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ABSTRACT 
Gas Metal Arc Welding (GMAW) is a welding process which involves forming an electric arc between a consum-
able wire electrode and a metal work piece while protecting the arc from contaminants using a shielding gas. In 
this form of welding, there are several varying ways in which the molten droplets can be transferred from the end 
of the welding wire into the weld pool known as transfer modes. Identifying these transfer modes is crucial in 
monitoring and controlling the welding process, especially in automated applications such as industry 4.0 manu-
facturing lines. Currently in industry, these transfer modes can be identified by expert welders by using the sound 
signal that is generated throughout the welding process. However, there has been limited research on using the 
acoustic signal to detect these transfer modes in automated welding applications.This paper explores a new 
method of automatic GMAW transfer mode detection using machine learning techniques to analyse the acoustic 
signal generated during the welding process. Several time and frequency domain features are extracted from the 
acoustic signal and used to train a support vector machine classifier to accurately classify the transfer modes. In 
addition to this, a new feature selection algorithm is proposed to improve the prediction accuracy of the support 
vector machine classifier and a final prediction rate of 94% was achieved. This high prediction rate demonstrates 
the feasibility and promising accuracy of using the acoustic signal as a basis for transfer mode classification in 
future smart welding technology with real-time adaptive feedback control. 

1 INTRODUCTION 
Gas Metal Arc Welding (GMAW) more commonly known as MIG/MAG welding is an electric welding process in 
which a consumable metal electrode is used to melt two base materials together while being protected via a 
shielding gas. As the manufacturing industry leads further towards automation, the demand for automated welding 
systems is increasing (Adewole 2019). Due to its fast welding speed and ease of use, automated GMAW systems 
are becoming more and more popular. However, despite the advantages, GMAW can suffer from a variety of arc 
instability issues which can lead to several common welding defects occurring, such as porosity, lack of penetra-
tion and burn through (Kah, Latifi et al. 2014). These arc instability issues are caused by changes in what is known 
as a transfer mode. 

Transfer modes in GMAW are the method in which the consumable welding electrode melts and transfers material 
into the molten weld pool. These transfer modes are influenced by a number of different factors including shielding 
gas composition, gas flow rate, current, voltage, wire feed speed, welding speed, electrode diameter, Contact tip 
to workpiece distance, and material composition. These transfer modes are classified into two main groups by 
(Scotti, Ponomarev et al. 2012), contact transfer, and free flight transfer modes. Traditionally these transfer modes 
are normally able to be detected by expert welders using a combination of audio and visual cues (Tam and 
Huissoon 2005). However, this ability is lost in automated welding applications. 

Previously, researchers have investigated the feasibility of using the generated acoustic signal as a means of 
detecting the transfer modes in the GMAW process. One of the earliest investigations was carried out by (Carlson, 
Johnson et al. 1990) who investigated the acoustic, current and voltage signals obtained by short circuit, spray 
and streaming transfer modes. Similarly, (Saini and Floyd 1998) investigated the feasibility of using the acoustic 
signal to monitor the welding process in real time as a means of online quality control. (Pal, Bhattacharya et al. 
2010) also investigated the acoustic emissions generated during pulsed transfer modes for online monitoring and 
fault detection. Recently (Zhao, Qiu et al. 2018) developed a transfer mode detection model using the acoustic 
signal and Gaussian Mixture Model. 
 
This paper aims to further improve the accuracy of the transfer mode detection algorithm introduced in previous 
work (Cullen, Zhao et al. 2021). In this paper, the GMAW process is classified into 6 different transfer modes; 
Short Circuit, Globular, Spray, Interchangeable, Explosive, and a final group to indicate no droplet transfer. Bead 
on plate welds are performed to replicate these 6 different transfer modes while synchronised acoustic, current, 
voltage, gas flow rate and high speed video footage where recorded. Using the acoustic signal, a SVM classifier 
is trained using a combination of time and frequency domain features. 
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2 EXPERIMENTAL SET UP 
Figure 1 shows the test rig that was used to perform and record the GMAW process. In the performed experi-
ments, a UniMig Razorweld 350 MIG welder was used with the torch being mounted to the end of an ABB IRB 
140 6 axis robot. The welds were performed by moving the torch in a linear path in reference to the fixed metal 
workpiece. 32 individual welds were performed on 10 mm mild steel plates using 0.9 mm  ER70S-6 welding wire. 
Half of these tests were performed using pure argon gas with the other half using a mixed consisting of 93% 
argon, 5% carbon dioxide and 2% oxygen. Each test was performed under a different combination of parameters 
outlined in Table 1 with the intention of replicating a range of different transfer modes with each weld bead being 
approximately 200 mm long. 

The acoustic signal was recorded using a GRAS 40 PH free field microphone and was mounted on the robot 
manipulator 300 mm from the welding torch. In addition to the acoustic signal, a high-speed camera along with 
current. voltage, gas flow sensors were also used to analyse the welding process. A Basler ace 640-750um USB 
camera recording at 2000 fps was used in combination with two 660 nm bandpass filters to record the droplet 
transfer process. A LEM HTA 300-S current sensor was installed around the welding torch cable to record the 
current and the welding voltage was measured directly from the positive welding torch cable to the negative work-
bench clamp. A miller arc agent gas flow sensor was installed along the welding torch gas line to measure the 
gas flow rate to the welding torch. All of these signals were captured using a National Instruments cDAQ 9185 
chassis containing a NI 9215 Analogue Voltage Input module to capture the current, voltage and gas flow rate 
signals and a NI 9234 Sound and Vibration module to capture the acoustic signal. The captured signals were 
captured and stored using a custom program developed using National Instruments Labview. 

In order to replicate potential real-world applications and to test the robustness of the system, the experiments 
were performed in a noisy factory environment. 
 

 

 
Figure 1: Test rig 
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Table 1: Experimental parameters 
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1 SC Argon 20 0 20 16 3.5 5 Push 
2 SC Argon 18 0 20 16 3.5 4.5 Push 
3 SC Argon 22 50 20 15 3.5 6 Pull 
4 SC Argon 20 30 20 15 3.5 7.5 Pull 
5 SP Argon 30 0 20 18 7 10.6 Push 
6 SP Argon 28 0 20 18 7 9.2 Push 
7 SP Argon 34 0 20 18 7 12.7 Pull 
8 SP Argon 30 0 20 18 7 10.6 Pull 
9 E Argon 20 0 0 16 3.5 5 Push 
10 E Argon 30 0 0 18 7 10.6 Push 
11 SP Argon 28 0 20 18 7 10 Pull 
12 G Argon 28 0 20 28 7 10 Pull 
13 G Argon 27 0 20 28 7 9.2 Pull 
14 I Argon 31.5 30 20 23 7 8 Push 
15 I Argon 27 0 20 16 7 8.5 Push 
16 I Argon 26 50 20 16 7 9.2 Push 
17 SC Mix 20 30 20 16 3.5 5 Push 
18 SC Mix 18 0 20 16 3.5 4.5 Push 
19 SC Mix 22 50 20 15 3.5 6.4 Pull 
20 SC Mix 20 30 20 15 3.5 7.5 Pull 
21 SP Mix 30 0 20 18 7 10.6 Push 
22 SP Mix 28 0 20 18 7 9.9 Push 
23 SP Mix 34 0 20 18 7 12.7 Pull 
24 SP Mix 30 0 20 18 7 10.6 Pull 
25 G Mix 30 0 20 20 5.5 6.4 Pull 
26 G Mix 30 50 20 19 5.5 7.1 Push 
27 G Mix 29 0 20 18 7 9.2 Push 
28 G Mix 29 0 20 18 5.5 6.4 Push 
29 E Mix 25 0 0 18 5.5 7.1 Push 
30 I Mix 30 0 20 18 7 8.5 Push 
31 I Mix 27 0 20 16 7 8.5 Push 
32 I Mix 26 50 20 16 7 9.2 Push 

3 METHODOLOGY 

3.1 Signal Breakdown 
Once the 32 signals using the settings outlined in Table 1 had been collected, the high-speed video footage was 
analysed alongside the acoustic, current, voltage and gas flow signals to analyse the transfer modes and droplet 
transfer process. After analysing these signals, it was found that the original transfer mode classification outlined 
in Table 1 did not accurately describe the transfer mode across the entire length of each recorded weld bead. 
Therefor it was decided each signal would be broken down into 20 ms segments, with each segment manually 
classified as one of the five targeted transfer modes based on the reviewed high-speed footage. This segment 
length was chosen as it is long effectively capture a complete short circuit or globular transfer, while not being too 
long such that temporary transfer mode changes are drowned out by the dominant transfer mode. 

3.2 Feature Extraction and Selection 
To extract the critical information from the raw sound signal a large selection of time and frequency domain fea-
tures are extracted. However, to reduce the dimensionality of the feature set, a new feature selection algorithm 
was designed. This feature selection algorithm aims to select the optimal feature set which maximise the average 
interclass distance between the probability distributions of each transfer mode. This feature selection algorithm is 
detailed below in Figure 2 and in Equations (1)-(5). 



  

Proceedings of Acoustics 2021 
21-23 February 2022 

Wollongong, NSW, Australia 
 
 

Acoustics 2021 Page 4 of 7 

 

 
Figure 2: Feature selection algorithm 
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where 𝐷𝐷B is the Bhattacharyya distance, 𝜇𝜇𝑖𝑖 and 𝜇𝜇𝑗𝑗 are the means, and 𝑑𝑑𝑖𝑖 and 𝑑𝑑𝑗𝑗 are covariance matrices for the 
i-th and j-th multivariate probability distributions. 
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where M is the number of classes, C is the normalising threshold, and L is the number of features currently 
selected. 
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3.3 SVM Training 
To detect and classify the correct transfer modes from the recorded dataset, a multiclass SVM model is used. The 
SVM classifier is trained using the feature set previously selected by the feature selection algorithm. These se-
lected features for each of the 20ms segments are then used to train the SVM classifier. The SVM Classifier is 
trained and tested using 10-fold cross validation to maximise the accuracy of the final result.  (49615 segments 
used) 

4 RESULTS 
The SVM classifier was able to accurately predict the transfer mode of each 20ms segment with and accuracy of 
94.1%. Figure 3 below shows the confusion matrix detailing these results. 

 
Figure 3: SVM confusion matrix 

When further analysing the results found in Figure 3, it can be seen that there are a few key areas in which the 
model tends to have a higher misclassification rate. In particular, the model has a high misclassification rate 
between globular and spray transfer modes as well as short circuit and explosive transfer modes. To understand 
why these areas contained the largest percentages of misclassification, each of the misclassified segments were 
re-examined. 
 
When looking at the misclassification results of the globular and spray transfer groups, it was found that majority 
of the misclassifications existed in a grey area between the 2 different transfer modes. This is illustrated in Figure 
4 which shows a standard spray transfer, a standard globular transfer, and one of the misclassified segments in 
between. From the current literature definition of spray and globular transfer (Scotti, Ponomarev et al. 2014), a 
droplet is considered to be in spray transfer when the diameter of the droplet is less than or equal to the diameter 
of the welding electrode. When the diameter is larger it is considered to be in globular transfer. Using this classi-
fication system, it can be seen that the misclassified segment is technically a globular transfer, however it is right 
on the border of being a spray transfer. Similar to the misclassification between globular and spray transfer, a 
similar phenomenon can be observed with short circuit and explosive transfer modes.  
 
Figure 5 shows both a standard short circuit and explosive transfer mode. In both modes, the electrode makes 
contact with the weld pool creating a short circuit before transferring material into the weld pool. However, due to 
the lack of shielding gas, the explosive transfer process is not as smooth as in short circuit transfer, leading to a 
more violent explosion and turbulent weld pool. When analysing the misclassified segments between these two 
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modes, it can be seen that majority of the misclassified segments occur when there is either a particularly turbulent 
transfer of material in a short circuit transfer, or more commonly, a particularly smooth transfer of material in an 
explosive transfer. Technically, despite the lack of gas, if the material smoothly transfers from the end of the 
electrode to the weld pool while short circuiting, it should be classified as a short circuit transfer mode. Because 
of this, many of the misclassifications between explosive and short circuit transfer are technically correct and 
should not be counted as misclassifications. Taking both of the above cases into account, it can be concluded 
that the overall accuracy of the SVM classifier’s may actually exceed 94% due to the ambiguity of some of the 
manual classifications. 
 

 
 

Figure 4: Globular/spray compairson 

 

 
Figure 5: Short circuit/explosive comparison 
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5 CONCLUSION 
In this paper, a new GMAW transfer mode detection system based on the acoustic signal. This transfer mode 
detection system was able to accurately detect the natural transfer modes that occur in GMAW with a prediction 
accuracy of 94%. The high prediction accuracy and ease of use as a plug and play solution shows promise in 
adapting the model to be used in real time to effectively monitor automated welding processes. Future work in-
volves adapting the transfer mode detection system to detect instabilities in the welding arc, allowing for defects 
to be detected in real time. 
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