
Hierarchical topic tree: A hybrid model comprising network analysis 
and density peak search 

Mengjia Wu1 and Yi Zhang2 

1 Mengjia.Wu@student.uts.edu.au 
Australian Artificial Intelligence Institute, Faculty of Engineering and Information Technology, University of 

Technology Sydney (Australia) 

2 Yi.Zhang@uts.edu.au 
Australian Artificial Intelligence Institute, Faculty of Engineering and Information Technology, University of 

Technology Sydney (Australia) 

Abstract 
Topic hierarchies can help researchers to develop a quick and concise understanding of the main themes and 
concepts in a field of interest. This is especially useful for newcomers to a field or those with a passing need for 
basic knowledge of a research landscape. Yet, despite a plethora of studies into hierarchical topic identification, 
there still lacks a model that is comprehensive enough or adaptive enough to extract the topics from a corpus, deal 
with the concepts shared by multiple topics, arrange the topics in a hierarchy, and give each topic an appropriate 
name. Hence, this paper presents a one-stop framework for generating fully-conceptualized hierarchical topic trees. 
First, we generate a co-occurrence network based on key terms extracted from a corpus of documents. Then a 
density peak search algorithm is developed and applied to identify the core topic terms, which are subsequently 
used as topic labels. An overlapping community allocation algorithm follows to detect topics and possible overlaps 
between them. Lastly, the density peak search and overlapping community allocation algorithms run recursively 
to structure the topics into a hierarchical tree. The feasibility, reliability, and extensibility of the proposed 
framework are demonstrated through a case study on the field of computer science. 

Introduction 
The last decades have witnessed a great accumulation of scientific documents, resulting in 
information overload for researchers. Aiming to improve this situation, a substantial number of 
bibliometric studies on topic extraction, knowledge mining, and text analytics have been 
undertaken, each looking for efficient ways to extract information from textual data and concise 
ways of presenting the knowledge found (Ba et al., 2019; Qian et al., 2020; Song et al., 2016; 
Wu et al., 2020; Zhang et al., 2018; Zhang et al., 2017). What many of those studies have shown 
is that, one, organizing research topics into curated hierarchical structures is an excellent way 
of quickly conveying a great deal of knowledge about the composition of a research field to 
those who are unfamiliar with it, and, two, constructing these arrangements is nontrivial and 
highly challenging. While very broad overviews of a field are not particularly difficult to 
generate, creating interactive topic maps that show fields at different and especially fine levels 
of granularity and disentangling the rising complexities of inter-/multi- disciplinary studies is 
another story altogether. In fact, all but the most rudimentary techniques still rely heavily on 
expert knowledge.  
That said, advancements in natural language processing (NLP) are reducing this dependence, 
with methods capable of automatically identifying and stratifying the thematic concepts found 
in a dataset of literature. Among these methods, hierarchical latent Dirichlet allocation (hLDA) 
(Blei et al., 2010) is especially well-known. However, there are a couple of aspects of hLDA 
that could be improved. These include sometimes weak associations between the generated 
parent and child topics; and internal unigram incoherence within topics (Qian et al., 2020; Xu 
et al., 2018); a propensity to represent each topic as a conglomeration of unigrams and 
probabilities; and a tendency to label topics with appropriate names, which reduces the 
interpretability of the results. There are also alternative approaches of building topic hierarchies, 
such as taxonomy identification (Shang et al., 2020), ontology construction (Wong et al., 2012), 



and knowledge graphs (Yang et al., 2017). But, despite substantial efforts to the contrary, these 
techniques inevitably suffer from either an excessive number of parameters that need to be fine-
tuned and/or issues with creating clean partitions between topics. Hard clustering algorithms 
like K-means or non-negative matrix factorization (Qian et al., 2020; Zhang et al., 2018), which 
most of these techniques are based on, struggle to find clear divisions between topics with high 
levels of overlap, convergence, or interactivity – characteristics that typify the process of 
scientific development.  
Aiming to solve these issues, we propose a novel framework called Hierarchical Topic Tree 
(HTT) that operates in a recursive manner to reveal the topic hierarchies within a set of 
documents. The framework comprises a term co-occurrence network and two algorithms: DPS, 
a density peak search algorithm, modified to work with networks; and OCA, an overlapping 
community allocation algorithm. We assume that every topic consists of a core term, which 
becomes the topic’s label, and a set of affiliated terms. Applying the density peak search 
algorithm to a term co-occurrence network reveals the density peak terms that meet some 
specific criteria for being used as a topic’s label. The terms associated with every core topic 
term, i.e., the affiliated terms, are then determined and partitioned by the overlapping 
community allocation algorithm, which means terms can be assigned to multiple topics. These 
two steps are run recursively on partitioned subnetworks to identify deeper hierarchies in the 
term co-occurrence network until no core topic terms (topic labels) are found. To demonstrate 
the practical workings of the HTT framework, we conducted a case study on 6,267 academic 
articles published in the expansive field of computer science. The final results show a tree with 
six main branches and 120 sub-branches in a complex, but cohesive, hierarchical structure. The 
three main contributions our work makes include: 1) a density peak search algorithm that 
identifies and labels the topics in a corpus; 2) a community allocation algorithm that recognizes 
topic overlaps, which may indicate knowledge convergence; and 3) a model that requires two 
hyperparameters – a density threshold and an overlap threshold, which makes the process of 
tuning parameters easy and the model adaptable to a variety of cases. 
The rest of this paper is organized as follows. The Related Works section next gives a brief 
review of the work on topic hierarchy identification. The Methodology section sets out the 
details of our proposed methodology. The Case Study section follows, presenting the data, 
results, and empirical insights derived from the computer science domain case. We then wrap 
our study with a conclusion, the study’s limitations, and future directions of research. 

Related Works 
Hierarchies are instinctive, basal structures to humans that naturally aid our sensemaking of 
scientific knowledge composition. Blei pioneers the automation of topic hierarchy 
identification by developing the two perhaps most renowned algorithms in identifying topic 
hierarchies – the Chinese restaurant process (CRP) (Blei et al., 2004) and hierarchical latent 
Dirichlet allocation (hLDA) (Blei et al., 2010). However, the efficacy of the hLDA model 
largely depends on the pre-processing quality and may generate unsatisfactory results otherwise 
(Qian et al., 2020; Xu et al., 2018). The latter works pay efforts to modify topic hierarchy 
identification from different perspectives, including introducing the idea of recursive hierarchy 
detection (Wang et al., 2013), involving distance-dependent discrepancies for the CRP (Song 
et al., 2016), adding external ancillary information (Shang et al., 2020; Wang et al., 2015; Xu 
et al., 2018), and using alternative topic partition method like non-negative matrix factorization 
(Qian et al., 2020). But those studies either suffer from the need for a pre-defined tree structure 
or the lack of a labeling strategy. In practical terms, hierarchical structures vary hugely from 
discipline to discipline, especially for disciplines of vastly different forms, such as biomedicine 
versus artificial intelligence. As for the topic labeling strategy, most bibliometric approaches 
constitute topics as a set of semantically similar terms or records (Colavizza & Franceschet, 



2016; Hou et al., 2018; Porter et al., 2020). Similarly, in mainstream topic modeling approaches, 
a topic is not represented with one all-encompassing label but, rather, as a bag of words or 
phrases and their corresponding probabilities. With both approaches, one still has to manually 
dive into the specific words, phrases, or even documents to infer the broad subject matter of the 
topic and decide on a name. 
Density peak clustering was first proposed in Science by Rodriguez and Laio (2014). It is based 
on the premise is that the center of a cluster is more densely packed than the surrounding regions 
and that areas of high density tend to be relatively far apart. As a clustering method, density 
peak search has proven to be very fast and quite accurate. Compared to traditional K-means or 
density-based clustering algorithms like DBSCAN, density peak searches identify cluster 
centroids purely based on the one characteristic of density. There are no additional parameters 
and no multiple iterations, which means the clustering process is extremely efficient and highly 
robust to parameter selection. Du et al. (2016) have since improved this method by using 
average K-nearest neighbor (KNN) density to emphasize the importance of local density instead 
of the circle radius approach used originally. This notion of density accords with the 
characteristics a topic label should have in that a highly representative topic label will be 
strongly connected to its affiliated terms but as different as possible from other topic labels. 
This parallel motivated our idea to automatically name topics through a KNN-modified density 
peak-based clustering algorithm.  

Methods 

Concept definitions and problem formulation 

Definitions of the main concepts referred to in the methodology are as follows. 

 Topic term: Nominal phrases extracted from scientific documents via a series of natural 
language processing and cleaning steps. 

 Topic: A set of topic terms with their corresponding probabilities headed by a core topic 
term. Term overlaps under the same parent topic are allowed for different topics. 

 Hierarchical topic tree (HTT): HTT is both the name of our methodology framework 
and the final output. As an output, an HTT is a tree-structure that consists of topic nodes 
residing on different layers of a tree, as illustrated in Figure 1. The length from the root 
node to the nodes on the deepest layer is called the tree depth. A higher layer topic is a 
parent topic, and its connected topics in lower layers are called child topics. Child topics 
under the same parent topic are siblings. The associations between a parent and child 
topic are assumed to be stronger than the associations between siblings. 
 

 
Figure 1. An example HTT 

 



Problem formulation: The study aims to: 1) identify research topics with different granularities 
and construct a topic tree automatically from a collection of scientific documents; 2) label every 
topic with an appropriate name; and 3) detect topic overlaps.
HTT accomplishes these goals through the following steps.

Term clumping and network construction
The process begins by extracting topic terms from a corpus of documents. This is done with 
VantagePoint1 and a term clumping process (Zhang et al., 2014). With the extracted terms in 
hand, the next step is to construct a weighted co-occurrence network of topic terms, denoted as 

. is the set of nodes representing the extracted topic terms, and is the set of 
edges representing term co-occurrence. The graph is formulated according to the following
equation: 

where is the edge weight of and is the co-occurrence

frequency of and .

Density peak search (DPS)
This algorithm is designed to identify core terms for topic labels. The primary concern when 
applying density peak clustering to network data is finding appropriate proxies for the distance 
and density measurements. Bai et al. (2017) use -step topological distance as a proxy. 
However, this strategy necessitates a redundancy parameter and a weighted parameter , both 
of which need to be fine-tuned and both of which reduce the model’s adaptability. Therefore, 
we opted to develop a new distance proxy, although still based on the topological distance 
between nodes:

where is the length of the shortest path from node to .

Generally, the co-occurrence network of high-frequency terms is fully connected, which means 
there will be at least one path from  to . Hence, using the proposed new distance proxy, the 
kernel local KNN density and distance to the nearest denser point of every term can be 
calculated as:

1 More details could be found at www.vantagepoint.com.



In the few cases where the co-occurrence network includes several unconnected components, 
we will generate a virtual root node for the final HTT. Then each component will be processed 
separately as a branch of the virtual root node. 
The original DPC algorithm identifies the cluster centroids with higher values of and by
observing the plot. However, when applying this algorithm to a real-world dataset, the 
boundaries of centroids and other terms are not always that clear. Therefore, in HTT, these 
selection criteria are quantitative. denotes the potential centroids of all the communities, and 
the criteria for selecting the final centroids are formulated as follows:

1) Density peak: The selected centroids should be density peaks, denoted as:

in which denotes the -nearnest neighbor nodes of .

2) Sparsity: To guarantee the identified centroids are sparse to each other, we set the node’s
distance to its parent node as a quantitative minimum threshold, which also indicates the
associations of child nodes are weaker than the associations with their common parent node.
This criterion is expressed as follows:

in which denotes the parent node of .

Initially, there is no root node to measure whether a node meets Criterion 2). Hence, we will 
only use Criterion 1) to identify root nodes. If only one node meets criterion 1), it will 
automatically become the root node. Otherwise, a virtual root node is generated, and the
identified nodes would become children to the virtual root.

Overlapping community allocation (OCA)
The next step is to distinguish overlapping topics between communities and ensure they are 
given proper multiple assignments. Thus, every node is assigned a probability vector 

, which reflects the probabilities that belongs to core terms identified.
Specifically, the probability that node  belongs to a community (topic) with the core term
is calculated as follows:

In disjoint community allocation, node will be exclusively allocated to its closest centroid 
if . However, our aim is to allocate a node to more than one 
potential community with high probabilities. Hence, we employ an overlap threshold to 
decide multiple communities the node could belong to. The rule applied is that if ,



node will be assigned to both community and . The output of this step is overlapping 
communities with their assigned terms and probabilities.

Recursive hierarchy detection

The previous steps partition the network into subnetworks, with each subnetwork comprising 
a core topic term and representing a sibling topic on the second layer. To extend the hierarchy 
into deeper layers, new subcommunities are detected by recursively applying the modified DPS 
and OCA algorithms to the partitioned subnetworks. When partitioning the parent networks 
into subnetworks, terms that belong to more than one topic, i.e., community overlaps, are 
excluded. This is because our approach aims at revealing hierarchies that exclusively belong to 
the parent topic. The recursive loop ends when no further core topic terms are detected in any 
subnetwork or the term number in the subnetwork is less than .
The output of this step is the final HTT, with each node represented by a core topic term and 
linked to a set of terms. Topic overlaps containing terms shared by sibling topics are detected
as well. This recursive process is illustrated in Figure 2, where each color represents a different 
stratum in the hierarchy. From top to bottom, the HTT has a root topic and one or multiple 
layers of topics generated by the iterations of DPS and OSA algorithms. Topics generated in 
the same iteration are siblings to each other and share a mutual parent topic.

Figure 2. The recursive process of hierarchy construction

Methodology evaluation
According to criteria from previous studies, a well-curated hieratical topic structure should meet 
at least two characteristics: semantically coherent topics and high-quality parent-child topic 
relationships (Qian et al., 2020; Shang et al., 2020; Xu et al., 2018). Hence, we designed two
indicators - topic coherence and parent-child association index (PCAI) to quantify the two 
characteristics. Additionally, we calculate the weight loss ratio of network edges to measure the 
information loss in the HTT process. Please note that the topics mentioned in this section 
contain overlapping terms, the association strength between two topics means the total sum of 
the edge weight’s reciprocal of the pairwise terms from the two topics, the internal topic 
association of a topic strength refers to the total sum of the edge weight’s reciprocal of pairwise 
terms from the topic itself.



Topic coherence: Previous studies employ pointwise mutual information (PWI) to
measure the topic coherence, but we consider it does not provide an intuitive and
universal measure of topic coherence because its value range is - to + and its values
vary hugely in multiple studies (Qian et al., 2020; Wang et al., 2013; Xu et al., 2018).
Hence, in the current study, we measure the coherence of a topic via calculating the
proportion of its total internal association strength against its total association strength
with itself and its siblings.

Parent-child association index (PCAI): This indicator is only applied to parent nodes in
the final HTT (including the virtual root node if it exists). For every parent node, the
PCAI equals the ratio of the total pairwise association strength among its children topics
over the total association strength of itself and all children topics subtracted by 1.

Information loss index: This index measures the overall information loss when the co-
occurrence network being transformed into a hierarchical tree structure. The smaller
value of information loss reflects the model’s better performance of retaining
information.

Case Study: The hierarchy of research topics in computer science
To demonstrate the methodology, we conducted a case study on the field of computer science, 
decomposing its many and varied research interests into topic hierarchies. 
The corpus comprised 6,267 highly-cited papers published between 2010 and 2021 retrieved 
from the Web of Science (WoS) Core Collection database spanning the mainstream research 
topics regarding this domain. WoS is a well-curated multidisciplinary database with 74.8 
million scientific publications from over 21,100 journals. Category information is assigned to 
every journal, and articles with the top 1% of citations received per field are flagged2. The 
search strategy used to assemble the corpus was as follows:

(WC = "Computer Science") AND LANGUAGE: (English) AND DOCUMENT TYPES: 
(Article), Refined by: ESI Top Papers: ( Highly Cited in Field ), IC Timespan=2010-2021

WC: Web of Science Category;

Data pre-processing

Before applying our methods to the dataset, we ran VantagePoint’s natural language processing 
(NLP) function to extract the raw words and phrases from the titles and abstracts. We then 
executed a term clumping process that removes noise and consolidates synonyms to arrive at a 
final list of topic terms. From this list, we selected terms with a frequency greater than 2. The 

2 https://clarivate.com/webofsciencegroup/solutions/essential-science-indicators/



stepwise cleaning results are given in Table 1. The final output was a term co-occurrence 
network consisting of 2,134 terms.

Table 1. Stepwise cleaning results

Step Description # Terms

1 Raw terms retrieved with NLP 132,846

2
Consolidated terms with the same stem, e.g., “information system” and 
“information systems”

116,898

3
Removed spelling variations, removed terms starting/ending with non-
alphabetic characters, e.g., “Step 1” or “1.5 m/s”, removed meaningless 
terms, e.g., pronouns, prepositions, and conjunctions

114,459

4 Removed general single-word terms, e.g., “information” * 96,245

5
Consolidated synonyms based on expert knowledge, e.g., “co-word 
analysis” and “word co-occurrence analysis”

84,828

6 Eliminated all terms occurring less than 5 times 2,134

*Note: Given that most single-word terms take on additional context when used in multi-word phrases, e.g.,
“information” vs. “information systems”, we opted to remove generic single-word terms. Further, some multi-
word terms were consolidated into a single-word form in Step 2 (e.g., “classification method” became
“classification”). Non-general single-word terms were retained.

Parameter selection

Before generating the HTT, we selected appropriate values for the KNN density parameter 
and the overlap threshold . Optimal values of K were determined through a sensitivity analysis 
by monitoring the number of initially identified core topic terms against . The corresponding 
plot is presented in Figure 3.

Figure 3. The plot of against the number of identified core topic terms

HTT returned six initial core topic terms at every setting of between 10 and 17. Therefore, to 
detect as many topics as possible, we set to 10 and the overlap threshold to 0.8.
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Tree generation
With the co-occurrence network as input to the DPS and OCA algorithms, the graph was 
recursively partitioned into subnetworks of topics in different layers, and the overlaps between 
topics were evaluated and assigned accordingly. The algorithms stopped at the eighth iteration, 
yielding a nine-level HTT of computer science research. Figures 4 and 5 illustrate the HTT and 
detailed terms in topics and their overlaps, respectively. 

Figure 4. The HTT for computer science3

3 Constraints on the page size limit the tree to its top three layers.  The full HTT is available at 

https://github.com/IntelligentBibliometrics/HTT.



 
Figure 5. The topic details and partial topic overlaps in computer science 

Evaluation and discussion 
To evaluate the performance of HTT in this case, we calculated the average topic coherence, 
PCAI, and information loss of the final HTT, with their values presented as 0.619, 0.847, and 
6%, respectively. The high PCAI value indicates our methods yield solid and reliable 
relationships between parent and their corresponding child topics. The low average information 
loss index suggests that the HTT evenly retains more than 93% of the information in every 
hierarchy construction process. The topic coherence is above 0.6, which is acceptable in 
partitioning the tangling research topics in the computer science domain that includes many 
multi-disciplinary interactions and knowledge convergence. 
In Figure 4, the six topics in the first tier reflect six relatively separate research directions, which 
result from the idea of DPS that each core label should be topologically distant from each other. 
Simple observation confirms that the selected label terms with high density are also 
representatives of the terms they lead. Drilling down into each of the six initial parents, #1 Deep 
learning branches off into topics that pertain to various neural network techniques, such as 
convolutional neural networks and recurrent neural networks, and onwards to the tasks they are 
used to solve in the real world, e.g., computer vision, image classification, etc. The lower branch 
of this topic groups the models and metrics associated with deep learning, such as random forest 
and prediction accuracy. #2 Optimization problem[s] spans the different techniques, 
algorithms, and research objects associated with optimization and its sub-problems. #3 Decision 
making captures the models, strategies, sub-problems relevant to decision intelligence and its 
processes. #4 Operating system[s] groups the research topics surrounding computing 
architectures and software, which is a fundamental aspect of computer science. #5 The Internet 



of Things (IoT) connects big data and sensor technology with its many spheres of application. 
Last, #6 Closed-loop system[s] leads the branch of topics concerning the convergence of 
computer science with engineering and control systems. 
We also generated insights into cross-direction convergence from the topic overlaps in Figure 
5. The overlapping terms between #1 and #2 include “data mining”, “classification accuracy”, 
and “classification tasks”, which are universal concepts for both deep learning and optimization 
studies. Overlapping terms of #2 and #4 describe two programming tools (R, MATLAB) and 
computer performance (enhanced performance, CPU time). This overlap indicates a direction 
of solving optimization problems using computer operating system-based applications. 
Likewise, the other overlapping terms all indicate different kinds of topic convergence. 
Intriguingly, “machine learning” was also assigned to this overlapping section. Conventionally, 
deep learning would be regarded as a sub-topic of machine learning; however, the two terms 
are close neighbors in this term co-occurrence network, and “deep learning” has a higher KNN 
density. What this reflects is that deep learning has overshadowed its precursor technologies to 
become the more dominant research focus. Interestingly, this outcome raises questions over the 
temporal associations users attach to hierarchies and how the HTT framework prioritizes 
attention over evolution. This is a question we leave to future study. 

Conclusions  
This paper presents an end-to-end framework called HTT for identifying topic hierarchies from 
a co-occurrence network. The methodology combines density peak search and overlapping 
community allocation to provide a solution that extracts the topics from a corpus, identifies 
topic overlaps, arranges the topics in a hierarchy, and gives each topic an appropriately 
descriptive name. In HTT, the core term to each topic in a co-occurrence network, to be used 
as its label, is determined by the term’s density peak characteristics, while overlapping 
community allocation detects overlaps among different topics. Recursive implementation of 
these two algorithms generates a hierarchical topic tree. A case study on the topic hierarchies 
in computer science demonstrates the feasibility and reliability of the proposed methodology. 
In future studies, we plan several improvements to the HTT framework. These include: 1) 
Automatic parameter tuning: To further improve the adaptability of the methodology, we plan 
to change the DPS and OCA algorithms into nonparametric functions. Then, optimal values of 

 and  could be selected automatically via a maximum entropy model or other approaches. 2) 
Leveraging additional forms of similarity: Co-occurrence networks are a classical input in 
bibliometric approaches, but they have also been criticized for their tendency to include too 
many irrelevant keyword pairs. Other forms of similarity, or combinations of similarities, such 
as semantic similarity based on topological distance, may prove to be a more effective proxy 
for the density peak search process. We plan to test these ideas in a future study. 3) HTT for 
streaming data. We also intend to build a variant of HTT that considers the temporal relationship 
between topics and how the research topics evolve over time.  
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