neglected, leaving a 4-DoFs kinematic chain. To

obtain an estimate of the strength capacity, the pose of the

upper limb is required. The redundancy of the human arm

is resolved by optimising the elbow swivel angle [17], using

a primal-dual interior-point optimisation method [16]. These

simplifications allow the estimation of the strength capacity

to occur with the position of the hand relative to the thorax

as the only input into the model.

Even with these simplifications, the computational times

are not sufficiently short for real-time applications. To over-

come this, the strength capacity was estimated offline for 910

hand positions. The upper limb workspace was discretised

using three variables shown in Fig. 2. The angles α and

β identify the line connecting shoulder and hand, on the

horizontal and vertical plane respectively, while d is the

distance between shoulder and hand, with45o ≤ α ≤ 135o,

30o ≤ β ≤ 150o and 0.25m ≤ d ≤ 0.55m. In order to have

a set of points that is dense enough, the resolution along α

and β is 10o, while for d it is 0.05m.

Strength capacity values that are not positive or with

swivel angles not between −0.1rad and 0.1rad were ex-

cluded. Also values with a distance from the median value

that are greater than three scaled median absolute devia-

tions (MAD) were excluded. Out of the 910 points examined,

636 were considered valid. A 3D curve-fitting of the strength

capacity throughout the upper limb workspace was then

performed with the following non-linear model:

(5)S = a0 + a1x
3 + a2x

2 + a3x+ a4y
3

+ a5y
2 + a6y + a7z

3 + a8z
2 + a9z

where x, y and z are the coordinates of the hand position with

respect to the centre of the thorax, and ai are the coefficients

resulting from the fitting problem.

B. Validation

To validate the strength capacity estimation, six healthy

adults performed an experiment to measure their strength

capacity in ten hand positions. The participants (4 males and
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Fig. 3. Strength capacity [N] estimated with the musculo-skeletal model (in blue) and with the approximated model (in orange) with respect to the
distance [m] from the centre of the thorax.

2 females) gave informed consent to participate in the ex-

periment approved by the ethics committee at UTS (Sydney,

Australia), with approval number ETH18-3029.

Interaction forces were measured from participants using

the ANBOT, pictured in Fig. 1 and presented in [1]. It

consists of a UR10 robot (6-DoFs manipulator), with a 6-

axis force-torque sensor mounted between the end-effector

and the back handle to measure the interaction forces.

The participants were constrained on a chair so that the

location of their torso would be known with respect to the

robot. The hand is in contact with the back handle, so the

hand position is also known through the robot kinematics.

The robot end-effector leads the participant’s hand to ten

positions in the shared workspace. The nozzle on the end-

effector has been programmed to aim in the direction defined

by the line connecting the centre of the thorax to the hand.

Starting from those positions, participants were asked to

exert as much force as possible in the direction of the

nozzle. The robot features a hybrid control system, with

an admittance control implemented only for the direction

defined by the nozzle and a proportional position control for

the other directions. Only the component of the interaction

force that lies on the nozzle direction is converted to motion.

The admittance gain is set to provide high resistance to

the participant’s motion. This approach does not prevent

participants from exerting forces in undesired directions,

but converting the interaction forces to motion gives the

participant feedback about the direction of the exerted force

and engages them to push with maximal strength.

As the participants were asked to push as hard as possible,

the trend of the measured forces should be comparable to

the trend of the estimated strength capacity. The interaction

forces collected were compared to the estimated model.

III. RESULTS AND DISCUSSION

The musculo-skeletal model was used to estimate the

strength capacity for the given 910 hand positions in the

upper limb workspace. Some results were then excluded

using the aforementioned criteria. The remaining 636 points

are plotted in Fig. 4.
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Fig. 4. Strength capacity (N) with respect to the distance (m) from the
centre of the thorax.

The curve-fitting procedure resulted in the following equa-

tion, with Ŝ the approximated strength capacity and x, y

and z being the coordinates of the hands with respect to the

thorax:

Ŝ = 121.49− 818.44x3 + 997.67x2 − 185.40x− 456.02y3

+ 45.53y2 + 9.74y + 161.79z3 + 275.03z2 − 146.08z

(6)

The strength capacity obtained with this equation and the

one obtained by the bio-mechanical model are both shown in

Fig. 3, with respect to the hand coordinates. The orange curve

represents the strength capacity approximated by (6), while

the blue one depicts the strength capacity estimated with

the musculo-skeletal model. The dynamics of the curves are

comparable and look similar. The strength capacity obtained

by the approximated model presents an average root mean

square error (RMSE) of 16.80N when compared to the results

of the bio-mechanical model. Most of the samples have an

error in the range of ± 20N, with some outliers having an

error up to 90N in magnitude.

With the experiment described in Section II-B, the maxi-

mum force generated by the six participants was measured

for ten different hand positions. The measured forces were

compared with the results of the approximated model. The

residuals are shown in Fig. 5. Positions 10 and 7 present

the greater standard deviation (blue bar) and mean resid-
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Fig. 5. Absolute value of residuals [N] between the measured maximum
force and the strength capacity calculated with the approximated model for
the 10 positions tested. Plot obtained with [18].

ual (red line), with the same participant generating the largest

residuals, which are equal to 59.5N and 54.8N respectively.

Those positions are located just in front of the torso, where

a pushing action engages larger muscles like the pectoralis,

which widely vary in dimensions depending on gender and

physical condition. In the other positions the difference

between the approximated strength and the measured forces

is significantly lower. The RMSE for the six participants is

on average 24.16N ± 4.02N.

The proposed online model for the estimation of the

strength capacity has already been used in a real-world

application with a collaborative robot. In fact, an online

model-based AAN strategy was implemented to dynamically

assist the operator during abrasive tasks with the ANBOT.

Details about the implemented AAN strategy can be found

in [1]. While residuals for specific users might be relatively

high, the trend of the strength capacity remains consistent

with the model. Therefore, this AAN strategy scales the

strength capacity for a specific position to the maximum

strength capacity of the shared workspace, to provide the

user with appropriate assistance.

IV. CONCLUSIONS

A musculo-skeletal model was simplified and used to

estimate the strength capacity of the upper limb, given the

position of the hand relative to the thorax. The model is

high-dimensional and involves multiple optimisation steps,

causing long computation times. To obtain a model capable

of delivering real-time estimates of the strength capacity,

results from the bio-mechanical model were used to create

an approximated model. This model was obtained through

a curve-fitting procedure and validated with an experiment

where participants were asked to exert maximum strength

in specific poses. Results suggest that the accuracy of the

model depends on the arm configuration.

In the field of pHRC, in which humans and robots work so

closely together, a more comprehensive flow of information

allows the implementation of more targeted and dynamic

control strategies.
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