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Abstract—In this paper, a novel application-oriented system-

level optimization method is proposed for switched reluctance 

motor (SRM) drive systems. First, the multiobjective 

optimization model is defined according to the design 

requirements. Then, all the parameters of the motor and 

controller are divided into three subspaces according to the 

sensitivity results on the defined objectives. Finally, the 

optimization of each subspace is performed sequentially by using 

the approximate models and advanced genetic algorithm, and the 

best solution can be selected from the Pareto optimal solutions. 

To verify the effectiveness of the proposed method, an SRM drive 

system with a segmented-rotor SRM and the angle position 

control method is investigated. This is a high-dimensional 

system-level optimization problem with ten parameters. The 

computational cost can be greatly reduced without the sacrifice 

of accuracy. From the discussion, it can be found that the 

proposed multiobjective system-level optimization method can 

achieve high efficiency and low torque ripple. Besides, it provides 

alternative solutions for applications with different output power 

demands. 

Keywords—Optimization method, switched reluctance motor, 

system-level design optimization. 

I. INTRODUCTION 

Switching reluctance motors (SRMs) are witnessing 

increasing attention due to the advantages of high reliability 

and robustness, low manufacturing cost, and the absence of 

permanent magnet [1-3]. Compared with the other types of 

motors, SRMs suffer from higher torque ripple contributed to 

the nonlinear coupling between inductance, phase current, and 

rotor position [4-6]. The design optimization process is a 

common approach to reduce torque ripple and improve 

comprehensive performances. The problem of single-objective 

optimization is the potential downgrading of other significant 

performance indices. However, in the actual application, there 

always exist multiple design requirements, such as 

maximizing output torque and efficiency, and minimizing the 

torque ripple. Therefore, the implementation of multiobjective 

optimization on SRMs is more suitable to accommodate the 

requirements for different applications [7], [8]. 

Previous works on the multiobjective optimization of SRMs 

mainly focus on geometric parameters by selecting 

approximate stator and rotor sizes, which are mostly on the 

component level rather than the system level [9-12]. For 

example, in [13], a sample SRM with multiple optimizations 

was carried out, and the optimization variables from all the 

geometric parameters were selected according to their 

influence on objectives. However, this method only achieves 

the best structure of the motor. Since it did not consider the 

control parameters, it cannot guarantee the best solution for 

the drive system. Aside from the motor aspect, a 

multiobjective optimization method has also been conducted 

on the control aspect of SRMs [14]. Several kinds of research 

have been performed on both motor and control aspects 

simultaneously. As reported in [15], to obtain the best 

performance of electric drive systems, the optimization should 

contain both the motor level and control level. Thus, it is 

meaningful to conduct the optimization for the whole drive 

system. Recently, a system-level design optimization method 

for SRM drive system was proposed in [16], the optimal 

solution was selected by a selection criterion which 

incorporating the optimization objectives by weighting factors. 

The demands of meeting the design requirements were 

realized by choosing different values of weighting factors, 

which is not convenient and intuitive in the application-

oriented optimization problem. 

This paper presents a novel application-oriented system-

level optimization method for SRM drive systems considering 
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multiple optimization objectives. Both the motor and control 

aspects are optimized by the multiobjective optimization 

method. Besides, the multilevel method is performed to reduce 

the computation cost and improve optimization efficiency. A 

suitable solution can be selected from the Pareto optimal 

solutions with different application demands. The remainder 

of this paper is organized as follows. Section II presents the 

proposed method. Section III investigates an example study 

for the design optimization of a segmented-rotor switched 

reluctance motor (SSRM) and its control approach. Specific 

implementation and results are provided in Section IV, 

followed by the conclusion in Section V. 

II. APPLICATION-ORIENTED SYSTEM-LEVEL OPTIMIZATION 

METHOD 

Fig. 1 shows the flowchart of the proposed application-
oriented system-level optimization method for SRM drive 
systems. This method includes multiobjective, multilevel, and 
system-level optimization methodologies, and it can be divided 
into six steps as follows. 

Step 1: Build the multiobjective optimization model 
considering the system parameters for the SRM drive systems.  

The multiobjective model can be defined as 
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where xs, f, gi are the design parameter vector, objective, and 
constraints of the motor, respectively, xs consists of motor 
parameter vector and control parameter vector, xsl and xsu are 
the lower boundary and upper boundary, respectively.  

Step 2: Carry out sensitivity analysis for all parameters of 
the SRM drive system, including motor level and control level. 

In a high dimensional design optimization problem, some 
design parameters related to the objectives are more significant 
than others. The sensitivity analysis process is utilized to 
achieve the potential influences of each design variable on the 
optimization objectives. Therefore, the high dimensional 
design space can be divided into several low dimensional 
design spaces in terms of their sensitivity results. 

Step 3: Divide the system parameters into three subspaces 
X1, X2, and X3, where X1, X2, and X3 represent the highly 
significant, significant, and non-significant subspaces of 
system design parameters, respectively. 

The principle of the division is decided by the results of 
influences on the defined optimization objectives in (1). The 
results can be achieved from the sensitivity analysis proposed 
in the last step. 

Step 4: Optimize X1. In the implementation, parameters in 
X2 and X3 are fixed as the initial values. The Pareto optimal 

solution set of X1 is obtained in this step, and then several 
points are selected to the next step to achieve the Pareto 
optimal solution set of X2. 

Step 5: Optimize X2. Similar to the last step, the Pareto 
optimal solution set of X2 is obtained in this step based on the 
selected values of parameters in X1, then, several points with 
definite values of X1 and X2 are sent to the next step. 

Step 6: Optimize X3. The values of parameters in X1 and X2 
are fixed as selected. The final optimal points can be chosen 
from Pareto solutions to this subspace. 

Furthermore, it should be noted that in steps 5 and 6, as 
more than one optimal solution are selected, several Pareto 
optimal solutions will be obtained corresponding to each 
selected point in the previous step. The best way to solve this 
problem is to merge all the Pareto optimal solutions into one 
picture, which will be more intuitive. 

Build the multiobjective optimization model

Divide system parameters into three subspaces

X1: Highly significant; X2: Significant; X3: non-significant

Optimize X1

Select several optimums sent to the next step

Optimize X2

Select several optimums sent to the next step

Optimize X3

Achieve the optimum solution set

Sensitivity analysis of all the system parameters

 

Fig. 1.  Flowchart of application-oriented system-level optimization method 
for SRM drive systems. 

III. EXAMPLE OF AN SRM DRIVE SYSTEM 

In this example, an SRM drive system consisting of an 
SSRM and the APC control is set as an example to investigate 
the proposed optimization method. The specifications of the 
SSRM are presented in Table I.  

TABLE I 

SPECIFICATIONS OF THE SSRM 

 

Parameters Unit value 

Rated power kW 1.8 

Rated speed r/min 6000 

Rated voltage V 60 

Efficiency % 0.85 

Outer diameter mm 128 

Axial length mm 80 

 



 

 

Fig. 2 shows the topology of the SSRM. The stator poles 
are divided into excited poles and auxiliary poles. The excited 
poles wrapped by the coils provide the flux linkage while the 
auxiliary poles play the role of the flux return path without any 
windings. The benefit of this structure is that it can provide a 
short flux path, and thus exhibits higher efficiency and lower 
core loss compared with the common double-salient structure. 
The descriptions of each parameter and their values are 
presented in Table II. In this application, the optimization 
model can be defined as follows. 
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where Tavg, Ploss, and Tripple are the three optimization 
objectives, which represent the average output torque, average 
loss and torque ripple, respectively. η, Pout, sf and Jc represent 
the efficiency, output power, slot fill factor and current density, 
respectively. 

Isolator

Stator

Winding Segmented-rotor  

Fig. 2.  The topology of the SSRM. 
 

TABLE II 

INITIAL DESIGN DIMENSIONS OF THE SSRM 

 

Par. Description Unit Value 

Nph Number of phases - 4 

Ns Number of stator poles - 16 

Nr Number of rotor poles - 10 

Dso Stator outer diameter mm 128 

l Axial length mm 80 

Dro Rotor outer diameter mm 82 

βs1 Excited stator pole arc deg. 21.375 

βs2 Auxiliary stator pole arc deg. 10.688 

βr Rotor pole arc deg. 26.64 

Lsy Stator yoke mm 7 

hcr Height of segmented rotor mm 5.5 

g Air gap  mm 0.25 

N Number of turns - 24 

θon Turn-on angle deg. -3 

θoff Turn-off angle deg 12 

 

IV. IMPLEMENTATION AND RESULTS 

In the implementation process, a large number of finite 
element modes (FEMs) will be established. And the whole 
discussion is based on the data from FEMs. Thus, it is 
necessary to verify the reliability of FEM at first. Second, local 
sensitivity analysis is performed to divide all the parameters 
into three subspaces, which is beneficial to release the 
computational cost. Then, the approximate model of each 
subspace is built by using the Kriging model, and Pareto 
optimal solutions are achieved by the advanced algorithm 
NSGA-II. The accuracy of the Kriging model will be verified 
by several randomly selected points. Finally, a comparison 
between the optimal sets and the initial design is investigated, 
and the results are further presented and discussed. 

A. Verification of FEM 

The platform of the investigated SSRM drive system is 
presented in Fig. 3. The comparison between simulation and 
measured results of flux linkage and torque are shown in Figs. 
4 and 5, respectively. All the measured results can verify the 
reliability of the simulation, which built the foundation of the 
FEM-based optimization process. 
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Fig. 3.  The platform of the investigated SSRM drive system. (a) The 16/10 
SSRM. (b) Torque and speed sensor. (c) Magnetic power brake. (d) PC. (e) 
Oscilloscope. (f) dSPACE. (g) Powder converter and driving circuit. (h) 
Power supply. 
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Fig. 4.  Simulation and measured results of flux linkage. 
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Fig. 5.  Output torque comparison of the experimental and simulation 
results under APC at speed 6000 r/min. 



 

 

B. Sensitivity analysis 

Fig. 6 shows the local sensitivity analysis results of the ten 
parameters. Three subspaces are determined according to the 
sensitivity influence on torque, loss and torque ripple. 
Subspace X1 includes parameters Dro, βr and N, subspace X2 
includes parameters βs1, βs2 and θoff, and subspace X3 includes 
parameters θon, Lsy, hcr, and g. 
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Fig. 6.  Local sensitivity indices of torque, loss, and torque ripple. 

C. Multilevel optimization 

The parameters in the subspace X1 are highly significant to 
the overall performances of the drive system, and they are 
optimized at the first level. In this level, 1001 (11x13x7, where 
11, 13 and 7 are the sampling numbers of parameters Dro, βr, 
and N, respectively) FEM samples in total are established for 
the optimization. The Pareto optimal solutions of this level are 
shown in Fig. 7(a). Three regions have been divided according 
to the torque values. Regions 1, 2 and 3 represent the optimal 
solutions in the torque ranges 5~7 Nm, 3~5 Nm, and 1~3 Nm, 
respectively. Then, three optimal points from each region, i.e., 
Point 1'', Point 2'' and Point 3'', have been selected for the 
implementation of level 2 optimization. 

After the optimization of level 1, significant parameters in 
the subspace X2 will be optimized under the fixed values of 
parameters in X1. For each selected point in X1, 150 (6x5x5, 
where 6, 5, and 5 mean the sampling numbers of parameters βs1, 
βs2 and θoff, respectively) FEM samples in total are established, 
and the corresponding Pareto solutions can be achieved during 
the optimization of level 2. Three sets of Pareto optimal 
solutions corresponding to Point 1'', Point 2'' and Point 3'' can 
be obtained. In this paper, the three sets are merged into one 
set, and the Pareto optimal solutions at this level are shown in 
Fig. 7(b). Besides, three optimal points, namely Point 1', Point 

2' and Point 3' are sent to the next optimization step. Compared 
to Fig.7(a), it can be found that torque ripple has been greatly 
reduced after the optimization of level 2.  

Similarly, for each selected point in X2, 180 (3x3x5x4, 
where 3, 3, 5 and 4 mean the numbers of values of θon, Lsy, hcr, 
and g, respectively) FEM samples are required. The three sets 
of Pareto optimal solutions in the optimization of level 3 are 
merged into one figure, as shown in Fig. 7(c). The final three 
optimal points in Fig. 7(c), i.e., Point 1, Point 2 and Point 3, are 
selected after the optimization of parameters in X3. Point k 
(k=1,2,3) has the same values of parameters in X1 with Point k'' 
and the same values of parameters in X2 with Point k'. Specific 
values of the parameters of the three points are presented in 
Table III. 

TABLE III 

Optimization Results 

Par. Unit Point 1 Point 2 Point 3 

Dro mm 84.86 84.79 85.00 

βs1 deg. 21.47 21.50 21.50 

βs2 deg. 9.92 9.27 10.23 

βr deg. 24.26 26.62 30.00 

Lsy mm 7.71 5.00 8.86 

hcr mm 6.04 4.00 6.84 

g mm 0.26 0.35 0.28 

N - 21 22 26 

θon deg. -3.10 -3.50 -2.90 

θoff deg 11.00 11.14 11.11 

Tavg Nm 6.03 4.36 2.08 

Pout kW 3.79 2.74 1.31 

Ploss W 328.44 283.72 110.50 

η % 92.03 90.62 92.22 

Tripple % 83.34 51.75 114.90 

 

On the other hand, multilevel optimization can greatly 
improve the computation efficiency for the whole system 
optimization. The single-level optimization, for example, if the 
Kriging model is employed, the required FEM samples 
(1001*150*180) will be much larger. Regarding the multilevel 
optimization, if one optimal point is selected, only 1331 
(1001+150+180) FEM samples are required for the 
multiobjective optimization of this drive system. Therefore, the 
proposed multilevel optimization method can greatly reduce 
the burden and cost of computation, especially for the 
optimization of the high-dimensional structure. 
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(a)                                                                       (b)                                                                      (c) 
Fig. 7.  Pareto optimal solutions of (a) level 1, (b) level 2, and (c) level 3. 
 



 

 

D. Verification of Kriging model 

After the optimization process, three points have been 
selected, thus, the results between the Kriging model and 
FEM of these points are compared to verify the effectiveness 
of the approximate model. The FEM results have been 
verified by the comparison with the experiment results, as 
mentioned above. Thus, the accuracy of the Kriging model 
can be verified by the FEM results. 

TABLE IV 

COMPARISON BETWEEN KRIGING MODEL AND FEM  

 

Par. Point 1 Point 2 Point 3 

 Krig. FEM Krig. FEM Krig. FEM 

Tavg (Nm) 6.03 5.98 4.36 4.38 2.08 2.09 

Ploss (W) 328.44 325.47 283.72 284.15 110.50 110.89 

Tripple (%) 83.34 85.94 51.75 52.98 114.90 112.76 

Tavg error 0.83% 0.46% 0.48% 

Ploss error 0.90% 0.15% 0.35% 

Tripple 

error 
3.13% 2.4% 1.86% 

 

The values of the three optimization objectives between 
the Kriging model and FEM are shown in Table IV. Detailed 
errors between the Kriging model and FEM of Point 1, Point 
2 and Point 3 are listed in Table IV. The maximum errors of 
torque, loss, and torque ripple of these three points are only 
0.83%, 0.90%, and 3.13%, respectively, and they are 
acceptable. It can be found that for each point, the error of 
torque ripple is higher than the other objectives for that the 
calculation of torque ripple relies on the maximum, average, 
and minimum values of torque. 

E. Results comparison 

After verification of the Kriging model, it is credible of 
the optimal solutions selected in Fig. 7. As mentioned above, 
the results of the selected three optimal solutions are shown 
in Table III. To clearly show the difference between the 
initial and the optimal solutions, an optimal solution which 
exhibits the approximate average torque has been selected 
from Fig. 7(c). The comparisons of torque and current are 
displayed in Fig. 8. From Fig. 8(a), it can be seen that the 
select optimal solution with approximate average output 
torque exhibits a smaller torque ripple than the initial design. 
Besides, the current curve of the optimal solution is more 
reasonable compared with that of the initial design, as shown 
in Fig. 8(b). Detailed comparison of values between the 
initial design and the selected optimal solution with 
approximate output torque is listed in Table V. 
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Fig. 8.  Comparison of (a) torque and (b) current between the initial and 
optimal solutions. 
 

TABLE V 

COMPARISON FOR THE APPROXIMATE POWER 

 

Par. Unit Initial Optimal 

Dro mm 82.00 84.79 

βs1 deg. 21.38 21.50 

βs2 deg. 10.69 9.27 

βr deg. 26.64 26.62 

Lsy mm 7.00 9 

hcr mm 5.5 4.10 

g mm 0.25 0.35 

N - 24 22 

θon deg. -3.00 -2.5 

θoff deg 12.00 11.14 

Tavg Nm 3.03 3.37 

Pout kW 1.90 2.12 

Ploss W 195.06 211.67 

η % 90.69 90.92 

Tripple % 93.64 47.84 

 

From these tables, several conclusions can be drawn as 

follows. 

1) Point 1: Compared with the initial design, Point 1 in 

the region (5~7 Nm) can greatly improve the output power 

and keep the high efficiency. Besides, the torque ripple can 

be a little reduced. 

2) Point 2: The torque ripple can be greatly reduced step 

by step by using the proposed method, especially in region 2 

(3~5 Nm). The values of torque ripple in this area are lower 

than 60%. For example, the torque ripple value of Point 2 is 

only 56.6% of that of the initial design, and the selected 

optimal solution for comparison with the initial design only 

has a 47.84% value of torque ripple. 

3) Point 3: The torque ripple in region 3 (1~3 Nm) is 

higher than in the other two regions. However, when the 

motor is applied to a lower torque condition, it can also keep 

high efficiency. 

4) The multiobjective optimization method provides 

alternative solutions with a wide range of torque. As shown 

in Tables III and IV, the toques of Point 1, Point 2, and 

Point 3 are 6.03 Nm, 4.36 Nm, and 2.08 Nm, respectively. 

These points can be selected for different applications with 

demands of different rated torque. 



 

 

5) For the approximate output power, although the model 

after optimization exhibits similar efficiency, the torque 

ripple can be greatly reduced. The torque value of this 

optimal solution is 47.84%, which is much lower than 

93.64% of the initial design. It means the proposed method 

in which the torque ripple is considered as one of the 

objectives can greatly reduce the problem of high ripple 

without the sacrifice of torque and efficiency. 

V. CONCLUSION 

In this paper, a comprehensive optimization method 
consists of multiobjective, system-level, and multilevel 
methods was presented for SRM drive systems. The 
proposed method aims to provide a fast way to achieve the 
best performance of the SRM drive system. An example of 
an SSRM and its APC control method was investigated to 
show the effectiveness of the proposed method. Three 
optimization objectives, i.e., torque, loss, and torque ripple, 
were selected. To improve the overall performance of the 
system and reduce the computation cost, all the parameters 
of the motor and controller have been considered together 
and divided into three optimization levels by using the 
sensitivity analysis. The accuracy of the FEM and the 
Kriging model is verified successively. The proposed method 
can provide a set of optimal solutions for situations with 
different output power demands. The solutions obtained from 
the proposed method exhibit many benefits, including high 
efficiency and low torque ripple. 
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