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Active and Interactive Mapping with Dynamic Gaussian Process
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Abstract— In this letter, we present an interactive proba-
bilistic mapping framework for a mobile manipulator picking
objects from a pile. The aim is to map the scene, actively
decide where to go next and which object to pick, make
changes to the scene by picking the chosen object, and then
map these changes alongside. The proposed framework uses
a novel dynamic Gaussian Process (GP) Implicit Surface
method to incrementally build and update the scene map
that reflects environment changes. Actively the framework
provides the next-best-view, balancing the need for picking
object reachability with map information gain (IG). To enforce
a priority of visiting boundary segments over unknown regions,
the IG formulation includes an uncertainty gradient-based
frontier score by exploiting the GP kernel derivative. This
leads to an efficient strategy that addresses the often conflicting
requirement of unknown environment exploration and object
picking exploitation given a limited execution horizon. We
demonstrate the effectiveness of our framework with software
simulation and real-life experiments.

I. INTRODUCTION

Recent years have seen great progress in autonomous
mobile manipulation applications. Typical examples include
bin-picking for construction sites [1], automated public space
sanitisation [2] and logistic and warehousing [3]. These ap-
plications call for interactive robotic systems that are able to
explore the scene while mapping the changing environment
and planning their motion and manipulation tasks without
colliding with obstacles and with limited on-board resources.

Scene exploration approaches often adopt an information-
theoretic strategy that aims to choose the next action to
maximise the Information Gain (IG) in an active mapping
framework [5]–[7]. For mobile manipulator tasks, active
mapping alone is insufficient. Combining mapping and pick-
ing in one phase is more effective and efficient than con-
sidering them separately. Thus, the task becomes an active
and interactive mapping problem, i.e. to select and pick the
“best” objects with mapping aiding the selection, and where
the next movement expands the knowledge of the scene.

This paper presents a computationally efficient environ-
ment mapping framework for a mobile manipulator realised
on low-budget hardware for practical bin-picking applica-
tions, such as is shown in Fig. 1. It aims to address the
problems of dynamic scene mapping, exploiting the map’s
frontier and checking manipulability to select the next best
view for efficient mobile base placement and manipulator
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(a) Initial map and NBV (b) Move to NBV and update map

(c) Remove object (d) Update map and NBV

Fig. 1: The Active and Interactive Mapping cycle. The projection of
GPIS mesh on the ground (red line) defines potential exploration
segments, green bars indicate segments information utilities. The
NBV is a red bar + arrow. Dark green dots are GPIS training points
from the removed object.

motion planning. Here, dynamic mapping refers to the accu-
rate capture of environment changes as objects are discovered
(scene exploration) and later removed from the scene (object
picking) by a mobile manipulator.

Our proposed mapping approach is based on Gaussian
Probabilistic Implicit Surfaces (GPIS) [12], which encode
spatial correlation among input data and offer a probabilistic
yet accurate map representation of the world in continuous
form. We exploit GPIS to check if a mapped object resides
in a robot’s workspace. Also, its probabilistic formulation
makes it amenable to active mapping based on IG to ana-
lytically search for the next-best-view (NBV) and optimal
motion.

The contribution of this work is threefold. First, a dynamic
GPIS algorithm (Section IV) where each incoming sensor
scan forms an instantaneous GP hence defines a probabilistic
tolerance layer for valid samples. This detects and discards
previous GPIS training points taken from the scene, thus
producing a resultant implicit surface accurately capturing
environment changes (Fig. 1(a) and (d)). Secondly, given the
probabilistic map representation, we develop an analytical
frontier score for each possible NBV candidate (Section V-
C) exploiting the GP kernel derivative, this greatly improves
fairness and flexibility in NBV selection. Ultimately, the
proposed framework is a viable means for a mobile ma-
nipulator to interact with an environment (Section V-D):
planning base placement and generating arm’s trajectory
with obstacle avoidance capability, choosing the NBV that
maximises object manipulability (Fig. 1(b)). Results of the
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full on-line implementation of our framework are presented
in Section VI, demonstrating its performance in simulation
and real experiments.

II. RELATED WORK

Dynamic mapping
The choice of mapping representation is critical for object
picking tasks with mobile manipulators and needs the ability
to update efficiently once objects are removed. The well-
known RGB-D mapping system KinectFusion [10] is an ex-
ample for this purpose. The map is a volumetric type built in
the form of Truncated Signed Distance Function (TSDF) data
structure. Each voxel in space is time-averaged to smooth
out the transient noise. As a side-effect the model handles
dynamic scenes. Dramatic topological changes, however,
will only appear after a significant delay. Occupancy maps,
specifically Octomap [11] are another discrete representation
of the 3D world with a probability of occupancy for each
voxel in space. A known limitation of the original form is
that dynamic environments are not supported. An extension
to Octomap was introduced in [1] for a bin-picking applica-
tion. However, since structural correlations between nearby
cells is not addressed, resolution and accuracy in Octomap
are often compromised. One can not easily reason about
object shape or perform detection [15]. Gaussian Processes
Occupancy Maps (GPOM), on the other hand, is a method of
combining GP with occupancy mapping that is probabilistic
and continuous but has a large computational complexity.
Hilbert Maps, first proposed in [26] is a faster and simpler
type of occupancy map using kernel approximation methods.
Later in [25] it was extended to handle dynamic obstacles
and model learning through regression, it finds application
in traffic environment modelling.

Despite its advantages, the O(n3) computational complex-
ity in GPIS [12] has limited its applicability. Lee et al. [14]
provided an online GPIS implementation that stores data in
small clusters for fast parallel processing and incrementally
fuses successive scans from various viewpoints. Dynamic
environments, however, are not tackled in this method – once
an object is mapped, it remains in the GPIS data even if it is
physically removed from the workspace. Here, we consider
the GP from a fundamental perspective as an immediate
probabilistic conditioning tool on current training data [4].
We will show that once a mechanism is devised to detect and
filter out training points belonging to the removed object, the
map can be instantly updated in the relevant local regions.

Other work in dynamic mapping has been focused on
detecting and tracking moving objects in static scenes [8] [9]
or eliminating dynamic objects from the environment in
order to build accurate static maps [27], which is less
applicable to object picking with mobile manipulators.

Active Exploration
In active exploration, it is desirable to formulate an IG
metric to choose the optimal action. Occupancy maps and
Octomaps, with their probabilistic occupancy representation,
are often used in mapping and exploration applications [22],

[23]. GP, with its continuous uncertainty formulation, has
also been used recently for IG-based exploration works,
including, entropy reduction [5], conditional entropy reduc-
tion [16] and mutual information maximisation [18]. In active
shape modelling, [29] proposed an efficient approach using
constrained Variational Sparse GP and online kernel learning
that preserves reconstruction accuracy.

Entropy gradient [17], is another form of IG metric. The
benefit is that it directly draws the robot towards the frontier
between the explored and unexplored regions. Authors
in [17] devised an approximate gradient formulation for
discretised 3D occupancy maps. Later, Jadidi et al. [18]
generated continuous gradient frontier maps from a 2D
GPOM variant, but did not provide an analytical expression
due to its non-trivial map definition. They used the gradient
map for NBV candidates identification but not in NBV
utility calculations. In this paper, we derive the analytical
gradient expression from 3D GPIS uncertainty for NBV
candidates in 2D mobile manipulator exploration. The
simple yet consistent frontier score, together with other IG
metrics ensure NBV selection is well-balanced.

Interactivity
Interactivity refers here to the robot manipulating objects in
the environment. GPIS, with built-in surface normals [15],
has been exploited for interactive applications in areas of
shape detection, classification and validation. The GPIS-
based framework presented in [24] makes use of a robotic
arm equipped with tactile sensors to explore and map the
environment. Authors in [16] show how to optimise for
a reconstruction-aware manipulator trajectory that during
a pick-and-place action maximally estimates the object’s
3D geometry. Our work, in contrast, generates dense maps
and use them for collision-free planning for manipulator
trajectory. Further, these prior works assume that every object
in the robot’s workspace is reachable by the arm. Our
framework instead selects the NBV that covers the maximum
number of manipulable objects.

III. SYSTEM OVERVIEW AND PROBLEM STATEMENT

The proposed framework aims to provide an efficient
pipeline for a mobile manipulator to explore and interact with
the environment. As illustrated in Fig. 2, it consists of a GP-
based dynamic mapping component that maps the changing
world, and an NBV selection module that recommends the
best action based on the map information. The robot relies
on this framework to plan its arm trajectory and base paths
to travel and make changes in the surrounding environment.

Fig. 1 shows a robot’s exploration and interactivity cycle.
First, it inspects the scene to build the initial map of a mul-
tiple objects pile, and computes an NBV that will increase
map information. Next, it moves to the recommended NBV
and updates the map. Then, it picks up an object and updates
the map again to synchronise with the changed world. Based
on the updated map, it computes the new NBV and moves
towards it, after which the inspection cycle repeats.



Fig. 2: Active and interactive mapping framework overview.

We now define the notations in this paper: a line segment
si describes the robot’s pose due to its finite width, si aligns
with the base width-wise. The segment set S = {si} denotes
candidates in NBV selection. Superscript {·}[t] indicates the
item is time-dependent, and s

[t]
i is the i’th segment at t. The

sensor pose T[t] ∈ SE(3) is assumed given at all times.
U [t]( si ) denotes the information utility at time t for the i’th
segment. The selection goal is to identify the segment i[t]∗
with the maximum utility to position the robot at t,

i
[t]
∗ = argmax

i
U [t]( s

[t]
i ), i ∈ supp(S [t] ) (1)

Calculation of a segment’s information utility depends on its
attributes such as uncertainty, frontier score, and manipula-
bility, all of which revolve around the Dynamic GPIS scene
model.

IV. DYNAMIC GAUSSIAN PROCESS IMPLICIT SURFACE

The proposed dynamic mapping representation is based on
the online GPIS fusion in [14]. In a similar way, our mapping
module consists of two GP phases. A GPIS accumulated
from multiple scans, and a frame-level 2.5D−1 map as a
detector for points removed from the scene. It also exploits
independent clusters to store GPIS training points for parallel
processing. The main difference with [14] is the dynamic
scene handling and introduction of a virtual wall as described
in this section.

A. Continuous distance function as 3D map representation

We now review how GPIS describes scene maps. Let us
define a point x ∈ R3 and a function fIS : R3 → R such that

fIS =


+d outside surface
0 on surface
−d inside surface

(2)

where d is the point-to-surface distance. The GPIS is defined
by the posterior distribution of the value of f at an arbitrary
testing point x∗ given by f(x∗) ∼ N (f̄∗,P [f∗]), where the
predictive mean and variance are given by

f∗ = k>∗ (K +Kx)−1y

P[f∗] = k(x∗,x∗)− k>∗ (K +Kx)−1k∗
(3)

k∗, K and k(x∗,x∗) represent covariances between x∗ and
n training points and n×n covariance matrix of the training

points and the covariance function at x∗, respectively [4].
We use the Matérn 3 class covariance function (ν = 3/2),

km(d)|ν=3/2 = (1 +

√
3d

l
) exp(−

√
3d

l
), d = ‖x− x′‖

(4)

B. Instantaneous Scan 2.5D−1 Map

For each incoming depth image, a stand-alone elevation
map GP is created in the form of bearing angles θ to inverse
depth (IDP) regression. We call it a 2.5D−1 map in this
paper:

fIDP : θ → r−1, θ = [θu, θv]
T (5)

where r is measurement range. IDP is chosen for its i.i.d.
Gaussian noise distribution ηIDP ∼ N (0, σ2

IDP). Note that
every over-limit depth value should be replaced by a large
user-defined number. As in [14], the Ornstein-Uhlenbeck
(OU) covariance function is used to model IDP observations,

kOU(d) =
1

2α
exp(−αd), d = ‖x− x′‖

since the OU kernel is best suited for modelling random walk
curves [4] without excessive smoothing.

Given the bearings θs, one can infer its inverse depth
rIDP(θs) and uncertainty σIDP(θs) pair, and obtain coordi-
nates of the corresponding point xs

(rIDP, σIDP) = fIDP(θs),

xs =
1

rIDP
v, v =

vh
‖vh‖

, vh =
[
θs 1

]> (6)

The uncertainty σIDP obtained defines a tolerance blanket of
allowed range values from the sensor’s viewing pose. Any
test point in the field of view (FOV), yet falling outside
the blanket, is considered an anomaly. This property will
be exploited to detect removed objects in Section IV-C.

C. Data fusion in Dynamic GPs

In this stage, the GPIS map is updated with new scan
data. We delete samples from the existing GPIS training set
that fall outside the tolerance layers defined by the 2.5D−1

map. Then fuse or insert new scan points to the GPIS. This
results in an immediately clean GPIS data structure that can
be conditioned to infer the expanded environment map. The
procedure is described in Algorithm 1.

We first identify all GPIS samples that fall into the
sensor’s FOV at the current pose. For each point in GPIS we
transform its coordinates to the local camera’s frame xIS =
(T[t])−1x

(w)
IS . The bearing angles θIS are obtained after

homogeneous normalisation. For points inside the FOV, we
infer its IDP and uncertainty pair (rIDP, σIDP) as described in
Section IV-B. Then we examine the difference 4IS between
the stored inverse depth r−1IS = ‖xIS‖−1 and the inferred one
rIDP:

4IS = r−1IS − rIDP(θIS) , (7)

to apply three possible treatments: delete, fuse or ignore.
Delete: For regions containing removed objects, the new scan
reveals what is lying behind the old object along its light



xs = f−1IDP(θIS)vIS

(‖xIS‖−1 − gσ)−1 vIS
xIS

(‖xIS‖−1 + gσ)−1 vIS

(a) Map before and
after object remove

(b) Delete point xIS if range significantly
different from its 2.5D−1 correspondence:
‖xIS‖−1 − fIDP(

xIS
‖xIS‖

)� σIDP.

Fig. 3: Map update in Dynamic GP. Using ray-casting a reverse
tolerance layer is formed around GPIS points: +σIDP (blue) and
−σIDP (violet). Removed object points (green) are detected and
deleted from GPIS, forming a new map. The 2.5D−1 map with
the virtual wall at “infinity” is shown in dark yellow. An example
FOV ray is shown in yellow

ray. The range measured would be either larger or outside
the sensor range. We delete this point using the anomaly
detection criterion, 4IS ≥ g σIDP, where g is a constant scale
factor. However, this simple check fails if the background is
empty since it destroys the 2.5D−1 map model. Here, using a
method similar to [1], we artificially replace every over-limit
measurement in the scanned depth with a very large number,
effectively creating a virtual wall at “infinity”, see Fig. 3 for
illustration. The virtual wall is processed together with the
rest of the scan data to form the 2.5D−1 map, allowing valid
inferences for every bearing angle.
Fuse: For 4IS within a small range, the old GPIS point xIS
will be fused with its corresponding point on the 2.5D−1

surface as described in [14].
Ignore: Points outside the above categories are occluded
scene points and should be left unchanged.

With the old GPIS training points cleaned up, the new scan
samples are now added for map expansion. The modified
local GPIS clusters from both ends are processed further
(covariance inversion) for fast future inference. For a full
treatment of online GPIS formulation please refer to [14].

V. NBV SELECTION

To select an optimal next pose, we first identify a set of
candidate poses, then compute its utility function, incorpo-
rating various GPIS based metrics including gradient frontier
and manipulability.

A. Candidate Poses

Since the robot needs to explore objects in a pile, the
next position to place the robot should be around the cir-
cumference of the partially explored pile, as shown in Fig.
4. We first query the GPIS to obtain a probabilistic implicit
surface representing the scene, then use the marching cubes
algorithm [28] to form a dense map. The map can be assumed
to have a roughly conical shape which is generically the

Algorithm 1: Dynamic GPIS Update

1: fIDP ← Regress2.5D−1(Scan[t]);
2: for x

(w)
IS ∈ GPIS[t] do

xIS = (T[t])−1 x
(w)
IS ;

(rIDP, σIDP)← fIDP(θIS ) ; // Eq. (5)

4IS ← Compare(fIDP, ‖xIS‖−1) ; // Eq. (7)

if 4IS ≥ gσIDP then
/* point removed from scene */
x
(w)
IS ← ∅ ;

else
if −gσIDP ≤ 4IS ≤ gσIDP then

/* old and new fusable */
xs ← Invert(r IDP,θIS ) ; // Eq. (6)

x
(w)
IS ← T[t] Fuse(xIS,xs) ; // Ref. [14]

end
end

end
3: GPIS[t+1] ← GPIS[t]⋃ Scan[t];

case when stacking objects to maintain stability. We project
the surface points onto the ground to form a 2D occupancy
map. Using image processing methods, we obtain the contour
of the occupancy, (see Fig. 4(a)), which is composed of
a set of piece-wise linear segments {si} of the map base.
These segments are the candidates for positioning the robot
in the next step. Half of {si} are from the unseen surface
area without full exploration, hence have high uncertainty,
referred to as “imaginary”. The remaining half are genuine
base outline segments and have low uncertainty. Using this
uncertainty we classify each segment si as real or imaginary.

B. Utility Formulation

Many factors (or attributes) from si can affect the utility.
We use {·}[ s[t]i ] to denote attribute {·} of segment i. For the
sake of simplicity, from now on we omit the time superscript
in segment attributes. These attributes are:
• Uncertainty σ2[si]: encourages information collection

for noisy regions. Only the real segments are considered
here. The imaginary ones are addressed below.

• Frontier f∇σ2 [si]: for unexplored regions, frontier
gives preference to the boundary segments over other
imaginary segments.

• Arm manipulability m[si]: This factor gives a quanti-
tative measure of volume in GPIS that is reachable by
the manipulator.

• Interact order h[si]: gives a preference for picking
order and can be in the form of segment height, readily
available from the GPIS. This order factor is useful
since picking in an order from high to low positions
causes minimum disruption to the object pile. Further,
this encourages the pile to maintain a convex-shaped
outline, convenient for base navigation.

• Travel distance d[si]: preference is given to visit close-
by scanned segments. It is computed as the Dijkstra



minimum distance from current location to candidate.
• Avoid repeated failure p( si, t ): avoids locations where

previous pick/detect attempts failed within a time dura-
tion, and is a function of time.

Considering these factors, we present the following utility
formulation to select the optimal candidate segment i∗:

i
[t]
∗ = argmax

i
U [t]( si ), i ∈ supp(S [t] ),

U [t]( si ) = (1− p( t )[si]) I( si ),

I( si ) = β1 L1(m[si] ) + β2 L2(h[si] )

+ β3 L3(−d[si] ) + β4 L4(σ2[si] )

+ β5 L5( f∇σ2 [si] ),

1 =
∑
k

βk, βk ≥ 0,

p( t )[si] = γ t−tf [si] , γ < 1

S [t+1] ← action( i
[t]
∗ )

(8)

where

si := (m, σ2, f∇σ2 , h, d, p(t) )[si],

I(·) : information gain
∀ k = 1, 2, 3, 4, 5

βk : user defined weightings
Lk(x ) : logistic function, maps to probability

=
lk

1 + exp(−akx+ bk )
,

(lk, ak, bk) : empirically obtained parameters

(9)

Note that p(si, t) takes the form of discounted future penalty.
It relies on the duration between the last failure time tf and
the current time. Initially we set tf to −∞ for zero penalty
and update it once a failure occurs. This activates the penalty
and deactivates the segment for a small time frame.
During runtime, all imaginary segments have their manipu-
lability, height, and uncertainty set to zero, resulting in zero
utility. This prevents the robot from landing on unknown
regions. The frontier segments with valid m, h and σ2 scores,
compete with other real segments for NBV selection. Once
the frontier is explored, its surrounding imaginary regions
become “real” with the frontier shifted. The new segments
are added to the next round of NBV selection.

C. Gaussian Process Frontier

We now propose our GP based frontier metric which gives
higher precedence for boundary segments over unexplored
regions. The uncertainty gradient for an arbitrary point x
can be defined as

‖∇σ2(x)‖2.

The robot base motion is confined to the 2D ground plane,
during manipulation the base is aligned width-wise with
the pile segment. Due to the segment’s finite length, it
is necessary to integrate the gradients along the segment
direction to obtain the overall uncertainty variation.
Let li = [lx, ly, 0]> denote the direction of segment si,

(a) Complete utility (b) Manipulability factor

c) Interact order factor (d) Travel distance factor

(e) Uncertainty factor (f ) Frontier factor

Fig. 4: An illustration of full formulation and single factor utilities.
First, identify pile segments (red contour) and compute the utilities
(green bars). Max utility gives NBV (red bar+arrow). (b) shows
samples (blue dots) from the manipulability annulus. (c) shows
height (orange bar). Grey bars on the ground are uncertainty for
imaginary segments.

transversal to the robot heading. Let Pi denote the set of 3D
points in si. Denote δα as the infinitesimal segment length
along li. Then for a point xij ∈ Pi, a small perturbation
results in a neighbour point xij+δαli. We define the frontier
metric as the Sum of Directional Squared Difference (SDSD)
in uncertainty for all points in Pi along li:

f∇σ2 =
∑

xi
j∈Pi

∥∥∥∥ ∂(σ2(xij + δαli)− σ2(xij) )

∂δα

∥∥∥∥2

=
∑

xi
j∈Pi

∥∥∥∥ ∂(σ2(xij) + δα∇σ2(xij)
> li − σ2(xij) )

∂δα

∥∥∥∥2

=
∑

xi
j∈Pi

∥∥∥∥ ∇σ2(xij)
> li

∥∥∥∥2
(10)

For gradient at point xij , we use GPIS definition (3) and
Matérn kernel (4) to compute as follows:

∇σ2(xij)
> = 2k>∗ (K +Kx)−1∇k∗(xij)>

∇k∗(xij)> =
[
..., ∇km(x′,xij)

>, ...
]>

∇km(x′,xij)
> =

∂km(d)

∂d

∂d

∂xij

(11)

where: d =

∥∥∥∥ xij − x′
∥∥∥∥, ∂km(d)

∂d
= −3d

l2
exp(−

√
3d

l
).

This GP-based definition is continuous and mathematically
rigorous. It contrasts to the discretised frontier metric in [17].



Its simple formulation is more tractable and deployable
than [18], which is only for 2D maps and relies on an
auto-jacobian method from optimisation libraries, due to the
hybrid GPOM world model used.

D. Manipulability

Fig. 5: A top-view of the annulus sector used in the pose manip-
ulability filter.

This section presents a metric to determine whether the
manipulator is capable of reaching and picking the objects
in the environment. This metric filters out object poses
that minimise the manipulability index [19] of the arm
during picking. The filter uses the geometric volume of an
annulus (donut-like) sector as a heuristic to determine which
poses are viable. The frame of this region is fixed to the
manipulator base frame and all poses outside this region are
rejected by the filter. For this process, we use the determinant
of the Jacobian matrix J to calculate the robot’s measure of
manipulability m as follows,

m =
√

det(JJT (θ)) ∈ R (12)

where a robot’s Jacobian J relates an end-effector’s Cartesian
velocity with the joint velocities q̇. The annulus sector used
in the pose manipulability filter is derived from the manip-
ulator’s kinematics by sampling valid end-effector discrete
poses. For each configuration q in the configuration space,
we calculate the end-effector pose ξE in task space T using
forward kinematics and the manipulability index m where:

ξE = (R,p) ∈ T , T ⊂ SE(3), (13)

with the position p ∈ R3 and the rotation R ∈ SO(3).
We select only the configurations with manipulability in-

dex m ≥ mthres. The remaining points are used to determine
the minimum and maximum bounds of the manipulable
Cartesian workspace Tm ⊂ T . This allows us to differentiate
between the reachable region of the manipulator workspace
and the manipulable region of the workspace as shown in
Fig. 5, where the manipulable region in front of the robot is
defined with a radius interval [r,R], height interval [h,H],

and an angle α. The values of [h,H] and α are chosen by
plotting all valid configurations.
With a robot located at the i’th pile segment, we define the
segment’s manipulability as the overlapping region between
an arm’s annulus sector and the mapped pile. Specifically, for
each sample point in the annulus sector, we query the GPIS
for its occupancy probability [13] using its inferred signed
distance µ, variance σ2 and normal n. The sum of weighted
occupancy for all samples defines the manipulability score:

m[si] =
∑

pj∈Tm

wj p(o = 1|pj) =
∑

wjΦ(
αµj + β√
1 + α2σ2

i

);µjσj
nj

 =fIS(p
(w)
j ), wj =

nj · p(w)
j

‖p(w)
j ‖

, p
(w)
j = T[si]pj

(14)

The more objects reachable by the robot in alignment with
its orientation at the segment, the higher its m score. Fig. 4(b)
shows an example of the pose with highest m score.

VI. EVALUATION

We evaluated the performance of our framework with
extensive simulated and real-life experiments. We built our
mobile manipulator using Neobotix MP700 [20] as the base
and URe5 [21] for the arm with a magnetic contact end-
effector. An RGB-D camera is mounted on the mobile base.
Our active mapping framework is developed according to the
description in Section III. It is written in C++/ROS and runs
on a 6-core laptop. Our test environment consists of piles
of bricks on flat terrain. All piles are roughly 4m2 in size
with ∼50 segments considered in the optimisation, which
is trivially performed by finding the maximum amongst all
candidate utility scores. The bricks are labelled with AR-
tags for easy pose detection with metal plates attached for
magnetic grasping. This scenario resembles the necessary
exploration and an object picking component in automatic
construction tasks. A video accompanying our results can be
found in https://tinyurl.com/y5qwn864.

A. Simulation

A simulated Gazebo environment was created to contain
brick piles as shown in Fig. 6. Gazebo models of the base and
arm were also designed with accurate mechanical properties
to mimic the real-life system. An ablation study and bench-
mark tests are performed for the simulated environment.

(a) simu case 1 (b) simu case 2 (c) simu case 3

Fig. 6: Three Gazebo simulation scenarios.



1) Ablation Study: We analysed the importance of each
factor in our NBV selection scheme, by removing it from the
framework and observing the performance results as given
in Table I. We run each variant in a fixed time interval and
collect the average number of picked bricks, percentage of
covered map, number of object falls and collisions between
robot and environment. The “Pick Order” row is important
in maintaining a balanced pile shape, failing to do that the
test has a high collapse count as seen in the “Falls” column
– a scenario to be avoided for warehousing or construction
applications. The completion rate in “Travel Distance” and
“Frontier” rows are related to collisions. The robot should
never enter an unknown region before mapping it. Further,
without the frontier factor, map coverage is affected; hence,
achieving 100% can take a protracted time. Without the
“Failure Penalty” factor, the robot can get stuck indefinitely
on a seemingly good spot that does not host pick-able
objects. Considering all results, the complete utility function
(row 1) case performs the best in each test category.

TABLE I: Ablation analysis on Utility factors.

Part removed Output
Bricks # Map % Falls # Collision ?

NONE 17 100 1 N
Manipulability 14.5 100 2 N
Pick Order 13 100 6 N
Travel Distance 11 80 3 Y
Uncertainty 15 100 1 N
Frontier 16 90 4 Y
Failure penalty 7 60 1 N

2) Benchmark Test: We performed benchmark testing by
comparing task throughput and map coverage between our
system and two other systems for three test scenarios, five
times each (Fig. 6). The other systems are: (1) Octomap
+ [1] (dynamic) + [17] (discrete gradient frontier), and
(2) Octomap + [1] (dynamic) + random (RDM) strategy.
The results are shown in Table II, showing the number of
bricks picked (task) and map coverage. From the results, our
framework outperforms (1) and (2) in mission completion
rate. We observed in (1) and (2) that the robot frequently
went to locations that do not host pick-able objects. This can
be explained by the fact that our framework uses a GPIS-
based manipulability factor that chooses more promising
locations for picking. (1) has the best map coverage but
can occasionally lead the robot into the obstacle zone, this
can be explained by its approximate frontier calculation.
(2) has the lowest map coverage as it tends to stay in
already explored regions. We also illustrate the execution
progress of the three systems for test case 2 in Fig. 7. Our
approach has the best performance for the picking object
task and equivalent performance for map coverage, compared
to Octomap +[1]+[17], but with smaller variations over the
different runs.

B. Real-life Experiment

In the real-life experiment, we tested the accuracy of the
dynamic GPIS mapping component and the effectiveness of
NBV selection in our framework.

(a) Objects picked (b) Map coverage %

Fig. 7: Comparison of task and map coverage for simu case 2.

(a) Scene set up (b) Initial GPIS (c) Remove brick, delete
GPIS samples (green)

(d) Dynamic GPIS map vs [14],
(note the smooth surface),
obtain distance errors:
µdist = 0.005 cm, σdist = 0.012

(e) Apply [1], obtain before
and after Octomaps, (note the
artifacts), obtain distance errors:
µdist = 0.033 cm, σdist = 0.015

Fig. 8: Real-life experiment: comparing map accuracy between
ours, [14] and [1].

1) Dynamic GPIS accuracy: We set up a real-life scene
Fig. 8(a) to evaluate the accuracy of dynamic GPIS by
comparing with the methods of [14] and [1]. We first
generated a map using our Dynamic GPIS with a 2-step
process: initialise using the original scene (b), then update
after removing a brick (c). For reference, we generated a
map by feeding the depth image in step 2 directly to [14].
We compared the signed distance values in the two maps
using CloudCompare (d), and the error was insignificant (e).
Further, we applied the same procedure for the Octomap
variant [1] and our results are shown to be superior (e).

2) NBV test: In real-life test scene 2 (Fig. 9(a)), we
evaluated the effectiveness of our NBV selection. We set the
scene to have two rows of bricks with the top two lying side
by side. Initially, the robot was set to face the top two bricks
(b). Then the robot detected and picked the top left brick,
the map was updated and the NBV shifted towards the high
brick on the right (c). The robot then moved to the NBV

TABLE II: Benchmark Test

Simu Ours (1) Octmp+ [1]+ [17] (2) Octmp+ [1]+RDM
case Bricks% Map% Bricks% Map% Bricks% Map%
#1 95±5.0 100±10 63±17 100±5.0 45±12 90±10
#2 100±6.0 82±8.5 72±8.0 85±9.0 61±12 71±19
#3 100±3.0 61±3.5 66±13 70±16 57±6.8 57±12



(a) test scene 2 (b) first scan (c) picked one brick (d) moved to NBV (e) picked another brick
Fig. 9: Real-life experiment, active and interactive mapping cycle.

position, (d). Finally, it picks up the right brick. This shows
our NBV strategy behaved in the desired order.

VII. CONCLUSION

We presented an interactive and active mapping framework
for a mobile manipulator platform based on dynamic GPIS.
Since the framework is probabilistic, it is able to perform
immediate mapping updates for a dynamically changing
environment. Using the probabilistic map, our NBV selection
scheme has been shown to balance the needs of information
gain in visited regions, frontier driven map expansion, as
well as object manipulability. Most importantly, the dense
map generated enables a robot to safely move around in,
and apply changes to, the environment. Both simulation and
real-life experiments show our system can efficiently explore
and interact with a large pile of objects in an environment.
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