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Abstract—For decades, gait has been gathering extensive
interest due to the advantage that it can be measured from
a distance without physical contact. However, for image/video-
based gait recognition, its performance can be remarkably
influenced by exterior factors, such as viewing angles and clothing
changes. Thus, in this paper, a group-supervised disentangled
representation learning network is proposed for gait recognition
to extract features invariant to these factors. First, sequences
are explicitly disentangled into pose, gait, appearance, and
view features through a generic encoder-decoder framework. To
ensure feature adaptability and independency, a disentanglement
swap module is specifically adopted during our encoder-decoder
process through a series of swap operations based on the feature
attributes. Following the feature disentanglement, a disentangle-
ment aggregation module is also specially proposed for pose, gait,
and appearance features to enhance their effectiveness. Finally,
the enhanced three features are concatenated together for gait
recognition. Relevant experiments certify that compared with
other disentangled representation learning-based gait recognition
methods, our proposed method enables a more excellent recog-
nition result, despite fewer gait frames being utilized.

Index Terms—Gait Recognition, Deep Learning, Disentangled
Representation Learning

I. INTRODUCTION

GAIT has many remarkable advantages over other kinds of
biometric authentication [45]. First, each person presents

his/her walking patterns in a sufficiently unique manner; thus,
it is difficult to disguise other people’s gaits. Second, gait
works well in an unconstrained condition, given that it can be
measured from a distance without proximal sensing or physical
contact. Given these advantages, recognition using gait is more
attractive than other biometrics for surveillance applications.
In Denmark and the UK, gait analysis has already been utilized
to collect evidence for convicting criminals [46], [48].

Over decades, many different methods have been developed
for gait recognition [34]. However, most of them can only
obtain a prominent recognition result when their probe/gallery
gaits are in a similar condition [31]. It becomes more chal-
lenging as people’s gaits are influenced by other factors and
the used probe/gallery gaits become less similar. Examples of
factors that can have this adverse influence on gait recognition
are: bearing loads [36], [49], [56], clothing variations [1], [6],
[13], walking modes [19], [29], [44], etc. There also exist
lots of other factors that are connected with the external envi-
ronments. Examples of these factors are: view changes [20],
[25], [47], background, illumination, road surface materials
and smoothness, etc.

The core of gait recognition is to extract gait-related features
for each walking sequence, and the first challenge of extracting
these features is to guarantee their invariableness to the adverse
influences mentioned above, such as clothing, carrying, view-
ing angles, etc. [59]. Therefore, in this paper, a new method
is raised for gait recognition by disentangling such invariant
gait-related features from the appearances of each person.
Motivated by the achievements of disentangled representation
learning (DRL) in the computer vision community [26], [33],
[38], [59], the proposed method intends to disentangle pose,
gait, appearance, and view features for each person from
their segmented binary silhouette sequences. Given that gait
is closely related to human bodies and their movements, in
our method, the final output invariant gait-related features are
hybridized by three parts, namely, pose features, gait features,
and appearance features.

More specifically, in our method, the feature disentangle-
ment is learned using an encoder-decoder framework with a
group of input sequences and a specifically raised disentan-
glement swap module. Motivated by [9], sequences sharing
the same attribute values are randomly sampled and formed
into the input groups. The encoder encodes each silhouette
frame and explicitly splits its encoded feature representations
into some meaningful parts. Meanwhile, since these split parts
fully represent their encoded frame, with the decoder they
can be decoded back to prototype. Additionally, given that
sequences sharing the same attribute values are inclined to
capture similar features for their shared attributes [9], it is
rational for our disentanglement swap module to swap their
corresponding split feature parts. For example, if there are
two sequences caught under the same viewing angle, then their
disentangled view features should be similar and thus naturally
can be swapped. Meanwhile, even if the swapped view features
are used, they can still be decoded back to their original inputs.
By this means, we can enforce the disentanglement of the same
attribute values to be similar, thereby achieving the consistency
of gait features for the same person in different conditions.

In this paper, a disentanglement aggregation module is
also specially developed to enhance the feature effectiveness.
Basically, this enhancement can be separated into two different
stages. First, it attempts to boost the discrimination capabilities
of our disentangled gait and appearance features. Motivated by
[37], our feature enhancement is conducted in a self-supervised
manner across successive feature channels and among different
sequence frames. Second, it aims to map the frame-based pose,
gait, and appearance features into sequence-based features. For
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pose features, it is significant to extract their temporal changes,
since the disentangled pose features of a frame can only denote
the pose of a specific instance, which may be similar to another
instance of another different person [58]. For the enhanced gait
and appearance features, although they can be relatively steady
within each sequence, this mapping operation can help enforce
the feature consistency, thereby increasing their effectiveness.

We summarize our contributions as follows.
• In this paper, a group-supervised DRL method is raised to

tackle the gait recognition problem for the first time. First,
input sequences are explicitly disentangled into pose, gait,
appearance, and view features. After disentanglement, the
combination of pose, gait, and appearance features is used
for the final gait recognition.

• To enforce the feature efficiency and independency, in
this paper, a disentanglement swap module is specially
utilized during our encoder-decoder process. Moreover,
to enhance the feature reliability and effectiveness, a
disentanglement aggregation module is also specially
utilized in this paper.

• Experiments using relevant datasets certify that our pro-
posed method outperforms other DRL gait recognition
methods. Moreover, these experiments also verify that our
proposed method enables a remarkable performance with
only a few gait frames being sampled.

The rest of this paper is organized as follows. Related work
is reviewed in Section II. The proposed methods are presented
in Section III. Experiment results are shown in Section IV, and
conclusions are given in Section V.

II. RELATED WORK

A. Gait Representation

For decades, a number of different representations have been
raised for gait recognition. Generally, these gait representations
can be categorized into two types: appearance-based or model-
based representations [49], [58], [59].

Appearance-based representations are mostly extracted
from human silhouettes, and then different subjects can
be recognized by measurements that represent human
shapes/movements [31]. One of the most widely used
appearance-based representations is gait energy image (GEI),
which is a silhouette template averaged over a full gait
cycle [10]. Motion silhouette image (MSI) is another repre-
sentation similar to GEI, in which each pixel is denoted as a
descriptor of its movements in the temporal domain across all
silhouettes that are part of a single gait cycle [24]. Appearance-
based representations are widely utilized in gait recognition for
their efficiency and simplicity. However, given their connection
to human silhouettes, these representations are vulnerable to
appearance changes caused by covariates, e.g., clothing, etc.

Model-based representations are generally grasped based
on the dynamics knowledge of human bodies. A gait model,
made up of information about different body parts and how
each part keeps relative with others, is first required, and
then representations are extracted from this fit gait model. A
major strength of these representations is that these gait models
ensure that only image data corresponding to allowable human

shapes and movements can be adopted for feature extraction,
which reduces the effects of noise [31]. However, although
these representations indicate a better robustness to appearance
changes, their performance is highly dependent on the quality
of gait models, and a relatively high resolution input image
is always required for reliable pose estimation and gait model
construction [58], [59].

B. Deep Learning-Based Gait Recognition

Many deep learning-based gait recognition methods have
been recently proposed. According to their used input in-
formation, these methods can be basically divided into two
categories, i.e., template-based or sequence-based methods [4].

For template-based methods, a pre-process of extracting gait
templates from sequential images or videos is first needed. One
of the most widely used templates is the above-mentioned GEI
[10]. Once gait templates are obtained, different deep learning-
based networks can be adopted to extract the representations of
gait, enhancing the characterization capabilities [4]. [35] raised
GEINet using GEI as input. [53] fine-tuned the Siamese Neural
Network for feature extraction. In [56], a View Transformation
Generative Adversarial Network (VT-GAN) was developed for
GEI to achieve transformation across two arbitrary views using
a single generic model. In [55], an Identity-preserved Variation
Normalizing Generative Adversarial Network (VN-GAN) was
proposed to extract purely identity-related representations from
GEI. For template-based methods, a major disadvantage is that
they can lose the individual information of each frame, because
in most cases, gait templates are attained by frame stacking
and averaging. In addition, since only one or two gait templates
can be learned from each sequence, it may also lead to the
problem of insufficient input training data and over-fitting.

Sequence-based methods directly use successive gait frames
as input. In [41], a 3D-CNN network was proposed to generate
features in multiple views. In [8], heat maps were first captured
as features of each frame, and then LSTM was used to
translate the features of each frame into a feature of each entire
sequence. In [2], features were first grasped for skeleton key-
points and then attached to skeleton edges. LSTM was utilized
to jointly model structured data and temporal information by
finding long short-term dependencies from graph structure.
Moreover, a 3D-CNN module was proposed in [27] to grasp
spatial-temporal features from small and large temporal scales.
Also, in [28], another 3D-CNN module was developed to
gather global and local features in a principle manner. A major
advantage of these methods is that they enable handling indi-
vidual information of each frame. Meanwhile, more temporal
information can be captured since specialized structures are
adopted [4]. However, for these methods, large amounts of
computation resources are required, which may limit their
usage in real-world applications [4].

Lately, multiple 2D-CNN networks have also been proposed
to approach gait recognition in the sequence-based manner.
These networks assume that the appearance of a silhouette
contains the position information; thus, the order information
of a sequence is not required in gait recognition [4]. For
example, in [4], each frame was first independently processed
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Fig. 1: Framework of the proposed network. To be more intuitive, in each group only two sequences are shown.

via a series of 2D convolution units with shared weight. After
that, a global pooling module was used at the top to translate
the information of each frame into a feature of each entire
sequence. Compared with most gait recognition methods, a
more excellent result has been obtained by [4] under its
assumption.

C. Disentangled Representation Learning

Recently, data-driven DRL methods are garnering popularity
in the computer vision community [26], [33], [38], [59]. DRL
aims to learn features by decoupling the underlying structure
of data into disjoint meaningful components [26]. To some
extent, DRL helps interpret deep models and indicate which
hidden features are actually learned in the model training
processes [26].

In [59], an AutoEncoder structure was proposed to explicitly
disentangle pose and appearance features from RGB frames.
In [58], a further improved AutoEncoder structure was de-
veloped. Except for pose and appearance features, canonical
features that provided the basic and unique representations
of human bodies were also disentangled. In [26], GEI was
first disentangled into identity and covariate features, and then
these features were used to simultaneously recreate the input
GEI and its canonical version with no covariates in a semi-
supervised way. In [3], a covariate feature control gate was uti-
lized to make up for the feature loss by introducing additional
semantic labels. An attention module was also adopted to lead
the identity and covariate parts to give attention to multiple
spatial regions. Moreover, in [49], skeleton silhouette images
were created and then disentangled into pose and canonical

features. A view invariant layer was also utilized to reduce
the influence of view changes.

In contrast to [3], [26], our proposed DRL network directly
learns gait representations from randomly sampled silhouettes.
Therefore, our learned representations should be categorized
as silhouette-based representations, and the proposed method
can also be deemed as a sequence-based method. The most
relevant work to ours is [58], [59], and there also exist
great differences across these three methods. First, [58], [59]
learn features from successive RGB frames, while our method
grasps features from randomly sampled binary silhouettes. In
addition, [58], [59] leave the disentangled appearance features
out of the final hybridized gait features, while in our method,
these appearance features are also adopted after reducing their
cloth-changing influence with our proposed attention module.
Third, while [58], [59] use loss functions to keep the canonical
consistency and pose similarity, in our method, the reliability
and effectiveness of our disentangled features are preserved
through swap operations in the decoder reconstruction process.
Overall, compared with the above-mentioned DRL methods,
our proposed method enables a more prominent performance
on relevant datasets.

III. PROPOSED METHODS

The main challenge of image/video-based gait recognition is
to explore gait-related features from walking sequences, which
are discriminative for each person and invariant to confounding
factors, e.g., viewing angles and clothing variations [59]. In our
paper, we approach this challenge via feature disentanglement.

As shown in Fig. 1, the input to our DRL model is a
group of sequences, and in each sequence, randomly sampled
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Fig. 2: Sample of a group input. Each edge links two sequences
sharing at least one same attribute.

silhouettes are utilized. An encoder-decoder framework with
a specifically proposed disentanglement swap module is used
to generate the disentangled pose, gait, appearance, and view
features for each sequence. Similar to canonical features [58],
in our method, the disentangled gait features also reveal the
unique and immanent information of gait, e.g., stride. A
disentanglement aggregation module is also utilized in our
method to enhance the robustness of these disentangled gait
and appearance features, followed by mapping these frame-
based pose, gait, and appearance features into sequence-based
features for identification purposes.

A. Group-Supervised Feature Disentanglement

1) Group-Supervised Learning:
Basically, each gait dataset consists of a variety of sequences

D = {χ1, χ2, · · · , χn}, and each sequence is associated with a
set of m attributes Da =

{
(a1χi

, a2χi
, · · · , amχi

)
}n

i=1
. Thus, each

attribute value can be a element of an attribute set aj ∈ Aj . For
example, in CASIA Gait Dataset B [60], A1 can denote subject
IDs A1 = {001, 002, · · · , 124}, A2 can denote dressing modes
A2 = {NM,BG,CL}, and then A3 can refer to viewing angles
A3 = {0◦, 18◦, 36◦, · · · , 180◦}.

As Fig. 1 indicates, the input to our DRL model is a group of
sequences, and within each group, four sequences are included.
Among these sequences, one sequence is deemed as the anchor
sequence, and then the other sequences are deemed as the
reference sequences. Between the anchor sequence and its
each reference sequence, they share at least one same attribute.
Fig. 2 presents a group input from CASIA Gait Dataset B [60].

2) Feature Disentanglement:
A universal encoder-decoder framework contains an encoder

E and a decoder D. This encoder encodes each frame and splits
the encoded feature representation into some independent parts
explicitly. Since these split parts can fully describe the encoded
frame, they can be decoded back to the encoded frame with the
decoder. Our network is developed based on the basic encoder-
decoder framework, and each encoded feature representation
is carefully split based on the anatomic studies of human gait
and the attribute sets of gait datasets.

Taking CASIA Gait Dataset B [60] for instance, the encoded
feature representations are split into pose, gait, appearance,
and view features. Since silhouettes are randomly sampled
in each sequence, pose features vary from one sequence to

another. Gait features can remain relatively stable, since they
depict the instinct gait information of each person. Appearance
features are much more vulnerable to clothing changes, and
such changes can generally have different effects on different
human body parts [13]. View features are very sensitive to
viewing angles, but distinct from appearance features, this
influence is global. Thus, in our model, the feature disentan-
glement is divided into two stages.

Assuming each input sequence χ̃, χ̃ ⊂ χi, i = 1, 2, · · · , n is
composed of N randomly sampled silhouettes, and the feature
representations of each silhouette encoded by E can be denoted
as a set f =

{
f1, f2, · · · , fN

}
. In our model, inspired by [40],

for the k−th silhouette, the encoded feature representations fk

are first decomposed into view features fk
v and view-disrelated

features fk
dv in an orthogonal manner,

fk = fk
v · fk

dv (1)

where fk
v =

∥∥fk
∥∥
2

and fk
dv = fk

∥fk∥2
, with ∥∥2 denoting the L2

norm. After that, the view-disrelated features fk
dv are explicitly

split into three parts, namely, pose features fk
p , gait features

fk
g , and appearance features fk

a .

fk
dv =

[
fk
p , f

k
g , f

k
a

]
(2)

Correspondingly, our latent representations used for decoder
reconstruction are also developed in two stages. Pose, gait, and
appearance features are first concatenated, and then multiplied
with view features.

3) Disentanglement Swap:
Motivated by [9], in which two samples sharing the same

attribute value (e.g., both under the viewing angle of 90◦)
have identical latent values for this shared attribute (e.g., view)
although other attribute values (e.g., pose, appearance) may
vary, in our model, a disentanglement swap module is pro-
posed to help enforce the feature consistency for each group
through the shared semantic attributes. A more detailed legend
is illustrated in Fig. 3 for the group sequences demonstrated
in Fig. 2.

Given that sequences sharing the same attribute tend to share
similar latent features for this shared attribute, in our model,
the disentanglement swap module aims to swap attributes
between sequences by swapping each corresponding split parts
between each feature representations. Based on the shared
attribute, our swap operations can be divided into three types.

(a) no-swap-op It does not contain any swap operations,
and it is only fit for the anchor sequences. Its main purpose
is to prove that our split feature parts can be assembled and
decoded back to their original sequences (see Fig. 3(a)).

(b) one-swap-op It simply contains one swap operation,
and it is used for the cases when only subject IDs or viewing
angles are the same between each anchor and the reference
sequences. Specifically, for these cases, only the split parts that
share the same attribute values can be swapped. As Fig. 3(b-2)
indicates, given that only the viewing angles are the same, only
their corresponding view features can be swapped. Fig. 3(b-1)
offers another swap sample when only the subject IDs are kept
the same. It is worth noting that the swaps of pose features are
avoided in our model, since the silhouettes of each sequence



5

Fig. 3: Samples of disentanglement swap. (a): no-swap-op. (b-1, b-2): one-swap-op. (c): two-swap-op.

are randomly sampled; thus, the pose features are essentially
different in spite of their attribute distributions.

(c) two-swap-op It consists of two swap operations, and it is
fit for the cases when only dressing modes are varying between
each anchor and their reference sequences. As Fig. 3(c) shows,
the corresponding appearance features fa, ga are first swapped.
After that, an unidentifiable sequence is generated based on the
swapped features ga. Following, this unidentifiable sequence is
also encoded, and its corresponding appearance features f

′

a are
swapped using the former fa. If, after the two swap operations,
we are able to recover our original sequence, it implies that this
attribute swap of dressing modes does not affect the split latent
information from other attributes [9]. Distinct from subject
IDs and viewing angles, dressing modes are an attribute that
cannot be quantized, and usually we can only define a general
concept of its values. For example, even if two persons are both
dressed in long coats (CL), they still might be different from
each other due to the coat length, thickness, etc. Therefore, in
our model, a different swap operation is proposed for dressing
modes.

4) Reconstruction Loss:

After each swap operation, the reconstructed sequence ought
to be similar to its anchor sequence. In our model, an MSE loss
is calculated after each reconstruction to enforce this similarity,
and the reconstruction loss lrecon shown in Fig. 1 illustrates the
sum of the four reconstruction losses shown in Fig. 3.

On the one hand, this reconstruction loss can ensure that our
disentangled four features are fairly representative for each gait
sequence. On the other hand, combined with our attribute swap
operations, it also guarantees the availability and independency
for our disentangled features.

B. Feature Learning and Aggregation

Motivated by [4], [37], [39], in our model, a disentan-
glement aggregation module is also specifically proposed for
generating the finally used gait-related features. Basically, this
module has two purposes: the first is to raise the discrimination
capabilities of our disentangled gait and appearance features;
the second is to transform frame-based pose, gait, and appear-
ance features into sequence-based features. Eventually, these
three sequence-based features are concatenated together for
gait recognition.

1) Pose Feature Aggregation:
Learning the temporal changes of pose features is important,

because for each frame, the disentangled pose features can
only characterize the walking pose of a specific instance,
which may share similarity with another instance of another
person [58].

Given that the appearance of a silhouette reveals the position
information [4], in our model, the temporal information of
pose features is directly learned through a max-pooling oper-
ation.

f̃p = maxpool(fp) (3)

It is worth noticing that LSTM [8] has been discarded in this
module for two main reasons. First, the output of LSTM can
be varied over time steps, since it is significantly influenced
by the last input [8]. Moreover, LSTM works better with
longer input; however, its computation resources will also be
increased. Here, we choose the max-pooling operation mainly
because it is easy to implement but more stable and efficient
with fewer resources being required.

2) Gait Feature Aggregation:
In our model, the disentangled gait features mainly represent

the static and interior information of each human body; thus,
for each person, their disentangled gait features are assumed
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to stay unchanged over time, which also reveals that it is not
necessary for our model to extract their temporal changes.
Specifically, in order to generate more robust finally used gait-
related features, our gait feature aggregation is divided into
two stages.

In the first stage, motivated by [37], the feature effectiveness
is improved by using the correlation within features and across
frames. It is reasonable to use this underlying correlation, since
gait can be deemed as a dynamically coupled pendulum model,
and all human body parts are joined in a regular manner. In our
model, two statistical functions are first assembled among each
channel and their neighbors. After that, in order to extract more
robust representations, the channel-wise attention is introduced
to re-weight the disentangled gait features.

fa1
g = [Avgpool1d(fg),Maxpool1d(fg)]

f logits1
g = Conv1dNet(fa1

g )

f ch
g = fg × Sigmoid(f logits1

g )

(4)

Further, similar to [37] communicating across different tokens,
our model also adopts a communicating mechanism to enhance
the feature robustness from different input frames. It is rational
for our model to adopt the correlation of different frames,
since within each sequence, our disentangled gait features can
always be kept stable, thereby reducing the occurrences of
outliers.

fa2
g =

[
avepool(f ch

g ),maxpool(f ch
g )

]
f logits2
g = Conv1dNet(fa2

g )

ffr
g = f ch

g × Sigmoid(f logits2
g )

(5)

Specifically, in this stage, our channel-wise operation aims
at communication across different channels for each frame,
while our frame-wise operation allows communication over
different frames for each channel. In total, the two operations
are bonded for each sequence to enable interaction across
space and time.

In the second stage, a max-pooling operation is also adopted
to map the frame-based improved gait features into a feature of
the full sequence, similar to our aforementioned pose features.

f̃g = maxpool(ffr
g ) (6)

Lastly, it is also worth noting that although our proposed
gait feature aggregation module is similar to the networks
proposed by [7], [37], significant differences still exist among
these three methods. In [7], the attention mechanism is only
adopted within short-range frames to capture the micro-motion
patterns, while in our module, the attention mechanism is
not only used among different frames but also utilized across
feature channels. Also, our DRL network is proposed based
on the assumption that the appearance of a silhouette contains
its position information [4]; thus, in our network, all motion
features are implicitly extracted. Moreover, different from [37],
which repeatedly employs MLPs across spatial patches and
feature channels, our module is built based on convolutions
and attention mechanism.

3) Appearance Feature Aggregation:
In our model, the disentangled appearance features generally

refer to the shape information of human bodies. Different from
gait features that can keep stable all the time, these features
can be significantly influenced by clothing variations. Hence,
in this model, we aim to reduce this adverse cloth-changing
influence.

Stimulated by [39] using a shift code to synthesize images in
a certain direction, in our model, shift codes are also adopted
to reduce the influence caused by clothing changes. Similar to
the above-mentioned gait features, our feature effectiveness is
also boosted within each features and among different frames.
First, a method similar to gait feature aggregation is adopted
to grasp the most salient parts f ch

a for features. However,
different from f ch

g , which present the inherent gait information
of each person, f ch

a give more attention to the exterior dressing
styles, and they should be excluded from our disentangled
appearance features. Thus, our improved appearance features
can be formulated as,

f̃ ch
a = fa − α1 ∗ f ch

a (7)

where α1 is a learnable shift code.
The following feature improvement among frames is similar

as we mentioned above with α2 as another shift code. Also, a
max-pooling operation is utilized to translate the frame-based
appearance features into a sequence-based feature.

4) Similarity Loss and Classification Loss:
Our aggregated gait features basically extract the unique and

inherent information of human gait; hence, for each person,
their aggregated gait features are assumed to have similarities
across different sequences. Similarly, for sequences within
each group sharing the same IDs and views, after weakening
their clothing effects in a self-supervised manner, our aggre-
gated appearance features are also supposed to stay similar.
Hence, to enforce the feature efficiency and consistency, a
similarity loss lsim is used in our model based on the L1 loss.

Furthermore, to enhance the effectiveness of our finally used
gait-related features, a Batch All (BA+) triplet loss [12] is also
used in our model to serve as the classification loss lid.

To this end, the overall training loss function is,

l = lid + λs ∗ lsim + λr ∗ lrecon. (8)

IV. EXPERIMENTS

In this section, we will verify the robustness of our proposed
method on two broadly used gait datasets: CASIA Gait Dataset
B [60] and OU-ISIR Treadmill Gait Dataset B [30].

Specifically, the training and testing details are first shown in
Section IV-A. Then, a comparison of our proposed method and
some other gait recognition methods has been organized on the
aforementioned two datasets in Section IV-B and IV-C. Finally,
ablation experiments are revealed in Section IV-D. Comparison
results have certified the robustness of our proposed method
on disentangling robust representations for gait recognition.
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TABLE I: Averaged rank-1 accuracies (%) on CASIA-B following the protocols in [4], excluding identical-view cases.

Gallery NM #1-4
Input Modality

0◦-180◦

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

NM #5-6

LB [42] Silhouettes 82.6 90.3 96.1 94.3 90.1 87.4 89.9 94.0 94.7 91.3 78.5 89.9
Joint CNN [57] GEI+Silhouettes 87.2 93.2 96.3 95.9 91.6 86.5 89.8 93.8 95.1 93.0 80.8 91.2
GaitNet-pre [59] RGB frames 91.2 92.0 90.5 95.6 86.9 92.6 93.5 96.0 90.9 88.8 89.0 91.6

GaitNet [58] RGB frames 93.1 92.6 90.8 92.4 87.6 95.1 94.2 95.8 92.6 90.4 90.2 92.3
SSDGait [49] Skeleton silhouettes 85.7 82.1 82.6 83.5 85.8 89.7 88.1 84.0 84.7 85.7 87.1 85.4

Proposed Silhouettes 87.9 95.2 97.0 95.1 90.5 88.0 90.9 94.8 96.5 93.7 82.7 92.0
Proposed RGB frames 97.0 98.0 98.2 99.1 99.4 97.3 95.8 98.5 98.0 97.8 97.8 97.9

BG #1-2

LB [42] Silhouettes 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4
Joint CNN [57] GEI+Silhouettes 73.1 78.1 83.1 81.6 71.6 65.5 71.0 80.7 79.1 78.6 68.0 75.0
GaitNet-pre [59] RGB frames 83.0 87.8 88.3 93.3 82.6 74.8 89.5 91.0 86.1 81.2 85.6 85.7

GaitNet [58] RGB frames 88.8 88.7 88.7 94.3 85.4 92.7 91.1 92.6 84.9 84.4 86.7 88.9
SSDGait [49] Skeleton silhouettes 75.2 77.6 76.9 78.2 81.1 81.1 80.9 79.3 76.5 74.3 70.2 77.4

Proposed Silhouettes 77.9 88.8 91.8 90.1 84.4 79.7 83.5 89.3 92.2 89.5 77.5 85.9
Proposed RGB frames 96.3 97.8 97.8 97.8 96.9 93.4 92.4 97.6 95.8 95.0 89.8 95.5

CL #1-2

LB [42] Silhouettes 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0
Joint CNN [57] GEI+Silhouettes 46.1 58.4 64.4 64.2 55.5 50.5 54.7 55.8 53.3 51.3 39.9 54.0
GaitNet-pre [59] RGB frames 42.1 58.2 65.1 70.7 68.0 70.6 65.3 69.4 51.5 50.1 36.6 58.9

GaitNet [58] RGB frames 50.1 60.7 72.4 72.1 74.6 78.4 70.3 68.2 53.5 44.1 40.8 62.3
SSDGait [49] Skeleton silhouettes 64.7 68.6 69.3 72.0 76.6 75.9 78.5 73.6 68.1 70.2 64.5 71.1

Proposed Silhouettes 60.9 75.6 81.0 78.1 72.6 67.8 73.0 77.1 76.8 70.0 53.3 71.5
Proposed RGB frames 67.3 66.9 59.3 57.2 48.8 36.6 32.6 35.7 36.6 36.1 31.8 46.2

Fig. 4: Comparisons of the NM subset under the probe viewing angles of 54◦, 90◦, and 126◦ following the protocols in [52].
(Methods: PCA [10], FD-VTM [32], TSVD-VTM [21], R-VTM [20], C3A [43], SPAE [51], GaitGAN [50], VT-GAN [56])

A. Training and Testing Details

Stimulated by [11], our proposed network has an unbalanced
encoder-decoder framework. Our encoder E is very similar to
GaitSet [4], consisting of three convolution units followed by a
Batch Normalization layer [16] and another Leaky ReLU layer.
The decoder D has a basic structure as GaitNet [58], [59], built
from three successive series of stride-2 transposed convolution,
Batch Normalization [16], and Leaky ReLU layers. A Sigmoid
activation is also utilized at its top to bring values back into the
[0, 1] range as our input sequences. Moreover, our disentangled
pose, gait, appearance, and view features are all empirically
set as 512, 256, 256, and 1 dimensional vectors, respectively.

In our training phase, each input is a group of four silhouette
sequences, and each sequence is built by 10 randomly sampled
silhouette frames in a size of 64 × 64. Each time, a batch in
a size of 8 × 8 is randomly sampled for our training, which
indicates that in each batch, the number of persons and the
number of groups each person has in this batch are both 8.
Adam [17] is adopted as our optimizer, and its learning rate

is set as 0.0001. For lid, the margin in BA+ triplet loss [12]
is set as 0.2. Furthermore, the λs and λr in Eq. 8 are set as 1
in all experiments.

In the testing phase, the batch size is set as 1, and the input is
the entire silhouette sequence rather than a group of randomly
sampled silhouette frames.

B. Comparison on CASIA Gait Dataset B

As the most widely used gait dataset, CASIA Gait Dataset B
captures gait videos from 124 persons under 11 viewing angles
(0◦, 18◦, 36◦, . . . , 180◦) [60]. For a person under each viewing
angle, 10 gait videos are captured, 6 in normal dressings (NM),
2 with a bag (BG), and 2 with a long coat (CL). In addition,
in this dataset, the segmented gait silhouettes are also directly
offered.

Many different experiment protocols have been proposed for
CASIA Gait Dataset B [59], [60]. To present a fair comparison,
we strictly abide by the protocols of each baseline method, and
our comparison can be divided into three parts.
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TABLE II: Rank-1 accuracy (%) across views under NM on CASIA-B following the protocols in [42].

Gallery NM #1-4
Input Modality

90◦

Probe NM #5-6 0◦ 18◦ 36◦ 54◦ 72◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

Methods

CPM [5] RGB frames 13 14 17 27 62 65 22 20 15 10 24.1
GEI-SVR [22] Silhouettes 16 22 35 63 95 95 65 38 20 13 42.0

CMCC [23] Silhouettes 18 24 41 66 96 95 68 41 21 13 43.9
ViDP [15] Silhouettes 8 12 45 80 100 100 81 50 15 8 45.4

STIP+NN [18] RGB frames - - - - 84.0 86.4 - - - - -
LB [42] Silhouettes 18 36 67.5 93 99.5 99.5 92 66 36 18 56.9

L-CRF [5] RGB frames 38 75 68 93 98 99 93 67 76 39 67.8
GaitNet-pre [59] RGB frames 68 74 88 91 99 98 84 75 76 65 81.8

GaitNet [58] RGB frames 82 83 86 91 93 98 92 90 79 79 87.3

Proposed Silhouettes 65.9 77.2 86.9 87.6 79.5 78.8 85.0 88.1 82.0 65.9 79.2
Proposed RGB frames 86.8 88.5 89.8 91.7 92.3 88.8 91.7 88.6 88.6 85.2 89.1

TABLE III: Rank-1 accuracy (%) across views under BG and CL on CASIA-B following the protocols in [5].

Probe, Gallery (θp, θg)
Input Modality

54◦, 36◦ 54◦, 72◦ 90◦, 72◦ 90◦, 108◦ 126◦, 108◦ 126◦, 144◦ Mean

Subset BG CL BG CL BG CL BG CL BG CL BG CL BG CL

Methods

RLTDA [14] Silhouettes 80.8 69.4 71.5 57.8 75.3 63.2 76.5 72.1 66.5 64.6 72.3 64.2 73.8 65.2
LB [42] Silhouettes 92.7 49.7 90.4 62.0 93.3 78.3 88.9 75.6 93.3 58.1 86.0 51.4 90.8 62.5

L-CRF [5] RGB frames 93.8 59.8 91.2 72.5 94.4 88.5 89.2 85.7 92.5 68.8 88.1 62.5 91.5 73.0
JUCNet [54] Silhouettes 91.8 - 93.9 - 95.9 - 95.9 - 93.9 - 87.8 - 93.2 -

GaitNet-pre [59] RGB frames 91.6 87.0 90.0 90.0 95.6 94.2 87.4 86.5 90.1 89.8 93.8 91.2 91.4 89.8
GaitNet [58] RGB frames 93.5 97.5 94.1 98.6 98.6 99.3 99.3 99.6 99.5 98.3 90.0 86.6 95.8 96.7
ICDNet [26] Silhouettes - - - - 90.0 76.7 87.8 66.7 - - - - 88.9 71.7

Proposed Silhouettes 96.6 90.5 98.9 88.8 99.4 96.1 98.9 98.3 98.3 94.4 98.9 87.2 98.5 95.3

In our first comparison, we follow the protocols proposed
by [4]. The first 74 persons are utilized for training, and the
remaining 50 persons are utilized for testing. In the testing
set, the first 4 NM videos (NM #1-4) are taken as gallery,
and the remaining 6 videos are separated into 3 probe subsets,
i.e., NM #5-6, BG #1-2, and CL #1-2 [4]. Table. I shows
the comparison results of our proposed method and some
other DRL gait recognition methods. Results given in this
table are averaged on the 11 gallery views with all identical
views excluded. Also, in Table. I, two results are given for
our proposed method, and the main difference is their input
modalities. We can see that our proposed method can attain the
best result in the NM-NM and NM-BG cases with RGB frames
being used. A comparable result has also been attained in these
two cases when we handle silhouettes as input. Compared
with silhouettes, RGB frames can afford richer information,
thereby providing a higher possibility of extracting more
discriminative gait-related features [58]. However, in the NM-
CL case, the highest recognition accuracy is attained with
silhouettes being utilized. One potential reason could be that in
the NM-CL case, silhouettes are more relevant with the human
shapes rather than the texture appearances that RGB frames
are more concerned with. Also, it can be seen from Table. I
that our method has suffered severe performance degradation
when probe views are around the side view of 90◦. One reason
is that gait features are different between the frontal views of
0◦-90◦ and the back views of 90◦-180◦. Another reason is that
in our method, no view transformation is adopted, which can
be improved before the final recognition as [49] did.

In our second comparison, we follow the protocols proposed
by [52]. The first 62 persons are taken for training, and the next

62 persons are utilized for testing. Its gallery and probe sets
are divided in the same manner as [4]. Due to limited space, a
brief comparison is given in Fig. 4 for the NM subset from the
probe viewing angles of 54◦, 90◦, and 126◦. From this figure,
we can see that our proposed method has presented a more
remarkable performance than most gait recognition methods,
especially for the cases where probe and gallery view gaps are
large.

In our third comparison, we abide by the protocols proposed
by [42], which focus on walking direction variations [58], [59].
Therefore, in this comparison, only videos in the NM subset
are used. The first 24 persons are sampled for training, and the
remaining 100 persons are utilized for testing. In the testing
set, the first 4 NM videos (NM #1-4) under the 90◦ viewing
angle are used as gallery, and the other 2 NM videos (NM
#5-6) under the remaining 10 viewing angles are tackled as
probe. The comparison results of the proposed method with
some other gait recognition methods are reported in Table. II.
Our proposed method has attained the best average accuracy of
89.1% across 10 viewing angles, with significant improvement
compared to [58], [59] using the same RGB frames as input.
Moreover, compared with methods using silhouettes as input,
our proposed method has also achieved the highest average
accuracy, outperforming [42] by over 20%.

For our final comparison, we observe the protocols proposed
in [5], which give more attention to appearance variations [58],
[59]. The first 34 persons are utilized for training, and the
other persons are chosen for testing. In the testing set, the
NM videos are sampled as gallery, and the other videos are
divided into the BG and CL probe subsets. 6 probe/gallery
view pairs are tested between the normal viewing angles from
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TABLE IV: Rank-1 accuracy (%) on OU-ISIR Treadmill-B.

Probe Set Proposed [46] [1] [6]

Type 0 100.0 99.7 94.0 100.0
Type 4 100.0 100.0 94.1 98.5
Type 8 100.0 100.0 94.5 94.1
Type A 100.0 100.0 91.6 91.2
Type C 100.0 100.0 94.5 94.1
Type E 100.0 100.0 91.5 91.2
Type G 100.0 99.8 89.1 98.5
Type I 100.0 100.0 98.5 98.5
Type J 100.0 100.0 91.5 91.2
Type L 100.0 100.0 90.0 100.0
Type N 100.0 100.0 85.5 100.0
Type P 100.0 100.0 91.1 100.0
Type R 100.0 100.0 86.2 88.2
Type T 100.0 100.0 95.0 94.1
Type U 100.0 100.0 95.5 94.1
Type V 100.0 100.0 91.6 91.2
Type X 100.0 100.0 90.1 100.0
Type Z 100.0 100.0 87.2 98.5

36◦ to 144◦, and each time, one model is trained and tested
for one probe/gallery view pair (θp, θg) [5]. Table. III offers
the comparison results for our proposed method and some
other gait recognition methods. We can see that the proposed
method has attained the highest mean accuracy for the BG
subset, outperforming GaitNet-pre [59] by 7.1% and exceeding
GaitNet [58] by 2.7%. Additionally, for the CL subset, it also
illustrates a performance comparable to GaitNet-pre [59] and
GaitNet [58] with silhouettes being utilized.

For all evaluation protocols, our proposed method enables
consistent achievement of a prominent gait recognition perfor-
mance. In addition, in many cases, our proposed method has
outperformed the state-of-the-art methods. To sum up, these
comparisons have certified the effectiveness of our proposed
method on extracting a robust disentangled representation for
gait recognition under different variations.

C. Comparison on OU-ISIR Treadmill Gait Dataset B

To our knowledge, OU-ISIR Treadmill Gait Dataset B offers
the maximum number of clothing variations [6]. Specifically, it
gathers gait sequences from 68 subjects under 32 combinations
of clothing types [1], [30], and each sequence is recorded twice
on the same day. Given that it reveals a comprehensive analysis
of the influence of clothing variations [1], it is recommended to
verify the robustness of our proposed method on this dataset.

For this comparison, our training set is built by one sequence
of each subject under each clothing combination, thereby,
2,176 sequences are sampled. 32 testing sets are formed by
the left sequence of each subject based on their clothing
combinations. It is worth mentioning that since view changes
are not contained in OU-ISIR Treadmill Gait Dataset B, in
our method view features are ignored, with only pose, gait,
and appearance features being disentangled from each input
sequence.

Table. IV offers the brief comparison results of our proposed
method and some other gait recognition methods, and it
can be seen that in all probe sets, our proposed method
has attained the state-of-the-art recognition performance. A
stronger robustness against clothing variations has been pre-

Fig. 5: Samples of the reconstructed frames with and without
swapping view features.

sented for our proposed method in this comparison. Once a
clothing combination exists in the training set, it will surely
be recognized in the evaluation process. To sum up, this
comparison has verified the robustness of our disentangled
gait-related features.

D. Ablation Experiments on CASIA Gait Dataset B

In this part, we probe into the factors that can significantly
influence the effectiveness of our disentangled features.

1) Influence of input frame numbers:
The first four lines of Table. V present the influence of

different input frame numbers. We can see that our mean
accuracy of the CL subset first rises with the increase of the
frame number, and then it will stabilize at its best performance
when more than 10 frames are sampled each time. In our
method, each input frame is first independently disentangled
with shared parameters, and a disentanglement aggregation
module is followed to transform our frame-based disentangled
features fp, fa, and fg into three sequence-based features.
With more frames being sampled, the robustness of these
sequence-based features will also be raised. However, due to
the limitation of the frame-based features, this improvement
is not sustainable, and it will stabilize at its peak.

Also, compared with GaitSet [4] where 10 frames are
used as its input (in this case the accuracy of GaitSet [4] is
65.1%), our proposed method has attained a more remarkable
performance, which verifies the superiority of our proposed
method.

2) Influence of input frame resolutions:
Experiments show that the resolution of the input frames

has a huge impact on the disentangled features. As Table. V
shows, there is a prominent increase if we improve the input
resolution from 64× 64 to 128× 128. This is because a large
frame enables more local details for gait recognition.

3) Influence of disentanglement swap:
The 7-th and 8-th lines of Table. V evaluate the effectiveness

of our proposed disentanglement swap module. It can be found
that a performance improvement has been attained through this
disentanglement swap module, which verifies that it is efficient
for our disentanglement swap module to enforce features of
the same attributes to be similar and independent from others.
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TABLE V: Studies of disentangled features on CASIA-B following the protocols in [4], excluding identical-view cases.

Row
No.

Input Frame
Number

Input Frame
Resolution

Disentanglement
Swap

Disentanglement
Aggregation

Disentanglement
Schemes

Disentanglement Dimensions Mean Accuracy(%)
of the CL subset(fp, fg , fa, fv)

1 5

64× 64
√ √

(fp, fg , fa, fv) (512, 256, 256, 1)

61.3
2 10 71.5
3 15 73.1
4 20 72.1

5
10

64× 64 √ √
(fp, fg , fa, fv) (512, 256, 256, 1)

71.5
6 128× 128 73.6

7
10 64× 64

×∗1 √
(fp, fg , fa, fv) (512, 256, 256, 1)

69.6
8

√
71.5

9
10 64× 64

√ ×∗2

(fp, fg , fa, fv) (512, 256, 256, 1)
66.5

10
√

w/o shift codes 71.1
11

√
w/ shift codes 71.5

12

10 64× 64
√ √

(fp, fa)

(512, 256, 256, 1)

54.7
13 (fp, fg , fa) 53.7
14 (fp, fg , fa, f

dp
v )∗3 71.5

15 (fp, fg , fa, f
sp
v )∗4 63.5

16
10 64× 64

√ √
(fp, fg , fa, fv)

(512, 256, 256, 1) 71.5
17 (256, 512, 256, 1) 65.2
18 (256, 256, 512, 1) 66.2
∗1 The final reconstruction loss lrecon only involves the reconstruction loss from the no-swap-op.
∗2 The similarity loss lsim is not involved in this feature disentanglement process.
∗3 View features fdp

v are first orthogonally decomposed from our encoded feature representations.
∗4 View features fsp

v are simply split from our encoded feature representations without decomposition.

Moreover, Fig. 5 shows some reconstructed sequences of the
same person with and without view feature swapping. It can be
seen that these reconstructed frames are similar with or without
feature swapping, which strongly supports the disentanglement
swap module we proposed in this paper.

4) Influence of disentanglement aggregation:
The robustness of the proposed disentanglement aggregation

module has also been validated. A prominent increase has
been attained in Table. V across the 9-th, 10-th, and 11-
th lines using our proposed module with shift codes. As
we stated above, this disentanglement aggregation module
not only maps our frame-based disentangled features into
sequence-based features, but more significantly also enhances
their discrimination capabilities among feature channels and
sequence frames. Furthermore, the similarity loss is followed
to enforce our aggregated features to stay more consistent,
which further enhances their efficiency.

5) Influence of disentanglement schemes:
In Table. V, the 12-th, 13-th, 14-th, and 15-th lines indicate a

comparison of four different disentanglement schemes. We can
see that it is more effective to first orthogonally decompose our
encoded representations into view features and view-disrelated
features, and then explicitly split these view-disrelated features
into pose, gait, and appearance features. Different from bearing
loads and clothing variations, view changes tend to have a huge
influence on whole human bodies. Thus, it is rational for us
to decompose view features from other disentangled features.

6) Influence of disentangled feature dimensions:
The last three lines of Table. V validate the influence of

different feature dimensions. The best performance is obtained
when the dimensions of our disentangled features fp, fg, fa, fv
are set as 512, 256, 256, and 1, respectively. To some extent,
it also shows the importance of pose in gait recognition.

V. CONCLUSION

Gait recognition is remarkably influenced by factors, such as
viewing angles and clothing changes. Therefore, in this paper,
a group-supervised DRL method is proposed for gait recog-
nition to grasp features invariant to these factors. First, each
sequence is explicitly disentangled into pose, gait, appearance,
and view features through an encoder-decoder framework. To
ensure the feature adaptability and independency, a disentan-
glement swap module is specially utilized during our encoder-
decoder process with a series of swap operations based on the
feature attributes. Moreover, to enhance the feature practical-
ity and effectiveness, a disentanglement aggregation module
is also specially utilized after our feature disentanglement.
Finally, the aggregated pose, gait, and appearance features
are concatenated together for gait recognition. Experiments
using relevant datasets have verified that this proposed method
can achieve a more prominent result than other DRL gait
recognition methods.
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