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Abstract

The Multi-agent Teaming (MAT) systems that have been widely applied in many
fields provide a novel method for establishing models, conducting the analysis, im-
plementing complex tasks and so on. The agents in an MAT system can be defined
as intelligent agents, machine agents and human agents based on a particular task
to exhibit flexible behaviours. This research investigates various fuzzy models to
resolve the problems of designing MAT systems, such as the coordination of agents,
the interpretability of actions and states, high-dimensional data and data privacy.

First, a hierarchical fuzzy logic system that is proposed to deal with the coordi-
nation of agents is applied to the simultaneous arrival of multiple mobile agents. The
proposed hierarchical fuzzy logic system consists of two levels: a lower-level individ-
ual navigation control for obstacle avoidance and a higher-level coordination control
to ensure the same time of arrival for all robots at their target; it enables the synchro-
nisation of the agents’ arrival times while avoiding collisions with obstacles. Apart
from the hierarchical structure, a grouping and merging mechanism is developed to
optimise transparent fuzzy sets and integrated into the training process to improve
the fuzzy models’ interpretability. Additionally, a Multi-objective hybrid GA and
PSO (MGAPSO) algorithm is developed to design the hierarchical fuzzy controller
efficiently. The MGAPSO leverages the exploring capability of Genetic Algorithm
(GA) and the convergence capability of Particle Swarm Optimization (PSO). The
simulation results demonstrate that the proposed hierarchical fuzzy controller suc-
cessfully controls various numbers of robots to navigate and reach the target simulta-
neously safely. The optimised fuzzy sets can be interpreted by explaining the mining
of fuzzy sets and the consequent components.

Moreover, this research also proposes a fuzzy Covert State Transition Diagram
(FCOSTD), which provides a mechanism to automatically identify humans’ external
and covert states that machine agents can understand. The fuzzy-inference mecha-
nism is used to represent the activities of the human states associated with varying
behaviours. The proposed system consists of a supervised-learning-based fuzzy net-
work featuring real-world data representing the salient features of human biosignals.
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Unsupervised clustering is then conducted on the extracted feature space to deter-
mine the human’s external and covert states. A state transition diagram is introduced
to investigate state change and enable the visualisation of connectivity patterns be-
tween every pair of states. We compute the transition probability between every pair
of states to represent the relationships between the states. We then apply FCOSTD
to real-world Electroencephalography (EEG) data collected from distracted driving
experiments. FCOSTD successfully discovers the external and covert states and
faithfully reveals the transition of the brain between states and the route of the
state change when humans are distracted during a driving task. The experimental
results demonstrate that different subjects have similar states and inter-state tran-
sition behaviour (establishing the consistency of the system) but different methods
for allocating brain resources as different actions are being taken. The discovery
of covert brain states offers machine agents the possibility to understand human
cognitive states in a human-autonomous system.

Finally, a Distributed Fuzzy Neural Network (D-FNN) model is developed to
address data privacy for multiagent decision-makers. The proposed D-FNN model
considers consensus for both the antecedent and consequent layers. A novel consensus
learning, which involves distributed structure learning and distributed parameter
learning, is proposed to handle the D-FNN model. The proposed consensus learning
algorithm is built on the well-known alternating direction method of multipliers,
which does not exchange local data among agents. The simulation results on popular
datasets demonstrate the superiority and effectiveness of the proposed D-FNN model
and consensus learning algorithm.

The main contributions of this research are as follows. 1) For multiple-agent co-
ordination, a hierarchical fuzzy system is proposed. This hierarchical fuzzy system
consists of two levels and is applied to navigation and simultaneous arrival of mobile
agents. 2) Two types of explainable fuzzy systems are proposed. One is the fuzzy sys-
tem with fuzzy set transparency improvement, which optimises the number of fuzzy
sets and reduces the overlap between fuzzy sets. Hence, human agents can under-
stand the rules learned by the fuzzy controller. The second is fuzzy rule information
visualisation, which considers the firing strength of fuzzy rules as useful information
to extract and visualise the hidden state in the human brain. 3) Finally, the dis-
tributed fuzzy system is proposed to resolve the data privacy and high-dimensional
data in designing MAT systems. A novel consensus learning is developed for the
distributed fuzzy system to learn antecedent and consequent components.
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Chapter 1

Introduction

1.1 Multi-Agent Teaming
Most Artificial Intelligence (AI) systems are built based on the concept of an

agent that can be defined as anything being able to perceive external information
and then generate corresponding actions or decisions. However, some systems are
designed for many situations that coexist with other agents and interaction protocols
for various tasks. Such a system consisting of multiple agents that can form a team
and interact is called a Multi-agent Teaming (MAT) system.

MAT systems have been widely used in many applications and provide a novel
method for establishing models, conducting analyses, implementing complex tasks
and so on. The agents in a MAT system can be defined as intelligent agents, machine
agents and human agents based on a particular task to exhibit flexible behaviours
[1]. Although MAT systems have beneficial features in large systems as follows [2],
1) increasing reliability and robustness, 2) scalability and flexibility, 3) distributed
computation and asynchronous operation, and 4) modular structure of agents.

However, various issues might arise when designing a MAT system for a particu-
lar achievement. One of the essential issues is coordination among multiple agents.
In a MAT system, the coordination mechanism is considered to prevent conflicts,
chaos and anarchy, meet global constraints, and improve overall performance [3]. In
other words, the coordination mechanism is used to ensure stability and efficiently
achieve the final goal. Centralised coordination approaches have been considered a
reliable solution to establish models for all agents. Most of the centralised coordi-
nation models rely on the information or data collected from neighbourhood agents,
resulting in high-dimensional input and output variables of models. This problem
can be resolved by decomposing a task into several subtasks in a hierarchical manner.
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Such a hierarchical structure enables all agents to learn a modular solution with sub-
tasks by local information, and then the centralised coordination mechanism receives
higher-level information from agents.

The second issue of designing a MAT system is the interpretation of actions and
states, that is, to understand agent states and interpret agent behaviour. A lack of
interpretation of actions and states might lead a MAT system to understandability
and predictability and further impact the coordination among agents [4], [5]. For
example, in a system with human and machine agents, humans need to know the
rationale of machine agents for making particular decisions to help humans track and
interact with machine agents. Additionally, machine agents need to know the states
of humans to make effective decisions to achieve the task. This research, therefore,
considers an explainable fuzzy system a solution to resolve the above problem.

Finally, data privacy is another issue that should be considered for specific ap-
plications, such as hospital service systems and bank networks [6]. Data transition
between agents might lead to severe security and privacy issues that expose data se-
curity in danger. Such an issue has attracted public attention in recent years. In this
case, centralised models are neither practical nor safe. Thus, this research proposes a
distributed model that relies on local data and limited communication among agents
for decision making. Another advantage of using the distributed model is that it can
facilitate designing the MAT system for big data environments; each agent focuses
on local information and computes independently.

1.2 Literature Survey
MAT systems, which generally refer to a group of intelligent agents that collabo-

rate to solve particular tasks, are often designed by integrating various computational
intelligent techniques, such as fuzzy logic, neural networks, evolution computations
and machine learning.

Hierarchical Frameworks. Paper [7] proposed a multiagent fuzzy system that
used concrete crack detection and type classification based on image analysis. It de-
fined a Fuzzy Inference System (FIS) as the central intelligent agents to communicate
and exchange information with other agents. Lyshevski [8] adapted the hierarchical
distributed multiagent system to coordinate and control Unmanned Aerial Vehicles
(UAVs). The UAVs are controlled by a hierarchical-level controller that can navigate
the UAVs in unstructured environments. For multiagent coordination and naviga-
tion, several conventional approaches have also been proposed. Yao and Qi [9] pro-
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posed a novel dynamical model to adjust the path length and voyage speed of several
Autonomous Underwater Vehicles (AUVs) to achieve their simultaneous arrival at a
destination. Misra et al. [10] combined a cooperative localisation technique with a
proportional navigation (PN) guidance law to manipulate multiple unmanned vehi-
cles to reach a moving target in a GPS-denied environment simultaneously. Babel
[11] developed a multiagent path planning algorithm considering the shortest paths
between all pairs of air vehicles and targets, target allocation, and concatenating fea-
sible and suitable short paths, which guarantees that all UAVs arrive at their targets
on time and without the risk of mutual collision.

Explainable Models. Additionally, one advantage of fuzzy systems is their inher-
ent interpretability because they can learn knowledge from data and then represent
it in fuzzy rules. Such a mechanism can enable a human to understand the inherent
knowledge in the model. However, many fuzzy systems do not consider the trans-
parency of fuzzy sets, which may result in highly overlapping and a large number of
fuzzy sets. These issues of fuzzy sets will degrade the interpretability of the fuzzy
system. Ishibuchi et al. [12] and Cococcioni et al. [13] improved the transparency of
fuzzy sets by minimising the number of fuzzy rules and fixing the partition granu-
larity of the input space during the optimisation process. The performance of these
approaches is limited since the parameters of fuzzy sets are not optimised. To en-
hance both the accuracy and interpretability of fuzzy systems simultaneously, several
multiobjective optimisation algorithms [14]–[19] have been developed. Studies [14]–
[16] set a constraint condition to assign a proper distribution of fuzzy sets in each
input variable to preserve the transparency of fuzzy sets after tuning the free param-
eters. Juang et al. [17] used an online clustering and fuzzy set merging mechanism
to build flexible partitions of the input space with distinguishable fuzzy sets and
a transparency-oriented objective function to maximise the transparency of fuzzy
sets. Furthermore, the measurement of fuzzy rule relevance was proposed to identify
fuzzy-based redundancy in feature space, which helps to reduce the complexity of
fuzzy rules and trade-off the performance between accuracy and interpretability in
multiobjective optimisation algorithms [18], [19].

Distributed Models. To consider data privacy, this research considers the dis-
tributed model in MAT systems. Distributed machine learning algorithms, such
as distributed extreme learning machines[20], [21], distributed support vector ma-
chines[22], [23], and distributed deep neural networks[24], [25], have been widely
investigated. In [20], a distributed extreme learning machine with kernels based on
MapReduce was proposed to realise its parallel computation. Very recently, decen-
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tralized multitask learning based on extreme learning machines was proposed in [21],
where Alternating Direction Method of Multipliers (ADMM) [26] was employed in
an alternating optimization procedure. It is clear that the computational complexity
of this method increases dramatically due to the alternating procedure. The ADMM
procedure was also employed in [22], [23] to achieve distributed solutions for sup-
port vector machines. In [24], [25], ADMM-based algorithms were proposed to train
deep neural networks to avoid gradient-based methods. Furthermore, a decentralised
learning algorithm has recently been adapted to train FNNs. Several decentralised
algorithms for random weights FNN [27], [28] were developed to deal with distributed
streaming data, where the parameters in the antecedent components are randomly
selected instead of being estimated. However, distributed FNN models suffer from
the curse of dimensionality as the number of fuzzy rules increases exponentially with
increasing input space. The proposed distributed algorithms can only assure con-
sensus on the consequent layer instead of both antecedent and consequent layers of
the FNN. Specifically, such distributed algorithms are not distributed since multiple
agents cannot agree with a single model.

1.3 Research Overview
This research investigated various fuzzy models to resolve the problems of de-

signing MAT systems, shown as the research map in Figure 1.1. The map consists
of the four issues of MAT systems mentioned above; each is connected to a solution
representing the respective fuzzy model. For multiagent coordination, a hierarchi-
cal fuzzy system is proposed and presented in Chapter 2. This hierarchical fuzzy
system consists of two levels and is applied to multiple robot navigation control.
The lower-level fuzzy controller is for obstacle avoidance, while the higher-level con-
troller coordinates robot agents to ensure the same arrival time for all robots at their
destination points.

Additionally, this research proposes two types of explainable fuzzy systems. Chap-
ter 3 presents a fuzzy system with fuzzy set transparency improvement, which op-
timises the number of fuzzy sets and reduces the overlapping between fuzzy sets.
Hence, human agents can understand the rules learned by the fuzzy controller. Chap-
ter 4 presents a framework for fuzzy rule information visualisation, which considers
the firing strength of fuzzy rules as useful information to identify humans’ external
and covert states. Afterwards, a state transition diagram is introduced to investigate
state change and enable the visualisation of connectivity patterns between every pair
of states. The transition probability between every pair of states is computed to rep-
resent the relationships between the states. This mechanism allows human agents to
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understand machine agents’ actions and states and then establish machine-to-human
interaction in a human-machine MAT system.

Finally, a distributed fuzzy system is proposed in Chapter 5 to resolve the data
privacy and high-dimensional data in designing MAT systems. The proposed con-
sensus learning algorithm is built on multipliers’ well-known alternating direction
method, restricting data exchange among agents to protect data privacy in privacy-
focused MAT systems.

Figure 1.1: Research map of novel fuzzy systems for human/autonomous agent team-
ing.
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Chapter 2

Hierarchical Neural Fuzzy System

2.1 Background
Coordination among agents is a critical problem when designing a MAT system.

A suitable coordination mechanism can provide the system with stability and relia-
bility, and improve the overall performance. Recent years, centralised coordination
approaches [9]–[11], [29], [30] has been used to coordinate multiple agents across
multiple disciplines. However, centralised coordination approaches might result in
high-dimensional input and output variables of the system due to the considerable
information collected from neighbourhood agents. Therefore, to overcome the above
issue, This research considers a hierarchical structure to decompose a task in several
sub-tasks in a hierarchical manner. Such a hierarchical structure enables all agents
to learn a modular solution with local information for sub-tasks, and then the cen-
tralised coordination mechanism can learn from higher-level information collected
from modularised agents.

For this research, the designed a MAT system is applied to a multi-agent navi-
gation task to verify and demonstrate coordination performance. One aim of multi-
agent navigation task is to guide mobile agents moving between obstacles to reach
their targets from a starting point with collision-free performance. Apart from
collision-free movement, this research also considers arrival-time control as a sub-
task of the multi-agent navigation. More specifically, the mobile agent need to move
towards their targets with collision-free motion in a timely manner. In the exper-
iment, the mobile agents are defined as mobile robots that equipped sensors and
actuators with noisy and uncertain signals. Therefore, Fuzzy Logic Systems (FLSs)
[29], [31]–[37] have been used in automated navigation tasks to enhance the robot
control quality.
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Fuzzy logic provides a robust solution with anti-noise ability to remove the un-
certainty. However, the performance of FLSs depends on the design of the member-
ship function and efficient rules, which often require a considerable amount of time
to analyse the experimental input and output data. Machine learning technology,
therefore, has been used for fuzzy system design. Zhu and Yang [31] and Pothal
and Parhi [29], respectively, exploit supervised learning to train neuro-fuzzy models
for one or multiple robots to perform navigation tasks. The precise input-output
training data should be collected in advance for supervised learning. To reduce the
training effort, evolutionary algorithms have been used to design FLSs. Two popular
optimisation algorithms are Genetic Algorithm (GA) [37]–[40] and Particle Swarm
Optimization (PSO) [32], [41], [42]. These two optimisation approaches can be eas-
ily applied to the design of FLSs because they can be formulated as optimisation
problems by defining a metric for the solution performance evaluation.

This research develops a fuzzy-based control system with two levels: lower-level
individual navigation control for obstacle avoidance and higher-level coordination
to ensure the same time of arrival for all robots at their destination points. FLSs
[32], [43], [44], combining the Takagi–Sugeno–Kang (TSK) FIS with a derivative-
free global optimisation technique, is used to design the fuzzy “IF-THEN” rules and
tune the parameters of the membership functions. The controllers are trained in a
cascading manner. In the first phase of training, we employ the PSO algorithm [45] to
optimize the fuzzy rules that comprise individual navigation control. The role of this
controller is to generate the motion direction command that steers robots away from
obstacles and towards the target location based on their sensory inputs (each robot
is equipped with a laser ranger) and information about the target location. In the
second phase of training, the same technique is used for multiple robots to learn how
they need to coordinate with each other to reach their targets at the same time. The
coordination controller controls both the moving speeds and moving direction of each
robot to achieve the simultaneous target-reaching task. We develop a fuzzy-logic-
based coordinator and recurrent-based coordinator. The recurrent-based coordinator
includes a Long-Short-Term Memory (LSTM) block [46] that take the input variables
and produce the output variables identical to the fuzzy-logic-based. Both fuzzy-logic-
based and recurrent-based coordinator are designed by PSO. The Webots software
[47] is used as a physics-based robot simulation environment for the training and
testing of the proposed solutions.
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2.2 The Proposed Models
This section describes the proposed models for multi-robot navigation and arrival-

time control. Figure 2.1 shows the configuration. There are two hierarchical levels of
the control module. The lower-level controllers are robot navigation controllers for
each single mobile robot. They enable each robot to perform collision-free navigation.
The higher-level controller is a Multi-agent Coordinator (MAC), which coordinates
the robots’ speed and direction so that they reach their targets at the same time.

In the proposed model, each navigation controller controls a robot, and all naviga-
tion controllers share an identical structure and a set of parameters. The navigation
controller receives the adjustment angle, i.e., θadj (t), from the output of the MAC,
the distances between the robot and nearby obstacles, i.e.,

⇀

L (t), from a 2D lidar
and the direction angle to the target from the robot, i.e., θgoal(t). Specifically, a
2D lidar rangefinder on the front of the robot scans from 0◦ to 180◦ and outputs
⇀

L (t) = (L1, . . . ,L8), which are the minimum distances to any obstacle in each of the
eight sectors (Figure 2.2). The output of the navigation controller is the motion
direction of the robot. To achieve collision-free navigation, a Fuzzy Logic Controller
(FLC) is added to the navigation controller. The robot avoids obstacles using a
boundary-following (BF) behaviour. A navigation controller decides what the robot
should do at each control time step.

The MAC is a centralized controller used to determine the speed and direc-
tion of each robot for the next control time step with five inputs: Drank1

goal (t−1),
Drankn

goal (t−1), vrank1
r (t−1), vrankn

r (t−1), and ΔD(t−1). For each control loop, the
robots are ranked in ascending distance from the target. Accordingly, robotrank1 is
the robot closest to the target, and robotrankn is the robot farthest away. Drank1

goal

and Drankn
goal are, respectively, the distances from robotrank1 and robotranknto the tar-

get. vrank1
r and vrankn

r are, respectively, the speeds of robotrank1 and robotrankn .
Finally, ΔD(t−1) =Drankn

goal (t−1)− Drank1
goal (t−1). The outputs of the MAC to the

navigation controllers are the speed vr(t) and heading angle θadj(t) for each robot,
rank1, . . . , rankn. We developed two types of MAC, one with a fuzzy-logic-based
model and the other with a recurrent-based model. The fuzzy-logic-based MAC is
implemented by an FLC, while the recurrent-based model uses LSTM. The details
of the proposed models are introduced in the following sections.

2.2.1 Fuzzy-Logic-Based Multiple Robot Coordinator
The proposed fuzzy-logic-based MAC is responsible for speed regulation and

heading angle adjustment. The robot speed is changed at each control time step. If a
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Figure 2.1: The block diagram of the control configuration for multi-robot navigation
and arrival-time control.

robot is much closer to the target than the other robots, a heading angle adjustment
is made so that it moves away from the target; otherwise, it will need to stop and
wait for the others.

Speed Regulation For each control loop, n robots are ranked based on their
distance to the target in ascending order. An FLC called FLCSR is used for robot
speed regulation, which directly controls robotrank1 and robotrankn . The outputs of
FLCSR are speed factors α1 and αn for these two robots, which are used to increase
or decrease their speeds. For the remaining robots (robotrank2 , . . . , robotrank(n−1)),
the speed scale factors α2, . . . , α(n−1) are generated by the following interpolation
process:

αi = i − 1
n − 1 (αn − α1) + α1, (2.1)

where i = 2, . . . , n−1 and αi ∈ [0.5, 1.5]. The speeds have upper and lower bounds,
which define a safe operating region. The robots are not allowed to stop. The speeds
for the robots at control time step t are given by:

vi
r(t) = αiv

i
r(t − 1), i = 1, . . . , n. (2.2)

FLCSR uses zero-order TSK fuzzy IF-THEN rules with the form:

RSR
j : If x1 is A1j And . . . And x5 is A5j Then y is aj, (2.3)

where x1, . . . , x5 correspond to the input variables: Drank1
goal (t−1), Drankn

goal (t−1),
vrank1

r (t−1), vrankn
r (t−1), and ΔD(t−1); Ai1,. . . , Ai5 are fuzzy sets; and ⇀

a i = (ai1, ai2 )
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is a real vector. Here, we use a Gaussian membership function. Thus, Aij is given
by

μij (xi) = exp

⎧⎨⎩−
(

xi − mij

σij

)2
⎫⎬⎭ (2.4)

where mij and σij represent the centre and width of the fuzzy set Aij, respectively.
The firing strength of rule RSR

j is obtained by implementing the following algebraic
product:

Φj =
M∏

i=1
μij (xi), (2.5)

where M is the dimension of the input variable, e.g., M = 5. Suppose that FLCSR

has r rules. An output
⇀
y = (y1, y2) = (α1, αn) can be obtained using the weighted

average defuzzification method:

⇀
y =

∑r
j=1 Φjaj∑r

j=1 Φj

. (2.6)

Heading Angle Adjustment To make the lengths of the robot paths roughly
equal, the MAC adjusts each robot’s heading angle as part of its arrival-time control.
An adjusted heading angle for robot i at control time step t is calculated by:

θi
adj(t) = θi

goal(t) + βiθmax adj, (2.7)

where βi is a scale factor that determines the strength of the heading angle adjust-
ment, θi

goal is the search angle for robot i, and θmax adj is the maximum angle in
changing the direction of robot i, e.g., θmax adj = 90◦ . θi

goal = θt − θi
front is the devia-

tion between the target angle θt and the robot orientation angle θi
front, as shown in

Figure 2.3. βi is calculated from Drankn
goal , Di

goal and αi as follows:

βi =

√√√√√ 1
αi

⎛⎝1 − Di
goal(t − 1)

Drankn
goal (t − 1)

⎞⎠ (2.8)

As βi increases, robot i is guided away from the target; on the other hand, as βi

decreases, robot i is guided towards the target. This adjustment keeps changing
the search behaviour of each robot, except for the furthest robotrankn , until either
(Drankn

goal − Drank1
goal ) < 0.1 m or each robot is within 10 m of the target. Algorithm 1 is

an overview of the fuzzy-logic-based MAC for the multi-robot navigation and arrival-
time control.
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Figure 2.2: Scanning area of the 2D
Lidar in the simulation setting.

Figure 2.3: Target angle and robot
orientation angle.

2.2.2 Recurrent-Based Multiple Robot Coordinator
In addition to the fuzzy-logic-based MAC, we also consider an LSTM-based model

because it performs well on problems involving sequential data with long time de-
pendencies. Its memory mechanism allows the use of historical data, which could
be useful for optimizing trajectory-related problems. The vanilla version of LSTM is
used because it is simple to implement and its performance is close to that of other
variants. Figure 2.4 shows the architecture of the LSTM block. In the recurrent-
based MAC configuration, we use two LSTM blocks, with input (Wz, Wi, Wf , Wo),
recurrent (Rz, Ri, Rf , Ro), peephole (pi, pf , po), and bias (bz, bi, bi, bo) weights. The
input/output interface of the LSTM controller matches that of the fuzzy-logic-based
MAC. Given input xk= (Drank1

goal (t−1), Drankn
goal (t−1) vrank1

r (t−1), vrankn
r (t−1), ΔD(t−1) ),

the LSTM block forward pass is

Block input: zk=h
(
W zxk+Rzyk−1+bz

)
,

Input gate: ik=σ
(
W ixk+Riyk−1+pi�ck−1+bi

)
,

Forget gate: fk=σ
(
W fxk+Rfyk−1+pf�ck−1+bi

)
,

Cell: ck=zk�ik+ck−1�fk,

Output gate: ok=σ
(
W oxk+Royk−1+po�ck+bo

)
,

Block output: yk=h
(
ck
)

�ok,

(2.9)

where σ is the logistic sigmoid function used for gate activation and h is the hyper-
bolic tangent function for the block input/output activation. During the training
process, all bias weights are set to 0.5.
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Figure 2.4: Long-short-term memory block.

2.2.3 Single Robot Navigation
In this study, robot behaviour cam be simply categorised in target-searching

(TS) and obstacle avoidance. The obstacle avoidance behaviour is implemented by
performing the left BF behaviour or right BF behaviour. The behaviour a robot
executing is determined by a navigation controller according to the robot’s current
position, target position and real-time outputs from the 2D lidar sensor.

Navigation Controller In the simulation for robot navigation, the mobile robot
is equipped with a 2D lidar sensor that scans the area in front of the robot from
right (0±) to left (180±). The coverage area is divided into eight sectors L1,. . . , L8,
as shown in Figure 2.2. The navigation controller uses a simple logic proposed in
[32] to switch between the TS behaviour and the left and right BF behaviours. If no
obstacles are detected within the sensing range of the robot’s lidar, then the robot
starts moving directly towards the target. Figure 2.5 shows the logic of the behaviour
selection based on the robot-target distance and timestep counter. When the robot
switches its behaviour from TS to BF, the distance d1 between the robot and the
target is recorded, and the step counter cstep is set to zero. At the location where the
robot decides to switch its behaviour from BF to TS, the distance d2 between the
robot and the target is calculated. If d1 > d2, or if the step counter cstep > 100, the
robot keeps the original BF behaviour; otherwise, the robot switches from BF to TS.
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Figure 2.5: The block diagram of the navigation control.

This timestep constraint prevents the robot from immediately switching between the
TS and BF behaviours.

The control of the robot performing BF in the navigation task is implemented by
two fuzzy controllers: the left BF controller and the right BF controller. The left BF
controller is used when the robot is close to an obstacle in the left-hand-side region,
whereas the right BF controller is used for the right-hand-side region. The number
of rules for the right BF controller is identical to that for the left BF controller. The
rules for the right BF behaviour share the same antecedent part as those for the
left BF behaviour except that the left sensor inputs L5, . . . ,L8 are changed to right
sensor inputs L1, . . . ,L4. For the rule consequent part, the steering angle in each rule
for the right BF behaviour is simply the reverse of that for the left BF behaviour.
For example, suppose that the i-th rule in the left BF controller is represented as
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follows:

Rleft
i : If L5 is Bi1 And L6 is Bi2 . . . And L8 is Bi4 Then θBF is θi, (2.10)

Then, the corresponding rule for the right BF controller is:

Rright
i : If L1 is Bi1 And L2 is Bi2 . . . And L4 is Bi4 Then θBF is − θi, (2.11)

where Bi1, . . . , Bi4 are fuzzy sets defined by a Gaussian membership function and
given as equation (2.4). The output of the left BF controller is computed according
to equation (2.6) with a singleton consequent value ai = θi; similarly, the output of
the right BF controller has a consequent value ai = −θi. During the navigation task,
the robot should decide to carry out either the left or right BF behaviour at each
control time step.

2.3 Training Strategy and Simulation Configura-
tion

In this study, both the fuzzy-logic-based MAC and recurrent-based MAC are
trained in a cascading manner. First, we train the BF controller to perform collision-
free navigation toward the target. In the second phase of training, the fuzzy-logic-
based MAC and recurrent-based MAC learn to coordinate a group of BF-controller-
equipped robots to arrive at a target at the same time. The PSO algorithm [45] is
used to optimize the tuneable parameters of all controllers.

2.3.1 Particle Swarm optimisation
PSO is a swarm intelligence optimisation approach in which each solution is

represented as a particle [45]. Each particle has a position, represented by the vector
si. The swarm in PSO is initialised with a population of random solutions. A swarm
of particles moves through the solution space, and the velocity of each particle is
represented by the vector vi. The performance of a particle is measured by a fitness
function f, which is evaluated using si. Each particle keeps track of its own best
position pi, which is associated with the best fitness that the particle has achieved.
Additionally, it is guided towards the best position found by any member of the
swarm (the global best position g). For particle i at iteration t, each element k of
the new velocity can be calculated as

v
(t)
i (k) = wv

(t−1)
i (k) + c1r1

(
pi(k) − s

(t−1)
i (k)

)
+ c2r2

(
g(k) − s

(t−1)
i (k)

)
, (2.12)
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Algorithm 1 Pseudocode for the multi-robot navigation and arrival-time control.
for all roboti do

Initialise roboti

Set the initial position and moving speed.
Set the position of the target.

end for
Main control loop
while stop conditions have not been met do

for all roboti do
Li

1, . . . , Li
8 ←Lidar outputs

Compute distance to the target Di
goal

end for
Sort all robots according to Di

goal in ascending order
v1

r ← moving speed of robotsrank1

vn
r ← moving speed of robotsrankn

Drank1
goal ← distance between robotsrank1 and the target

Drankn
goal ← distance between robotsrankn and the target

ΔD ← Drankn
goal − Drank1

goal

α1, αn ← FLCSR(v1
r , vn

r , Drank1
goal , Drankn

goal , ΔD)
for robotsrank2 to robotsrankn−1 do

αi ← equation 2.1
end for
for all robotranki

do
vranki

r ←equation 2.2
if robotranki

is performing TS behaviour and ΔD > 0.1m or Drankn
goal > 10m)

then
βi ← equation 2.8
θranki

adj ← equation 2.7
else

θranki
adj ← θranki

goal

end if
Update steering angle of robotranki

θranki
r ← RobotNavigationController(Li

1, . . . , Li
8, Dranki

goal , θranki
adj )

end for
end while
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where w is the inertia weight, c1 and c2 are positive acceleration coefficients, and
r1 and r2 are uniformly distributed random numbers in the interval [0, 1]. All com-
ponents of vi have lower and upper bounds defined by the geometry of the search
space. The new position of each particle is calculated with

s
(t)
i (k) = s

(t−1)
i (k) + v

(t)
i (k). (2.13)

With a careful choice of the parameters w, c1, and c2, equations 2.12 and 2.13 ensure
that the particle population clusters around the best solution.

2.3.2 Training Phase 1: Boundary-following Behaviour Learn-
ing

Figure 2.6 illustrates the environment for training phase 1. The main goal of
this phase is to control the robot with the BF behaviour at a constant speed using
the PSO-based fuzzy controller. Without loss of generality, this value is set as 0.4
m/s in this paper. The BF behaviour enables collision-free movement of the robot
during navigation. Since only the left BF controller is trained, the distances detected
by sectors L5, L6, L7, and L8 are used and fed as the inputs to the left BF controller.
The right BF behaviour is directly available by a slight modification to the learned
consequents for the left BF behaviour. The left BF controller output is the steering
angle of the robot BF behaviour θBF , where θBF ∈ [−3.14, 3.14] in radians. A
positive value of θBF means a clockwise rotation. The constraints for successful left
BF behaviour at each time step during the learning process are

min (L5, L6, L7, L8) > Dmin, and L5 ≤ Dmax. (2.14)

In this simulation, Dmin and Dmax are set to 0.5 and 1.5, respectively. The first
constraint prevents a collision with the object, and the second constraint prevents
the robot from moving too far from the object. In PSO-optimized training phase
1, a particle represents a whole fuzzy controller for the left BF behaviour. The
performance of the left BF behaviour is evaluated as follows. The robot moves along
the side of an object and stops when one of the constraints in (2.14) is violated,
which indicates that the controller has failed. If the robot stops, the total number
of control time steps is recorded as Tcontrol. The fitness function fphase 1 for training
phase 1 is

fphase1 = 1
Tcontrol

. (2.15)

A low fphase 1 indicates a good left BF behaviour. The control process from when
movement starts to when it stops is called a trial. If the left BF behaviour fails, the
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robot moves back to its initial position for the next trial, and a new fuzzy controller
is constructed and evaluated. The learning process is repeated until a successful
fuzzy controller is found or the maximum number of iterations is met. A left BF
behaviour is deemed successful if it successfully controls the robot for a total of Tsuc

time steps. In training phase 1, Tsuc is set to 4000 so that the robot moves along the
object boundary for over two cycles. The maximum number of iterations is set to
200 for a trial.

2.3.3 Training Phase 2: Multi-robot Navigation and Arrival-
time Coordination Learning

In training phase 2, there are three robots moving in a complex environment,
as shown in Figure 2.7. Each robot is controlled by the navigation controller, the
BF controller of which is optimized in training phase 1. During training, both the
fuzzy-logic-based MAC and recurrent-based MAC are applied in the navigation of
the three robots so that they reach the target simultaneously. The robots start from
different positions and head towards the same target. The performance of the MAC
is evaluated using a fitness function fphase 2:

fphase2 = w1f1 + w2f2 (2.16)

The first term of (2.16), f1, is used to optimize the difference in the arrival times of
robotrank1 and robotrankn :

f1 = |Trank1 − Trankn| , (2.17)
where Trank1 is the time that robotrank1 takes to reach the target and Trankn is that
for robotrankn . The second term of (2.16), f2, is used to make the robot move as fast
as possible:

f2 = |Trank1 − Trankn|
2 . (2.18)

Here, w1 and w2 are set to 10 and 0.1, respectively.

2.4 Simulation Results

2.4.1 Simulation 1 (Boundary-following Behaviour Learn-
ing)

This example shows the simulation results of training phase 1 (left BF learning
result) obtained using the PSO-optimized FLC . The number of fuzzy rules is set to
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10. The simulation environment is shown in Figure 6. The environment is built using
Webots 8.5.3 on a platform equipped with an Intel i5-4200H 3.40 GHz CPU, NVIDIA
GT 745M 2 GB graphics card, and 8 G 1600 MHz RAM. The learning objective is
to find a successful FLC for the left BF behaviour satisfying the constraints in (2.14)
for a total of 4000 time steps. The control loop stops when the robot violates the
constraint of the left BF FLC . For this optimisation problem, the objective is to
design a successful FLC using as few iterations as possible. Figure 2.8 shows the left
BF behaviour learning results for all 50 runs. PSO fails to find a successful left BF
FLC for one of the 50 runs. The average number of iterations of the PSO needed to
find a successful FLC is 13.987.

2.4.2 Simulation 2 (Multi-robot Navigation and Arrival-time
Coordination Learning)

The objective of this simulation is to optimize the MAC to enable three robots to
navigate and simultaneously reach a target in a cluttered environment, as shown
in Figure 2.7. We set the centre point of the map as the origin of coordinate
(x, z) = (0, 0), and the target is located at (x, z) = (−11, −23). The initial dis-
tance between the target and robot1 is 30.4 m, robot2 is 39.5 m, and robot3 is 43.8
m. The performances of both the fuzzy-logic-based MAC and recurrent-based MAC
are evaluated by equation (2.16). A smaller solution to equation (2.16) means that
the MAC can move the three robots towards the target as fast as possible and co-
ordinate their arrival-time as precisely as possible. For each evaluation process, the
MAC controls all robots until they all reach the target. Once all robots have reached
the target, the positions of the robots are set to their initial positions, which are

Figure 2.6: The environment for
training phase 1. Figure 2.7: Environment for training

phase 2.
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Figure 2.8: Robot left-BF behaviour-learning results for all 50 runs.

Table 2.1: Performance of fuzzy-logic-based and recurrent-based MAC in the training
phase 2.

fphase2 f1 f2

Fuzzy-logic-based MAC Average 57.73 532.0 0.41
STD 2.97 29.85 0.068

Recurrent-based MAC Average 54.46 524.62 0.2
STD 3.31 32.42 0.053

fixed during the whole training process. The number of learning iterations is set to
50. The PSO process for training phase 2 involves 50 runs for the statistical evalua-
tion. Figure 2.9 demonstrates the average best-so-far fitness of the MACs. Table 2.1
presents the performances of the fuzzy-logic-based MAC and recurrent-based MAC
in training phase 2. The average best-so-far fitness of the fuzzy-logic-based MAC
converges at 57.2 (the average value of f1 is 532.0 time steps, and the average value
of f2 is 0.41 time steps), while the recurrent-based fitness is 54.46 (the average value
of f1 is 524.62 time steps, and the average value of f2 is 0.20 time steps).
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Figure 2.9: Average best-so-far fitness value at each iteration for the MACs during
the training phase 2.

2.4.3 Simulation 3 (Multi-robot Navigation and Arrival-time
Coordination)

In this simulation, the optimized MACs and BF controller are applied to perform
the navigation and arrival-time tasks. We deploy three robots and six robots in
a cluttered environment with various starting positions to test the scalability of
the optimized MACs, as shown in Figure 2.10 and Figure 2.11, respectively. Both
the fuzzy-logic-based and recurrent-based MACs are used in this simulation. To
demonstrate the ability of arrival-time coordination, examples of robots controlled
without an MAC are included for comparison.

Three-robot Navigation and Arrival-time Control To validate the perfor-
mance of the proposed control systems, we deploy three robots in a complex envi-
ronment (see Figure 2.10), with the target building set at (x, z) = (−19.54, 8.78) .
The initial distance between the target and robot1 is 19.34 m, robot2 is 32.94 m,
and robot3 is 39.05 m. Figure 2.12 illustrates the trajectories of the three robots
controlled by the fuzzy-logic-based MAC, controlled by the recurrent-based MAC
and in the absence of an MAC during the navigation task. Figure 2.13 shows the
remaining distance between the target and the three robots. The performance of the
arrival-time coordination in the three-robot setting is shown in Table 2.2. The time
difference is evaluated by measuring the difference in arrival time of the fastest robot
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Figure 2.10: An environment setting
for three robot’s navigation.

Figure 2.11: An environment setting
for six robot’s navigation.

and the slowest robot in the simulation. The best achieved time difference under the
fuzzy-logic-based MAC is 5 time steps, while it takes 785 time steps for the slowest
robot to complete the navigation task. The recurrent-based configuration resulted
in an 8-time-step difference between the first and last arriving robots, while it takes
778 time steps for the slowest robot to complete the navigation task. By comparing
Figure 2.13(a) and 2.13(b), the robots controlled by the recurrent-based MAC have
a faster convergence speed, but the fuzzy-logic-based MAC has a better coordinating
ability in this simulation. We further compare with the case without MAC control;
see Figures 2.12(c) and 2.13(c). The three robots move directly towards the target
without changing their search directions and moving speeds such that robot1 arrives
at the target much earlier than the other two robots.

Six-robot Navigation and Arrival-Time Control The reason for us to use
the simple interpolation method to decide the velocity scaling factors and search
directions of the robots is to increase the scalability of the proposed methods such
that they can deal with a different and changing number of robots without retraining
the neural networks. To validate the scalability of the proposed methods, we deploy
six robots in this simulation, as shown in Figure 2.11, and the target building is set
at (x, z) = (−17.71, −20.34) . The initial distance between the target and robot1 is
50.11 m, robot2 is 15.26 m, robot3 is 49.44 m, robot4 is 41.69 m, robot5 is 24.08 m, and
robot6 is 34.27 m. The trajectories of the six robots controlled by each proposed model
are illustrated in Figure 2.14. Figure 2.15 shows the remaining distances between
the target and the six robots. The performance of the arrival-time coordination in
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Fuzzy-logic-based
MAC

(a)

Recurrent-based
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(c)

Figure 2.12: The trajectories of three robot’s navigation in complex environment
setting. (a) Robots are controlled by the fuzzy-logic-based MAC. (b) Robots are
controlled by the recurrent-based MAC. (c) Robots are controlled by only their own
navigation controllers.

the six-robot setting is shown in Table 2.3. The fuzzy-logic-based MAC achieves a
68-time-step time difference between the fastest robot and the slowest robot, while
it takes 965 time steps for the slowest robot to complete the navigation task. The
recurrent-based MAC has a better result, with a 34-time-step difference between the
first and last arriving robots, while it takes 907 time steps for the slowest robot to
complete the navigation task. The robots controlled by the recurrent-based MAC
have faster convergence speed as well as a smaller time difference between the fastest
robot and the slowest robot. In this simulation, the recurrent-based MAC has a
better arrival-time control performance than does the fuzzy-logic-based MAC. The
control results also demonstrate that the proposed models have scalability and are
able to control the navigation of different numbers of robots without retraining the
model.

2.5 Summary
We developed a fuzzy-logic-based coordinator and recurrent-based coordinator

for safely navigating multiple robots in cluttered environments, where the controller
regulates their speeds and adjusts their search directions to enable simultaneous
arrival of the targets. The environment for the test was an imbalanced setting,
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Fuzzy-logic-based MAC

(a)
Recurrent-based MAC

(b)
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Figure 2.13: The remaining distance between the target and the three robots dur-
ing the three-robot navigation and arrival time control simulation. (a) Robots are
controlled by the fuzzy-logic-based MAC. (b) Robots are controlled by the recurrent-
based MAC. (c) Robots are controlled by only their own navigation controllers.
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Figure 2.14: The trajectories of six robot’s navigation in complex environment set-
ting. (a) Robots are controlled by the fuzzy-logic-based MAC. (b) Robots are con-
trolled by the recurrent-based MAC. (c) Robots are controlled by only their own
navigation controllers.

Table 2.2: Performance of time arrival coordination with the three-robot setting.
Unit: Time step Time difference Time to complete task
Fuzzy-logic-based MAC 5 785
Recurrent-based MAC 8 778
No MAC 504 901

Table 2.3: Performance of time arrival coordination with the six-robot setting.
Unit: Time step Time difference Time to complete task
Fuzzy-logic-based MAC 58 965
Recurrent-based MAC 34 907
No MAC 839 901
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Fuzzy-logic-based MAC

(a)
Recurrent-based MAC
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Figure 2.15: The remaining distances between the target and the six robots during
the six-robot navigation and arrival-time control simulation. (A) Robots are con-
trolled by the fuzzy-logic-based MAC. (B) Robots are controlled by the recurrent-
based MAC. (C) Robots are controlled by only their own navigation controllers.
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in which each robot starts at positions with totally different distances to the target.
The simulation results demonstrate that the two proposed models successfully enable
different numbers of robots to safely navigate the environment and reach the target
on time. According to the simulation results shown in Table 2.2 and Table 2.3,
the recurrent-based controller outperforms the fuzzy-logic-based controller in both
three-robot and six-robot settings. The LSTM structure includes cells to store the
information over time, which benefits dealing with coordination problems, such as
arrival time coordination in this study. However, the LSTMs has a lower noise
tolerance and lower interpretability, comparing with fuzzy-logic controllers. Fuzzy
logic controllers inherently have a better noise tolerance because of their Gaussian-
based fuzzification operation. Furthermore, the fuzzy if-then rules can represent an
inference logic for different input observations associated with output actions, which
enables human users to interpret the knowledge learned by the fuzzy controller.
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Chapter 3

Fuzzy-Set Interpretable Neural
Fuzzy System

3.1 Backbround
This chapter presents a solution to deal with the interpretation of actions and

states when designing a MAT system. The interpretability of a MAT system en-
ables understandability and predictability that makes agents’ behaviours trackable.
Fuzzy systems inherently have interpretability since they can convert the knowledge
into fuzzy rules that offers linguistic terms which can be understood by the human
users. Many studies algorithms [12]–[14] proposed fuzzy systems considering the
transparency of fuzzy sets that aims to optimise the number of fuzzy rules and fixing
the partition granularity of input space during the training. Others [15]–[19] use
multi-objective optimisation algorithms to assign a proper distribution of fuzzy sets
in each input variable by setting constrain conditions when tuning the free parame-
ters.

For this work, we design an interpretable FLC by using a new Multi-objective
hybrid GA and PSO (MGAPSO) that incorporates a grouping and merging mech-
anism to improve the transparency of fuzzy sets during the optimisation process.
The grouping and merging mechanism is based on a distance metric to measure the
similarity between the center and variance of each fuzzy set. Any two fuzzy sets
with the similarity under a given threshold will be merge into a single one. The
designed FLC will be used to coordinate mobile agents in a collision-free multi-agent
navigation task to explain the knowledge learned from the simulations.

Additionally, Autonomous robot navigation can be decomposed into two main
behaviours: target seeking and obstacle avoidance. In [32], [48], a simple switch-
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ing strategy was employed in which the target seeking mode is changed to obstacle
avoidance when the distance between the robot and an obstacle is less than a given
tolerance. This hard switching strategy relies on manually setting proper tolerances
for various environmental conditions. In our previous work [49], we similarly used
hand-coded logic for behaviour selection. In this work, we attempt to replace this
mechanism with an FLC that can learn to switch between the two navigation modes.
In [50], a switching mechanism based on a stochastic deep neural network was pro-
posed for selecting among different behaviours for robots. That method performs
well on a simple map, but it is not robust in the presence of large concave obstacles.

In this work, we consider scenarios in which agents cannot rely on a map because
it may be outdated or change mid-mission. To coordinate a team of robots in such
an environment, we construct a multi-layered system of FLCs to achieve multi-robot
navigation and simultaneous arrival-time control. The control system consists of two
levels of controllers: a high-level controller to ensure the same time of arrival for all
robots at their destination point and a low-level controller to enable each robot to
perform collision-free navigation.

The main contributions of this research are four-fold:

• This research proposes a scalable FLC-based method to enable multi-robot
navigation in an unknown and complex environment. This method is based
on a feature-splitting strategy, which can significantly reduce the number of
parameters to be learned in the fuzzy rules without compromising navigation
performance.

• In contrast to traditional switching mechanisms[32], [48], [50] between target
seeking and obstacle avoidance, this research proposes a novel and robust rule-
embedded FLC to improve navigation performance.

• This research develops a grouping and merging mechanism to obtain more
transparent fuzzy sets and integrates this mechanism into the training process
for all developed FLCs, thus increasing the interpretability of the FLCs.

• A new Multi-objective hybrid GA and PSO (MGAPSO) is presented to train
all of the proposed FLCs. The MGAPSO method outperforms its single-
objective counterpart in terms of both coordination accuracy and navigation
performance. Specifically, the proposed method is based on performance and
similarity grouping such that each swarm has its own adaptive neighbourhood.
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3.2 Fuzzy Controllers for Multi-robot navigation
and coordination

We consider the following scenario. A team of agents is to navigate through a
cluttered (possibly dynamic) area to arrive at a designated destination point, which
might also change during the mission. Each agent is equipped with a 2D lidar sensor
that has an 80 m range and a 180◦ scanning angle. The agents cannot stop while in
transit, and there is a limit on their angular velocity. Such a scenario requires a set
of reactive controllers that take readings from the on-board sensors of the agents and
are stable with respect to input noise. FLC is a natural choice in these circumstances.
To alleviate the dimensional issues of the problem, we create a two-layered system
(Fig. 3.1) for multi-robot navigation and coordination. The lower-level controller
(FLC1) is responsible for the safe navigation of an individual robot, and the higher-
level controller (FLC2) provides coordination for simultaneous arrival by adjusting
the speeds and headings of all robots. As shown in Fig. 3.2, FLC1 consists of an
obstacle avoidance controller and a behaviour selector.

Multi-robot
navigation task

FLC1

FLC2

FLC1

R1

R1

Rn

R2

R3 Rn

inp1

inpn

inp

1(t)

n(t)

Figure 3.1: Block diagram of the control configuration for multi-robot navigation
and arrival-time control.
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FLC1
tgt(t)

Dtgt(t)

cmd(t)
Avoid

Obstacle
Behaviour
Selector

L(t)

Figure 3.2: The low-level individual navigation controller.

Figure 3.3: Scanning area of the 2D Lidar in the simulation setting.

3.2.1 Scalable FLC for Obstacle Avoidance
The obstacle avoidance controller is constructed as a first-order TSK-type FLC

with 15 fuzzy rules of the form:

Rule j : if x1j is A1j and x2j is A2j and x3j is A3j,

then θj = b0j + ∑3
i=1bijxij,

where A1j, A2j, A3j are fuzzy sets defined by Gaussian membership functions,
j = 1, . . . , 15; the AND operation is implemented by the algebraic product. Inputs
are provided by the Lidar sensor. For this the scanned area is divided into seven
sectors (Figure 3.3). Each sector returns the shortest distance to a detected obstacle
L1, . . . , L7. To improve the scalability of the controller, we arrange scanner readings
in three groups �xR = (L1, L2, L3), �xF = (L3, L4, L5), and �xL = (L7, L6, L5) and map
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them into rules’ inputs x1j, x2j, x3j in the following way:

input j = 1, . . . , 5 j = 6, . . . , 10 j = 11, . . . , 15
x1j L1 L3 L7
x2j L2 L4 L6
x3j L3 L5 L5

For the last 5 rules, we make use of the left-right symmetry of the lidar sensor. The
inputs from the sectors located on the sensor’s left-hand side are taken in the reversed
order to match the corresponding sectors from the right-hand side. This allows us
to re-use membership functions of the first 5 fuzzy rules for their antecedent parts,
and flip the signs of parameters defining their consequent parts and thus reduce the
number of tunable parameters for this controller from 150 to 100.

3.2.2 FLC for Robot Behaviour Selection
The robot behaviour selector consists of 6 fuzzy rules that provide a switch from

the default mode of going to target (Search) to obstacle avoidance (Avoid). The rules
have the following structure:

Rule1 : if θtgt is θF and C1 is True, then Avoid;
Rule2 : if θtgt is θR and C2 is True, then Avoid;
Rule3 : if θtgt is θL and C3 is True, then Avoid;
Rule4 : if θtgt is θF and C4 is False, then Search;
Rule5 : if θtgt is θR and C5 is False, then Search.

Rule6 : if θtgt is θL and C6 is False, then Search;

Here θtgt is the scaled angle to the target; θF , θL and θR are fuzzy sets of direction
corresponding to the scenarios that the target is at the front, at the left or right side
of the drone, respectively.

C[1,6] are defined as:

C1 :=mh1 R1 or mh2 R2 or mh3 R1
C2 :=mh1 R2 or mh2 R2 or mh3 R2
C3 :=mh1 R3 or mh2 R3 or mh3 R3
C4 :=Inverse of C1

C5 :=Inverse of C2

C6 :=Inverse of C3

(3.1)
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where

mh1 R1 =(L3 is LF and dL3 is Zd),
mh2 R1 =(L4 is LF and dL4 is Zd),
mh3 R1 =(L5 is LF and dL5 is Zd),
mh1 R2 =(L1 is LR and dL1 is Zd),
mh2 R2 =(L2 is LR and dL2 is Zd),
mh3 R2 =(L3 is LR and dL3 is Zd),
mh1 R3 =(L5 is LL and dL5 is Zd),
mh2 R3 =(L6 is LL and dL6 is Zd),
mh3 R3 =(L7 is LL and dL7 is Zd).

(3.2)

Here LF, LL and LR are fuzzy sets of distance corresponding to the scenarios
that the target is at the front, at the left or right side of the drone, respectively; Zd

is pre-defined by user and determines the status of reaching the target, i.e. True or
False; dLi

= Li − dtgt, where dtgt is the distance to the target. The above fuzzy rules
can be interpreted as: If there is an obstacle between the target and the robot, one of
the rules (Rule1, Rule2 and Rule3) is triggered, then the robot changes the behaviour
to Avoid. If the robot has a direct line to the target, one of the rules (Rule4, Rule5
and Rule6) is triggered, then the robot changes its behaviour to Search.

3.2.3 FLC for Time-arrival Coordination
FLC2 is a centralised controller that synchronises the robots’ arrival time at the

target. During each control loop, agents are ranked in the ascending order based
on their (estimated) distance to the target, so that robot Rrank1 is the closest to the
destination point and robot Rrankn is the furthest from it. To accommodate teams
of variable sizes, FLC2 directly controls only robots at both ends of the ranking.
FLC2 takes five inputs: v1, vn (the moving speeds of robots Rrank1 and Rrankn), their
distances to the target D1, Dn, and ΔD = D1 − Dn. The controller is constructed as
a 0-order TSK fuzzy system with 5 inputs, 2 outputs and 10 fuzzy rules of the form:

Rule j : if D1 is B1j and . . . and ΔD is B5j, then �y is �αj.

Here �αj are 2-by-1 vectors, and B1j, . . . , B5j are Gaussian membership functions.
There are 120 tunable parameters in FLC2.

The outputs of the controller are speed scale factors α1 and αn for the first and
last ranked robots, respectively. The scale factors for the rest of the robots are
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calculated as
αi = i − 1

n − 1(αn − α1) + α1, i = 2, . . . , n − 1, (3.3)

where αi ∈ [0.5, 1.5]. Velocities’ updates are calculated as v̂i = αivi. The velocities
are allowed to change within ±50% of the user-defined value.

To make the length of robots’ paths roughly equal, FLC2 also adjusts each robot’s
heading angle. The heading adjustment for robot i at time step t is calculated as:

θi
adj(t) = θi

tgt(t) + βiθmax adj, (3.4)

where θi
tgt(t) is the target bearing (in body coordinates), and θmax adj is the maximum

allowed angle change, βi is a scale factor that determines the strength of heading
angle adjustment and is calculated from Dn, Di (estimated distances to the target
for robots n and i calculated at time step (t − 1)) and αi as

βi =
√

(1 − Di/Dn) /αi (3.5)

.

3.3 Multi-objective hybrid GA and PSO algorithm

F1

N N

Iteration Ic Iteration Ic+1

M-GA

M-PSO
Non-
Dominated
Sorting

Fl

Fl/2

Figure 3.4: Learning configuration in the MGAPSO algorithm

In the MGAPSO, each particle or individual represents a whole solution for a
specific problem. A block diagram of the procedure for creation of new individuals is
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Figure 3.5: The process of updating the local-best bank.

shown in Figure 3.4. At each iteration, a non-dominated sorting categorises N new
solutions into l fronts based on their performances. A front is created of individuals
that cannot be dominated by each other due to incomparable fitness values. The
top-half ranked individuals are updated by multi-objective PSO (M-PSO) algorithm.
The rest of the solutions are updated using multi-objective GA (M-GA). At every
iteration after new solutions are generated, the MGAPSO updates the local-best
bank (Figure 3.5). Suppose there are N new solutions categorised into l fronts.
The first-ranked solutions are kept and then mixed with those in the old local-best
bank. The non-dominated sorting is applied to the mixed set of local-best, and only
first-ranked individuals form a new local-best bank for the next iteration.

3.3.1 M-GA
The crossover operation of the M-GA is performed, when the local-best bank has

more than two elements. A new particle vector �snew = (s1
new, . . . , sM

new) is created as
follows:

sj
new =

⎧⎨⎩ rcP
j
1 + (1 − rc)P j

2 , j = 1, . . . , τ

(1 − rc)P j
1 + rcP

j
2 , j = τ + 1, . . . , M,

(3.6)

where rc is a random number from [0, 1], and �P1 and �P2 are two parents randomly
selected from the local-best bank, τ denotes a randomly selected crossover site, M
is the length of the solution vector. After crossover operation, mutations occur with
a predefined probability pm. The mutation operation is implemented as

sj
new ← sj

new + cmrj
m(sj

max − sj
min), j = 1, . . . , M, (3.7)

where rj
m is a random number on [−1, 1], cm is a coefficient to restrict strength

of mutation; and �smax and �smin are upper and lower bounds of the solution space,
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respectively. The initial velocity vector of each new solution is assigned by the
following formula:

�vnew = cm(�r1( �P1 − �snew) + �r2( �P2 − �snew)), (3.8)

here �r1 and �r2 are vectors of random numbers on [0, 1].
If there is only one global solution in the bank, M-GA performs asexual reproduc-

tion operation to generate new solutions. It is implemented by Gaussian sampling.
Suppose there is only one local-best solution P g. Each element of P g is set as a cen-
tre of the Gaussian density function, and the standard deviation is set to 0.1. The
asexual reproduction operation is followed by a mutation to prevent new solutions
from becoming too similar with each other.

3.3.2 M-PSO
In addition to M-GA, the MGAPSO incorporates velocity and position update

mechanism of the M-PSO to ensure that all solutions explore in a relatively optimal
area during the optimisation process. The swarm is divided into Ng groups in the
same manner as in [32]. Neighbours are particles within the same group. The
neighbourhood best position, �P g

z , is the leading particle in group z selected as

�P g
z = arg max

1≤k≤n
SPD(�si, �P g

k ). (3.9)

Here n is the size of the global-best bank. SPD is a metric based on similarity and
fitness of particles defined as

SPD(�si, �P g
k ) = ‖�si − �P g

k ‖Dp( �P g
k )

‖�f(�si)‖ − ‖�f( �P g
k )‖ , (3.10)

where �si is the i-th particle in the group, �P g
k is k-th local best, �f = [f 1

i , . . . , f
Nobj
i ] is a

Nobj-dimensional objective vector. To discriminate solutions in a front, we introduce
a crowding distance Dp(·). Solutions are sorted by their crowding distance values in
ascending order. The crowding distance of i-th solution Dp(�si) is obtained as follows:

Dp(�si) = 1
Nobj

Nobj∑
j=1

uj
i , (3.11)

with
uj

i = |f j
i+1 − f j

i−1|
f j

max − f j
min

, j = 1, . . . , Nobj, (3.12)

47



where f j
max and f j

min are, respectively, the maximum and minimum values of the j-th
objective, i is the running index for solutions in a group. Crowding distances of two
boundary solutions are set to 1.

The velocity �vi of each particle i in group z is updated using its individual best
position, �Pi, and the neighbourhood best �P g

z :

�vi(t + 1) =
χ((�vi(t) + c1�r1( �Pi − �si(t)) + c2�r2( �P g

z − �si(t))),
(3.13)

where χ is a constriction factor that controls the magnitude of �vi, c1 and c2
are positive acceleration coefficients. This method forces groups to locate different
optima and thus reduces the chance of all solutions being trapped in a local minimum.
Each particle changes its position according to the following formula:

�si(t + 1) = �si(t) + �vi(t + 1). (3.14)

3.3.3 Interpretability Improvement
This study considers the transparency of fuzzy sets to improve the interpretability

of an FLC. Namely, transparent fuzzy sets should 1) be distinguishable enough; 2)
represent the universe of discourse of input variables. Additionally, the antecedence
of the fuzzy model should be as simple as possible. Generally, a smaller number of
fuzzy sets are more desirable. In this research, we propose a grouping and merg-
ing mechanism to obtain transparent fuzzy sets and integrate the method into the
training process of an FLC.

The grouping mechanism is to find similar fuzzy sets in a partition of input
variable by using distance measurement and a pre-defined distance threshold δg.
Given input xi and assume Bij is a fuzzy set of rule j, the Gaussian membership
function can be described as the following form,

μij(xi) = exp

{
−(xi − mij)2

σij
2

}
. (3.15)

where μij is the membership value of Bij with input xi. Given two fuzzy sets in input
variable i, Bip and Biq, the distance between the two fuzzy sets is defined as,

ρm (Bip, Biq) =
√

(mip − miq)2 + (σip − σiq)2. (3.16)

A cut-off distance ρcutoff is set for grouping fuzzy sets in an input variable. The fuzzy
set grouping algorithm is shown in Algorithm 2. To group fuzzy sets in input variable
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i, the fuzzy sets are sorted on their centres in ascending order as B̃i1, . . . , B̃ir. The
grouping algorithm sequentially evaluate the distance ρm starting from B̃i1, those
fuzzy sets that located within ρcutoff will be grouped in the first group G1. If a fuzzy
set Bij of which ρm

(
B̃i1, B̃ij

)
> ρcutoff , then Bij will be designated in the new group

G2. The algorithm continuously evaluate ρm between each pair of fuzzy sets until
every fuzzy sets are designated to their own groups. After grouping fuzzy sets, a
reference centre will be generated for each group. Every reference centre is obtained
by calculating the arithmetic mean from the centres of fuzzy sets assigned in the
same group. The reference centres then are used to guide those fuzzy sets locating
in the same group; the fuzzy sets of input variable i are updated as follows,

m̂ip = mip + r3(mi,Gj
− mip), B̃ip ∈ Gj, (3.17)

where mip is the centre of fuzzy set B̃ip, m̂ip is the updated centre and r3 ∈ [0, 1] is a
uniform random number. The update of centres occurs after the position update of
the M-PSO; the fuzzy sets in the same group would move closer to each other during
the learning. Significant overlapping between neighbouring fuzzy sets may occur due
to the change in their centres and widths. Denote the degree of overlapping as δ,
and given sorted fuzzy sets

{
B̃ip, B̃iq, . . .

}
∈ Gj, then degree of overlapping between

B̃ip and B̃iq can be evaluated as follows,

δpq = max (μip(miq), μiq(mip)) , (3.18)

where μip(miq) is the membership value of B̃ip fed with miq, the centre of B̃iq, and
μiq(mip) is the membership value of B̃iq fed with mip. The higher δpq indicates greater
overlap between B̃ip and B̃iq. If δpq is larger than the pre-set threshold value δth, the
two neighbouring fuzzy sets will be merge together. The centre the new fuzzy set is
set to the average centre of the two merged fuzzy sets, and the width is set to the
average width. The parameters of two merged fuzzy sets in the solution vector will
be replaced by the parameters of the new fuzzy set. Figure 3.6 shows the pipeline of
the intrpretalbe fuzzy controller learning based on the MGAPSO.

3.4 Controller Training
All three controllers introduced in Section 3.2 are trained separately in a cascading

manner. First, the obstacle avoidance part of FLC1 is trained to control a robot to
follow the boundary of an obstacle. When this training is complete, the behaviour
selector part of FLC1 is trained to navigate a robot in a cluttered environment
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Figure 3.6: Flowchart of the MGAPSO algorithm
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Algorithm 2 Fuzzy Set Grouping Algorithm
Require: B̃i1, . . . , B̃ir, fuzzy sets sorted in ascending order.

Initialization: Set empty groups Gj ← ∅(1 ≤ j ≤ r)
j ← 1, set the index of group j to 1
Gj ← B̃i1, Assign B̃i1 to the first group.
for p = 1, . . . , r do

for q = p + 1, . . . , r do
if ρm

(
B̃ip, B̃iq

)
< ρcutoff then

Gj ← Gj ∪ B̃iq , assign Biq to Gk

else
p ← q
j ← j + 1

end if
end for

end for

towards its destination point. The obstacle avoidance controller is fixed during this
phase of the training. And finally, FLC2 is trained to coordinate a group of robots
(each carrying an already trained FLC1) to achieve a simultaneous arrival. The maps
used in training are shown in Figure 3.7.

(a) (b) (c)

Figure 3.7: Maps for 3 phases of controller training.
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3.4.1 Phase 1 – training for obstacle avoidance
During phase 1 of training, the robot moves around the obstacle shown in Fig-

ure 3.7 (a) and stops when the following constraint is violated

min(L1, L2, L3, L4, L5, L6, L7) > Dmin. (3.19)

Here Dmin is a user set value. When the robot stops, the number of time steps taken
is recorded as Ttotal. The distance from the obstacle which the robot maintains every
time step is used as the other criterion for performance evaluation. Thus we have
two objectives f1 and f2:

f1 =
∑Ttotal

t=1 |L7(t) − DBF|
Ttotal

, f2 = 1/Ttotal. (3.20)

DBF is a user set value.

3.4.2 Phase 2 – collision-free navigation
A robot equipped with a boundary-following knowledge is now placed in a more

complex environment (Figure 3.7 (b)). The goal is to safely navigate from the starting
point to the target location relying only on sensor data. The boundary-following
behaviour is fixed. The second part of FLC1 works as a switch between two modes:
going to the target and avoiding an obstacle. The fitness value of a solution is
determined by running a simulation. The simulation stops either when a pre-set
number of steps is reached, or when the distance to the target location becomes less
than a user-defined value Dmiss. Robot’s trajectory is given a rating based on its
final distance from the target Dfinal, number of collisions with obstacles Nc, and the
total length of the trajectory L. This gives us two objective functions:

f3 = Nc + P, f4 = L + P, (3.21)

where P is the penalty function defined as

P =

⎧⎨⎩ 0, if Dfinal ≤ Dmiss,

1000Dfinal, if Dfinal > Dmiss.
(3.22)

The penalty value is added to both objective functions in (3.21) to gradually eliminate
those particles that fail to reach the target.
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3.4.3 Phase 3 – training for time-arrival coordination
For the time-arrival coordination, a team of 4 agents is placed in a single scenario

as shown in Figure 3.7 (c). Each robot is equipped with an FLC1 and a 2D-Lidar
sensor. A single destination point is selected. The scenario set-up is fixed during
the training process. The evaluation of a controller performance involves a complete
simulation run from start to end until either all robots arrive at their targets or the
simulation time limit is reached. At the end of the run, robots are ranked again by
their arrival times, and the first (T1) and the last (Tn) of these times are used to
generate two objective values as follows:

f5 = |Tn − T1|, f6 = (T1 + Tn)/2. (3.23)

When f5 is at minimum, the robots arrive at the destination point at the same time;
f6 keeps all robots moving at maximum speeds by minimising the average arrival
time of the two robots positioned at the opposite ends of the ranking.

3.4.4 Comparison between Multi-Objective and Single-objective
To compare the optimisation performance of the MGAPSO with that of the

single-objective PSO, we conducted 10 runs for each training phase using both algo-
rithms for statistical evaluation. When using PSO, we combined objective functions
defined in (3.20)–(3.23) using cascading weightings:

fPSO1 = 0.1f1 + 10f2,

fPSO2 = 10f3 + 0.1f4,

fPSO3 = 10f5 + 0.1f6.

(3.24)

We also selected from each run of the MGAPSO those fitness pairs that have a smaller
combined value for comparison. In the first objective function fPSO1 = 0.1f1 + 10f2,
f1 enables the robot to keep an adequate distance to avoid an obstacle, and f2 is
to evaluate the performance of the boundary-following movement. We considered f2
more important than f1 because we expected that the single-objective PSO could
find solutions at least enabling robot’s collision-free movement during the task. The
second fPSO2 consists of f3 and f4, which record the times of collisions occurring
and the final distance to the target. We expected that the collision does not happen
during the navigation task. Thus, f3 has a higher weight than f4. In the third
objective function fPSO3 = 10f5 + 0.1f6, f5 is to minimise the time difference of
robots arriving at their destination point, and f6 is to ensure that all robots move
at their maximum speeds during their navigation. f5 has a higher weight as it is the
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main purpose of designing the controller; to coordinate a group of robots to arrive
at their destination point simultaneously. fPSO3 also had been used in our previous
study [49] and demonstrated its performance in designing the fuzzy controller for a
variant number of robots. The results are gathered in Table 3.1. In our opinion, the
MGAPSO succeeds in forcing the particles to explore a wider area and through this
it finds a better solution.

Table 3.1: Comparing the MGAPSO and PSO for controller training.
MGAPSO PSO

Average STD Average STD
f1 4.2051 0.9760 5.4971 0.7080
f2 0.0033 0.0 0.0036 0.0005
f3 0.0 0.0 0.0 0.0
f4 186.83 3.14 187.57 1.56
f5 0.41 0.053 0.63 0.097
f6 432.9 35.3 458.6 30.8

3.4.5 Simulations

3.4.6 FLC1 behaviour selector vs simple switching mecha-
nism

To compare the performance of the FLC1 behaviour select or with that of the
hand-coded switch logic, we ran 20 robots in a test environment. The results are
shown in Figure 3.8. Plot (a) shows trajectories produced by robots equipped with
both parts of FLC1: FLC1-A (the avoid-obstacle controller) and FLC1-B (an embed-
ded behaviour selector). Plot (b) shows trajectories produced by robots equipped
with FLC1-A and a hand-coded switching mechanism. We observe that FLC1-B
more reliably achieves collision-free navigation compared to its hand-coded counter-
part.

3.4.7 Arrival time coordination
In order to make FLC2 able to handle teams of variable sizes without retraining,

we construct it so that it directly controls only two agents (the furthest and the
nearest to the destination point) by producing two speed adjustment factors for
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Figure 3.8: Trajectories produced by (a) the trained behaviour selector and (b) the
hand-coded switching mechanism as in [32], [49]. Each line represents a robot’s
trajectory.

Figure 3.9: Arrival time coordination of robotic teams of various sizes. The number
of robots in (a), (b) and (c) are 10, 20 and 30, respectively.
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Figure 3.10: Arrival time coordination of robotic teams of various sizes. The number
of robots in (a), (b) and (c) are 10, 20 and 30, respectively.

them. For the rest of the team, these factors are calculated using (3.3). FLC2 also
controls heading angles via (3.4) and (3.5).

Figures 3.9 and 3.10 show the results of the controller managing teams of 10, 20
and 30 agents in test environments. In Figure 3.9, the target point is set at (x, y) =
(100, 350). The controller achieves 1-time-step time difference between the fastest
robot and the slowest robot, and takes 788 time steps to complete the navigation
task when it controls 30 robots. When the number of robots is reduced to 10, the
controller achieves zero time difference with 786 time-steps completion time. In
Figure 3.10, the target point is set at (x, y) = (400, 100). FLC2 achieves perfect
time control for all three teams, but the completion time increases with the size of
the team. It takes a team of 10 agents 795 time-steps to complete the task, whereas
a team of 30 needs 924 time-steps. The simulation results demonstrate that the
proposed controller has good scalability and robustness; without any retraining it is
able to coordinate varying number of robots with acceptable performance.

3.4.8 Interpretable fuzzy controller for arrival time coordi-
nation

This section presents the learned knowledge of the interpretable fuzzy controller
for arrival time coordination. Table 3.2 reveals the MGAPSO-designed fuzzy rules.
We set the number of fuzzy rules to 10, and there are five input variables and two
consequent components in each rule. The fuzzy controller here is fed D1, Dn, v1, vn,
and ΔD. D1 and Dn are the distance between the target and robot Rrank1 and
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robot Rrankn , respectively. v1 and vn are the moving speeds of robots Rrank1 and
Rrankn . ΔD is the difference of remaining distance of robots Rrank1 and Rrankn , that
is ΔD = D1 − Dn. The outputs of the fuzzy controller are α1 and αn for speed
regulation of robots Rrank1 and Rrankn . Figure 3.11 shows the corresponding fuzzy
sets in the five input variables. Comparing to the fuzzy sets learned without the
interpretability improvement, as shown in Figure 3.12, the transparency of fuzzy sets
in Figure 3.11 is improved, which allow human to understand the learned knowledge
in the MGAPSO-designed fuzzy rules. For example, Rule1 represent the situation
that Rrank1 is moving ”Very Fast” and in ”Middle Near” distance to the target and
Rrankn is moving ”Slow” and in ”Very Far”. Consequently, Rule1 slows down the
Rrank1 with α1 = 0.8635 and speeds up Rrankn with α1 = 1.9476. If both Rrank1 and
Rrankn are locating far away from the target and moving very fast, the firing strength
of Rule7 will become large; the controller will speed up both Rrank1 and Rrankn . On
the other side, if Rrank1 is approaching the target and moving fast, and Rrankn is still
in the middle distance and moving slowly, the firing strength of Rule4 will become
large; the controller will reduce the moving speed of Rrank1 and accelerate Rrankn to
catch up Rrank1 .

This section presents the knowledge learned by the interpretable fuzzy controller
for arrival-time coordination. Table 3.2 reveals the MGAPSO-designed fuzzy rules.
We set the number of fuzzy rules to 10, and there are five input variables and two
consequent components in each rule. The fuzzy controller here is fed D1, Dn, v1,
vn, and ΔD. D1 and Dn are the distances between the target and robots Rrank1 and
Rrankn , respectively. v1 and vn are the movement speeds of robots Rrank1 and Rrankn ,
respectively. ΔD is the difference in the remaining distances of robots Rrank1 and
Rrankn to the target, that is, ΔD = D1 − Dn. The outputs of the fuzzy controller are
α1 and αn for the speed regulation of robots Rrank1 and Rrankn , respectively. Fig. 3.11
shows the corresponding fuzzy sets in the five input variables. Compared to the
fuzzy sets learned without the interpretability improvement, as shown in Fig. 3.12,
the transparency of the fuzzy sets in Fig. 3.11 is improved, allowing humans to
understand the learned knowledge captured in the MGAPSO-designed fuzzy rules.
For example, Rule 1 represents the situation in which Rrank1 is moving “Very Fast”
and at a “Middle Near” distance to the target and Rrankn is moving at a “Slow” speed
and a “Very Far” distance. Consequently, Rule 1 slows down Rrank1 with α1 = 0.8635
and speeds up Rrankn with α1 = 1.9476. If both Rrank1 and Rrankn are located far
from the target and are moving very fast, then the firing strength of Rule 7 will
become large; the controller will speed up both Rrank1 and Rrankn . On the other
hand, if Rrank1 is approaching the target and moving fast while Rrankn is still at a
middle distance and moving slowly, then the firing strength of Rule 4 will become
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large; the controller will reduce the movement speed of Rrank1 and accelerate Rrankn

to catch up with Rrank1 .

Table 3.2: Fuzzy rules trained by the MGAPSO with interpretability improvement
Rules Input 1 Input 2 Input 3 Input 4 Input 5 α1 αn

Rule 1 B1,2
(Middle Near)

B2,4
(Very Far)

B3,4
(Very Fast)

B4,1
(Slow)

B5,3
(Distant)

0.8635 1.9476

Rule 2 B1,1
(Reaching)

B2,1
(Very Near)

B3,1
(Very Slow)

B4,1
(Slow)

B5,1
(Closing)

1.5919 1.6165

Rule 3 B1,5
(Very Far)

B2,4
(Very Far)

B3,3
(Fast)

B4,1
(Slow)

B5,3
(Distant)

0.8785 1.8372

Rule 4 B1,1
(Reaching)

B2,2
(Near)

B3,4
(Very Fast)

B4,1
(Slow)

B5,2
(Not Distant)

0.3147 1.7453

Rule 5 B1,1
(Reaching)

B2,1
(Very Near)

B3,2
(Slow)

B4,1
(Slow)

B5,1
(Closing)

1.3919 1.6165

Rule 6 B1,3
(Middle)

B2,3
(Middle)

B3,4
(Very Fast)

B4,2
(Fast)

B5,1
(Closing)

0.8568 0.7833

Rule 7 B1,5
(Very Far)

B2,4
(Very Far)

B3,3
(Fast)

B4,3
(Very Fast)

B5,2
(Not Distant)

1.5635 1.9476

Rule 8 B1,3
(Middle)

B2,4
(Very Far)

B3,1
(Very Slow)

B4,1
(Slow)

B5,3
(Distant)

0.5705 1.9722

Rule 9 B1,2
(Middle Near)

B2,3
(Middle)

B3,4
(Very Fast)

B4,1
(Slow)

B5,4
(Very Distant)

0.9477 0.81038

Rule 10 B1,4
(Far)

B2,4
(Very Far)

B3,2
(Slow)

B4,2
(Fast)

B5,1
(Closing)

1.1705 0.72542

3.5 Summary
This research investigated the problem of multi-robot navigation and simulta-

neous arrival coordination in an unknown environment. We presented a two-layer
structure of FLCs to ensure safe navigation with coordination of the arrival times. All
three proposed controllers (for obstacle avoidance, behaviour selection and arrival-
time coordination) are based on fuzzy inference systems. By splitting the large-scale
feature space into several smaller ones, we reduced the number of parameters to
be learned without compromising the performance of the low-level controller. Ad-
ditionally, in contrast to traditional behaviour switching mechanisms, we proposed
a novel rule-embedded FLC to improve the navigation performance. Moreover, we
developed a grouping and merging mechanism to obtain transparent fuzzy sets and
integrated this mechanism into the training process for all FLCs, thus increasing the
interpretability of the fuzzy models. To design these controllers automatically and ef-
ficiently, we developed the hybrid MGAPSO method, which simultaneously leverages
the exploration capability of a GA and the convergence capability of PSO. Simula-
tion results demonstrate that with our approach, various numbers of robots can be
successfully controlled to safely navigate and reach their target simultaneously.
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Figure 3.11: Fuzzy sets trained by
the MGAPSO with interpretabil-
ity improvement

Figure 3.12: Fuzzy sets trained
by the MGAPSO without inter-
pretability improvement
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Chapter 4

Fuzzy-Rule Interpretable Neural
Fuzzy System

4.1 Background
The FISs convert learned knowledge into fuzzy rules that can be interpreted by

the human user by optimising the transparency of the fuzzy sets. This mechanism
allows human agents to understand machine agents’ actions and states and then
establish machine-to-human interaction in a human-machine MAT system. In ad-
dition to machine-to-human interaction, human-to-machine interaction should also
be considered in a human-machine MAT system. This chapter presents an approach
to identify the human states and their transition routes automatically, which allow
machine agent to understand human cognitive states and their transition, and can
be used to coordinate human and machine agents when making a decision.

Several approaches have been developed to identify human states. Haynes and
Rees [51] proposed a decoding-based approach based on Functional Magnetic Reso-
nance Imaging (fMRI) data to categorised unconscious and conscious mental states.
In paper [52], the initial state of brain activity was identified by applying Principal
Component Analysis (PCA) on magnetoencephalography (MEG) data. This initial
state then was used to trace the brain activity in the state space as the subject re-
ceived visual stimulus. These two researches considered spatial features that might
not be able to discover time-dependent transition state. Taghia et al. [53] devel-
oped a system based on first-order Markov model to discover hidden brain state by
analysing functional connectivity from fMRI data. Kringelbach et al. [54] developed
a framework that models the state transition in the brain based on the informa-
tion extracted from neuroimaging data. This framework also used Markov model to
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observe state changes. Both [53] and [54] provide time-dependent approaches that
enable the transition state being observed. The approaches for brain state discov-
ery discussed so far rely on fMRI or neuroimaging data that offer only second-level
observations on the brain activity. However, the alteration in mental state occurs in
millisecond-level. And EEG device can recode brain activity many times in a second,
which provide more sophisticate information for brain state observation. This study
therefore proposes an EEG-based approach to investigate brain state in a higher-
resolution way.

To identify brain state via EEG data, the proposed approach is incorporated
with unsupervised learning. Unsupervised learning has been widely used for state
identification because it does not require external supervision [53], [55]–[58]. Thus, we
used an unsupervised density-based clustering method to automatically identify brain
states. One of the advantages of density-based clustering algorithms is that they do
not require prior knowledge to determine the number of clusters, unlike centre-based
clustering algorithms, such as K-means and K-medoids [59]–[62]. In addition, most
centre-based clustering algorithms assign the data points to the nearest cluster centre,
which might fail to identify clusters with an arbitrary shape [60], [62]. Density-based
clustering algorithms, on the other hand, calculate the local density of data so that
arbitrarily shaped clusters can be detected easily [60], [62], [63]

Apart from brain dynamics, the subjective difference is another factor affecting
BCI performance significantly. Brain activities could have non-stationery and time-
variant dynamics over time, and this addresses one more challenge for developing
BCI [64]–[66]. To overcome the subjective difference, we consider the FISs to extract
features from the brain dynamics. The fuzzification operation and if-then-rule archi-
tecture in FISs have been demonstrated to address uncertainty [43], [44], [67]–[69].
The fuzzy if-then-rule can model the dependency between input and output vari-
ables as an inference logic for different observable situations [43], [68]. This inference
mechanism facilitates the modelling of human brain activities associated with dif-
ferent behaviours. The fuzzification operation translates the data into membership
degrees using the Gaussian membership function and provides a tolerance for uncer-
tainty, such as noise and variations in data [43], [44], [57], [67]–[69]. Fuzzy Neural
Networks (FNNs) [43], [44], [66], [69], [70] amalgamating fuzzy inference systems
into artificial neural networks are introduced in this study to model the continuous
changes in brain states via a supervised learning approach. We assumed that every
single fuzzy rule represents one specific brain pattern associated with a specific be-
haviour or latent mental process during the task. More specifically, the firing strength
of a fuzzy rule can be the membership (degree) of a particular brain activity, which
provides useful information to explicate the brain states [66], [69], [71]. Therefore,
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in this study, the firing strength of fuzzy rules is used as features to depict recorded
EEG data, and then the unsupervised density-based clustering method is exploited
to define external states as well as the covert states of the brain.

In addition to the identification of external and covert brain states, we introduced
probability to determine the degree of change to other states by applying a Markov
model [53], [72]–[75] to the captured brain states to obtain probabilities of transition
between every pair of states. The transition probability of Markov model is not
deterministic; it inherently cannot predict the future states from the present with
certainty. However, this transition probability allows the user to find the possible
feature states [53], [72]. We therefore can assign transition probability to brain states
to generate moment-by-moment connectivity patterns, called the Covert State Tran-
sition Diagram (COSTD), which helps us to understand brain dynamics in relation
to a cognitive task.

This study proposed a Fuzzy COSTD (FCOSTD) which is based on FNN and
a density-based clustering approach. We then leverage FCOSTD to identify the
dynamic changes of brain states (external and covert states) and explore the rela-
tionships between the human brain and behaviour performance.

4.2 Methodology
Figure 4.1 interprets the generation of the FCOSTD based on EEG signals. Here

the FNN plays an important role, providing plentiful information to carry out unsu-
pervised clustering, brain state representation and state change visualization. The
fuzzy inference mechanism in the FNN is used to characterize frequency-domain EEG
data. There are two advantages of using FNNs: 1) the antecedent components of
the fuzzy rule can overcome the subjective uncertainty [76], [77]; 2) fuzzy inference
mechanism in the FNN enables the neural network to extract knowledge from input
patterns which can be interpreted by either machine or human [17], [36], [78].

4.2.1 Fuzzy Neural Network
To develop a brain-state-drift classifier that can overcome the subjective uncer-

tainty of EEG signals and train the classifier with fewer segmental patterns, we
exploited an FNN to classify incoming brain activity patterns. The structure of
the FNN used in this study is shown in Figure 4.1. Assume the input X (t) =
[x1(t), . . . , xn(t)]T ∈ R

n×1, and the FNN has r rules. The layers of the network, from
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Figure 4.1: The proposed FCOSTD. The fuzzy state identification includes a fuzzy
neural network, clustering, and Markov chain, and then the FCOSTD can be gener-
ated
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the first to the fifth, realize a fuzzy-rule-based inference model of the following form:

Rule j : if x1 is A1j and . . . and xn is Anj, Then wi = a0j + a1jx1 + . . . + anjxn,
(4.1)

Rule j : if x1j is A1j and x2j is A2jandx3j is A3j,

then θj = b0j + ∑3
i=1bijxij,

where Ai
j is the i-th fuzzy set defined on the j-th input variable and ai

0, . . . , ai
n

are the coefficients of the linear consequent of the rule. Note that the number of the
consequent parameters corresponds to the dimension of the input variable X. To
illustrate the structure of the FNN in detail, the FNN is introduced in this section
layer by layer.

Layer 1 (input layer) The number of nodes in this layer equals the length of one
input pattern vector. Each node, which performs no computation, transmits input
data to the next layer. The outputs of the j-th node in this layer can be defined as

O
(1)
j = xj(t). (4.2)

Layer 2 (membership layer) In layer 2, each node represents a fuzzy set and
evaluates the membership value of an input variable from layer 1 with the corre-
sponding membership function. In other words, the nodes in layer 2 fuzzify the
input data, transferring the crisp values to the linguistic levels. The membership
functions can be either triangular, trapezoidal, or Gaussian. We use a Gaussian
membership function in this study. Thus, the output of each layer-2 node can be
calculated as

O
(2)
ij = μi

j = exp

⎡⎢⎣−
⎛⎝O

(1)
j − mi

j

σi
j

⎞⎠2
⎤⎥⎦ , (4.3)

where μi
j is the membership value corresponding to the j-th input variable of the

i-th rule and mi
j and σi

j are, respectively, the centre and the width of the Gaussian
membership function.

Layer 3 (rule antecedent layer) The nodes in layer 3 are called rule nodes. A
node in layer 3 represents one fuzzy rule and receives corresponding membership
values from the nodes in layer 2 to compute the firing strength value of the rule by
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performing a fuzzy AND operation. Each node in layer 3 receives single-dimensional
membership degrees from appropriate nodes in Layer 2 to form the antecedent clause
of a rule. Here, fuzzy AND operation is utilized to calculate the node outputs, taking
the algebraic product of the membership values of the atomic clauses associated with
a rule. Given r rules, the output of each layer-3 node can be computed as

O
(3)
i = ϕi =

n∏
j

O
(2)
ij . (4.4)

Layer 4 (normalization layer) The size of this layer equals the size of layer
3. Each layer-4 node represents a normalized rule antecedent whose outputs are
calculated by

O
(4)
i = ϕ̄i = O

(3)
i∑r

k O
(3)
k

. (4.5)

Layer 5 (consequence layer) Layer-5 nodes are called consequent nodes. Each
node receives the output delivered from layer 4 and the input variables of layer 1.
The output of layer 5 is obtained as follows:

O
(5)
i = wi O

(4)
i =

⎛⎝ n∑
j

ai
jxj + ai

0

⎞⎠ O
(4)
i . (4.6)

Layer 6 (output layer) A node of layer 6 corresponds to one output variable.
Here, the nodes operate integration as a defuzzification process with

O(6) = y(t) =
r∑
i

O
(5)
i . (4.7)

4.2.2 Parameter learning of the FNN
The parameter-learning phase carries out supervised learning to optimize all the

free FNN parameters. In this study, the parameters of fuzzy rules are learned via the
gradient descent (GD) algorithm. Considering the single-output case for simplicity,
the error function E to be minimized is defined by

E =
N∑

t=1

1
2 [y (t) − yd (t)]2, (4.8)
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where N is the number of training samples and yd is the desired output for the
layer-6 nodes. Denote that m̂i

j and σ̂i
j are the new centre and width of the Gaussian

membership function during the training, and can be updated as follows:

m̂i
j = mi

j − η
∂E

∂mi
j

,

∂E

∂mi
j

=
N∑

t=1

r∑
i=1

∂E

∂y

∂y

∂ϕi

∂ϕi

∂μi
j

∂μi
j

∂mi
j

=
N∑

t=1

∑
i∈ϕ(j)

[y (t) − yd (t)] [wi − y(t)] ϕi∑r
k ϕk

(
xj − mi

j

)
(
σi

j

)2 ,

(4.9)

where wi = ∑n
j ai

jxj + ai
0. And,

σ̂i
j = σi

j − η
∂E

∂σi
j

,

∂E

∂σj
i

=
N∑

t=1

r∑
i=1

∂E

∂y

∂y

∂ϕi

∂ϕi

∂μi
j

∂μi
j

∂σi
j

=
N∑

t=1

∑
i∈ϕ(j)

[y (t) − yd (t)] [wi − y(t)] ϕi∑r
k ϕk

(
xj − mi

j

)2

(
σi

j

)3 .

(4.10)

The consequent components can be updated with

âi
j = ai

j − η
∂E

∂ai
j

,

∂E

∂ai
j

=
N∑

t=1

∂E

∂y

∂y

∂wi

∂wi

∂ai
j

=
N∑

t=1
[y (t) − yd (t)] ϕi∑r

k ϕk

xj,

(4.11)

where âi
j is new consequent component. Note that x0 is set to 1 for updating ai

0.
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4.2.3 Covert State Transition Diagram
After the optimised FNN is obtained, the FCOSD is generated to represent the re-

lationships among the defined states. Figure 4.1 shows the generation of the FCOSD.
First, the outputs of the layer-4 nodes (normalised layer) are extracted and encoded
in a vector Φ̄ (t) = [ϕ̄t

1, ϕ̄t
2 . . . , ϕ̄t

r]. Afterwards, an unsupervised clustering approach
is adopted to categorise rule-node vectors over all trials into K clusters. According
to the dominant label in each cluster, the K cluster can be defined as K states and
connected to corresponding real behaviours or physical meanings by external labels
of each clusters. The relationships among the K states are then established to form
a covert state transition diagram.

Density-based clustering algorithm We use the Density Peaks Clustering Al-
gorithm (DPCA) [62] to cluster normalised firing strength vectors Φ̄. Here, we define
that a strength vector Φ̄ is a data point. To find cluster centres for the whole set
of Φ̄, DPCA computes the local density ρi and the distance δi to higher-density
points for each datum point i. We use the Euclidean metric to calculate distances
dij = ‖Φ̄i − Φ̄j‖. The local density ρi is estimated by a Gaussian kernel function
defined as

ρi =
∑
j �=i

exp

⎡⎣−
(

dij

dc

)2
⎤⎦ , (4.12)

where dijis the Euclidean distance between data points i and j,and dc is the cut-off
distance predefined by the user. Here, dc is set according to Rodriguez’s study [62],
and a chosen dc can satisfy that the average number of neighbours is approximately
20% of the total number of data points, e.g.,dc = 0.07. Given ρ1 ≥ ρ2 ≥ . . . ≥ ρN ,
where N is the number of data points, and then δi can be determined by

δi = max
{j:ρj>ρi}

dij. (4.13)

Here δi represents the maximum distance between datum point i and other higher-
density points. With these two quantities, we can define a γi value as follows:

γi = ρiδi. (4.14)

A high γi value of a datum point reflects that it simultaneously has crowding neigh-
bours and is located far from other higher-density points. We can use this γi value
to determine cluster centres. For other on-central points, clustering assignment is
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implemented by the nearest-neighbour approach as follows:

k =

⎧⎪⎨⎪⎩
arg min

j:ρj>ρi

dij, ρi < max
j

ρj

i otherwise
(4.15)

where k is the index of the neighbour datum point. If datum point j closest to datum
point i and of which local density ρj is highest, then k is assigned as j; otherwise, k
is assigned as i. Afterwards, each non-central point is assigned to the same cluster
as its neighbour datum point of higher density.

Visualization of state changes To take a solid consideration for state represen-
tation of the proposed system, we must not only determine the covert states but
also the relationships among them. We build a cover-state transition diagram taking
transition probabilities into account to discover the temporal changes of the observed
system via a Markov chain [72], [73], [75]. All connections among observable states
are updated based on the state transition matrix. Given K states found by the
DPCA, the state transition matrix can be defined as

P =

⎡⎢⎢⎣
p11 · · · p1K
... . . . ...

pK1 · · · pKK

⎤⎥⎥⎦ . (4.16)

The columns of the matrix refer to the state for the next time point, and the rows
of the matrix refer to the current state. Each transition probability pij between two
states is estimated by the maximum likelihood approach, which is pij = Tij/L, where
Tij is the number of direct transitions from state i to state j and L is the total number
of times the system arrived at the state i, irrespective of how it has arrived. Thus∑K

j=1 pij = 1; i = 1, 2, . . . , K. Once the state transition matrix is obtained, we can
observe the path of transition from state to state as the observed system reacts to
the stimuli or events.

4.3 Experiment

4.3.1 Experimental Design
The human brain is a complex system, and brain dynamics change rapidly re-

garding stimuli, tasks or emotion. To demonstrate the feasibility of the proposed
FCOSTD, the EEG signals recorded from the distracted driving experiment were
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selected because the participant must switch their attention between the designed
tasks over time. All electrodes of the EEG cap were referenced to linked two mas-
toids of the participant, and a single ground electrode was attached to the forehead.
All references and ground are built in the device. The experiment was designed
in a driving simulator on a dynamic 6-degree-of-freedom motion platform with 360
°driving scenes rendered on the seven LCD projectors [79], [80]. The simulator pro-
vides authentic visual and kinesthetic stimuli of the driving situation on a highway
to the participants. This means that the participants experience real-time kinematic
feedback from the motion platform regarding their operations, such as turning the
steering wheel. The simulator emulates car cruising at a fixed speed of 100 km/hr
on a highway scene in the night throughout the entire experiment.

There are two tasks: one driving task and a mathematical problem-solving task.
In the driving task, the car deviates to either the left or right from the cruising lane
randomly, and the participants are asked to turn the steering wheel to control the car
back to the cruising lane immediately. In the mathematical problem-solving task, the
participants need to verify a two-digit addition equation (i.e., whether the equation
is correct or incorrect) displayed on the front screen when the event comes in. The
numbers of correct and incorrect equations are the same, and the difficulty level is
set the same as well. There are two buttons mounted on the left and right sides
of the steering wheel. The participants can easily use the right thumb to press the
button mounted on the right side of the steering wheel to report the correctness of
the mathematical equation. To evaluate behaviour performance, the latency between
even onset to proper response is defined as reaction time (RT). For the driving task,
the RT is the latency between the deviation onset and turning the steering wheel.
Similarly, the latency between the presentation of the equation and the button press
is the RT of the mathematical task.

Eleven neurologically healthy volunteers aged 20–28 years participated in a dis-
tracted driving experiment. Continuous EEG data were recorded during the time a
participant was involved in the experiment. All participants were required to have
a driver’s license and good driving habits. This experiment was conducted at Na-
tional Chiao Tung University, Hsinchu, Taiwan [79], [81]. Every participant had two
training sessions before the experiment to acquaint themselves with the two tasks
and the virtual-reality environment. After two training sessions, every participant
had four 15-min experimental sessions separated by 10-min rests. A more detailed
explanation of the designed distracted driving can be found in our previous studies
[79], [80].
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4.3.2 EEG Data Preprocessing
In the preprocessing phase, the continuous EEG recordings are filtered using a

zero-phase finite impulse response (FIR) band-pass filter, which has been widely
used for EEG signal prepossessing [82]–[84]. We set lower cut-off frequency to 1
Hz and higher cut-off frequency is 50 Hz. The selected cut-off frequencies enable
the filter to capture all the variations in event-related potentials (ERPs) of collected
EEG signals in the designated bandwidth, and filter out the noise from power line,
movement-related artifacts, and sweat artifacts. Others wide variety of artifacts are
then removed via Independent Component Analysis (ICA) [85], [86]. The ICA can
recover independent components from the recorded signals maximizing the degree
of statistical independence of the estimated components [79]. Once the artifact-free
EEG data are produced, it was segmented into a 1.2-second interval from the time
an event is on-set, and we call it a trial. Then, every trial is further divided into 17
segments with overlapping 400-ms windows advancing in 50-ms steps. Every 400-
ms sample was transferred from the time domain to the frequency domain using
the Fast Fourier Transform (FFT). To reduce the computational complexity, six
components, including the frontal, central, parietal, occipital, left motor and right
motor regions, are selected for further processing. The mean powers in the delta
(1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), and low beta (13–20 Hz) bands were then
extracted from the selected components. Note that previous studies [65], [79], [87],
[88] have demonstrated that the brain dynamics in these selected components are
highly associated with visual perception, visual processing, motor control, attention
and planning. Papers [79] and [80] also suggest that mental states of subjects can
change significantly within 1.2 seconds after events is on-set during the driving. For
the training process of the FNN, each segment is assigned a label, either driving or
math. The total number of input variables fed to the FNNs was 24 (4 bands × 6
components).

4.3.3 Experimental Results
The FNN, in this study, is rained subject-by-subject because all subjects have

various brain activity patterns. The output of FNN is binary output; 0 represents
driving and 1 is math. We use mean squared error (MSE) as the loss function
for training. The learning rate for update rule of gradient descent algorithm is
set to 0.001, and the learning epoch is 100. The single-subject performance of all
experiments is shown in Table 4.1. The second and third rows, respectively, present
the number of rules that FNN generated and its recognition rate. The fourth and fifth
rows present the performance of clustering on firing strength vectors Φ̄ extracted from
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Table 4.1: The performance of FNN and clustering on the distracted driving experi-
ments. The number in the first row represents the index of the subjects. The second
and third columns present the number of rules that FNN generated and its recog-
nition rate, respectively. The performance of clustering is evaluated by using the
Silhouette score and Fowlkes-Mallows Score, as shown in the fourth fifth columns,
respectively.

Subjects
Index

Number
of Rules

Recognition
Rate (%)

Silhouette
Score

Fowlkes-
Mallows Score

subject 1 14 93.36 0.56 0.56
subject 2 14 93.87 0.53 0.49
subject 3 15 93.74 0.59 0.58
subject 4 12 87.82 0.52 0.57
subject 5 17 96.09 0.39 0.67
subject 6 13 89.99 0.61 0.56
subject 7 16 92.73 0.43 0.53
subject 8 13 94.58 0.39 0.62
subject 9 15 93.42 0.5 0.54
subject 10 19 93.55 0.36 0.53
subject 11 15 93.4 0.47 0.55

the trained FNN. The performance of clustering is evaluated by using the Silhouette
score [89] and the Fowlkes-Mallows score [90]. The Silhouette score in Table 4.1 is
the mean value across the estimated compactness values of each cluster, while the
Fowlkes-Mallows score shown in the next row (in its right lower box) evaluates the
geometric mean of the precision and the recall. The number of clusters for all subjects
is determine by γi value in formula 4.14, more details are described in section 4.4.1.

4.3.4 Case Study
Case study — Distracted driving (subject 1) Figure 4.2 shows the content
of each clustering, and each index on the horizontal axis represents a cluster, i.e.,
Cn, n = 1, 2, 3, and 4, represent the n-th cluster. There are four clusters generated
by the collected data from the first subject. Each cluster has its own dominating
label, of which the occupancy rate is the greatest. The math label (the blue part of
a bar) indicates that the participant doing or paying attention to the mathematical
problem-solving task, while the driving label (the saffron part of a bar) represents
the lane-keeping driving task. Table 4.2 reveals the distribution percentage of each
label in different clusters. In Figure 4.2, the clusters C1 and C2 are dominated by
math labels, which means that for most of the trails included in these two clusters
this subject allocates most of the brain resources to math tasks. Particularly, there
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are more samples labelled as solving math in C2. Based on the label distribution, we
define C1 and C2 as a pure calculating and a covert state from mental calculating
to driving, respectively. There are more samples labelled as driving in C3 and C4
(ref. Figure 4.2). Here, the state (cluster) C4 is almost a pure state representing
driving behaviour due to the 96.93% occupation rate in the driving label. The state
C3 consists of 20.4% math labels and 79.60% driving labels. Thus, it is reasonable to
consider C3 a covert state of driving but relatively close to the calculating behaviour.
Figure 4.3 is a state transition diagram for subject 1. The four solid circles on the
diagram correspond to the four different clusters/states, as shown in Figure 4.2. The
directed connection between every two states represents the potential transition with
the probability indicated therein. Table 4.3 summarises the transition probabilities
between every two states. For example, between C1 and C2, there are two connection
lines: one starts at C1 and ends at C2, and the other is the opposite direction. C1 and
C2 exhibit bidirectional transitions. More specifically, the conditional probability of
transition from C1 to itself (C1) is 0.8653 and that from C1 to C2 and C3 are 0.0943
and 0.0404, respectively. This probability of transition from C1 to any other state
including itself does not depend on the state of the system before it came to C1 (i.e.,
it is a Markov chain). It is worth noting that there is no transition from C1 to C4
which is very reasonable because C1 is a pure Math-state and C4 is almost a pure
driving state. For Subject 1, although there is a very low probability of transition
from C4 to C1, there is no direct transition C1 to C4. A natural question comes
– are there indirect transitions from C1 to C4. Further analysis of the data shows
that there was no indirect transition from C1 to C4 via C2 or C3. Here, by indirect
transition we refer to the situation when the system switches from C1 to C2 and
then C2 to C1 in two successive time instants, i.e., without making any transition
from C2 to itself. This again emphasizes the stability of the identified brain states.
It is interesting to note that C2 is not a pure state, but this is a very stable internal
(Covert state) because the conditional probability of transition from C2 to itself is
0.9343. Consequently, the conditional probability of transitions to C1, C3 and C4
are very small, 0.0131, 0.0488, and 0.0038, respectively. Similarly, the covert state
C4 is a very stable one, for which the conditional probability of transition from C4
to itself is the highest, 0.9791.

Case study — Highly focusing on driving (subject 2) The number of clus-
ters used for subject 2, as shown in Figure 4.4, is also four, which is the same as
that of subject 1. Table 4.4 shows the distribution percentage of each label in all
four clusters. The samples categorised in C1 are all math labels. C2 has math and
driving labels mixed at 78.03% and 21.97%, respectively. In C3, the driving label
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Table 4.2: The distribution percentage
of each label in all clusters of subject 1.

Unit: % C1 C2 C3 C4

Math
Label

99.67 95.65 20.4 3.07

Driving
Label

0.33 4.35 79.6 96.93

Table 4.3: Transition probability be-
tween each two identified states of sub-
ject 1.

C1 C2 C3 C4
C1 0.8653 0.0943 0.0404 0
C2 0.0131 0.9343 0.0488 0.0038
C3 0.0052 0.0247 0.9584 0.0117
C4 0.0058 0.0175 0.0975 0.8791

occupies 86.91%, while the math label occupies 16.81%. C4 contains almost pure
driving labels of approximately 96.55%. Therefore, we define C1 as a pure calculat-
ing behaviour, C2 as the covert state from calculating to driving behaviour, C3 as
from driving to calculating to driving behaviour, and C4 representing pure driving
behaviour. Figure 4.5 is the corresponding state transition diagram for subject 2.
Table 4.5 shows the conditional transition probabilities between every two states for
subject 2. Like subject 1, the high conditional probability of transition from any
of the four states to itself (more than 0.92) suggests that each of them represents
a valid state. Unlike sublect 1, for subject 2, there is no transition from C4 to C1
and a very weak transition probability from C1 to C4. This is just the opposite of
subject 1. A possible reason for this may the fact that for subject 2, C4 is almost
a pure driving state and C1 is almost a pure math sate, but C4 is more strongly
represented (with much more number of trials mapped in C4) than C1. On the other
hand, for subject 1, C1 a pure math state is much more strongly represented than
the almost pure driving state C4. So from these two subjects, what we observe is
that between two pure state, if one is represented by a smaller number of trials, then
there is a low chance of transition from the weaker one to the stronger one. Like
Subject 1, there is no indirect transition between C4 and C1 (ref. Figure4.5).

Table 4.4: The distribution percentage
of each label in all clusters of subject 2.

Unit: % C1 C2 C3 C4

Math
Label

100 78.03 16.81 3.35

Driving
Label

0 21.97 83.19 96.65

Table 4.5: Transition probability be-
tween each two identified states of sub-
ject 2.

C1 C2 C3 C4
C1 0.9401 0.026 0.0286 0.0052
C2 0.0245 0.9294 0.046 0
C3 0.0136 0.0181 0.9456 0.0227
C4 0 0 0.0488 0.9512
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Case study — Rapid switching (subject 3) Figure 4.6 shows four clusters
obtained from the experiment of subject 3. The distribution percentage of each
label in all clusters is revealed in Table 4.6. C1 contains an almost pure math label
of approximately 98.12%. C2 has math and driving labels of 94.43% and 5.57%,
respectively. In C3, the driving label occupies 88.66%, while the math label is 11.34%.
C4 consists of 91.29% of the driving label and 8.71% of the math label. Therefore,
we define C1 as a pure calculating behaviour, C2 as a covert state from calculating
to driving behaviour, C3 as from driving to calculating to driving behaviour, and C4
as pure driving behaviour. Figure 4.7 is the state transition diagram for subject 3,
and the corresponding transition probabilities between every two states are shown
in Table 4.7. Table 4.7 reveals that the conditional transition probabilities from C1
to C4 and from C4 to C1 are zero. From Figure 4.6, we find that subject 3 exhibits
similar characteristics with one major difference both of the pure states C1 and C4
are represented by similar number of trials and number of trials representing of each
of the two states are much smaller than the two covet states. In this case, there is no
transition between C1 and C4. If there is any transition from C1 to C4 or from C4
to C1, the transitions must be via the covert states C2 or C3. Except the transition
between C1 and C4, the other pairs exhibit transition between the states, although
some conditional transition probabilities are very low as expectation. For this subject
there is a very low transition probability between C1 and C4 via C2. According to
our investigation, the Transition probabilities of C1-C2-C4 and C4-C2-C1, both are
very low.

Table 4.6: The distribution percentage
of each label in all clusters of subject 3.

Unit: % C1 C2 C3 C4

Math
Label

98.12 94.43 11.34 8.71

Driving
Label

1.88 5.57 88.66 91.29

Table 4.7: Transition probability be-
tween each two identified states of sub-
ject 3.

C1 C2 C3 C4
C1 0.9189 0.0676 0.0135 0
C2 0.0186 0.9451 0.0275 0.0088
C3 0.006 0.0207 0.9396 0.0337
C4 0 0.0432 0.0504 0.9065

4.4 Analysis

4.4.1 Determining the number of clusters
In Figure 4.8 the panels (a), (b) and (c) depict the γ values of subject 1, subject 2,

and subject 3 in decreasing order, respectively. Each solid circle represents one data
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Figure 4.2: Clustering results of subject 1. The math label and driving label re-
fer to the mathematical problem-solving task and driving task, respectively. The
percentage over each bar represents the sharing rate of the dominating label.

Figure 4.3: State transition diagram of subject 1. The digits adjacent to each con-
nection line are the transition probabilities.
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Figure 4.4: Clustering results of subject 2. The math label and driving label re-
fer to the mathematical problem-solving task and driving task, respectively. The
percentage over each bar represents the sharing rate of the dominating label.

Figure 4.5: State transition diagram of subject 2. The digits adjacent to each con-
nection line are the transition probabilities.
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Figure 4.6: Clustering results of subject 3. The math label and driving label re-
fer to the mathematical problem-solving task and driving task, respectively. The
percentage over each bar represents the sharing rate of the dominating label.

Figure 4.7: State transition diagram of subject 3. The digits adjacent to each con-
nection line are the transition probabilities.
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point, in which the label indicates the associated cluster. Figure 4.8 lists only samples
with the top fifty percentages of sorted γ values. The γ value can be used as a
criterion to select cluster centres. The sorted γ values approximately follow a power
low, as shown in Figure 4.8. There are four isolated points strikingly distinctive from
those who are close to the horizontal axis. As explained earlier, if a point has a high
γi value (Ref. formula 4.14), then that point has high-density crowding neighbours
and is located significantly away from other higher-density points. Therefore, these
distinctive points are selected as centres for the clustering.

For example, in Figure 4.8(a), the first point on the top has the highest value
of the product of highest density and longest distance from other relatively high-
density points as well. Thus, this sample is defined as a centre. The rank-two
sample is defined as a second centre due to its second highest γ implying that it is
a high-density point as well as distant from other high-density points. Followed by
the third and fourth centres, they both are high γ value samples. For the remaining
non-isolated samples in Figure 4.8(a), they cannot be the centre because the γ values
of these instances are relatively small than those in the selected four isolated cases.
Then we take these four data points as cluster centres and form four clusters around
them for subject 1, as shown in Figure 4.2.

These four top-ranked samples belonging to C3, C1, C4 and C2 correspond
to clusters 3, 1, 4 and 2, respectively, as labelled in Figure 4.2. Analysing the
clusters, we have exhibited that these four clusters are associated with four different
types of brain states associated with handling lane-keeping tasks and mathematical
calculation tasks. The same strategy is also applied to subject 2 and subject 3 and
surprisingly for each of them the system discovers four clusters representing four
brain states.

4.4.2 State change analysis
We leveraged FCOSTD to explore the changes in human states through brain

dynamics during driving. Note that the changes in human state can be linked with
human behaviour as humans perform lane-keeping tasks or mental calculations dur-
ing distracted driving. In this study, we demonstrated the changes in human states
by brain dynamics and listed two different results in which two participants applied
different strategies when facing a high cognitive task (mental calculation) during
driving. The brain dynamics evolve continuously, and the samples are extracted
only over 1200 ms. The lane-keeping task mainly involves motor reflection in which
the visual perception and motor controlling resources are mainly involved [80], [91].
Meanwhile, visual perception, visual memory, and executive functions in the human
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subject 1

(a)
subject 2

(b)
subject 3

(c)

Figure 4.8: Distribution of sorted γ values in descending order. Only those samples
with the top 50 percent high γ values are shown in (a), (b)and (b). The indices on
each dot indicate to which cluster belongs.
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brain are highly associated with the process of mental calculation [80], [92]. Based
on the findings of cognitive functions in the previous studies [79]–[81], here we inves-
tigate the state changes over 1200 ms period and leverage the behaviour performance
(RTs) to infer the state changes as performing math and driving during distracted
driving.

Figures 4.9 reveals behaviours and changes of the four states during the experi-
ment; (a), (c) and (e) present the behaviour drifting in the trials of the mathematical
problem-solving task, whereas Figures 4.9 (b), (d) and (f) present the trials of the
lane-keeping driving task for the three subjects respectively. The left panels of each
sub-figure present the sorted RTs of the subject towards the corresponding task in
every trial. The right panels show the drifting of subjects’ brain states during each
trial when the subject deals with the corresponding task, in which every trial is
sorted according to RTs. Table 4.8 illustrates the switching time of each state. Let
us elaborate on how the switching time is computed. Each trail is of 1200 ms (i.e.,
1.2 sec). Each trial is divided into 17 segments, each segment is of length 400ms with
an overlap of 350 ms between two successive segments. Suppose the kth segment of
a trial is in state Cx (x = 1, 2, 3, 4), and the (k + 1)th segment of that trial is in
some other state Cy (y 	= x) then the switching time for that trial for state Cx is
(1.2/17) × (k + 1). In Table 4.8 we report the average value of the switching time for
each state along with its standard deviation. Each state is counted across all trials,
and the statistical data are shown in Table 4.8.

In Figure 4.9, these three selected subjects had very different behavioural per-
formance, and they had relatively high performance in the experimental results (see
Table 4.1). Subject 1 had better performance (average RT is 1.596 sec) in the mathe-
matical problem-solving task compared with subject 2 (average RT is 1.709 sec), see
Figure 4.7 (b) and (d). On the other hand, subject 2 could react to the lane-keeping
driving task quickly (ref. Figure 4.9 (a) and (c)). Subject 1’s fast response to mental
calculation implies that subject 1 may be good at problem solving. Furthermore,
subject 3 behaved better than subject 1 and subject 2 in both the mathematical
problem-solving task and lane-keeping driving task (ref. Figure 4.9 (e) and (f)).

When subject 1 performs mental calculation during driving, the subject’s present
state switches quickly from the pure mental calculation (C1) to covert states (C2 or
C3) in many trials, see Figure 4.9 (a), in which the average time of switching from C1
to other states is 0.4228 ms (Table 4.8). Apart from the mental calculation, the low
switching time from C4 to other states implies that subject 1 can quickly allocate
brain resources to finish the lane-keeping driving task and re-allocate the whole brain
resource for the next task of mathematical calculation. The average switching time
from C4 to other states is 0.4291 ms. Figure 4.3 implies the same phenomena. The
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diagram shows a fully connected diagram except for the connection from C1 to C4;
the brain states of subject 1 can switch from C1 to C2 or to C3 and from C4 to
other states but from C1 to C4. Subject 1, therefore, needs more brain resources to
switch the brain state to take action when the car deviates from the lane.

In contrast, subject 2 exhibits significantly different behaviour and states com-
pared to those of subject 1, see Figure 4.4 (c) and (d). The states of subject 2 change
less frequently, and the average RT is lower when performing mathematical problem-
solving. Subject 2 allocates higher brain resources for mental calculation and has a
delay in switching between states compared to subject 1. Its transition diagram also
reflects this observation, as shown in Figure 4.5. The transition probabilities from
C4 to C1 or to C2 as well as that from C2 to C4 are all zero, which implies that the
state cannot change directly from C4 to C1; it needs to move to C3 or C2 first and
then from there to reach C1. More specifically, subject 2 needs more time to prepare
to perform mental calculations. Thus, subject 2 exhibited a lower reaction time per-
formance than subject 1. Due to the high resources used for mental calculations, it
is relatively slow when the states change from C1 to C4 while subject 2 performs the
lane-keeping task. This slow change results in many states of subject 2 appearing
in the distractive driving state (C3); see Figure 4.9 (d). However, the average value
of subject 2’s RT is smaller than that of subject 1’s RT. This is because turning the
steering wheel is sensory decision-making; it uses fewer brain resources and can take
action in response to car deviation. This phenomenon can be observed in the driving
task of subject 3. Subject 3 prepares to correct the deviation of the car faster than
other subjects; hence, the distractive driving state (C3) appears at an average switch
time of 0.5904 sec, which is earlier than that of subject 2 and subject 1. This earlier
switching of the driving state results in faster average reaction time in the driving
task. Apart from the driving task, subject 3 performed mental calculations with a
1.53-sec average RT (ref. Figure 4.9 (e)); the states remained in C2 in many trials.
This is suggestive of the fact that subject 3 did not allocate much brain resources for
mental calculations and has a good capability to address driving and mental calcula-
tions simultaneously. In Figure 4.7, the transition diagram shows that the transition
probabilities from C1 to C4 and C4 to C1 are both zero, which indicates that the
two pure states, the mental calculation (C1) and driving task (C4), cannot directly
switch to each other. However, the transition probability from C4 to C2 is 0.0432,
higher than that of both subject 1’s and subject 2’s. This phenomenon implies that
subject 3 can quickly allocate brain resources for mental calculations from driving
tasks. Accordingly, we may infer that the load on the brain of subject 3’s is not as
heavy as that of subject 2 and subject 1 during the whole experiment. Consequently,
subject 3 can switch the brain states faster than others.
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Subject_1

(a) (b)

Subject_2

(c) (d)

Subject_3

(e) (f)

Figure 4.9: The RT and state changes of each subject during the mathematical
problem-solving task and driving task. (a) and (b) present the states of subject 1,
(c) and (d) are subject 2, and (e) and (f) are subject 3, while performing Math and
Driving, respectively. Every trial contains 1.2-second-length data (17 segmentations)
and is sorted based on the corresponding RT in ascending order. The red vertical
line indicates the mean value of RT in the mathematical problem-solving task and
driving task.
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Table 4.8: The statistical data regarding each single state switching to another state.
Unit: sec Subject 1 Subject 2 Subject 3
Switching
Time

Average STD Average STD Average STD

C1 0.4228 0.2562 0.6258 0.3458 0.6476 0.3597
C2 0.7168 0.3297 0.6048 0.3451 0.6188 0.3402
C3 0.7672 0.3346 0.6118 0.3395 0.5904 0.3379
C4 0.4291 0.2919 0.7581 0.3164 0.8572 0.296

4.5 Summary
In the current study, we proposed FCOSTD which provides an effective mecha-

nism for discovery and representation of the covert states and the transitions between
states. We applied FCOSTD to one distracted driving experiment. The proposed
system is capable of extracting useful features from the dynamic patterns of brain
signals using an FNN. The FNN, leveraged by the fuzzy-inference mechanism, was
successfully used for feature encoding from the EEG data. We adopted this approach
because the inference mechanism of an FNN is capable of representing/modelling
human brain activities associated with varying behaviours (RTs). These fuzzy-
inference-based features are then clustered to identify external and covert states
of human brain during the experiment involving distracted driving. The clustering
results are used to interpret the states in terms of physical behaviours. Afterwards,
the relationship between different states is expressed by the transition probability
diagram. Because of the links between pairs of the states along with the link weights
representing the conditional transition probabilities, brain dynamics can be easily
visualized. We found that covert states do exist in the brain when the subject is
responding to on-set events during the experiment. Moreover, the FCOSTD also
provides a mechanism for describing state changes with their corresponding proba-
bilities and the Markov chain. Through the Markov chain, the state changes can be
easily observed, which allows us to understand how the brain resource was allocated
as different types of actions were taken up by a subject.
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Chapter 5

Distributed Neural Fuzzy System

5.1 Background
For some MAT systems applications, such as hospital service systems and bank

networks [6], data privacy needs to be taken into consideration. In such MAT sys-
tems, the massive amount of data comes with a large number of agents and may be
not available on a single controller, but distributed throughout a network of inter-
connected agents[93]. Unlimited data transition between agents may lead to serious
security and privacy issues [94]–[96]. Therefore, a centralized algorithm that must be
implemented with all the data in a centralized agent is neither practical nor safe es-
pecially in a MAT system considering data privacy. A distributed algorithm relied on
the local data and limited communication among agents is necessary for the big data
environment. In the proposed consensus learning, a single model must be agreed by
all the agents based on some consensus protocols after the distributed learning pro-
cess. Thus, the proposed consensus learning for Distributed Fuzzy Neural Network
(D-FNN) is quite expected in the big data environment.

Recently, several distributed algorithms for FNN were proposed to decentralise
the learning process [27], [28]. The authors in [27] proposed a decentralized algorithm
for random-weights FNN, where the parameters in the antecedent layer are randomly
selected instead of being estimated. An online implementation for the same FNN
structure in [27] is further proposed in [28]. There’s no doubt that such a random
method for parameter identification can result in very large deviations during the
learning process. In addition, it suffers from the curse of dimensionality as the num-
ber of fuzzy rules increases exponentially with the increase of input space. Moreover,
the proposed distributed algorithms can only assure the consensus on the consequent
layer instead of both antecedent and consequent layers of the FNN. In other words,
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such distributed algorithms are not really distributed since a single model can not
be agreed by multiple agents.

To overcome the aforementioned issues in distributed algorithm for FNN, this
research proposes a D-FNN model, which considers the consensus for its antecedent
and consequent layers and hence is really distributed. A novel consensus learning
algorithm, which consists of consensus-based structure learning and parameter learn-
ing, is proposed for the D-FNN model. Particularly, the consensus-based structure
learning for the antecedent layer is built on a distributed clustering method, which
can alleviate the dimensionality problem of the random-weights FNN. The consensus-
based parameter learning for the consequent layer is realized by a distributed least
square algorithm. The consensus-based structure learning and parameter learning
are implemented sequentially with the latter employed after the former. Both of them
are built on the well-known Alternating Direction Method of Multipliers (ADMM),
which has been shown as an efficient solution for the consensus-based problems[26],
[97]. Although many centralized algorithms for the FNN with clustering method
for structure learning were studied in [98]–[100], to the authors’ best knowledge, its
distributed counterparts were not quite considered in the literature.

The contribution of this study is three-fold:

• This study proposes a new D-FNN model to address the inherent issues in the
big data environment, including the uncertainty and distributed challenges.
Note that existing D-FNN models always avoided the consensus for its an-
tecedent layer due to computational difficulty. The proposed real D-FNN ex-
ploits distributed structure learning and parameter learning sequentially for
the antecedent layer and consequent layer, respectively.

• A novel consensus learning algorithm is proposed to address the proposed D-
FNN model. The consensus learning algorithm that consists of consensus-based
structure learning and parameter learning is built on the well-known ADMM.
It’s worth noting that the consensus learning algorithm is very scalable and does
not suffer from slow training speed or gradient vanishing problems compared
with back-propagation-based methods.

• This study provides comprehensive simulations of various structures of the D-
FNN. Simulation results of the proposed consensus learning algorithm outper-
form all existing D-FNN algorithms in terms of both generalization accuracy
and training speed. Thus the superiority and effectiveness of the consensus
learning algorithm are clear.
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The rest of the paper is organized as follows. Section II is devoted to modelling
of the structure learning and parameter learning for centralized FNN. Section III
extends the centralized FNN to D-FNN, for which the consensus learning algorithm
is proposed. A comprehensive simulation is conducted in Section IV to confirm the
superiority and effectiveness of the proposed D-FNN model and consensus learning
algorithm. Conclusions are drawn in Section V.

5.2 Structure learning and parameter learning for
centralized FNN

Let us briefly recall the structure of existing FNN, which employs the first-order
of the Takagi-Sugeno method of fuzzy inference system. Suppose estimating a scar
output y ∈ R from a D-dimensional input x = [x1, x2, · · · , xD], then the k-th fuzzy
rule of the T-S system is

Rule k: IF x1 is Ak1 and · · · and xD is Akd

Then y = wk0 + ∑D
j=1 wkjxj

where Akj is a Gaussian membership fuzzy set whose membership function is de-
scribed by,

ϕkj(xj) = exp
⎡⎣−

(
xj − mkj

σkj

)2
⎤⎦ (5.1)

where mkj and σkj are the mean and standard variance of the Gaussian membership
function, respectively. Usually, the FNN is constituted by five feed-forward layers,
whose structure is provided in Fig.5.1.

Layer 1 is the input layer, where each node corresponds to one input variable, i.e.
xd, and transmits the scaled input value to the next layer.

Layer 2 is the antecedent layer, where each node corresponds to one fuzzy set and
outputs a membership value according to (5.1).

Layer 3 is the rule layer, where each node represents one fuzzy logic rule and
performs antecedent matching of this rule using the following AND operation:

φk(x) =
D∏

j=1
ϕkj(xj), (5.2)

which is the firing strength of fuzzy rule k. The obtained firing strength is then
normalized by

φ̄k(x) = φk(x)∑K
k=1 φk(x)

. (5.3)
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Layer 1: Input

Layer 2:  Antecedent

Layer 4: Consequent 

Layer 5: Output

Layer 3:  Rule

...

...

......

...

Figure 5.1: The structure of FNN

where K is the total number of fuzzy rules.
Layer 4 is called the consequent layer, where each node performs a defuzzification

process for each fuzzy rule k using a weighted average operation as follows:

ψk(x) = φ̄k(x)(wk0 +
D∑

j=1
wkjxj), (5.4)

Layer 5 is the output layer, which calculates the overall output by summing the
output of each fuzzy rules in Layer 4 as follows,

ŷ =
K∑

k=1
ψk(x), (5.5)

Generally, FNN involves identification of structure and parameters. The struc-
ture learning is to identify the parameter of Gaussian membership function in the
antecedent layer for each fuzzy rule k, i.e. mkj and σkj, j ∈ {1, · · · , D}; the pa-
rameter learning is to identify the output weights wk0, · · · , wkD in the consequent
layer. Both of the structure learning and parameter learning can be addressed by
the use of back propagation method [44]. Note that the back-propagation learning
process often suffers from slow training speed and gradient vanishing issues. Thus,
it is neither practical nor efficient especially in the big data environment, where the
data possibly have very large samples and dimensions. To avoid the aforementioned
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issues, we considered employing the clustering method [98] for the structure learning
and the least square algorithm [99] for the parameter learning.

The fuzzy rules are determined by the input-output pairs of the training samples.
A basic idea is to group the input-output pairs into clusters and use one rule for
each cluster. In this research, the K-means algorithm [101], which is one of the
most popular and efficient clustering algorithm, is employed for structure learning
to identify parameters in the antecedent layer of the FNN. As shown in Fig.5.2, the
clustering centers obtained by the K-means algorithm will be the centers of Gaussian
membership function in the antecedent layer of the FNN.

Clustering

Generating Antecedence of Fuzzy Rules

Cluster 1: 
…

Cluster 2: 
…

Cluster K: 
…

…

Figure 5.2: The clustering method to identify Gaussian parameters in the antecedent
layer of the FNN

Let D := {(Xi, Yi)|Xi ∈ R
D, Yi ∈ R, i ∈ N : {1, · · · , N}} denote the set of

training data, xij denote the j-th component of the i-th observation Xi. The K-means
algorithm aims at partitioning the N observations into K sets C := {C1, · · · , CK}. It
should be noted that the total number of clusters K, which is assumed to be known
a priori, is also the total number of fuzzy rules. Let K := {1, · · · , K}, the clustering
problem amounts to identifying the centers of each cluster k ∈ K by minimizing the
squared error distortion, i.e.,

mk = arg min
mk

1
2

K∑
k=1

|Ck|∑
i=1

||Xi − mk||2 (5.6)

where mk is the center of cluster Ck. The K-means algorithm uses an iterative
refinement technique. Starting from an initial set of K centers at iteration t = 0, i.e.
{m1(0), · · · , mK(0)}, the algorithm alternates between an assignment step and an
update step at iteration t + 1 as follows:
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• Assignment step: Assign each observation Xi to the cluster Ck(t), whose center
is closest to Xi.

• Update step: Update the center of each cluster by

mk(t + 1) = 1
|Ck(t)|

∑
Xi∈Ck(t)

Xi.

The K-means algorithm converges if the centers are unchanged during the iteration.
Once the centers of each cluster are obtained, the center of each fuzzy set is thus
obtained. Accordingly, the standard variance σkj of each fuzzy set can be obtained
by

σkj =

√√√√ 1
N

N∑
i=1

(xij − mkj)2. (5.7)

By now, the parameters of Gaussian membership function in the antecedent layer are
determined. In the following, a closed-form solution to identify the output weights
in the consequent layer will be introduced.

Define a hidden matrix H := [H1, · · · , HK ] ∈ R
N×K(D+1), where

Hk =

⎡⎢⎢⎢⎢⎣
φ̄k(X1) φ̄k(X1)x11 · · · φ̄k(X1)x1D

φ̄k(X2) φ̄k(X2)x21 · · · φ̄k(X2)x2D
... ... . . . ...

φ̄k(XN) φ̄k(XN)xN1 · · · φ̄k(XN)xND,

⎤⎥⎥⎥⎥⎦ (5.8)

and the output vector Y := [Y1, · · · , YN ]. The output weight w ∈ R
K(D+1) in

the consequent layer of FNN can be learned by solving the following optimization
problem,

w = arg min
w

1
2 ||Y − Hw||2 + μ

2 ||w||2, (5.9)

where μ > 0 is a trade-off factor between the training error and regularization, the
weight w has the following form:

w = [w10, · · · , w1d, · · · , wK0, · · · , wKD]T , (5.10)

It should be noted that selecting the value of μ appropriately can make the solution
much more stable and have better generalization performance[102]. Since (5.9) is a
standard least square optimization problem, its closed form solution can be easily
obtained by:

w = (HT H + μI)−1HT Y, (5.11)
where I is the identity matrix with dimension of K(D + 1).
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5.3 Consensus learning for D-FNN
In the big data environment, large-scale data may exist in different locations and

machines, referred as multiple agents in this research. Note that the centralized
FNN must implement all data in a single agent. It may not be possible to perform
centralized FNN in the big data environment due to several reasons. First, the com-
munication load and storage resources of a single agent may limit its implementation
of large-scale data. In addition, transiting the data between multiple agents may
result in serious data security and privacy issues, which have attracted increasing
public attention recently. Moreover, the whole system will fail if the centralized
agent loses or disconnects due to contingency. Therefore, there is a great demand
for D-FNN, where the global training process can be performed in each individual
agent with limited information exchange. Moreover, the D-FNN is more flexible and
robust against the contingencies compared with the centralized FNN.

In this section, the centralized FNN is extended to its distributed version D-
FNN to deal with the big data. A novel consensus learning is proposed for the
D-FNN, which integrates multiple FNNs corresponding to multiple agents in the
big data environment and agrees on a single FNN based on consensus protocols.
The consensus learning algorithm consists of consensus-based structure learning and
parameter learning. Both of them are built on ADMM, which is widely employed in
consensus-based distributed problems[26].

Generally, the distributed algorithms can be classified into two types based on
network topology. The first one is implemented in a star network, where a fusion
center is required to communicate with all agents. The second one does not need such
fusion center. The agents are only allowed to communicate with their neighbouring
agents based on the underlying network topology. Although the former has better
convergence performance, the latter is more preferred in the big data environment due
to the practicability and security issues. The fusion center may not exist in the big
data environment. In addition, the requirement that all agents must communicate
with the fusion center instead of with their neighbouring ones, will increase the
potential risk of data leakage. Therefore, the D-FNN proposed in this research will
employ the second type of distributed algorithm.

We consider a network with L nodes connected with E edges and each node
is assumed as an agent. This network can be described as an undirected graph
G = {L, ξ}, where L and ξ are the sets of vertexes and edges, respectively. A simple
network consisting of five agents and six edges is shown in Fig.5.3 for illustration
purpose. For the dataset D := {(Xi, Yi)|i ∈ N }, Let {D1, · · · , DL} be a decomposi-
tion of the entire dataset D. For ease of representation, each subset Dl is assumed to
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be the data located on each agent l ∈ L. The set of neighbouring agents of agent l is
defined as Nl. Similarly, we introduce subset Cl to represent the observation subset
of agent l. In each subset Cl, let Cl

k denote the subset of cluster k in agent l such
that ⋃K

k=1 Cl
k = Cl. Based on the consensus strategy, the structure learning problem

Agent-1

Agent-3

Agent-5 Agent-4

Agent-2

Figure 5.3: A simple network with five agents

for the D-FNN can be formulated as follows,

min
ml

k

1
2

L∑
l=1

K∑
k=1

∑
Xl

i∈Cl
k

||X l
i − ml

k||2 (5.12a)

s.t. ml
k = rk, l ∈ L, k ∈ K, (5.12b)

where ml
k is a local variable, representing the center of fuzzy set k of agent l, rk

is a global variable to integrate all local centers and |Cl
k| represents the cardinality

operation for a set. The constraint (5.12b) employs the consensus strategy, which
assures all the local centers coincide at one global vector of center. It is worth noting
that the local variable ml

k can be computed in parallel for each agent l.
Once the global center rk of each fuzzy rule k is determined, the global standard

variance can be easily calculated by:

σ̄kj =

√√√√ 1
N

L∑
l=1

|Cl|(σl
kj)2 (5.13)

where σ̄kj is the j-th component of the global standard variance of the k-th fuzzy
rule, σl

kj is the corresponding standard variance of local agent l, |Cl| represents the
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cardinality of subset Cl. It should be noted that the standard variance σl
kj of rule k

dimension j is calculated in a component-wise manner, i.e.

σl
kj =

√√√√ 1
|Cl

k|
∑

Xl
i∈Cl

k

(X l
ij − ml

kj)2 (5.14)

where X l
ij and ml

kj are the j-th component of X l
i and ml

k, respectively.
The above distributed clustering by consensus learning for antecedent layer iden-

tification of the D-FNN is shown in Fig.5.4

Agent 1

Agent K

Consensus 
Learning

…
…

Consensus

Distributed clustering by consensus learning 

Figure 5.4: The procedure of distributed clustering by consensus learning for an-
tecedent layer identification of the D-FNN

Similarly, the parameter learning problem for the D-FNN based on the consensus
strategy is formulated as follows,

min
wl

1
2

L∑
l=1

(||Y l − Hwl||2 + μ||wl||2), (5.15a)

s.t. wl = z, l ∈ L, q ∈ Nl, (5.15b)

where wl is a local variable, representing the output weight of agent l, z is a common
global weight to integrate all local weights.
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The procedure of the proposed consensus learning algorithm, which consists of
distributed structure learning for the antecedent layer and distributed parameter
learning for the consequent layer, is described in Fig.5.5.

…

FNN-1

…

FNNs for 
multiple agents DFNN by consensus learningDistributed

Samples  
…

FNN-L

DFNN

Figure 5.5: The procedure of consensus learning for the D-FNN

5.3.1 Overview of ADMM
In this section, we first introduce the preliminary knowledge of ADMM[26], which

will be used to solve the proposed optimization problem (5.12) and (5.15) for the
consensus learning. The standard form of ADMM solves the following problem:

minf(x) + g(y) (5.16)
s.t. Ax + By = c, x ∈ Cf , y ∈ Cg (5.17)

Then the following augmented Lagrangian is constructed,

L(x, y, λ) = f(x) + g(y) + λT (Ax + By − c)
+ρ

2 ||Ax + By − c||2 (5.18)

where λ is the Lagrange multiplier and ρ is a positive constant to trade-off the
convergence rate and numerical accuracy. The ADMM solves (5.18) iteratively via
an alternating procedure, which starts from arbitrary initial points y(0) and λ(0)
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and then updates the variable x and y and multipliers λ sequentially by the following
procedure:

x(t + 1) = arg min
x∈Cf

L(x, y(t), λ(t)), (5.19)

y(t + 1) = arg min
y∈Cg

L(x(t + 1), y, λ(t)), (5.20)

λ(t + 1) = λ(t) + ρ(Ax(t + 1) + By(t + 1) − c), (5.21)

until convergence. The convergence behavior at iteration t can be inspected by
analyzing the primal residual and dual residual with given tolerances as follows,

||Ax(t) + By(t) − c||2 ≤ ε1, (5.22)
||λ(t) − λ(t − 1)||2 ≤ ε2, (5.23)

where ε1 and ε2 are the values of convergence tolerance of the ADMM procedure.
Under the convexity condition of function f(·) and g(·) and domain set Cf and

Cg, ADMM is known to converge to a unique stable point[26]. A recent study also
proves the convergence of ADMM for a variety of nonconvex and possibly nonsmooth
functions given some sufficient conditions[97].

5.3.2 Consensus-based distributed structure learning
The optimization problem (5.12) is nonconvex, which can not be efficiently solved

by any exhaustive search methods. Meanwhile, the centralized clustering methods
such as the K-means algorithm still suffer from the issues of communication load,
privacy concerns and contingencies in the big data environment. Thus, a distributed
clustering method is crucial to address the optimization problem (5.12). In this
study, a distributed K-means algorithm is proposed to address the structure learning
optimization problem (5.12). This method is motivated by [103], where a distributed
clustering scheme is developed for wireless sensor networks.

First, we construct the following augmented Lagrangian for (5.12):

Ls(m, r, λs) = 1
2

L∑
l=1

K∑
k=1

∑
Xl

i∈Cl
k

||X l
i − ml

k||2

+
L∑

l=1

K∑
k=1

λT
s,kl(ml

k − rk)

+1
2ρs

L∑
l=1

K∑
k=1

||ml
k − rk||2 (5.24)
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where λs,kl is the Lagrange multiplier and ρs > 0 is a penalty parameter. Starting
from the initial points r(0) and λs(0), the variables at each iteration t are updated
iteratively by the following procedures based on the ADMM:

ml(t + 1) = arg min
m

L(ml, r(t), λs(t)), (5.25)

r(t + 1) = arg min
r

L(ml(t + 1), r, λs(t)), (5.26)

λs,kl(t + 1) = λs,kl(t) + ρs(ml
k(t + 1) − rk(t + 1)). (5.27)

It should be noted that (5.25) can be solved in parallel for each agent l. Similarly,
we can also employ the assignment step and update step in the K-means algorithm
to update the cluster centers ml(t + 1) for each agent l. On the other hand, since
the optimization problem (5.26) is linear on r, the closed-form solution can be easily
solved by setting the partial derivatives with respect to r to zero. The closed-form
solution of (5.26) is given directly as follows,

rk(t + 1) = 1
ρs

λ̄s,kl(t) + m̄l
k(t + 1), (5.28)

where

m̄l
k(t + 1) = 1

L

L∑
l=1

ml
k(t + 1), (5.29)

λ̄s,kl(t) = 1
L

L∑
l=1

λs,kl(t). (5.30)

From (5.28), we can see updating rk(t + 1) requires the communication between all
the agents. However, it may not possible in the big data environment. Therefore, a
more practical updating procedure is more preferred here. Similarly with the idea
in [104], this study employs the well-known distributed average consensus (DAC)
strategy [105] to update rk(t + 1). The DAC is an iterative strategy to compute the
global average requiring data only exchanged in a local neighborhood. At iteration
t, the local DAC update is given by:

αl(t + 1) =
∑
q∈Ll

Wlqα
l(t), (5.31)

where αl is the local variable corresponding to each agent l, Wlq is a weighted con-
nectivity matrix. Suppose dl is the number of neighboring agents of agent l and
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d = maxl∈L dl. According to [105], given the following matrix-degree weight,

Wlq =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
d + 1 , if q ∈ Ll;

1 − dl

d + 1 , if q = l;

0, otherwise.

(5.32)

the following procedure converges to the global average:

lim
t→+∞ αl(t) = 1

L

L∑
l=1

αl(0), ∀l ∈ L. (5.33)

Therefore, m̄l
k(t + 1) and λ̄s,kl(t) can be easily obtained by using the DAC iteration

(5.31) with the matrix-degree weight (5.32). It is worth noting that it is not necessary
to match the cluster ordering of each agent before the consensus procedure. The
consensus algorithm will still converge with random initial cluster ordering.

Based on the analysis above, we can summarize the algorithm for distributed
structure learning in Algorithm 3. The convergence behavior of Algorithm 3 can be
inspected by checking the norms of the following two residuals:

||ml
k(t) − mq

k(t)||2 ≤ ε1, (5.34)
||λl

s,k(t) − λl
s,k(t − 1)||2 ≤ ε2. (5.35)

Computational complexity: The computation complexity of Algorithm 1 re-
lies on the local variables update and global variables update. The local variables
update is similar to the one-step of centralized K-means algorithm. Thus its com-
putational complexity is O(NKD). The global variable update is based on the
distributed average consensus method, the computational complexity of which is
O(KDLT2), where T3 is iterations required for the convergence of the distributed
average consensus method. Generally, T3 is within a few tens. Suppose Algorithm 1
requires T1 iterations for the update of local and global variables. The total compu-
tation complexity for Algorithm 1 is O((NKD + KDLT3)T1). Since LT3 � N , we
can conclude the computation complexity for Algorithm 1 is O(NKDT1). Note that
the distributed K-means algorithm is built on the well-known ADMM algorithm,
which generally converges to modest accuracy (such as ε < 10−3 set in our paper)
within a few tens of iterations. Therefore, the total memory burden of Algorithm 1
is quite limited.

Remark 1: In Algorithm 1, an intuitive issue is that how to properly match the
clusters between the agents as each agent has many clusters. There are generally
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Algorithm 3 ADMM-based distributed structure learning (5.12)
Initialization: Set t = 0 and the Lagrange multipliers λs,kl(t) = 0. Initialize the
cluster centers ml

k(t) by using K-means algorithm for each agent l.
for t = 0, 1, 2, · · · , do

Update the local variables ml(t + 1):
Assignment step: Each agent l assigns each X l

i to the cluster Cl
k(t), whose center

rl
k(t) is closest to X l

i .
Update step: Each agent l updates the center of each cluster Cl

k(t) by

ml
k(t + 1) = 1

|Cl
k(t)|

∑
Xl

i∈Cl
k

(t)
X l

i (5.36)

Update the global variables r(t+1) by (5.28) and broadcast it to each agent
l.
Update the dual variables λs(t+1) by (5.27) and broadcast it to each agent
l

end for

two simple ways to match the clusters. The first one is randomly matching the clus-
ters. The second one is matching the clusters according to their Euclidean distance.
Both the two clustering matching methods were tested and they lead to a consistent
NRMSE value for the FNN. Let us briefly analyze this phenomenon. We can see
that starting from any initial cluster centers, the centralized K-means algorithm can
still converge. Its convergence takes the merits of the Assignment step and Update
step. Though different initial points may lead to different clustering performance,
seeking a better initialization for the K-means algorithm is not the main work in
this study. In the distributed K-means algorithm, the initial cluster match will only
affect the initial update of the global variables, which are just starting points for
local agents to perform the local update in the next iteration. Note that during the
local update, each agent will assign data samples again and update the local centers
based on the assignment. This procedure will eliminate the impacts of an improper
match. Although different initial points may lead to different clustering results, the
general convergence of the K-means algorithm still holds regardless to initial points.
Therefore, the distributed K-means algorithm can still converge benefiting from the
Assignment step and Update step during the update of local variables. It’s also worth
noting that the distributed K-means algorithm is built on the ADMM algorithm and
K-means algorithm, and these two algorithms do not rely on initial points for general
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convergence. A similar distributed clustering method with random cluster match was
also employed in [32]. Thus, we believe the initial cluster match will not be an issue
for the distributed K-means algorithm.

Remark 2: The number of cluster K is an important hyperparameter for the
K-means-based algorithm. In the centralized K-means algorithm, K can be tuned
using a cross-validation procedure. In the distributed case, each agent can not access
others’ original data. Therefore, the cross-validation procedure for centralized K-
means is not suitable anymore. Here, we use the following procedure to tune the
hyperparameter. For each agent l, we implement the centralized FNN with its own
data for K = 1 : Kmax and obtain Kmax NRMSE values. Then we select the index
Kl, whose corresponding NRMSE is minimal, as the hyperparameter for agent l. If
the hyperparameter Kl of each agent are the same, then Algorithm 1 can be used
directly. Otherwise, we apply a zero-filling procedure to ensure the consistency for
the number of clusters. Without loss of generality, we set K1 ≤ K2 ≤ KL. As shown
in Fig. 5.6, if a cluster is missing, the corresponding position is filled with zero-vector
0. After the filling procedure, the cluster number of each agent becomes the same.
Then the Algorithm 1 can be used directly for the distributed structure learning of
the D-FNN. As we discussed in Remark 1, the initial cluster match does not affect
the convergence of the distributed K-means algorithm, thus we can use the above
zero-filling procedure to handle the cluster mismatch issue among the agents. If the
data distribution of each agent are totally different, then the knowledge of domain
adaptation [106] should be considered. However, this goes beyond the scope of this
research.

5.3.3 Consensus-based distributed parameter learning
Similarly, we solve the optimization problem (5.15) in a distributed manner by

the use of ADMM. The augmented Lagrangian for (5.15) is as follow,

L(w, z, λp) = 1
2

L∑
l=1

||Y l − H lwl||2 + μ

2 ||z||2

+
L∑

l=1
λT

p,l(wl − z)

+1
2ρp

L∑
l=1

||wl − z||2 (5.37)
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Figure 5.6: The cluster centers of each agent in the mismatching scenario

where λp,l is the Lagrange multiplier and ρp > 0 is a penalty parameter. The
ADMM-based procedures for distributed parameter learning are as follows,

wl(t + 1) = arg min
w

L(wl, z(t), λp(t)), (5.38)

z(t + 1) = arg min
z

L(wl(t + 1), z, λp(t)), (5.39)

λp(t + 1) = λp(t) + ρs(wl(t + 1) − z(t + 1)). (5.40)

Since (5.38) is a standard least square problem, its closed form solution can be easily
obtained by:

wl(t + 1) = ((H l)T H l + μI)−1((H l)T Y l − λp(t) + ρpz(t)), (5.41)

where I is the identity matrix with dimension of K(D +1). The closed-form solution
of (5.39) can be obtained by:

z(t + 1) = λ̄p,l(t) + ρpw̄l(t + 1)
μ/L + ρp

, (5.42)

where
w̄l(t + 1) = 1

L

L∑
l=1

wl(t + 1),
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λ̄p,l(t) = 1
L

L∑
l=1

λp,l(t).

Similarly with the procedure in the distributed structure learning, we also employ the
DAC strategy in order to avoid communications among all agents. The w̄l(t+1) and
λ̄p,l(t) are obtained using the DAC iteration (5.31) with the matrix-degree weight
(5.32).

Similarly, we summarize the algorithm for distributed parameter learning in Algo-
rithm 4. The convergence behavior of the Algorithm 4 can be inspected by checking
the norms of the following two residuals:

||wl(t) − z(t)||2 ≤ ε1, (5.43)
||λp(t) − λp(t − 1)||2 ≤ ε2. (5.44)

Algorithm 4 ADMM-based distributed parameter learning
Initialization: Set t = 0 and initialize global weight z(t) and Lagrange multipliers
λp(t) for each agent.
for t = 0, 1, 2, · · · , do

Update the local variables wl(t + 1) by (5.41)
Update the global variables r(t+1) by (5.42) and broadcast it to each agent
l.
Update the dual variables λp(t+1) by (5.40) and broadcast it to each agent
l

end for

Computational complexity: The computation complexity for Algorithm 2 also
relies on the local variables update and global variables update. One may think that
the update of local variables by (5.41) is costly due to the matrix inverse operation on
a large dimension matrix. However, the dimension of (H l)T H l is actually K(D+1)×
K(D + 1), which is quite smaller compared with the dimension of H l as Nl × K(D +
1). In addition, the value of ((H l)T H l + μI)−1 is constant during the iterations.
It can be stored after being computed at the initial step. If we ignore the cost
at the initialization, we can conclude the computation complexity for Algorithm 2
is O(KDLT4T2), where T4 and T2 are the iterations required for the distributed
average consensus method and the ADMM algorithm, respectively. As we analyzed
before, both T4 and T2 are within a few tens. Therefore, the total memory burden
of Algorithm 2 is small.
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Table 5.1: Numerical information of the tested datasets
Dataset Samples Dimensions Desired Output

CCPP[107] 9,568 4 Electrical energy
KC-house[108] 21,613 15 House price

CASP[109] 45,730 9 Deviation
Motor[110] 998,070 7 Motor temperature

5.4 Simulations
In this section, the performance of the proposed consensus learning algorithm for

D-FNN in the big data environment is evaluated by numerical simulations on several
widespread datasets, which are available on UCI Machine Learning Repository 1 or
Kaggle Datasets 2. The simulation results based on the proposed consensus learning
algorithm are compared with several state-of-the-art FNN algorithms.

The datasets are selected to represent various domains in the big data environ-
ment though not all of them have very large-scale samples and dimensions. Here
we briefly summarize the input and output information for these datasets in Table
5.1. In all these cases, input variables are normalized between [−1, 1] before the
experiments.

To stimulate the distributed nature of the big data, a network of agents is ran-
domly generated using a random topology model[104] with each agent’s connec-
tivity probability as 25%. Accordingly, each dataset is randomly decomposed for
each agent. To evaluate the accuracy of all the models, we perform a 10-fold cross-
validation for each dataset. In each fold, the following FNN algorithms are compared:

• Random-weight-FNN (R-FNN): This is the distributed FNN algorithm re-
ported in [27], which randomly generates the Gaussian parameters in the an-
tecedent layer and then employs the least square algorithm to identify the
parameters in the consequent layer. As we mentioned in the Introduction,
such a random method for parameter identification could result in very large
deviations during the learning process. In addition, it suffered from the curse
of dimensionality as the number of fuzzy rules increases exponentially with the
increase of input space. Moreover, the distributed algorithm assured consensus
only for the consequent layer instead of both the antecedent and consequent
layers. Thus it is not really distributed and thus not practical in the big data
environment.

1http://archive.ics.uci.edu/ml
2https://www.kaggle.com/datasets
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Figure 5.7: Convergence bahavior of the distributed K-means algorithm for various
datasets

• Centralized K-means-FNN (C-FNN): This is the centralized FNN algorithm
provided in this research. It employs the K-means algorithm to identify the
Gaussian parameters in the antecedent layer and least square algorithm to
identify the parameters in the consequent layer. Specifically, C-FNN solves the
optimization problem (5.6) by the centralized K-means algorithm to obtain the
parameters mk and σkj and then fix them to solve the optimization problem
(5.9) by the close-form solution (5.11). Note that by the use of the K-means
algorithm for identifying parameters in the antecedent layer, it does not suffer
from the curse of dimensionality as R-FNN does.

• Half-consensus learning D-FNN (H-FNN): This is the distributed algorithm for
the same structure of C-FNN but employing the consensus protocol only for its
consequent layer. Thus, the term ”half-consensus learning” is used for the H-
FNN, Note that by H-FNN, agents can not agree on a single FNN model after
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the learning procedure. Specifically, H-FNN solves the optimization problem
(5.6) by the centralized K-means algorithm to obtain the parameters mk and
σkj. Then H-FNN broadcasts them to each agent and solves optimization
problem (5.15) in a distributed manner by Algorithm 4.

• Consensus learning D-FNN (D-FNN): This is the consensus learning algorithm
proposed by this research, which employs the consensus protocol for both the
antecedent and consequent layers. It’s worth noting that this algorithm is
the really distributed and practical one in the big data environment. The
agreement among various agents on a single FNN model can be obtained after
the consensus learning procedure. Particularly, D-FNN employs Algorithm 3
and Algorithm 4 sequentially to respectively solve the optimization problem
(5.12) and optimization problem (5.15) in a fully distributed manner.

In this research, all simulations are implemented using Matlab R2019b on a laptop
with Intel i7 @ 4.0 GHz processor and 16 GB of memory. The convergence criteria
of the ADMM procedure in Algorithm 3 and Algorithm 4 are set as ε1 = ε2 = 10−3.
The normalized root mean square error (NRMSE) defined by

NRMSE =

√√√√ 1
Nσ̂2

Y

N∑
i=1

(Ŷi − Yi)2, (5.45)

is used to evaluate the performance of the models.
The convergence behavior of distributed K-means algorithm and distributed pa-

rameter learning are provide by Fig.5.7 and Fig.5.8, respectively. It can be seen,
both of the two algorithms converge quite fast for these datasets.

Table 5.2 summarizes the simulation results for the tested datasets by implement-
ing R-FNN, C-FNN, H-FNN and D-FNN, respectively. The first column of Table 5.2
is the dataset name, the second column gives the total number of agents, the third
column provides the trade-off factor in (5.15a). The fourth, fifth and sixth column of
Table 5.2 present the simulation results of R-FNN including total number of rules,
obtained NRMSE value and training time, respectively. The seventh column of Table
5.2 gives the K value, which is also the total number of clustering and fuzzy rules for
implementing the C-FNN, H-FNN and D-FNN. Their simulation results are provided
in the remaining columns. It should be noted that the NRMSE value obtained by
the C-FNN is a lower bound of the one obtained by H-FNN. It can be seen from
Table 5.2, R-FNN can not handle the datasets KC-house and Motor due to the large-
scale rule numbers and samples. The NRMSE value of CCPP obtained by R-FNN is
much worse than the ones obtained by C-FNN, H-FNN and D-FNN. As for CASP,
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Table 5.2: Convergence behaviour of the distributed parameter learning algorithm
for various datasets

Dataset L u R-FNN
Rules NRMSE Time (sec)

CCPP 5 0.01 16 4.178 0.23
KC-house 5 0.01 32768 - -

CASP 5 0.001 512 0.7682 457.4
Motor 25 0.001 128 - -

Dataset K H-FNN
NRMSE Time (sec)

CCPP 15 0.2313 0.15
KC-house 15 0.5299 0.45

CASP 15 0.7745 0.94
Motor 15 0.623 13.31

Dataset K H-FNN
NRMSE Time (sec)

CCPP 15 0.232 0.26
KC-house 15 0.5304 0.51

CASP 15 0.7748 0.83
Motor 15 0.6248 6.0

Dataset K D-FNN
NRMSE Time (sec)

CCPP 15 0.2331 0.61
KC-house 15 0.5251 2.31

CASP 15 0.7827 1.43
Motor 15 0.6079 9.82
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Figure 5.8: Convergence bahavior of the distributed parameter learning algorithm
for various datasets

the NRMSE value obtained by R-FNN is a bit better than other three algorithms
since R-FNN uses much more rules (512 vs 15). Clearly, R-FNN is not scalable and
can not be used in the big data environment. We also test the D-FNN by using
various values of K for CASP. Fig. 5.9 provides the NRMSE of CASP by setting
various K for the D-FNN. Generally, larger value of K will lead to smaller value of
NRMSE. However, we still suggest to select a moderate value of K. Surprisingly, the
NRMSE value of Motor by D-FNN is much better than the other algorithms since
the clustering results (fuzzy rules) of D-FNN is different from the others’. For such
a large-scale dataset, the distributed clustering results can outperform the central-
ized ones. This phenomenon also verifies the effectiveness of the proposed consensus
learning algorithm. In addition, we would like to re-emphasize that the superiority
of D-FNN compared with other three methods are as follows: 1) The D-FNN is able
to handle data in multiple agents. This capability becomes more significant in big
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data environment as the big data may exist in different locations and machines. 2)
The D-FNN can alleviate the burden of communication load and storage resources
in a single agent. 3) The D-FNN can preserve the users’ data privacy by limiting
the data transiting between multiple agents.

To verify the proposed distributed K-means method can work well in the case that
each agent has different cluster numbers, we implemented it on the CASP dataset
with different sample number and different cluster number of each agent, specifically,
the cluster number are respectively K1 = 11, K2 = 12, K3 = 13, K4 = 14, K5 = 15.
The distributed K-means method converge within 50 iterations and achieves the
NRMSE value 0.7887, which is consistent with the NRMSE value 0.7827 obtained
by the distributed K-means method but with the same cluster number K = 15 of
each agent.

5.5 Summary
This study has proposed a D-FNN model to deal with the inherent issues of the

big data environment including the uncertainty and distributed challenge. The pro-
posed D-FNN employed a sentential manner to exploit distributed structure learning
and parameter learning based on distributed optimization methods. It’s worth not-
ing that the D-FNN is very scalable and does not suffer from slow training speed
and gradient vanishing problems compared with back-propagation-based methods.
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The consensus learning algorithm has been proposed for the D-FNN in the big data
environment. The consensus learning algorithm, which consists of consensus-based
distributed structure learning and parameter learning is built on the well-known
ADMM. Simulation results have verified the superiority and effectiveness of the pro-
posed consensus learning algorithm for D-FNN.
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Chapter 6

Conclusion and Future Work

This research proposed four various fuzzy models to resolve the problems of de-
signing MAT systems, such as the coordination of agents, the interpretability of
actions and states, high-dimensional data and data privacy. First, a hierarchical
fuzzy logic system was developed for safely navigating multiple robots in complex
environments, where the lower-level fuzzy controller is for obstacle avoidance, and
the higher-level controller regulates the speeds of robots to enable simultaneous ar-
rival of the targets. The simulation results demonstrate that the proposed models
can be adapted to different numbers of robots for navigating the environment and
reaching the target on time safely. We further extended this model to improve
the transparency of fuzzy sets. A grouping and merging mechanism was developed
to optimise transparent fuzzy sets and integrated this mechanism into the training
process, thus increasing the fuzzy models’ interpretability. The simulation results
showed that the optimised fuzzy sets can be interpreted by explaining the fuzzy sets
and the consequent components.

Moreover, this research proposed a FCOSTD that is an effective mechanism for
discovering and representing the covert states and the transitions between states.
The fuzzy-inference mechanism was used to represent the activities of the human
brain associated with varying behaviours. Through the distracted driving experiment
and visualising the fuzzy-inference-based features, we found that covert states exist
in the brain when the subject responds to onset events during distracted driving.
The proposed state transition diagram also provides a mechanism for describing
state changes with their corresponding probabilities and the Markov chain. The
experimental results demonstrate that different subjects have similar states and inter-
state transition behaviour but different methods for allocating brain resources as
different actions are being taken. The discovery of covert brain states offers machine
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agents the possibility to understand human cognitive states in a human-autonomous
MAT system.

Finally, a D-FNN model was developed to address data privacy and high-dimensional
data. The D-FNN used a sentential manner to exploit distributed structure learning
and parameter learning based on distributed optimisation methods. The proposed
consensus learning, which involves distributed structure learning and distributed pa-
rameter learning, can handle the D-FNN model and restrict data exchange among
agents. The simulation results on popular datasets demonstrate the proposed con-
sensus learning algorithm’s superiority and effectiveness for the D-FNN.

In the future, the fuzzy models proposed in this research can be used to develop
advanced multiagent teaming systems that consider the coordination of agents, in-
terpretation of actions and states, and data privacy for different applications and can
be used in big-data environments. For example, a human and a machine arm can
cooperatively perform assembly tasks in a production line. In such a MAT system,
FCOSTD is used to predict the human agent’s cognitive state and the machine arm
control by a fuzzy-set interpretable fuzzy controller, which can establish a mutual
interaction between the human agent and the machine arm to improve task efficiency.
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