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Abstract

This paper considers the feature-based SLAM
using multiple robots. To reduce the compu-
tational complexity and data storage, a dis-
tributed multi-robot feature-based SLAM al-
gorithm under submap joining scheme is pro-
posed. Each robot first independently builds
a submap using the information collected by
its sensors. Once the robots can observe each
other, the submaps can then be fused together
to obtain a global map. We implemented and
tested the proposed algorithm in both simula-
tion and real world environments. Both simu-
lation and experimental results have validated
the robustness and accuracy of the proposed
algorithm.

1 INTRODUCTION and RELATED
WORKS

Multi-robot systems (MRS) have been validated their ef-
ficiency in performing complex tasks in the real world
such as rescue and disaster management, surveillance
and monitoring, underwater exploration, etc. [Sajad-
Saeedi et al.2016]. For multiple robots operating in an
unknown environment, one important problem is build-
ing a map of the environment through Simultaneous Lo-
calization and Mapping (SLAM). SLAM research has
been progressed significantly in the last two decades [Ca-
dena et al.2016]. The feature based SLAM gains more
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Figure 1: The illustration of multiple robot SLAM prob-
lem. Multiple robots move around in an environment
with landmarks/features. The robot can observe each
other from time to time. The SLAM problem is to use
the odometry information, the feature observations, and
the relative robot observations to estimate the feature
positions and the trajectories of each robot.

and more attention as the growing trends of seman-
tic SLAM. In many practical applications, it is neces-
sary to utilize multiple robots to perform SLAM col-
laboratively [Tian et al.2018]. However, in a large-scale
multi-robot SLAM, there are multiple technical chal-
lenges, including computational complexity and limited
communication bandwidth. For large-scale multi-robot
SLAM problem, it is in general very inefficient or im-
practical to directly solve the full SLAM problem using
all the information available, especially when the inter-
robot data transmissions are limited due to the limited
bandwidth of unstable network [Cunningham and Del-
laert2012]. Thus different research groups have proposed
different strategies for distributed multi-robot SLAM.
In [Andersson and Nygards2008], the authors introduced
a base node constraint to connect the coordinate frames
of the submaps. The base node constraint is obtained



by non-linear optimization with relative observation of
other robots (rendezvous-measurements). However, in
this method, the submaps are required to be adequately
linearized, which means it only works well with small
submaps. Some researchers also considered factor graph
representation with Gaussian elimination to generate
condensed local graph for multi-robot SLAM [Cunning-
ham et al.2010] [Cunningham et al.2012]. [Lazaro et
al.2013] utilized condensed pose graph and the scan cor-
responds to those pose in condensed graph to represent
submaps in multi-robot SLAM system. This framework
also allows dynamically adding and removing robots
from the system which improves the scalability of the
system. However, these submap joining based multi-
robot SLAM algorithms are all based on pose-graph
SLAM where each submap only contains the robot poses,
and the features in the environment are not explicitly es-
timated.

Feature based submap joining have been well stud-
ied and proven to have lower computational complex-
ity than non-linear full least square optimization meth-
ods [Zhao et al.2014]. However, it is mostly used in
single robot SLAM. [Huang et al.2008] leveraged the
sparseness of SLAM information matrix and developed a
Sparse Local Submap Joining Filter which utilize sparse
information filter to merge submap efficiently. [Zhao et
al.2013] further improved the efficiency by transform-
ing the SLAM problem from traditional non-linear op-
timization problem to linear optimization problem with
coordinate transformations. Although these algorithm
can achieve good performance in large scale environment
and guarantee of global optimum results, they are not
designed for multiple robots.

In this paper, we propose a feature based submap
joining approach for solving the distributed multi-robot
SLAM problem. In the proposed approach, each robot
first builds its own submap in its local coordinate in-
dependently, using the detected landmarks as features.
The robots in the group communicate and detect each
other to estimate their relative positions. Once needed,
the submaps can be integrated using the relative infor-
mation between the different local submaps through the
observation between the robots or the observation of
the same landmarks from different robots. The local
submaps can be built online, the global map is built of-
fline, and limited communication among the robots is
needed for exchange the relative observations. The ac-
curacy of the global map is similar to the map built
using all the information through full least squares opti-
mization. Both simulations and practical datasets with
ground truth are used to validate the effectiveness of the
proposed approach.

The contributions of this paper includes:

• Developing a distributed feature based multi-robot

SLAM algorithm through submap joining.

• Evaluating the proposed multi-robot SLAM al-
gorithm using both simulations and experimental
datasets with ground truth.

The paper is organized as follows. Section 2 presents
our multi-robot SLAM algorithm. Section 3 evaluates
the algorithm using both simulation and experimental
datasets. Section 4 concludes the paper.

2 MULTI-ROBOT SUBMAP
JOINING BASED SLAM

This section presents the details of the proposed submap
joining based multi-robot SLAM.

2.1 Generating and Maintaining Submap

In this paper, we focus on SLAM problem with multiple
robots where each robot i (i = 1 : s) maintains a local
submap1

Si = {Xi,Xi
r,F

i} (1)

which containing the poses of the current robot i: Xi =
{Xi

2, ..., X
i
t , ..., X

i
m} at different timestep t (t = 1 : m);

the poses of other robots observed by robot i: Xi
r =

{Xi
j,tj

, ..., Xi
s,ts}, where tj (j ̸= i) is the timestep at

which robot j was observed; and the positions of the ob-
served features: Fi = {F i

1, ..., F
i
k, ...F

i
n}, where k = 1 : n

is the feature number; all in the local submap coordinate
frame. Since the coordinate frame of submap Si is de-
fined by the robot pose at the first timestep, thus Xi

1 is
not in the state vector.

During the SLAM process, at timestep t robots can
obtain: the odometry information Oi

t from pose Xi
t−1

to Xi
t with the proprioceptive sensors in the robot base;

the observations/locations {Zi
Fk,t

} of features {F i
k} in

the coordinate frame of robot Xi
t ; as well as the poses

{Zi
Xj ,t

} of other robots (j ̸= i) in limited range and

field of view (FOV). Therefore, for each submap, we can
solve the state vector in (1) with weighted non-linear
least squares (NLLS) method by minimizing the follow-
ing objective function:

f(Si) =

m∑
t=1

n∑
k=1

∥∥∥Zi
Fk,t

−HZi
Fk,t(Si)

∥∥∥2
P−1

Zi
Fk,t

+

m∑
t=2

∥∥∥Oi
t ⊟HOi

t(Si)
∥∥∥2
P−1

Oi
t

+

m∑
t=1

s∑
j=1

∥∥∥Zi
Xj ,t ⊟H

Zi
Xj,t(Si)

∥∥∥2
P−1

Zi
Xj,t

.

(2)

1To simplify the notations, the ‘transpose’s in the state
vectors are sometimes omitted in this paper. For example,
Si,Xi,Xi

r,F
i are all column vectors and the rigorous nota-

tion should be Si = {(Xi)T , (Xi
r)

T , (Fi)T }T .



In the objective function, HZi
Fk,t(Si) is the observation

function of features

HZi
Fk,t(Si) = Ri

t(F
i
k − T i

t ) (3)

where Ri
t and T i

t are the rotation matrix and translation
vector of robot pose Xi

t .

HOi
t(Si) and H

Zi
Xj,t(Si) are the functions correspond-

ing to the odometry Oi
t and the observations to the other

robots Zi
Fk,t

Oi
t ⊟HOi

t(Si) =

[
OT,t

i − (Ri
t−1)

T (T i
t − (T i

t−1)

dSO(O
R,t
i , (Ri

t−1)
TRi

t)

]
(4)

and

Zi
Xj ,t ⊟H

Zi
Xj,t(Si) =

[
Zi
Tj ,t

− (Ri
t)

T (T i
j,tj

− T i
t )

dSO(Z
i
Rj ,t

, (Ri
t)

TRi
j,tj

)

]
, (5)

where (OT,t
i , OR,t

i ), (Zi
Tj ,t

, Zi
Rj ,t

) and (T i
j,tj

, Ri
j,tj

) are the

rotation and translation components of Oi
t, Zi

Xj ,t
and

Xi
j,tj

, respectively. dSO(⋆, •) means the distance func-

tion on the Lie group SO(2) or SO(3). One example
is ∥ log(⋆⊤•)∨∥ where ∨ means the inverse of the skew-
symmetric operator.

And PZi
Fk,t

, POi
t
and PZi

Xj,t
are the covariance matri-

ces of the feature observation Zi
Fk,t

, odometry Oi
t and

other robot observation Zi
Xj ,t

, respectively.

If we write the NLLS problem (2) into the general
formulation as

f(Si) =
∥∥Z −H(Si)

∥∥2
IZ

(6)

where Z = {..., Zi
Fk,t

, ..., Oi
t, ..., Z

i
Xj ,t

, ...} combines all

the observations and odometry, H(Si) combines all the
observation functions corresponding to Z and IZ =
diag(..., PZi

Fk,t
, ..., POi

t
, ..., PZi

Xj,t
, ...)−1 combines all the

covariance matrices. The optimal solution Ŝi which min-
imizing (6) can be obtained by using Gauss-Newton iter-
ation method as shown in Algorithm 1. The observation
function H(Si) in (6) is first linearized using Taylor ex-
pansion. The Jacobean matrix J of H(Si) can be obtain
by calculating the derivation near the initial value Si

ini.
The updated state vector Si is then calculated by using
(7) iteratively as

JT IZJ∆Si = JT IZ(Z −H(Si)) (7)

Si = Si +∆Si . (8)

After the optimal solution of the state Ŝi is obtained,
the corresponding information matrix can be calculated
with:

ISi = JT IZJ. (9)

Then, the optimal solution of the state vector together
with the corresponding information matrix {Ŝi, ISi} will
be used to represent the submap built by robot i, and in
the map joining of multiple robots in the next subsection.

Algorithm 1 Submap Building Process

Input: {Oi
t}, {Zi

Fk,t
} and {Zi

Xj ,t
}

Output: optimal submap (Ŝi, ISi)

1: initialize Si = Si
ini;

2: while ∆Si is not small enough do
3: calculate error Z −H(Si) at Si using (3)-(5) ;
4: calculate Jacobin matrix J at Si in (7);
5: calculate the update ∆Si using (7);
6: update Si = Si +∆Si in (8);
7: end while
8: calculate information matrix ISi at Ŝi using (9);

9: store Ŝi and ISi .

2.2 Multi-robot Submap Joining

After robots obtained submaps that containing more
than one pose of other robots or two common obser-
vations of landmarks, the map joining process can be
performed to obtain the global map.

The submap joining process can be done by joining
one pair of submaps or joining multiple submaps at the
same time.

Suppose the submap built from the robot i is denoted
by {Ŝi, ISi}, (i = 1 : s), in the map joining process, the
state of the joined global map can be defined as

G = {XG
1 , ...,X

G
i , ...,X

G
s ,F

G} (10)

where XG
1 = {XG

1,2, ..., X
G
1,t, ..., X

G
1,m} and XG

i =

{XG
i,1, ..., X

G
i,t, ..., X

G
i,m} (for i >= 2) contain the poses of

all the robots to be joint at all the timesteps t = 1 : m,
FG = {FG

1 , ..., FG
k , ...FG

n } (k = 1 : n) contains all the
features, all in the global coordinate frame defined by
the pose of the first robot at the first timestep, thus
XG

1,1 is not included in the state vector G.
The submap joining algorithm for multiple robots pro-

posed in this paper can be formulated as a nonlinear op-
timization problem which minimizing the objective func-
tion:

g(G) =

s∑
i=1

∥∥Si ⊟HSi(G)
∥∥2
Ii
. (11)

Here each submap {Ŝi, ISi} is used as an in-
tegrated observation in the map joining pro-
cess. And the observation function HSi(G) =

{..., HF i
k(G), ...,HXi

t (G), ...,H
Xi

j,tj (G), ...} is a combi-
nation of functions corresponding to the state of each



submap Ŝi:

F̂ i
k −HF i

k(G) = F̂ i
k − (RG

i,1)
T (FG

k − TG
i,1) (12)

compares the difference between the feature location
F̂ i
k from the submap Si and the feature location cal-

culated from the global map G, in the coordinate frame
of submap Si. Here R

G
i,1 and TG

i,1 are the rotation matrix

and translation vector of robot pose XG
i,1 in the global

map G.

X̂i
t ⊟HXi

t (G) =

[
T̂ i
t − (RG

i,1)
T (TG

i,t − TG
i,1)

dSO(R̂
i
t, (R

G
i,1)

TRG
i,t)

]
(13)

calculates the difference between the estimated pose X̂i
t

of robot i at timestep t in the submap Si, and the cor-
responding one calculated using the state of the global
map G, again, in the submap coordinate frame. And

X̂i
j,tj ⊟H

Xi
j,tj (G) =

[
T̂ i
j,tj

− (RG
i,1)

T (TG
j,tj

− TG
i,1)

dSO(R̂
i
j,tj

, (RG
i,1)

TRG
j,tj

)

]
(14)

calculates the difference between the estimated pose
X̂i

j,tj
of other robot j at timestep tj in the submap Si,

and the corresponding one calculated using the state of
the global map G. Here tj ∈ (1 : m), j ̸= i is the
timestep at which robot j was observed by robot i.

Then, the optimal solution of the global map together
with the corresponding information matrix {Ĝ, IG} can
be obtained using the similar way as described in Section
2.1.

Algorithm 2 Submap Joining Process

Input: submaps {(Ŝi, ISi)}
Output: optimal global map (Ĝ, IG)

1: initialize G = Gini;
2: while ∆G is not small enough do
3: I = 0, E = 0;
4: for robot i ∈ s do
5: calculate ei = Si ⊟HSi(G) and Jacobian Ji;
6: calculate E = E + JT

i ISiei;
7: calculate I = I + JT

i ISiJi;
8: end for
9: calculate the update from I∆G = E;

10: update G = G+∆G;
11: end while
12: calculate information matrix I at Ĝ;
13: share the optimal global map (Ĝ, IG).

3 EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed multi-robot
SLAM algorithm using both simulation data and prac-
tical experimental data.

3.1 Simulation

Figure 2: The simulation scenario involve three robots
and three features. The robots move in 2D x − y plane
and the z values of the three features are all 2m.

For the simulation, we use MATLAB to simu-
late an experiment with three robots and three fea-
tures/landmarks. Fig. 2 shows the trajectories of the
three robots and the (x, y) location of the three features.
The robots are moving in 2D x−y plane and the z value
(the height) of the features are the same zf = 2m.

Simulation Setup
In order to generate simulation data as close to the
data obtained in the real experiments as possible, in the
simulation, we control the robots with linear velocity v
and angular velocity ω under differential drive kinematic
model

xt+1

yt+1

θt+1

 =

xt

yt
θt

+

v/ω cos(θt) + v/ω sin(ωδt+ θt)
v/ω sin(θt)− v/ω cos(ωδt+ θt)

ωδt


(15)

where [xt, yt, θt]
T is the robot pose at time t and δt is

the time increment in simulation. Each robot is assumed
to be able to observe features and other robots within a
certain range (3m) at each time step with the following
feature observation model:δxf

δyf
δzf

 =

cos(θi,t) − sin(θi,t) 0
sin(θi,t) cos(θi,t) 0

0 0 1

xf,i − xi,t

yf,i − yi,t
zf,i − h

 .

(16)



(a) NLLS (b) Submap Joining

Figure 3: The changes of objective function value in different iteration steps in simulation under different noise levels
σobs = 0.1, 0.2, 0.3 and σodom = 0.2, 0.3, 0.4. The objective function values of (a) NLLS, (b) the objective function
value of submap joining.

(a) Submap Joining (b) NLLS

Figure 4: The simulation results. This results are obtained with observation noise σobs = 0.3 and odometry noise
σodom = 0.4.

where h is the height of the sensor on the robot that
set to 1m in the simulation. And for the relative pose
observations of robot j in robot i coordinate:

δxi
j,t

δyij,t
δθij,t

 =

cos(θGi,t) − sin(θGi,t) 0
sin(θGi,t) cos(θGi,t) 0

0 0 1

xG
j,t − xG

i,t

yGj,t − yGi,t
θGj,t − θGi,t

 .

(17)
where the XG

j,t = {xG
j,t, y

G
j,t, θ

G
j,t} is the pose of robot j in

global coordinate G at time t.

In order to evaluate the robustness of the proposed
algorithm. We have added different zero-mean Gaus-
sian observation noises and odometry noises. The co-
variance matrix of the observation noises is Σobs =
diag{σ2

obs, σ
2
obs, σ

2
obs} and the covariance matrix of the

odometry noises is Σodom = diag{σ2
odom, σ2

odom, σ2
odom}.

Simulation Results

We consider two different scenarios. One is that only
minimum feature observations are available. One is suf-
ficient feature observations are available. Table 1 shows
the root mean square error (RMSE) results of the pro-
posed algorithm and full non-linear least squares SLAM
algorithm (NLLS) in the first scenario with different σobs

and σodom. Table 2 shows the RMSE results of the pro-
posed algorithm compared with NLLS in the second sce-
nario under different observation noises. In both tables,
the RMSE of robot pose and state includes the robot ori-
entations and ignore the feature orientations. The tables
show that the algorithm is robust to the noises. Fig. 3
shows the convergence of the NLLS and submap joining
algorithms. Fig. 4 shows the estimation results of the
two scenarios under one noise level.



(a) (b)

Figure 5: (a) The hardware setup of experiment robot. (b) The experimental environment with 2 Turtlebot2 and
four landmarks.

Table 1: RMSE of the NLLS and Submap Joining Algo-
rithms in Simulation with Minimum Observations

Method
RMSE

(State)

RMSE

(Robot Pose)

RMSE

(Feature Position)
Noise

NLLS 0.0216 0.0224 0.0184 σobs = 0.1

σodom = 0.2Submap Joining 0.0494 0.0505 0.0448

NLLS 0.1184 0.1202 0.1110 σobs = 0.2

σodom = 0.3Submap Joining 0.1405 0.1467 0.1157

NLLS 0.1767 0.1940 0.1073 σobs = 0.3

σodom = 0.4Submap Joining 0.4998 0.5690 0.2228

3.2 Real World Experiment

To further verify the performance of the proposed multi-
robot SLAM algorithm, a real world experiment is
adopted. We carried out an experiment with 2 robots
and 4 features in a 5×5 m2 area where the ground truth
positions of robots and features can be obtained with
motion capture system to verify the accuracy of our al-
gorithm.

Experimental Setup

As shown in Fig. 5, for the real world experiments, we
use Turtlbot2 ground robot with Kinect V1 RGB-D sen-
sor to obtain odometry, relative observations between
robots as well as observations of features. Each robot in
the experiment is tagged with a 14 × 14 × 14 cm3 cube
with Apriltag [Wang and Olson2016] on each sides to-
gether with motion capture tags. The landmarks are in-
stalled at fixed location who’s positions can be obtained
by motion capture system. In this experiment, we utilize
motion capture system to obtain ground truth position
of the robot to verify the accuracy of the proposed algo-
rithm. For the data synchronization, we equipped each
robot with a NUC micro computer which runs ROS oper-
ation system [Stanford Artificial Intelligence Laboratory
et al.] with message filter to obtain and synchronize data
from multiple robots and motion capture system.

Table 2: RMSE of the NLLS and Submap Joining Algo-
rithms in Simulation with Sufficient Observations

Method
RMSE

(State)

RMSE

(Robot Pose)

RMSE

(Feature Position)
Noise

NLLS 0.0138 0.0160 0.0051 σobs = 0.1

σodom = 0.2Submap Joining 0.0170 0.0197 0.0065

NLLS 0.0162 0.0200 0.0192 σobs = 0.2

σodom = 0.3Submap Joining 0.0217 0.0234 0.0149

NLLS 0.0496 0.0536 0.0334 σobs = 0.3

σodom = 0.4Submap Joining 0.0564 0.0659 0.0183

Experimental Results

Table 3: Experiment Results.
Robot Position Error (m) Feature Position Error (m)

NLLS 0.1107 0.0664
Map Joining 0.1309 0.0750

Fig. 6 shows the result from experimental data. As
shown in Table 3, our approach can achieve similar accu-
racy compared with the non-linear least squares SLAM
method. The converge of our approach and that of the
NLLS method are shown in Fig. 7.

4 CONCLUSIONS

This paper proposed a novel submap joining based ap-
proach for distributed multi-robot SLAM. The local
submap of each robot consists of the poses of this robot
as well as the position of the observed features and the
poses of the other robots that can be observed. The
submaps are joining together treating each local submap
as a virtual integrated observation. Simulation and ex-
perimental results show that the proposed distributed
multi-robot can efficiently generate accurate localisation
and mapping results.

In our future work, we will conduct larger-scale exper-
iments with more robots and more landmarks. We will
also extend the algorithm such that the robot can move



(a) NLLS (b) Submap Joining

Figure 6: The experiment results. The red circles, blue triangles and the purple diamonds represent the ground
truth of the robot positions and feature positions respectively. The hollow circles and hollow triangles represent the
estimated robot positions of robot 1 and robot 2. The hollow diamonds represent the estimated feature positions.

Figure 7: The objective function value of NLLS (blue
line) and map joining (red line) in the real world exper-
iment.

freely in the 3D space and different types of robots can
be used.
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