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ABSTRACT Objective: Chronic kidney disease (CKD) is a major public health concern worldwide. High
costs of late-stage diagnosis and insufficient testing facilities can contribute to high morbidity and mortality
rates in CKD patients, particularly in less developed countries. Thus, early diagnosis aided by vital parameter
analytics using affordable computer-aided diagnosis could not only reduce diagnosis costs but improve patient
management and outcomes. Methods: In this study, we developed machine learning models using selective
key pathological categories to identify clinical test attributes that will aid in accurate early diagnosis of CKD.
Such an approach will save time and costs for diagnostic screening. We have also evaluated the performance
of several classifiers with k-fold cross-validation on optimized datasets derived using these selected clinical
test attributes. Results: Our results suggest that the optimized datasets with important attributes perform well
in diagnosis of CKD using our proposed machine learning models. Furthermore, we evaluated clinical test
attributes based on urine and blood tests along with clinical parameters that have low costs of acquisition. The
predictive models with the optimized and pathologically categorized attributes set yielded high levels of CKD
diagnosis accuracy with random forest (RF) classifier being the best performing. Conclusions: Our machine
learning approach has yielded effective predictive analytics for CKD screening which can be developed as a
resource to facilitate improved CKD screening for enhanced and timely treatment plans.

INDEX TERMS Attribute selection, chronic kidney disease (CKD), computer-aided diagnosis, explainable
AI, machine learning (ML).

I. INTRODUCTION
Chronic kidney disease (CKD) is a non-communicable dis-
ease that causes large numbers of deaths worldwide, which
is exacerbated by the difficulties and high costs needed for
proper detection and diagnosis [1]–[5]. CKD patients show
serious dysfunctions of the nervous and immune systems that
severely affect their quality of life and affects many of their
daily activities. Kidney failure can result in the late stages
of this disease, necessitating dialysis and transplant thera-
pies. However, adverse CKD outcomes can be reduced or
prevented by early diagnosis and appropriate treatment
[6], [7]. Typically early stage CKD causes little or no overt

disease symptoms that cause patients to seek treatment, which
makes treatment later less effective [8]. Thus better, cheaper
and more effective screening tools would reduce the burden
of disease simply by identifying at risk individuals at an
early stage. This is made more difficult to achieve by the
fact that underlying pathogenic mechanisms for CKD are
largely unclear. Thus, many remain undiagnosed for a long
period [9]. The National Health and Nutrition Examination
Survey 2003-2004 reported that only around 5 percent of
CKD patients with stage 1 or 2 and less than 10 percent
patients with stage 3 have been diagnosed with CKD, and
only 45% of CKD patients in their stage 4 were known about
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their condition and physical symptoms [10], [11]. Therefore,
early detection of CKD is crucial to enable initiation of
treatment to prevent and delay CKDprogression, and slow the
development towards advanced stage complications. How-
ever, there is lack of proper low cost knowledge-based tools,
which is particularly a point of concern for healthcare in the
least developed countries. Easy and low cost CKD diagnosis
would enable routine testing of kidney function and would
increase prevention of late stage disease.

Traditionally there have several biomarkers and compu-
tational methods used in the diagnosis and measurement of
CKD severity. The most commonly used for kidney func-
tion is the glomerular filtration rate (GFR) [12], which is,
however, not sufficient to diagnose CKD [13]. GFRmeasure-
ments require creatinine measurement (or creatinine clear-
ance tests) and urine albumin tests which are not economical
and practical enough for routine CKD disease screening [14].
A high GFR can be seen for some patients with cardiovas-
cular disease and diabetes, in which case high GFR levels
may mask the presence of actual CKD [13]. Furthermore,
inadequate numbers of experienced nephrologists and lack
of imaging and biopsy services in less developed countries
means that not all patients with CKD are properly tested in a
timely manner. Therefore, computer-aided automated, accu-
rate, convenient, low-cost CKD detection technique could
enhance early diagnosis and intervention.

Machine learning (ML) techniques can be used to facili-
tate medical diagnosis of CKD, indeed several studies have
already used these techniques to improve clinical prediction
in kidney-related disease and have reported an improved
classification accuracy [15]–[21]. However, none of these
studies identified the most important predictive attributes
needed to improve diagnosis. If identified in CKD patients,
such attributes could be used for computer-aided CKD
screening and diagnostic tests. However, using UCI-CKD
data [22], only a few studies [23]–[25] have attempted to
identify those important attributes. Nishanth et. al. [23] inves-
tigated the reasons why (i.e., the underlying mechanisms
for) the attributes they identified being able to improve
predictions for GFR. This study used common spatial pat-
terns (CSP) and linear discrimination analysis (LDA) to
identify important features; they found that measurements
of serum hemoglobin, albumin, specific gravity, biomark-
ers for hypertension, and biomarkers for diabetes melli-
tus, together with serum creatinine were important features
that improved predictions. Wrapper approach was used [24]
to select these important features for CKD diagnosis; this
reported the important attributes were specific gravity, albu-
min, red blood cell numbers, pus cell clumps, serum cre-
atinine, sodium, hemoglobin, diabetes mellitus, coronary
artery disease, appetite, pedal edema, and anemia. Another
study [25] proposed a correlation-based feature subset selec-
tion method; they investigated specific gravity, albumin,
serum creatinine, hemoglobin, packed cell volume, white
blood cell count, red blood cell count, and hypertension,
finding these as the most significant in the detection of CKD.

Another study [26] used only one CKD attribute collected
from year-long temporal data, using electronic health records
(EHRs). However, new patients without EHRs would not be
able to use this approach. However, all these above stud-
ies presented results and selected attributes from black-box
nature classification approach to model construction and the
lack of interpretation of the decision in the diagnostic model
can lead to adverse or even life-threatening consequences.
Moreover, there is lack of proper rationales for selecting
particular attributes for model decision making in the existing
studies. Thus, an active area of research is in the construction
of interpretable ML models to use computer-aided diagnos-
tic systems, which would allow clinicians to better evaluate
model decisions and discern the role of particular model
attributes used in decision making.

In this study, we have used ML models for the early
diagnosis of CKD, and not only have attempted identification
of key predictive features but have also used model interpre-
tation techniques in the attribute selection, namely SHapley
Additive exPlanations (SHAP). The main objective of this
study is to reduce the number of attributes to a minimum in
order to find an optimal set useful for clinical testing and to
achieve a high CKD detection accuracy with them. This study
therefore determines the applicability of ML-based models
to the diagnosis of CKD using urine or blood test with the
smallest number of additional attributes.

II. DATA AND METHODS
The present work was accomplished in several stages:
data collection, pre-processing, model training, important
attributes selection, and evaluation of the models and selected
attributes, which are summarised in a schematic diagram
in Fig. 1. The labeled data was collected from hospital-based
sources [for details see subsection below] [22]. In the pre-
processing stage, the database was analysed and various tech-
niques applied to transform the data into the proper structure,
with missing value imputations. After completing the pre-
processing, we split the data into training and test sets. The
training data set was used to train a number of ML classifier
models; these included random forest (RF), gradient boosting
(GB), XGBoost (XGB), Logistic Regression (LR), and sup-
port vector machine (SVM) models. Subsequently the SHAP
technique was employed to interpret the model decisions
and identify the important features that contributed most to
the classification process. The selected highest importance
attributes were then used to form new reduced datasets with
which the classifiers were trained and tested to determine
whether those attributes were sufficient to build anML-based
computer-aided CKD diagnosis system that shows high clas-
sification accuracy. This approach will allow users to predict
and diagnose their possible CKD cases using the minimum
necessary number of clinical tests, which will reduce cost and
resources.

A. DATA
This CKD dataset used in this study was released by Apollo
Hospitals, Tamil Nadu, India, in July 2015 and is available in
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FIGURE 1. Schematic diagram of the overall workflow.

the UCI machine learning repository [22]. The dataset con-
sists of samples collected from 400 patients with 24 attributes
(13 nominal and 11 numerical attributes). The 24 attributes
are age, blood pressure, specific gravity, albumin, sugar, red
blood cells, pus cell, pus cell clumps, bacteria, blood glu-
cose random, blood urea, serum creatinine, sodium, potas-
sium, hemoglobin, packed cell volume, white blood cell
count, red blood cell count, hypertension, diabetes mellitus,
coronary artery disease, appetite, pedal edema, and anemia.
The description of the dataset is given in Table 1. Based
on these available clinical attributes 250 cases were clas-
sified as CKD and the remaining 150 were classified as
non-CKD.

B. PRE-PROCESSING
We have pre-processed the unrefined medical data by remov-
ing the missing values to enhance prediction capabilities.
We have also conducted data-transformation to make them
useful for the machine learning models, which are lim-
ited to process non-numerical data. The non-numerical data
in the dataset are in the form of ‘present’, ‘not present’,
‘normal’, ‘abnormal’, ‘yes’, ‘no’, ‘good’, and ‘poor’. The
non-numerical data are identified and transformed into num-
bers. The ‘normal’, ‘present’, ‘yes’, and ‘good’ values for
nominal attributes are replaced by ‘1’ and ‘abnormal‘, ‘notp-
resent’, ‘no’, and ‘poor’ values are replaced by ‘0’.

Missing values are concomitant to real-world data. Igno-
rance of the record that contains the missing value is the
simplest form of a solution, which is a less-desirable practice,
especially for small dataset. In the whole data set, there
are only 9.70% missing values. We used various imputation
algorithms, arithmetic mean and mode imputations that

show good performance in some studies [28], [29], to solve
the missing value problem rather than merely removing
the records. The numerical attributes were arithmetic mean
imputed where the missing values are replaced with the rep-
resented mean value of that attribute. In the case of nominal
attributes, mode imputation is performed where the missing
values are replaced with the most frequently occurred value
of that attribute. After pre-processing, the data distribution is
transformed, which is depicted in Fig. 2.

C. MACHINE LEARNING MODELS
1) RANDOM FOREST (RF)
Random forest (RF) is an ensemble learning technique that
has been proven to be very effective and powerful classi-
fier [30]. RF consists of a combination of many decision trees
where each tree is trained on a randomly selected feature
vector from the training data set. For a new test sample, each
tree of the forest classifies it individually and yields a certain
classification result. The RF decides the predicted class of the
test data depending on the majority of votes over all the trees
in the network.

2) GRADIENT BOOSTING (GB)
The gradient boosting algorithm [31] produces a prediction
model that consists of an ensemble of weak prediction mod-
els. This means a collection of individual models results in
a final model. The model is built in a stage-wise fashion.
The individual models have poor prediction power and suffer
over-fitting problems, but the ensemble of these models pro-
vides improved results. The individual models in the ensem-
ble are not built on completely random subsets of training
data but by putting more weights on the wrong predicted
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TABLE 1. Details information of the attributes of the UCI CKD dataset [22], [27].

FIGURE 2. Sample frequency distribution of clinical test attributes. (a) sample frequency distribution (box plot) of numeric attributes,
(b) sample frequency distribution (bar plot) of two-class nominal attributes, (c) sample frequency distribution (bar plot) of six-class nominal
attributes, and (d) sample frequency distribution (bar plot) of five-class ’sg’ nominal attributes.

samples; in other words, instances that are hard to predict will
be more focused during model training by taking into account
the past mistakes. In Gradient Boosting, the predictions of
the models are combined. For this reason, the boosted model
predictions are optimized instead of optimizing the model
parameters directly.

3) EXTREME GRADIENT BOOSTING (XGB)
Extreme Gradient Boosting (XGB) [32] is a scalable imple-
mentation of gradient boosting and finds the best tree model.
It computes second-order gradients to get more informa-
tion about the direction of gradients and minimize the loss
function. Unlike the base model, such as a decision tree
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that uses loss function as a proxy for minimizing the over-
all model’s cost, XGB uses second-order derivative as an
approximation. To improve model generalization, XGB uses
advanced L1 and L2 regularization techniques.

4) LOGISTIC REGRESSION (LR)
Logistic regression (LR) [33] is a widely used classifier for
binary classification problems. It finds a function that predicts
the outcome for a binary dependent variable from one or more
independent variables. The sigmoid function plays a crucial
role in the logistic regression classifier. The sigmoid function
provides the output as a number between 0 and 1. A threshold
is used to consider the output as to belong to class 1 or class 0.
An input sample is considered to belong to class 1 if the
output greater than 0.5, otherwise the classifier considers it
belongs to class 0.

5) SUPPORT VECTOR MACHINE (SVM)
Support vector machine (SVM) [34], [35]-a widely used
supervised machine learning method that is capable of iden-
tifying subtle patterns in noisy and complex datasets and
used for binary classification. SVM is developed based on
statistical learning theory. It uses several kernel functions to
project non-linearly separable samples in lower-dimensional
space onto another higher dimensional space.

D. MODEL INTERPRETATION FOR FEATURE SELECTION
Classification models map a test instance to output and most
of the cases provide a single metric, such as classification
accuracy. However, this is not a complete description of
why the model made this correct prediction. Sometimes it
is useful to determine how the prediction was made and the
role of the individual features in making this decision. Model
interpretability can let us know the feature importance of the
model. We can also understand predictions from methods by
attributing importance values to each input feature. To under-
stand the classifier’s overall behaviour, these important values
can be computed either for a single prediction, or an entire
dataset. We calculated feature importance using the training
dataset.

SHapley Additive exPlanations (SHAP) technique, pro-
posed by Lundberg and Lee [36], has been shown to be
effective for identifying important features in the dataset.
SHAP uses popular game theory rules [37] and local expla-
nations methods [38], and is able to estimate the degree of
contribution of each feature to the overall decision making
ability of the model. Given a model with a set of all the
input features, N , to predict output f (N ), SHAP values are
calculated using several axioms to allocate the contribution
of each feature using the following equation:

φi =
∑

S⊆N {i}

|S|!(K − |S| − 1)!
K !

[f (S ∪ {i})− f (S)] (1)

where φi is the feature importance of ith attribute to make the
output decision of the model and it is assigned based on their

marginal contribution [39], K is the number of input features,
and S is the set of non-zero indexes in z′.

An additive feature attribution method is used to define
a linear function, h, of binary variable as Equation 2 where
z′ ∈ {0, 1}K equals to 1 when a feature is observed, otherwise
it equals to 0 [36].

h(z′) = φi +
K∑
i=1

φiz′i (2)

where φi ∈ R
Here we use Tree SHAP, the fast SHAP value computation

method for RF, GB, and XGb, and linear explainer for LR,
and SVM models [40] to identify an important feature of the
training dataset.

III. RESULTS
A. MODEL TRAINING AND FEATURES SELECTION
Among the ten-folds-split data nine folds were used to train
all the classifier models. Then the remaining 10th-fold data
was used to evaluate the classifiers. Thus we had 360 samples
for the training dataset and 40 samples for the test dataset.
The training dataset contained 90% of the total samples, and
the testing dataset contained 10% of the total samples. There
were 225 CKD cases and 135 non-CKD cases in the training
nine folds dataset, and in the remaining test one fold dataset,
there were 25 CKD cases and 15 non-CKD cases. Six evalua-
tionmatrices weremeasured for each classifier to observe and
compare the performances of the models. According to the
evaluations matrices RF classifier showed the highest predic-
tive performance for the test datasets with an average classifi-
cation accuracy of 99.50%, sensitivity of 98.75%, specificity
of 100%, precision of 100%, F1 score of 99.35%, and AUC
of 99.38%, shown in Fig-3(a). The GB and XGB classifiers
showed almost similar classification performances. The GB
classifier obtained classification accuracy of 99.00%, sensi-
tivity of 98.79%, specificity of 99.21%, precision of 98.66%,
F1 score of 98.71%, and AUC of 99.00%, and the XGB
classifier obtained classification accuracy of 98.75%, sensi-
tivity of 98.20%, specificity of 99.25%, precision of 98.62%,
F1 score of 98.34%, and AUC of 98.72%. The classification
performances for LR and SVM are relatively lower than the
performances of the RF, GB, and XGB classifiers, shown
in Fig. 3(b).

Global feature importancewas computed in terms of SHAP
values. After training the classifiers with the training data sets
including all the 24 attributes, SHAP values of every attribute
were calculated to understand the feature importance of the
classifiers. Fig. 4(a) shows the feature importance values
obtained fromRF classifier trained on fold-1 training data set.
Themagnitude of the feature values is color-coded from black
to copper for the feature values from low to high, respectively.
The features are vertically sorted according to their average
impact on the predictions. From Fig. 4(a), it is shown that
the first 13 features are considered as the most important
feature. The feature importance values were calculated for
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FIGURE 3. Performance of the classifiers using all the attributes.
(a) Various model evaluation metrics for CKD classification. (b) Calculated
classification accuracy for RF, GB, XGB, LR, and SVM classifiers.

classifiers using all the training data sets. Fig. 4(b) depicts
the normalized mean SHAP value magnitudes obtained from
each of the RF, GB, and XGB models using all the training
set. The RF, GB, and XGB classifiers were considered based
on their better performance than the LR and SVM classifiers.
According to Fig. 4(b), hemo, sg, sc, al, pcv, rbcc, htn, bgr,
dm, age, sod, bu, and bp attributes had the highest impact on
the RF, GB, andXGB classifier’s decisionmaking onwhether
the instance is CKD or NOT CKD. The identified important
features were then used to reduce the dimensionality of the
dataset and minimize the costs and efforts of the diagnosis
of CKD with perfect accuracy. The selected features had
been used to produce a new lower-dimensional dataset than
the original dataset. Hence, after discarding the less impor-
tant features, the SHAP-based feature identification method
reduced the dataset dimension to 13 attributes, which were
further subjected to build six different datasets based on the
different pathological tests in order to observe the predictive
performances of ML models on the different combinations of
the attribute sets.

B. INTERPRETATION OF THE IMPACT OF ATTRIBUTION
INTERACTIONS ON CKD PREDICTION
The interactions of the attributes on prediction offer more
in-depth insight into models’ decision making capabilities.
The SHAP dependence contributions between attributes were
observed to analyse the impact of attribute interaction on the
model’s decision making capabilities.

The dependence contribution plots for the hemoglobin and
specific gravity attributes is shown in Fig. 5(a), where the
x-axis represents hemoglobin level and the y-axis represents
SHAP value for hemoglobin, and the color bar represents
the values associated with specific gravity. Thus each dot
in the plot represents each value of the hemoglobin attribute
in the training dataset. Lower values of both hemoglobin and
specific gravity made a higher impact on CKD prediction,
though the interaction of the lower value of hemoglobin with
some higher value of specific gravity produced higher SHAP
value for hemoglobin. From the figure, it is clearly observed
that the highest impacts on chronic kidney disease detection
were achieved when hemoglobin was less than 13 gms and
specific gravity was equal to or less than 1.015. The value
of specific gravity less than or equal to 1.015 also obtained
higher SHAP values while interacting with other attributes.

Fig. 5(b) shows that the interaction of very high value of
serum creatinine and very low value of hemoglobin resulted
in higher SHAP value for hemoglobin. Higher albumin and
lower hemoglobin interaction caused higher SHAP values
for hemoglobin. The dependence contribution plots for the
hemoglobin and packed cell volume attributes are shown
in Fig. 5(d). The lower values of both hemoglobin and
pcv were responsible for achieving higher SHAP values of
hemoglobin. The highest impacts on chronic kidney disease
detection are observed when hemoglobin is less than 13 gms
and packed cell volume is less than 40. The interaction of the
lower value of hemoglobin with lower red blood cell count
values enhanced the chance of the CKDprediction (Fig. 5(e)).
Fig. 5(f) shows the impact of the interaction of hemoglobin
and hypertension on CKD prediction. Higher hypertension
was responsible for achieving the higher SHAP values of
hemoglobin. The higher values of blood glucose random,
diabetes mellitus, blood urea, and blood pressure interacted
with lower value of hemoglobin made a higher impact on
CKD prediction, shown in Fig. 5(g, h, k, l). All the ages were
interacted with lower hemoglobin to produce higher SHAP
value of hemoglobin, shown in Fig. 5(i), but relatively larger
ages mostly interacted with lower hemoglobin in the model
for CKD prediction. Lower value of sodium interacted with
lower value of hemoglobin in the model to make the decision
the attributes were from a CKD patient, shown in Fig. 5(j),
although a small number of lower sodium interacted with
higher hemoglobin to predict NOT CKD.

C. REDUCED DATASET AND MODELS EVALUATION
Based on the calculated SHAP values of the attributes with
the RF, GB, and XGB models, 13 attributes were selected
to reduce the dataset. The selected attributes are shown
in Table 2. We created six different datasets by taking
attributes from the selected attributes and based on test
pathologies, shown in Table 3. Dataset ‘DB-I’ consists of
all the selected 13 attributes. ‘DB-II’ dataset consists of
attributes collected from blood and other pathological tests,
including hemo, sc, pcv, rbcc, bgr, sod, and bu from the
blood test and htn, dm, age, and bp from other tests attributes.
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FIGURE 4. SHAP plots (a) SHAP plot of the top most 20 attributes. The SHAP values were calculated when the random forest (RF) model was trained for a
single fold training dataset where each dot corresponds to an instance from the training data. Each value is color coded, dark black represents the lower
value and light color represents the higher value of the attributes. (b) The bar plot represents normalized mean absolute SHAP value across all the folds
for the RF, GB, and XGB model training.

TABLE 2. Lists of important attributes categorized according to pathology.

Database ‘DB-III’ consists of urine test attributes, sg and
al, and 4 other tests attributes. ‘DB-IV’ includes blood test
attributes only, ‘DB-V’ includes urine test attributes only, and
‘DB-VI’ includes other test attributes excluding both blood
and urine test attributes.

All the models were trained using the samples that were
previously used to train the models for SHAP calculation.
The models were tested using the test datasets that had not
been previously introduced to the models. The datasets and
models were evaluated for classification accuracy, sensitivity,
specificity, precision, F-score, and the area under the curve
(AUC), and results obtained are shown in Fig. 6.

The RF model presented the highest classification accu-
racy of 99.00% among other classifiers with the ‘DB-I’
dataset, whereas the accuracy of 98.25%, 98.50%, 97.25%,

TABLE 3. Datasets consists of selected clinical test attributes used for
CKD diagnosis.

and 97.75% were obtained using GB, XGB, LR, and SVM
classifiers, respectively. The ‘DB-II’ dataset consisted of
selected blood and other test attributes including 11 attributes
(7 blood and 4 other). RF gave the highest CKD clas-
sification performances with the accuracy of 97.75%,
sensitivity of 96.12%, specificity of 98.82%, precision
of 97.94%, F-score of 96.88%, and AUC of 97.47%. The
GB classifier obtained an accuracy of 96.75%, sensitivity

VOLUME 9, 2021 4900511



M. Rashed-Al-Mahfuz et al.: Clinically Applicable ML Approaches to Identify Attributes of CKD

FIGURE 5. Attributes dependence plots for the interaction of hemoglobin and other attributes. X-axis represents hemoglobin level and Y-axis
represents the SHAP value of hemoglobin in the RF model. Copper color in the color bars represents higher values, and dark color present lower
values of the attributes. (a-l) Interaction effects with specific gravity, serum creatinine, albumin, packed cell volume, red blood cell count,
hypertension, blood glucose random, diabetes mellitus, age, sodium, blood urea, and blood pressure, respectively.

of 96.12%, specificity of 97.28%, precision of 95.43%,
F-score of 95.55%, and AUC of 96.70%. The performance
of XGB was a little bit higher than the GB, LR, and SVM
classifiers with the classification accuracy of 97.00%. For
the ‘DB-III’ dataset, both GB and XGB performed better
than the RF classifiers with an accuracy of 97%. However,
RF detected CKD with the highest specificity and precision
than other classifiers. For the ‘DB-IV’ dataset, RF again
achieved the highest classification accuracy of 97.25% than
other classifiers. The models showed relatively lower classi-
fication accuracy with the ‘DB-V’ and the ‘DB-VI’ than the

other datasets, where RF achieved a classification accuracy
of 88.50% and 86.25% using the ‘DB-V’ and the ‘DB-VI’
datasets, respectively.

Database evaluation for the RF classifier, which showed
better classification for most of the cases, is shown in Fig-7.
The database DB I showed the best CKD detection perfor-
mance which is almost similar to the full database including
24 attributes. However, DB II, DB III, and DB IV also showed
considerable classification performances for CKD detection.
The results indicate that using all 24 features did not bring
additional advantages in the diagnosis process, but took time
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FIGURE 6. CKD detection accuracy plots for the six versions of the dataset, namely ‘DB-I’, ‘DB-II’, ‘DB-III’, ‘DB-IV’, ‘DB-V’, and ‘DB-IV’
datasets with various machine learning models. The performance metrics of specific databases are color coded in the plot.

FIGURE 7. A bar chart of the CKD classification accuracy in the RF model
for database evaluation. There are six datasets including various test
attributes and the performance rate range is from 0 to 100%. The superior
performances of the model trained with DB I were observed compared to
those models trained with other datasets, in terms of specificity,
precision, F-score, AUC and Accuracy, but, however, DB V trained model
showed only marginally better sensitivity than that of DB I.

and efforts and extra cost. Because using the only selected
important 13 attributes in DB I, 7 blood and 4 other test
attributes inDB II, 2 urine and 4 other test attributes in DB III,

and only 7 blood attributes in DB IV, we achieved almost
similar classification accuracy.

IV. DISCUSSION
The primary objective of this study was to identify important
clinical test attributes not only to enable efficient computer-
aided CKD screening but also to help reduce the costs of CKD
diagnosis. Results obtained using our proposed framework
indicate that the ML models showed better CKD and non-
CKD classification with a considerably reduced number of
attributes, 13 out of 24 that were employed. Using a higher
number of test attributes than necessary has a significant
financial impact, which hinders the routine screening for
CKD. For this reason we applied the recently developed
SHAP technique to identify important attributes to the clas-
sifiers for CKD detection. We have studied five ML models
with these clinical test attributes to choose the most suitable
classifier that can diagnose CKD with superior accuracy
using selected important attributes obtained from single clin-
ical pathology, either urine or blood, or both. Despite using
a low number of attributes the classification accuracy of the
ML models were still able to give near perfect accuracy.
Notably, RF gave the best results of the five ML classifier
methods tested. This study of ML techniques with reduced
numbers of attributes demonstrates that it is possible to diag-
nose CKD at a lower cost. A person tested CKD by only
low-cost urine pathology and other almost free tests such
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as blood pressure, hypertension, and age can be referred to
further testing of CKD with more clinical attributes. Early
referral of prospectively diagnosed CKD positive person,
based on urine testing, encourages further examinations with
blood pathology testing. The combined blood and previously
collected urine and other test attributes would thus be used for
automated ML-based diagnosis for proper management and
treatment of CKD patients.

Recently, the interpretation of decisions made by clas-
sifiers, and transparency in the model learning process is
required by medical practitioners [41], where the reliable
interpretation of the decision-making process can build trust
among medical personnel. Furthermore, traditional model
performance measurement metrics, i.e., accuracy, sensitivity,
and specificity, indicate how well or badly a model per-
forms, but fail to interpret what were the roles of particular
attributes to contribute to the classification decisions, and
how the values of the attributes influence particular decisions.
To increase clinician confidence inML automated CKD diag-
nosis systems, we have interpreted the decision-making in
terms of attribute values. We used the explainable AI-based
machine learning algorithms SHAP to provide some expla-
nation and justification for the decision.

The ML decision of detecting CKD based on the attribute
properties was comparable to current medical practices. For
instance, the hemoglobin attribute was given the highest
importance according to the SHAP value with low values
of hemoglobin associated with the occurrence of CKD. This
finding is compatible with previous observations that people
with early stages of CKD have low red blood cell hemoglobin
content [42]. The association of low hemoglobin readings
with CKD is also supported by the finding of a working group
study, namely Kidney Disease: Improving Global Outcomes
Anemia Work Group (KDIGO) [43]; this reported that males
older than age 15 with hemoglobin levels of less than 13 g/dL
and female older than 15 years with hemoglobin levels below
12 g/dL are diagnosed as having anemia, and typically have
lost at least half of their kidney function. The high value of
the two selected attributes, packed cell volume and specific
gravity, related to their inverse relationship to CKD occur-
rence. The low value of packed cell volume is associated
with developing CKD, a finding also consistent with existing
knowledge [44]. The presence or absence of hypertension
(blood pressure at unhealthy high levels) is also relevant,
as hypertension has a clear positive influence on the classifier
decision on CKD diagnosis consistent with its known positive
correlation with CKD [45]. The SHAP-identified importance
of red blood cell count (rbcc), also suggests that lower values
have a definite impact on the likelihood of CKD. The higher
values of both blood glucose and diabetes mellitus similarly
influence CKD prediction.

The identified importance of the three model-selected
attributes blood urea (bu), sodium (sod), electrolyte, albu-
min (al), and serum creatinine (sc) are consistent with
their use in clinical guidelines such as the Kidney Dis-
ease Improved Global Outcomes KDIGO [46], the national

institute for health and care excellence [47], and Kidney Dis-
ease Outcomes Quality Initiative (KDOQI) [48]; these four
biomarkers are considered as useful clinical tests for CKD
diagnosis. Hypertension (htn) and diabetes mellitus (dm) are
themselves chronic diseases that influence the progression of
CKD [47], [49], and were both identified as important for
the ML models to diagnosis CKD. Age and blood pressure,
two cost free attributes, were also considered important by
SHAP. When we added these four clinical attributes with two
selected urine test attributes (sg and al) for model training and
test purpose, the CKD identification accuracy also increased.
The selected blood test attributes with hypertension, and dia-
betes mellitus, age, and blood pressure when all used together
also gave some apparent improvement CKD diagnostic accu-
racy compared to blood test attributes alone. We hope that the
application of our ML-empowered and explainable AI-based
approach can be useful not only for designing efficient and
cost-effective computer-aided CKD detection tools, but also
to build medical practitioner trust in these reporting tools.

V. CONCLUSION
This paper has identified a reliable method for CKD classi-
fication and attributions selection with improved simplicity
and cost effectiveness. First, we trained and selected suit-
able classifiers, calculated the feature importance based on
SHAP values, and obtained a reduced dataset based on the
pathological tests and measured feature importance. Second,
we trained the classifiers with these reduced data sets and
evaluated them with the test datasets. The results of this
analysis demonstrated that the SHAP-identified important
features were consistent with the current clinical thinking.
It also found that an RF classifier method provides signif-
icantly high classification accuracy with the pathologically
categorized attributes sets. The proposed RF classifier and
reduced test attributes can therefore be potentially applied to
reduce diagnosis costs and enable better management of early
treatment plans.
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