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Abstract

The Multi-agent Teaming (MAT) systems that have been widely applied in many
fields provide a novel method for establishing models, conducting the analysis, im-
plementing complex tasks and so on. The agents in an MAT system can be defined
as intelligent agents, machine agents and human agents based on a particular task
to exhibit flexible behaviours. This research investigates various fuzzy models to
resolve the problems of designing MAT systems, such as the coordination of agents,
the interpretability of actions and states, high-dimensional data and data privacy.

First, a hierarchical fuzzy logic system that is proposed to deal with the coordi-
nation of agents is applied to the simultaneous arrival of multiple mobile agents. The
proposed hierarchical fuzzy logic system consists of two levels: a lower-level individ-
ual navigation control for obstacle avoidance and a higher-level coordination control
to ensure the same time of arrival for all robots at their target; it enables the synchro-
nisation of the agents’ arrival times while avoiding collisions with obstacles. Apart
from the hierarchical structure, a grouping and merging mechanism is developed to
optimise transparent fuzzy sets and integrated into the training process to improve
the fuzzy models’ interpretability. Additionally, a Multi-objective hybrid GA and
PSO (MGAPSO) algorithm is developed to design the hierarchical fuzzy controller
efficiently. The MGAPSO leverages the exploring capability of Genetic Algorithm
(GA) and the convergence capability of Particle Swarm Optimization (PSO). The
simulation results demonstrate that the proposed hierarchical fuzzy controller suc-
cessfully controls various numbers of robots to navigate and reach the target simulta-
neously safely. The optimised fuzzy sets can be interpreted by explaining the mining
of fuzzy sets and the consequent components.

Moreover, this research also proposes a fuzzy Covert State Transition Diagram
(FCOSTD), which provides a mechanism to automatically identify humans’ external
and covert states that machine agents can understand. The fuzzy-inference mecha-
nism is used to represent the activities of the human states associated with varying
behaviours. The proposed system consists of a supervised-learning-based fuzzy net-
work featuring real-world data representing the salient features of human biosignals.
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Unsupervised clustering is then conducted on the extracted feature space to deter-
mine the human’s external and covert states. A state transition diagram is introduced
to investigate state change and enable the visualisation of connectivity patterns be-
tween every pair of states. We compute the transition probability between every pair
of states to represent the relationships between the states. We then apply FCOSTD
to real-world Electroencephalography (EEG) data collected from distracted driving
experiments. FCOSTD successfully discovers the external and covert states and
faithfully reveals the transition of the brain between states and the route of the
state change when humans are distracted during a driving task. The experimental
results demonstrate that different subjects have similar states and inter-state tran-
sition behaviour (establishing the consistency of the system) but different methods
for allocating brain resources as different actions are being taken. The discovery
of covert brain states offers machine agents the possibility to understand human
cognitive states in a human-autonomous system.

Finally, a Distributed Fuzzy Neural Network (D-FNN) model is developed to
address data privacy for multiagent decision-makers. The proposed D-FNN model
considers consensus for both the antecedent and consequent layers. A novel consensus
learning, which involves distributed structure learning and distributed parameter
learning, is proposed to handle the D-FNN model. The proposed consensus learning
algorithm is built on the well-known alternating direction method of multipliers,
which does not exchange local data among agents. The simulation results on popular
datasets demonstrate the superiority and effectiveness of the proposed D-FNN model
and consensus learning algorithm.

The main contributions of this research are as follows. 1) For multiple-agent co-
ordination, a hierarchical fuzzy system is proposed. This hierarchical fuzzy system
consists of two levels and is applied to navigation and simultaneous arrival of mobile
agents. 2) Two types of explainable fuzzy systems are proposed. One is the fuzzy sys-
tem with fuzzy set transparency improvement, which optimises the number of fuzzy
sets and reduces the overlap between fuzzy sets. Hence, human agents can under-
stand the rules learned by the fuzzy controller. The second is fuzzy rule information
visualisation, which considers the firing strength of fuzzy rules as useful information
to extract and visualise the hidden state in the human brain. 3) Finally, the dis-
tributed fuzzy system is proposed to resolve the data privacy and high-dimensional
data in designing MAT systems. A novel consensus learning is developed for the
distributed fuzzy system to learn antecedent and consequent components.
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