
Applying DevOps for Distributed Agile
Development: A Case Study

Asif Qumer Gill and Devesh Maheshwari

University of Technology Sydney, Ultimo, NSW 2007, Australia
e-mail: asif.gill@uts.edu.au

Abstract Agile software engineering principles and practices have been widely
adopted by the software-intensive organizations. There is an increasing interest
among organizations in adopting DevOps for improving their distributed agile soft-
ware environments. However, the challenge is how best to adopt and integrate
DevOps in their software development environments – especially in distributed ag-
ile environment. This paper presents one such successful case study of DevOps
adoption by the distributed agile teams for the development and deployment of a
real-time high-performance gaming platform. (1) Small teams, (2) trust, (3) active
communication and collaboration culture, (4) shared product vision and roadmap,
(5) continuous feedback and learning culture, (6) appreciation and excellent senior
management support are some of the key success factors of DevOps. The experi-
ences and learnings discussed in this paper can be used by other organizations to
effectively plan and adopt DevOps for their environment.

Introduction

Agile approaches have fundamentally changed the way organizations develop and
deploy software [17]. Agile approaches focus on iterative development and contin-
uous improvement [1]. Agile development team aims to incrementally deliver the
working software to operations team [18]. The operations team is then responsible
for putting the software into the production environment. Despite the recent success
with agile development, operations at large still work in isolation and slow com-
pared to agile development teams [2]. Being agile in development, and not agile in
operations, is one of the major concerns of agile teams. Lack of alignment and syn-
chronization between the development and operations could lead to the problem of
slow release and longer time to market of software solutions [3]. Isolated and slow
operations in traditional settings could be collectively seen as a bottleneck in the
overall value stream of software delivery [4]. In order to address this important con-
cern, an alternative and integrated DevOps (development and operations) approach
is emerging and getting vast attention from software-intensive organizations [5].

DevOps seems to be an interesting approach. However, its adoption in distrib-
uted agile software development is a challenging task [15, 19, 21]. This paper aims

2

to address this important concern and presents a case study of DevOps adoption in
distributed agile development environment. This study provides interesting insights
and key success factors of DevOps adoption such as (1) small teams, (2) trust, (3)
active communication and collaboration culture, (4) shared product vision and
roadmap, (5) continuous feedback and learning culture, (6) appreciation and excel-
lent senior management support.

This chapter is organised as follows. Firstly, it describes the DevOps concepts.
Secondly, it presents the DevOps case study results. Finally, it presents the discus-
sion and conclusion.

DevOps

DevOps is defined as “a set of practices intended to reduce the time between com-
mitting a change to a system and the change being placed into normal production,
while ensuring high quality” [4, 16]. The integrated DevOps brings together both
the development and operations teams and seems to address the bottleneck of slow
releases of software into production environment [20, 22]. The integration of
DevOps is not a straightforward task and poses several technical and non-technical
challenges [6]. This paper presents a case study of DevOps adoption in an Austral-
ian software-intensive organization (ABC - coded name due to privacy concerns)
for the distributed agile development and deployment of a real-time high-perfor-
mance gaming platform. The experiences and learnings from this case study will
help the readers to understand the DevOps process, its implementation, and key
learnings.

 DevOps Case Study

The ABC is an ASX listed entertainment organization. It offers gaming software
solutions in Australia. Its vision is to create entertainment experiences where the
passion, thrills, and enjoyment of the Australian way of life comes alive. It is one
of the world’s largest publicly listed gaming firms. It runs multiple gaming brands
and has the ability to handle huge amount of daily real-time transactions (over mil-
lion) on a high performance platform and their digital capability allows them to
deliver the same at the fast pace by using an agile approach. It has a flat organization
structure, which is augmented by continuous feedback and learning culture.

3

Analytical Lens

ABC has been using DevOps in their distributed agile environment for more than 3
years. ABC DevOps case has been analysed and reported by using the “Iteration”
management capability layer (see Figure 1) from the adaptive enterprise project
management (AEPM) capability reference model [7]. The AEPM capability refer-
ence model specifies the services for adaptive or agile portfolio, program, project,
release, and iteration management layers. DevOps is one of the services embedded
in the bottom “Iteration” layer of the APEM, hence, it has been deemed appropriate
and used here as an analytical lens to systematically analyze the ABC DevOps case.

It
e

ra
ti

o
n

Pre Iteration

Post Iteration

Adaptive
Iteration
Planning

Adaptive
Iteration
Analysis

Adaptive
Iteration

Architecture

User Story Narratives/ Use Cases/ NFRs

Adaptive
Iteration
Design

Adaptive Iteration Implementation
(DevOps)

Adaptive
Iteration
Testing

Adaptive
Iteration

Deployment

Adaptive
Iteration

Team

Adaptive
Heuristics

Iteration Backlog

The Gill Framework® V 3.0. Copyright © Asif Q. Gill.

Fig. 1. AEPM – Showing Iteration Management Layer (adapted from [7])

An iteration is a short time-boxed increment of a software. Iteration has embed-
ded services, which are organized into three parts: pre-iteration, iteration implemen-
tation and post iteration implementation. Iteration team employs practice and tools
to realize these services. Pre-iteration services include adaptive iteration planning,
analysis, and architecture for the upcoming iteration. Iteration implementation re-
fers to the integrated development and operations (DevOps) of current iteration in
hand. It also involves automated testing and continuous deployment (CD) services
[8]. The CD also includes continuous integration services (CI) [9]. The deployment
covers the deployments in development, test, staging and production environments.
Code is design, which emerges as the DevOps progresses in small increments. How-
ever, design service can be used to document the technical design, if required. Heu-
ristics refers to continuous learning or adaptation through iterative feedback and
reviews.

Iteration Management

ABC is using an agile release cycle, which involves the development of prioritized
product features in two weeks increments. Release cycle includes inception stage,
which includes release planning, vision, and scope. Release cycle spans multiple
iterations that frequently release working software increments into production. The

4

ABC release cycle has been analyzed and detailed below using the iteration man-
agement capability layer items (see Figure 1).

Iteration Team

ABC has 70+ IT team members working on the gaming platform, which are organ-
ised into small geographically distributed feature teams. These teams are located
across Sydney, Melbourne, and Brisbane. Each feature team size ranges from 6-9
people. These teams are supported by 3 DevOps engineers. DevOps engineers cre-
ate standard scripts, lay out foundation for execution and guide teams to move in
the right direction. It is important to note here that development teams take owner-
ship to the larger extent to deliver features including DevOps tasks. DevOps engi-
neers mainly facilitate the feature teams to smoothly deploy product increments into
production environment. Feature teams continuously deploy code in test environ-
ment. However, code is deployed into production twice in a week. Hence, teams
delivering features take the ownership and responsibility of taking the code through
to production and support it.

Fig. 2. APEM – ABC Iterative Cycle

Pre-Iteration

The iteration cycle of ABC has iteration 0, which is called the initiation stage. Iter-
ation 0 is also a pre iteration for next iteration (iteration 1). It means that iteration
1 planning, user stories and architecture (story prioritization and elaboration) are
detailed in iteration zero (0). Similarly, iteration 2 planning, user stories and archi-
tecture are detailed in pre iteration 1. This enables the team to have the user stories
ready (analysed, planned and architected) before the start of next iteration.

5

Iteration Implementation (DevOps)

The bulk of the work is done during iteration implementation. Product increment
user stories are implemented by the distributed agile teams using automated
DevOps practices and tools. Development is done by using the Microservices Ar-
chitecture style, in which application is decomposed into small independent fine-
grained services in contrast to traditional coarse-grained service [10]. The applica-
tion Microservices are deployed in the cloud (Amazon Web Services), which is also
integrated with the ABC company infrastructure. Automated testing, functional
and non-functional, is built into the DevOps process. The development team devel-
ops the code and automated tests, which are required to complete the user stories.
Any new scenario identified by the team during the iteration implementation is also
estimated and prioritized and, if required, is incorporated into the current or upcom-
ing iterations. Code is a design. However, additional technical design, if required,
is also done as a part of the user story implementation. The artefacts, other than the
code, are captured on the source control wiki for information management and shar-
ing.

Code is frequently checked into the version control system and is also peer re-
viewed. Once code has been peer reviewed and automated build on CI server is
passed, it is merged into the mainline repository. Once the code is checked into the
version control, the automated tests are run by the CI server again to verify that the
change has not had any adverse impacts on the rest of the solution. This is to ensure
the quality and integrity of the solution. There is a high level of automated test cov-
erage. It is made sure that the relevant acceptance criteria have met and execution
of the exploratory tests is done for any edge cases. Any identified issues are captured
as comments in the story tracking tool for a given story and are fixed straight away
by the person who developed the story, and then re-checked by the person verifying
the story. It is the mindset of the team that all issues or defects have high priority
and need to be fixed as early as possible. This is done to avoid the possibility of
hanging over issues and technical debt.

In a nutshell, user stories cannot be deployed or considered ‘complete’ until they
are tested as a part of the automated test suite. User stories, acceptance tests and
defects are captured and tracked using the agile tool, which is called Mingle. The
CD employs CI to ensure that the code base is always in a deployable state and that
regression defects have not been inadvertently introduced. The CI is enabled using
the “GO” CI integration server [11], which is responsible for deployment orches-
tration. It is also supported by the Github repository [12] for version control for both
code and test scripts. Confluence (wiki) [13] is used for capturing supporting infor-
mation that is not recorded in Mingle or Github. Ansible is used for preparing con-
figuration [14]. Further, active communication and collaboration among distributed
agile teams are enabled using the HipChat communication tool. Each user has their
own login, every change is recorded showing who made the change, and for each
check in, the associated Pivotal Tracker ID is referenced. Figure 3 summarizes the
DevOps value stream.

6

Fig. 3. DevOps Value Stream

The CD of the overall DevOps process involves deployments in five different
target environments: local development, shared development, testing, pre-produc-
tion, and production environments. Local developments are done on the standalone
machine or laptop. Shared development environment involves one or more compo-
nents. Testing environment is for functional testing such as UAT. Pre-production
is a production like environment for performance testing and related bug fixing.
Finally, production is a customer facing environment, which is duly monitored, op-
erated, and supported by the DevOps team. Deployment pipeline can be traced from
Github to Base AMI (Amazon Machine Instance) to Web AMI to Web Deployment
(see example in Figure 4).

Fig. 4. Deployment Pipeline

Develop
Code Locally

Check-in to
GitHub

GO pulls
code from

GitHub

GO builds
and versions

code

New code
checked-in

New build
executed

GO
orchestrates
deployment

Ansible
prepares

configuration

Target
environment is

configured

New build is
deployed to

target

GO updates
versions

Target
environment
ready for use

Github

Github

Github

BaseAMI
WebBuild

WebAMI

Web Deployment

Smoke
Tests

7

One of the goals of the DevOps is to make available the working solution into
production environment as quickly as possible. However, the quality of the de-
ployed code or solution is very important from target stakeholders’ perspectives.
Therefore, ABC DevOps implements the additional automated production checks
(see example in Figure 5). It involves automated sanity test, which runs every few
minutes and send alert alarm on mobile to check any customer impact due to a de-
ployment. These checks have been divided into 5 minutes and hourly checks based
on their criticality and execution time.

Fig. 5. Automated Production Checks

Each iteration involves at least two showcases, one for technical understanding
to internal team and one is for business external to customer. This enables the team
to quickly identify and address any technical and business requirements related con-
cerns during the iteration. In addition to product owner, customer care team is also
involved during the business showcase. Further, in order to keep the distributed
agile feature teams aligned and synchronized, ABC maintains a card wall or port-
folio of features (shared vision) and roadmap organized into next 3, 6, 9 and 12
months. This helps the distributed feature teams to understand the holistic picture
(shared vision and roadmap) while working on their local features.

Post-Iteration Implementation (Heuristics)

Post-iteration heuristics involves iteration retrospective. In addition to traditional
retrospective, it also involves process self-assessment. The secondary process own-
ers run regular self-assessments to ensure conformance to the mandates and records
identified by the team. This is achieved by sighting the content in the nominated
repositories against the self-assessment checklist. The Quality Manager, on a peri-
odical basis, reviews the completed self-assessments and raise Improvement Tickets
for any non-compliance issues that cannot be justified.

The ABC organization’s DevOps case study analysis results summary is pre-
sented in Table 1. It is clear from the analysis that ABC has a well-established

8

DevOps environment within the overall distributed agile development. We also
learnt that APEM reference model elements provided us with a structured mecha-
nism or checklist to systematically analyze the DevOps case study and ensure that
the important points are not overlooked.

Table 1. DevOps Case Study Analysis Results Summary

Iteration Services Practices Tools Key Team Roles
Pre-Iteration

Planning
Analysis
Architecture

Planning
Prioritization
User Story Elabora-
tion

Mingle
Confluence
(wiki)
HipChat

Development Team
Iteration Manager
Product Owner
SME
UXD

Iteration Implemen-
tation

Design
DevOps
Testing
Deployment

Technical Design
Automated Testing
CD
CI
Code Peer Review
Change Handling
Technical Showcase
Business Showcase

Mingle
Confluence
(wiki)
GO
Github
Ansible
HipChat

Development Team
DevOps Engineer
Iteration Manager
Product Owner
SME
UXD
Customer Care Team

Post-Iteration Im-
plementation

Heuristics Retrospective
Improvement Tick-
ets

Mingle
Self-Assess-
ment Check-
list

Development Team
DevOps Engineer
Iteration Manager
Quality Manager
Product Owner
SME
UXD

Discussion and Conclusion

Setting up with smaller and trusted features teams to deliver features gave the ABC
organization the flexibility to try out various mechanism and technologies for de-
livering software. Active communication and collaboration culture, and shared
product vision and roadmap helped the ABC distributed agile teams to stay align
and synchronized. Further, continuous feedback, learning, appreciation, and senior
management support helped the teams to stay motivated to successfully implement
the DevOps in their distributed agile environment over a period of 3 years. Micro-
services Architecture and DevOps are considered as a strong combination. How-
ever, interestingly, the ABC digital delivery lead mentioned that “with growth we

9

realized that we made lot of decisions like splitting monolithic application into mul-
tiple smaller services and created lot of micro services. On one hand we are seeing
advantages of having micro services but there is also a risk of having too many
services which will in future create more work of maintaining deployments, risk of
having things implemented differently on each of the services, risk of having each
services only serving few routes”. This seems to suggest that organizations should
procced with great caution when considering Microservices Architecture. Security
could be an issue in a flexible DevOps environment. ABC deals with this issue
through monthly security audit reviews on DevOps. ABC is currently looking at
which fine-grained Microservices can be combined or consolidated into more
coarse-grained traditional services. This chapter presented a DevOps implementa-
tion case study in a relatively a different context of entertainment gaming industry.
This case study provided us several insights which could be applied to other indus-
trial contexts. It is clear from the case study analysis that DevOps is not all about
technology, it is a mix of both technology and non-technology elements. DepOps is
an emerging approach for digital innovation and transformation, and marks the need
for more empirical studies in this important area of practice and research.

References

1. T.Dybå and T. Dingsøyr. 2009. What Do We Know about Agile Software Development? IEEE
Software, Sep/ Oct 2009.

2. M. Huttermann. 2012. DevOps for Developers. Apress, 2012.
3. M. Virmani. 2015. Understanding DevOps & Bridging the gap from Continuous Integration to

Continuous Delivery. Fifth IEEE International conference on Innovative Computing Technol-
ogy (INTECH 2015), 2015.

4. L. Bass, I. Weber and L. Zhu. 2015. DevOps: A Software Architect's Perspective. Addison-
Wesley, 2015.

5. L.F. Wurster, R.J. Colville and J. Duggan. 2015. Market Trends: DevOps — Not a Market, but
a Tool-Centric Philosophy That Supports a Continuous Delivery Value Chain. Gartner Report,
2015. Available: https://www.gartner.com/doc/2987231/market-trends-devops--market

6. M. de Bayser, L.G. Azevedo and R.F.G. Cerqueira. 2015. ResearchOps: The Case for DevOps
in Scientific Applications. IFIP/IEEE IM 2015 Workshop: 10th International Workshop on
Business-driven IT Management (BDIM), 2015.

7. A.Q. Gill. Adaptive Cloud Enterprise Architecture. World Scientific, 2015.
8. S.J Humble and D. Farley. 2010. Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation. Addison-Wesley Professional; 1 edition, 2010.
9. P.M. Duvall, S. Matyas, A. Glover. 2007. Continuous Integration: Improving Software Quality

and Reducing Risk. Addison-Wesley Professional; 1 edition, 2007.
10. S. Newman. 2015. Building Microservices Designing Fine-Grained Systems. O'Reilly Media,

2015.
11. Go. Continuous Delivery. Available: http://www.go.cd/. Access Date: April 06, 2020.
12. GitHub. Where software is built. Available: https://github.com/. Access Date: April 06, 2020.
13. Confluence. Available: https://www.atlassian.com/software/confluence. Access Date: April

06, 2020.
14. Ansible. Available: http://www.ansible.com/. Access Date: April 06, 2020.

http://www.go.cd/
https://github.com/
https://www.atlassian.com/software/confluence
http://www.ansible.com/

10

15. Y.I., Alzoubi, A.Q., Gill, and A., Al-Ani. 2015. Distributed Agile Development Communica-
tion: An Agile Architecture Driven Framework. JSW, 10(6), pp.681-694.

16. G. Bou Ghantous, and A., Gill. 2017. DevOps: Concepts, practices, tools, benefits and chal-
lenges. PACIS2017.

17. A. Qumer, B. Henderson-Sellers. 2007. Construction of an agile software product-enhance-
ment process by using an agile software solution framework (ASSF) and situational method
engineering. In 31st Annual International Computer Software and Applications Conference
(COMPSAC 2007) (Vol. 1, pp. 539-542). IEEE.

18. A.Q., Gill, A. Loumish, I., Riyat, and S., Han. 2018. DevOps for information management
systems. VINE Journal of Information and Knowledge Management Systems.

19. Y. I. Alzoubi and A. Q. Gill. 2020. An Empirical Investigation of Geographically Distributed
Agile Development: The Agile Enterprise Architecture is a Communication Enabler. IEEE Ac-
cess, vol. 8, pp. 80269-80289, 2020, doi: 10.1109/ACCESS.2020.2990389.

20. G.B. Ghantous, and A.Q. Gill. 2018. DevOps Reference Architecture for Multi-cloud IOT
Applications. In 2018 IEEE 20th Conference on Business Informatics (CBI) (Vol. 1, pp. 158-
167). IEEE.

21. G. B. Ghantous, & A. Q. Gill. 2019. An Agile-DevOps Reference Architecture for Teaching
Enterprise Agile. International Journal of Learning, Teaching and Educational Research, vol.
18. no.7.

22. R., Macarthy, & J. Bass. 2020. An empirical taxonomy of DevOps in practice. 46th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA).

