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Abstract

This thesis explores two specific problems within the broad context of
one-shot information theory.

In the first part of this thesis, we investigate Bayesian and minimax esti-
mators for quantum state estimation under general Bregman divergences
with single-shot measurements. We also study the problem of covariant
state estimation and obtain optimal measurements for the same.

In the second part, we study work extraction processes mediated by finite-
time interactions with an ambient bath—partial thermalizations—as con-
tinuous time Markov processes for two-level systems. We analyze the
distribution of work for the case where the energy gap of a two-level sys-
tem is driven at a constant rate. We also analyse work extraction cycles
by modifying the Carnot cycle, incorporating processes involving partial
thermalizations.
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Introduction

And God said: let there be

independent and identically

prepared systems.

a quantum physicist

One of the assumptions that is made but almost never justified in quan-
tum physics is that there exists a preparation procedure that renders
physical systems in independent and identically distributed (IID) quantum
states, i.e. different physical systems that are independent of each other
but have the same quantum description [Shankar (1994)]. To characterise
a system in an unknown state we need to perform a measurement which
requires infinitely many copies of the system that are in the same (un-
known) state since the applicability of Born’s probability rule rests on
the correspondence between frequency and probability—that only holds
asymptotically; imagine the many number of times one would have to flip
a coin to ascertain its bias. Standard thermodynamics is another avenue
where the thermodynamic limit, i.e. the limit of large number of particles,
is assumed. In this limit, all higher moments about the mean for quan-
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tities such as work become negligible in comparison to the mean itself.
This is in the same vein as the issue of requiring IID quantum states for
characterising physical systems. Consider a semi-classical two-level sys-
tem that can be set-up as a Carnot engine [Quan et al. (2007)]. For each
run of the cycle this engine would have a mean efficiency and variance
(about mean). While the mean efficiency would be the Carnot efficiency,
its variance would be a constant that would only vanish in the limit of
many number of independent runs of the cycle (law of large numbers).

As we move beyond these IID settings, we study these problems using
techniques of one-shot information theory, which allows one to systemati-
cally incorporate small size effects. In the one-shot setting, one is typ-
ically interested in performing tasks with small number of systems or
small number of runs of an experiment. Such processes incur cost/error,
and depending upon the specifics of the problem, we can either look for
optimal processes that minimize, let us say the average cost, or accept an
error if the probability of getting the desired outcome is sufficiently large.

In classical information theory, a first question is that of compressing mes-
sages [Shannon (1948)]. A message is a stream of letters of an alphabet
imagined to be output by an ideal source that produces an IID stream of
letters (i.e. independently drawn from the same probability that distribu-
tion) from the given alphabet. For a large stream of letters, the question
is if we can compress it to a shorter string of letters without much loss of
information. For example, if the alphabet is binary and the zeroes occur
with probability p and ones with probability 1− p then, by the law of
large numbers, we know that a typical string of n binary letters would
have np number of zeroes and n(1− p) number of ones for large n. Now,
the total number of such typical strings is ( n

np) which, using the stirling
approximation, is of order 2nH(p), where H(p) is the Shannon entropy
for the binary distribution. The fact that out of all possibilities a partic-
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ular message, i.e. a certain combination of zeroes and ones is observed
is quantified in terms of the surprisal for individual events (occurrence
of zero or one), which is simply the negative logarithm of the probabil-
ity of occurrence of that particular bit value. This is because observing
an event with a small probability of occurrence is highly surprising; sur-
prisal is inversely proportional to probability, and the logarithm function
captures the intuitive notion of information conveyed by the occurrence
of joint events fairly well—we expect the information obtained by observ-
ing two independent events to be the sum of surprisals for each of those
events. Thus, the information obtained on average is the expectation of
the surprisal with respect to the underlying probability distribution, and
is referred to as the Shannon entropy. To convey (essentially) all of the
information in an n bit string it suffices to encode only the typical strings
as the probability that a string is atypical vanishes in the limit of large n.
More generally, for a source that produces an IID stream of symbols from
any alphabet, the noiseless source coding theorem [Shannon (1948)] states
that any compression of the output must be at least the Shannon entropy
number of logical bits per symbol. Anything less than that threshold
would, almost certainly, lead to information loss upon transmission.

In the quantum setting, one has a quantum signal source that encodes
each message from a classical source (that produces a stream of IID sym-
bols) into a corresponding stream of IID quantum states. Then, the task
of source coding for transmission of such quantum messages is essen-
tially the same, and in fact, it was shown that the Von Neumann entropy of
the ensemble of quantum states at the source is the minimum number of
qubits needed to encode each state in the ensemble [Schumacher (1995)].

One may think of an IID premise as ideal and ask what happens realisti-
cally. Such questions have been studied both in the classical and quantum
cases and constitute the subject matter of one-shot information theory
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[Tomamichel (2012)]. In fact, various problems in quantum information
processing borrow from one-shot information theory and fall within the
beyond IID project1. While the beyond IID program is itself multi-faceted,
this thesis focuses on two specific areas that were introduced in the be-
ginning.

In Part I, we study quantum state estimation within the one-shot mea-
surements’ framework. We do so by defining an estimator/estimate of
an unknown quantum state as a function on the space of measurement
outcomes to the set of density matrices. Furthermore, we work on a
Bayesian estimation procedure which naturally accommodates the one-
shot formalism and is optimal (minimizes average risk/error) for a class
of loss functions (that quantify the overlap between an estimate and the
true state) called Bregman divergences, e.g. relative entropy. This is due
to the fact that the Bayesian estimate is an average with respect to the pos-
terior distribution over the set of density matrices; we can represent our
existing knowledge of the state in terms of a prior distribution over the
set of density matrices which can be updated using the Bayes’ rule after
the measurement is made to obtain the posterior distribution. Further-
more, we obtain optimal measurements for the case when the quantum
states lie in orbits generated by a group (covariant state estimation).

In Part II, we concentrate on the connection between one-shot information
theory, statistical physics & the mathematical foundations of thermody-
namics; one that is fairly old [Jaynes (1957)]. Questions of equilibriation
and thermalization for closed quantum systems have been a topic of in-
terest for a long time, dating back to the 1929 article on the Quantum
Ergodic theorem [Goldstein et al. (2010)]. It has been shown that ther-
malization can be seen as a generic property that arises due to entangle-

1The annual workshop, Beyond IID, provides an ever expanding list of topics that
belong to this overarching scheme.

https://sites.google.com/view/beyondiid8/Home
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ment between a system and its environment and that almost all systems
equilibriate [Popescu et al. (2006); Linden et al. (2009); Gogolin and Eisert
(2016)]. Quantum information theoretic tools have been central to such
analyses and to the formulation of quantum thermodynamics as a resource
theory [Chitambar and Gour (2019)].

Resource theories are operational theories that allow us to analyze phys-
ical properties of a system mathematically and employ information the-
oretic tools. Imagine a scenario in which you can only perform a certain
set of operations, like LOCC—local operations and classical communication.
Clearly, having an entangled state can be of use as it may allow you to
perform operations that lie outside the set of LOCC operations; an entan-
gled state is thus a resource. Naturally, there are some states that come for
free—the separable states, as they can always be created via free operations
(LOCC operations) and do not have any resource value (not entangled).
Moreover, the set of separable states is invariant under LOCC operations.
Thus, one can formulate this scenario as a resource theory of entangle-
ment where entangled states are resource states, separable states are free
states and LOCC operations are allowed operations. Then one can then ask
how much resource is needed to perform a task using only the allowed
operations. In the context of thermodynamics [Gour et al. (2015)], the
set of allowed operations are thermal operations that model the physical
process of thermalisation, in which a system is brought in contact with a
bath at some fixed temperature and then allowed to evolve and then sep-
arated from it such that the combined energy of the system and the bath
is conserved [Korzekwa (2016)]. Thus, the states that are athermal at that
particular temperature become a resource for thermal operations while
the state that is thermal at that temperature, the Gibbs state, is a free state.
The main question then is how much resource (work) can be extracted
while converting a given state to another via thermal operations.



1.
IN

TR
O

D
U

C
TIO

N
6

Regime Description (Ir)reversibility
single-shot Given: ρ & σ irreversible [Horodecki and Oppenheim (2013)]

(n = 1) Ask: Is the transformation ρ 7→ σ

possible under a thermal operation?

asymptotic Given: n copies of ρ reversible [Brandão et al. (2013)]
(n→ ∞, ε→ 0) Ask: What is the maximal rate of transformation

R∗ at which one can generate R∗n copies
of the state σ under thermal operations with asymptotically vanishing error?

finite-size - small deviation Given: n copies of ρ approximately
(n < ∞, ε > 0) Ask: What is the correction to R∗ when allowing for a constant error? reversible

Can one still recover the maximal rate in the asymptotic regime? asymptotically [Chubb et al. (2018)]

finite-size - moderate deviation Given: n copies of ρ approximately
(n < ∞, ε→ 0) Ask: What is the correction to R∗ when allowing for an error that reversible

vanishes asymptotically? if resonance
Can one still recover the maximal rate in the asymptotic regime? condition holds [Chubb et al. (2019)]

Table 1.1: n is the number of copies of the state that needs to transformed, namely ρ while ε is the error
associated with the transformation, i.e., the final state might not be exactly σ but could be ‘ε’ away from
σ under a chosen distance-measure such as infidelity.
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The question posed above is fairly general—one that asks for resource
interconversion—posed naturally in the single-shot setting. Resource the-
ories of Coherence, Entanglement and thermodynamics are known to be
reversible in the asymptotic regime, i.e. when one has access to infinitely
many copies of the system the interconversions are reversible. As the
interconversion problems in resource theories are posed in the single-
shot regime one can explore questions of irreversibility and finite-size
effects rigorously. This question was first looked at in Ref. [Kumagai
and Hayashi (2013)] in the context of entanglement concentration and
recently in Ref. [Chubb et al. (2018)] for thermodynamics. While the lat-
ter references studied finite-size effects, analysis in the intermediate-size
regime has been been done in Ref. [Kumagai and Hayashi (2017)] in the
context of entanglement and was extended to thermodynamics in Refs.
[Chubb et al. (2019); Korzekwa et al. (2019)]. Table 1.1 summarizes the
various regimes under which the resource interconversion problem has
been studied in the context of thermodynamics. These results are on re-
source inter-convertibility, but the link between thermodynamics and in-
formation theory constitutes other themes. Here, we study fluctuations of
work done during finite-time (out-of-equilibrium) processes in line with
the one-shot statistical physics framework [Garner (2018)].

One-shot work extraction processes have been studied earlier [Åberg (2013);
Egloff et al. (2015)] and it has been shown that the more traditional ap-
proach towards out-of-equilibrium phenomena, i.e. fluctuation theorems
[Jarzynski (1997); Crooks (1999)] are equivalent to such approaches [Halpern
et al. (2015)]. To give a brief overview of the basic idea, let us consider
two work extraction processes, each with different distributions but the
same mean work value. Then, imagine we are interested in a minimum
threshold to be overcome, e.g. the activation energy of some chemical
reaction. The question is how good are these two protocols. Let us further
assume that the mean values for the two exceed the required threshold
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but since their distributions are not alike, this threshold might be ex-
ceeded with a high probability in one case but almost never in the other.
Thus, if we could guarantee a fixed amount of work with high proba-
bility, then that guaranteed work provides a better measure of how good
the two distributions are in comparison to average work as considered in
Ref. [Egloff et al. (2015)]. There is another notion of one-shot work called
(ε, δ)-deterministic work, which means that the work would fall within an
interval of width 2δ around the said value with probability 1− ε [Åberg
(2013)]. The difference between the former and latter can be seen by
thinking about the case where both ε and δ are zero; while deterministic
work would imply a distribution with no spread at all, guaranteed work
simply implies that the spread must lie above the given threshold. This
makes it amply clear that the distribution of work is equally important.

Here, we consider finite-time work extraction in two-level systems and
study the distribution of work when the system is driven at a constant
rate. Finite-time processes are relevant to modern experiments done with
small systems driven over timescales shorter than the thermalization time
of the respective systems.

The thesis is organised as follows, where chapters 2, 3, 4, and 5 form
the basis of our first publication [1] while chapters 6, 7 (sections 7.1 and
7.2), and 9 constitute our second published work [2]. We looked at some
unpublished directions in section 7.3 of chapter 7 and chapter 8 which we
have described below.

In Chapter 2, we give an overview of the problem of state estimation
and formalise it within the decision-theoretic framework defining gen-
eral quantities such as quantum measurements, estimators, loss functions,
risk, and Bregman divergence for density matrices. More specific defini-
tions are made along the way.

In Chapter 3, we take a closer look at Bayesian state estimation. In Sec-
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tion 3.1, we prove that it is almost generic in the sense that for any given
estimator there is always a sequence of Bayes estimators that in the limit
are just as good or better. We establish a relation between Bayesian and
minimax estimation in Section 3.2; a minimax estimator is one that mini-
mizes the risk in the worst case.

In Chapter 4, we introduce covariant state estimation and covariant mea-
surements. We show that for covariant estimation, there exists a covariant
measurement that is minimax.

In Chapter 5, we work out the complete minimax estimation problem for
the case of a qubit.

In Chapter 6, we give a short introduction to thermalization processes
in two-level systems discussing related works and give the model under
which we analyse our problem.

In Chapter 7, we obtain an analytical expression for average work out-
put for a partially thermalizing two-level system which is driven at a
constant rate. In Section 7.1, we obtain a lower bound for variance as a
function of the time duration. In Section 7.2, we present our numerical
results obtained from Monte-Carlo simulations of the Markov process de-
scribing the work extraction protocol to obtain estimates for variance. In
Section 7.3, we attempt to obtain the distribution of work analytically.

In Chapter 8, we consider optimal work extraction processes within our
model as a constrained optimization problem but find a few roadblocks
which we discuss.

In Chapter 9, we define work extraction cycles that involve partial ther-
malization processes using two-level systems and obtain optimal cycles
under different sets of constraints.

Finally, I summarise our work in Chapter 10.
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Part I

Quantum state estimation
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2

Overview & formalism

In this chapter, we review some of the results on quantum state estimation
and outline our results in Section 2.1. We then lay out the mathematical
formalism used throughout Part I in Section 2.2.

2.1 Background

Quantum state tomography [Fano (1957); Pauli (1958)] refers to the pro-
cess of determining an unknown quantum state of a physical system by
performing quantum measurements. Any information processing task
necessarily involves verifying the output of a quantum channel which
mandates the study of quantum state tomography, apart from the un-
avoidable theoretical necessity. With recent developments leading to a
transition of quantum computation from theory to practice, the verifica-
tion of quantum systems and processes is of particular importance.

Given an unknown quantum state with no prior knowledge, it is clear
that the measurement must be informationally complete, i.e. a measure-
ment with outcome statistics sufficient to fully specify the quantum state
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ρ

[Watrous (2018)]. Conventional data-processing techniques such as direct
inversion and maximum likelihood estimation, thus, implicitly assume that
the measurement statistics are informationally complete.

In direct inversion, given a fixed informationally complete measurement,
one identifies the frequencies of each outcome with the corresponding
probabilities. Then, by inverting Born’s rule one obtains a unique estima-
tor for the density operator that reproduces the measurement statistics;
an estimator is defined as a map on the set of measurement outcomes
X , ˆ : X �→ S(H), where S(H) is the set of density operators on the
underlying Hilbert space H that describes the physical system. However,
this strategy suffers from the drawback that such an estimator might not
be a physical state and would yield negative eigenvalues.

Example 1. Suppose one measures an unknown quantum state in C2 along the
x, y and z directions. Assuming that each of the measurements are performed
only once, let us suppose that each of the outcome is ‘up’. Thus, nx = ny =

nz = 1 and Nx = Ny = Nz = 1, so that px = nx/Nx = 1, etc. Now, an
estimator that would yield the same probabilities would be the one with the Bloch
vector: (2px − 1, 2py − 1, 2pz − 1) = (1, 1, 1). This is an invalid quantum state
as it lies outside the Bloch ball, and thus necessarily has negative eigenvalues.

Ref. [Hradil (1997)] referred to such a shortcoming of direct inversion and
proposed an alternative that enforces positivity on the estimator, called
maximum likelihood estimation.

A likelihood functional L[ρ] : S(H) �→ [0, 1] is the probability of observ-
ing a data set D given that the system is in the state ρ :

L[ρ] = p(D|ρ) (2.1)

The data set D is characterized by the outcome set of the given measure-
ment {E1, ..., EN |Ei ≥ 0, ∑i

N
=1 Ei = I}. Thus, p(D|ρ) = ∏i

N
=1(Tr[Eiρ])

ni
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ρ

ρ ρ

where ni is the number of times the i-th outcome is recorded in D. Max-
imum likelihood estimation involves maximizing Equation (2.1) over the
space of density operators S(H), and thus obtaining as the estimator the
state that maximizes the likelihood functional.

The problem with MLE is that the estimator ˆMLE can be rank-deficient. A
rank-deficient estimator is not good, as it would mean that by performing
only finite number of measurements we are absolutely certain to rule out
many possibilities. This kind of certainty must be bogus, suggesting that
there has to be a better estimator. Let us look at Example 1 once again to
illustrate this point.

Example 1 (continued). Given the choice of measurement and the correspond-
ing outcomes, the likelihood functional is L[ρ] = (1 + rx)(1 + ry)(1 + rz)/63,
which needs to be maximized under the constraint ‖�r‖ ≤ 1—that characterizes
the physical set of states in C2. This implies that rx = ry = rz = 1/

√
3, which

corresponds to an estimator that is a pure state.

This shows that state estimators that are unphysical in direct inversion get
mapped to the closest physical states in MLE, that lie on the state space
boundary, and are thus rank-deficient. In fact, it can be shown [Blume-
Kohout (2010)] that if there exists a ρDI obtained via direct inversion over
a data set D which is physical, then, it also maximizes the likelihood
functional, i.e. ˆDI = ˆMLE. Although, Example 1 is an instance of an
extreme case where probabilities are approximated by frequencies of a
single measurement, it suffices to illustrate that in direct inversion as
well as MLE, all that one cares about is to obtain an estimate of the true
state that reproduces the observed measurement statistics, regardless of
the fact that in the light of new data the state’s estimate might change
completely. Ref. [Blume-Kohout (2010)] gives a detailed critique of both
direct inversion and MLE, proposing Bayesian Mean Estimation (BME) to
be a more plausible estimation technique. Moreover, it has been shown
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that such an estimation technique is quantitatively better in Ref. [Ferrie
and Blume-Kohout (2018)].

Generally speaking, in estimation theory [Lehmann and Casella (1998)],
the average measure of closeness of an estimator to the actual state is
defined as the risk,

ρ ρR(ρ, ˆ) = EX|ρ[L(ρ, ˆ(X))], (2.2)

ρ

where X is the random variable corresponding to the measurement out-
comes and L is a distance-measure between the true state and the estima-
tor. One way of choosing an optimal estimator is to look at the average
risk—defined as the expectation of risk with respect to a prior distribu-
tion over S(H). Then, by minimizing the average risk over the set of all
probability distributions over S(H), one obtains what is called a Bayes
estimator, ˆB [(Lehmann and Casella, 1998, pg. 228)]. In fact, it has been
shown that the Bayes estimator is the mean if the loss function is the
relative entropy [Tanaka and Komaki (2005)], while in Ref. [Banerjee
et al. (2005)] the same was proved for a more general class of distance-
measures called Bregman divergence (see Definition 3), which generalizes
two important distance-measures—relative entropy and Hilbert-Schmidt
distance, but in the classical setting. We provide a proof for the quantum
setting in Section A.1 for completion.

Now, the Bayesian mean estimator for a prior distribution π(ρ) is given
by

ρ̂B(D) =
∫
S(H)

p(ρ|D)ρ dρ, (2.3)

where p(ρ|D) is the posterior probability density given by the Bayes rule:

p(ρ|D) =
p(D|ρ)π(ρ)

p(D)
, (2.4)
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∫
and p(D) = S(H) dπ(ρ)p(D|ρ). However, BME can yield nonsensical es-
timators if one starts with a bad prior, as the following example illustrates.

Example 2. Consider a σX measurement on an unknown quantum state ρ in
C2. Suppose there exists a prior π(ρ) such that it assigns zero measure to all
states in C2 but |−〉〈−|. A single measurement outcome of ‘+’ rules out the
outcome ‘−’ and thus annihilates the prior!

In fact, it should be clear from the above example that some priors can
be annihilated by a finite number of (independent) measurements. Thus,
in general, one needs a robust [Blume-Kohout (2010)] prior that cannot be
annihilated in order to prevent rank-deficient estimates. However, the es-
timator’s knowledge of the true state can still be jeopardized in the pres-
ence of an adversary who provides her with a wrong prior. Therefore,
although BME seems to be the best bet, it remains inherently ambiguous
due to its dependence on the choice of priors. A systematic approach to-
wards deriving optimality criteria for priors is thus a compelling problem.

The minimax approach, complementary to BME, seems to be doing just
that. In classical statistics, the problem of estimating probability distri-
butions (analogous to state estimation) has been studied using the min-
imax approach [Clarke and Barron (1994); Merhav and Feder (1998); Xie
and Barron (2000); Komaki (2011)], that offers an alternative characteri-
zation of optimality of estimators. In the minimax approach, one looks
at the space of all possible estimators defined on X and, for each esti-
mator ρ̂, picks the state ρ for which it has the worst performance or risk
(quantified in terms of a suitably chosen distance-measure between the
estimator and the true state). Then, the minimax estimator is the one that
has the best worst-case risk. Such an estimator necessarily works for all
states ρ ∈ S(H). It can be shown [Clarke and Barron (1994)] that such a
minimax estimator is a Bayes estimator given a particular choice of ‘non-
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informative’ prior. Thus, the solution to the minimax problem leads to a
natural identification of a prior.

However, as pointed out in Ref. [Blume-Kohout (2010)], no such rigorous
statements were known for the quantum analogue of the problem until
then. Recently, the authors of Ref. [Koyama et al. (2017)] have studied the
quantum minimax estimation problem in analogy to the classical prob-
lem [Komaki (2011)], quantifying the estimator’s risk in terms of relative
entropy. To summarize, they find that given an unknown quantum state
ρ and some estimator ρ̂ of it, there always exists a sequence of Bayes es-
timators that perform at least as well as ρ̂ in the limiting case. Moreover,
they show that there always exists a class of priors, called latent informa-
tion priors (although, conventionally, such priors are called least favourable,
and we shall follow the convention!) for which there is a corresponding
sequence of Bayes estimators whose limit is minimax. Finally, they define
a minimax POVM as a POVM that minimizes the minimax risk, see Defi-
nition 4, and study the qubit (C2) case in detail, obtaining the class of the
least favourable priors as well as the minimax POVM for C2.

We extend the work done in Ref. [Koyama et al. (2017)] on minimax anal-
ysis (as discussed earlier) to a more general class of distance-measures
called the Bregman divergence, see Definition 3, that generalizes both rela-
tive entropy and Hilbert-Schmidt distance. We also generalize the mini-
max POVM for C2 to Hilbert-Schmidt distance, finding that such a mini-
max POVM is a spherical 2-design. Moreover, by re-formulating Holevo’s
theorem [(Holevo, 1982, pg. 171)] for the covariant state estimation problem
in terms of estimators, we find that a covariant POVM is minimax with
Bregman divergence as the distance-measure. In fact, we show that a uni-
tary 2-design arising out of a subgroup of the covariant group would also
form a minimax POVM.
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2.2 Mathematical preliminaries

Consider a quantum system S described by a finite-dimensional Hilbert
space H with S(H) as the set of density operators on H. Then, consider
a quantum measurement to be an experiment in which the quantum sys-
tem S is measured and let X be the corresponding outcome space of the
measurement outcomes. Each possible event of the experiment can be
identified with a subset B ⊆ X , the event being ‘the measurement out-
come x lies in B’. The probability distribution of the events is thus defined
over a Σ-algebra of the measurable subsets B ⊆ X . To be in touch with
physical reality, we choose the outcome space to be a Haursdorff space,
i.e. a topological space where for any x1, x2 ∈ X there exist two disjoint
open sets X1, X2 ⊂ X such that x1 ∈ X1 and x2 ∈ X2. This ensures that
the Σ-algebra is a Borel Σ-algebra generated by countable intersections,
countable unions and relative complements of open subsets of X . Let
P(H) be the set of positive operators on H.

Definition 1 (Quantum measurement). A Positive Operator-Valued Measure
(POVM) is a map P : Σ �→ P(H), where Σ is the Σ-algebra of all measurable
subsets of X . Thus, a POVM associates an operator P(B) to each B ∈ Σ satisfy-
ing the following:

∀B ∈ Σ.1. P(B) ≥ 0,

2. P(X ) = I.

3. P
( ⋃∞

i=1
Bi

)
=

∞
∑

i=1
P(Bi), where ∀Bi, Bj s.t. Bi ∩ Bj = ∅ .

The set of all POVMs on Σ forms a convex set denoted by P. A POVM
is informationally complete [Watrous (2018)] if the operators {P(B)} span
L(H), the space of linear operators on H. The measurement statistics of
such an IC-POVM is sufficient to determine, uniquely, all possible states
that the quantum system could be in, in the limit when an infinite number
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of measurements are performed. Optimization of data-processing deals
with the practical aspect of not having infinite resources and minimizing
the corresponding statistical error. Ref. [Bisio et al. (2009)] reviews the
theoretical development of optimization techniques in quantum tomog-
raphy based on informationally complete measurements. However, in
this paper, we make no assumptions on the POVM. In fact, we look at an
alternative definition for an optimal POVM—to be discussed later in this
section.

The following lemma (see Section A.2 for proof) provides a convenient
way of representing a POVM as an operator-valued density.

Lemma 1 (Existence of a POVM density). Every P ∈ P admits a density, i.e.
for any POVM P there exists a finite measure μ(dx) over X such that μ(X ) = 1
and

P(B) =
∫

B
dμ(x)M(x), (2.5)

with M(x) ≥ 0, and tr[M(x)] = d μ-almost everywhere.

The conditional probability of the event ‘the measurement outcome x′ lies
in B given that the system is in a state ρ’ is given by Born’s rule as

Pr[x′ ∈ B| ρ] = tr P(B)ρ =
∫

B
dμ(x) tr M(x)ρ, (2.6)

or, in the differential form as

dp(x|ρ) = dμ(x) tr M(x)ρ (2.7)

which will come in handy later. Now that we have defined a quantum
measurement, we proceed with the formulation.

In estimation theory [Lehmann and Casella (1998)], one typically parametrizes
the system S by a parameter θ. The data set of the measurement outcomes
is represented by a random variable X. Using this data set one estimates the
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parameter θ or more generally ρθ—the estimand. Succinctly, this involves
two random variables Θ and X defined as below:

• In the Bayesian model, the quantity θ that parametrizes the system
S is treated as a random variable Θ. This random variable is defined
over the parameter space ΩΘ

1 and is distributed according to an a-
priori probability distribution πΘ ∈ P(Θ) (where P(Θ) is the set of
all probability distributions on Θ).

• X is the random variable associated with the outcomes of the mea-
surement performed on the system S , defined over the sample space
X . The outcomes of the measurement are conditioned on the ran-
dom variable Θ. Thus, X is distributed according to the conditional
probability pX(x|θ), given by Equation (2.6).

The parameter space Θ is chosen to be a compact metric space. The set of
all bounded continuous real-valued function on Θ is denoted by C(Θ, R).
The set of probability distributions P(Θ) on Θ is endowed with a weak
topology, which essentially defines the notion of weak convergence.

Definition 2. A sequence of probability measures πn ∈ P(Θ) weak converges
to μ if for every f ∈ C(Θ, R),∫

f dπn →
∫

f dμ, as n → ∞. (2.8)

Then, as Θ is a compact metric space and P(Θ) is endowed with a weak
topology, by [(Parthasarathy, 1967, Theorem 6.4)], it implies that P(Θ) is
also a compact metric space.

The central problem in quantum state estimation is to obtain an estimator
of ρθ. We define an estimator as the map

ρ̂ : X �→ S(H). (2.9)
1However, we will abuse notation and refer to the parameter space as Θ from now

onwards.
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ρ

ρ ρ

ρ

ρ

The value of ˆ(x) is the estimate of ρθ when the measurement outcome
is X = x. We want ˆ(X) to be close to ρθ, but ˆ(X) is a random variable.
One way of defining a meaningful measure of closeness is by defining
an expectation over the conditional distribution of X, Equation (2.6). Let
L(ρθ, ˆ(x)) be the loss function that quantifies the closeness of an estimated
state ˆ(x) to the true state ρθ. We assume two things about L:

ρ ρ ρ1. L(ρθ, ˆ(x)) ≥ 0, ∀θ ∈ Θ, ˆ, with equality if and only if ρθ = ˆ(x).

2. L(ρθ, ρθ) = 0, ∀θ ∈ Θ.

ρThe average measure of closeness of ˆ(X) to ρθ is defined as the risk func-
tion

ρ ρR(ρθ, ˆ) = EX|θ[L(ρθ, ˆ(X))]. (2.10)

One would like to obtain an estimator that minimizes the risk for all val-
ues of θ. Obviously, this problem does not have a solution, i.e. there does
not exist an estimator that uniformly minimizes the risk for all values of
θ except for the case when ρθ is a constant. Instead, one can look at the
following two quantities that are a good measure of the risk in a global
sense:

1. Average risk:

ρ
∫

Θ
ρr(π, ˆ) = dπ(θ)R(ρθ, ˆ), (2.11)

where π(θ) is an a-priori distribution over the parameter space Θ.

2. Worst-case/minimax risk:

ρ̂
inf sup

θ

ρR(ρθ, ˆ). (2.12)

ρ̂

The estimator that minimizes the average risk is the Bayes estimator

B [(Lehmann and Casella, 1998, pg.228)]. In Ref. [Tanaka and Komaki
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ρ

(2005)] it was shown that the Bayes estimator is the mean if the loss func-
tion is the relative entropy D(ρθ|| ˆ(x)), i.e.,

ρ̂B = x �→
∫

Θ
dπ(θ|x)ρθ, (2.13)

where dπ(θ|x) is the posterior probability distribution obtained via the
Bayes rule,

dπ(θ|x) = dp(x|θ)
dpπ(x)

dπ(θ),

where pπ(B) =
∫

B

∫
Θ dp(x|θ)dπ(θ). Note that in the continuous case, the

likelihood ratio p(x|θ)
pπ(x) is replaced by the corresponding Radon-Nikodym

derivative, which is defined uniquely upto the null set of pπ. In fact,
the same was proved [Banerjee et al. (2005)] for a more general class of
distance-measures called Bregman divergence which is the measure we will
use in our analysis, but only in the classical setting. We provide a proof
for the quantum setting in Section A.1 for completion. Let us now define
Bregman divergence.

Definition 3 (Bregman divergence for density matrices). Let f : [0, 1] �→ R

be a strictly convex continuously-differentiable real-valued function. Then, the
Bregman divergence between density matrices ρ, σ is defined as

Df (ρ, σ) = tr
( )

f (ρ)− f (σ)− f ′(σ)(ρ − σ) .

Bregman divergence generalizes two important classes of distance-measures:
the relative entropy obtained by choosing f : x �→ x log x and the Hilbert-
Schmidt distance (Schatten 2-norm) obtained by choosing f : x �→ x2.

Let us now look at a few of its important properties. First, Bregman
divergence is invariant under unitary transformations of its arguments,
i.e. Df (UρU†, UσU†) = Df (ρ, σ). Second, it is not a metric, as it is
neither symmetric nor satisfies the triangle inequality, but by the strict
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convexity of f, D f (ρ, σ) ≥ 0, with equality if and only if ρ = σ. Third,
the convexity of f implies that D f (., .) is convex in its first argument; it
is jointly convex if f ′′ is operator convex and numerically non-increasing
[Pitrik and Virosztek (2015)]. Moreover, by generalizing the proof of lower
semi-continuity of relative entropy as in Ref. [Wehrl (1978)], we obtain
the lower semi-continuity of Bregman divergence (see Section A.3 for the
proof).
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3

Bayesian state estimation

3.1 Existence of a Bayesian estimator for any es-

timator

ρTheorem 1. Let ˆ : X �→ S(H) be an estimator. Then, there exists a conver-
gent sequence of priors such that the corresponding sequence of Bayes estimators
ρ̂( B

πn)n converges, with

ρR(ρθ, ˆ) ≥ R
(

ρθ, lim
n→∞

ρ̂πn
B

)
, ∀θ ∈ Θ. (3.1)

ρ

Proof. Consider the average distance between the Bayes estimator and a
given estimator ˆ for some prior π ∈ P(Θ) as the map

f
ρ̂g : π �→ D (π) =

∫
X

dpπ(x) Df (ρ̂
π
B(x), ρ̂(x)).

Now, the Bayes estimator is uniquely defined up to the null set of pπ. In
fact, it is discontinuous on X , see Section A.4, and the points of disconti-
nuity belong to the null set of pπ. So, unless the null set of pπ is empty,
the Bayes estimator cannot be defined continuously since there can ex-
ist different sequences that converge to the same prior, but the limit of
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ρ̂

the corresponding sequences of Bayes estimators may not coincide on the
null set of pπ. To deal with the discontinuity of the Bayes estimator, we
consider closed subsets of P(Θ) with the defining property that every
element of these subsets renders the corresponding Bayes estimator con-
tinuous on X . Then, g is lower semi-continuous on each closed subset as
Bregman divergence is lower-semi continuous (Section A.3). Thus, there
exists a prior πn in every subset that minimizes it on that subset. So, we
look at the sequence of such priors (πn)n and find that the corresponding
sequence of Bayes estimators ( B

πn)n converges to a limit that has a risk
lower than or equal to that of the given estimator. Let us now proceed
with the proof.

We define the closed subsets of (Θ) as

Pμ/n =
n
+ 1 − 1

n

{μ
( P ) ∣

π
∣∣π ∈ P(Θ)

}
, (3.2)

f
ρ̂ π∈Pμ/n

f
ρ̂

where μ is a measure such that pμ(x) > 0, for all x ∈ X . The latter
condition ensures that the Bayes estimator for a prior that lies in Pμ/n is
continuous on Pμ/n. Then, as a closed subset of a compact set is compact,
there exists a prior πn ∈ Pμ/n such that D (πn) = inf D (π). In fact,

f
ρ̂

as P(Θ) is a compact metric space, the sequence of priors (πn)n has a
convergent subsequence. Let us denote this subsequence as (π

′
m)m. Let

nm be such that πnm = π
′
m.

Then, the idea is to use the fact that each π
′
m minimizes D on the cor-

responding closed subset Pμ/nm to obtain a suitable condition. To begin
with, we define a prior in the neighbourhood of π

′
m+1 ∈ Pμ/nm+1 by tak-

(ing a convex sum of it with an her element in Pμ/nm+1 . Observe that
nm

nm+1
π

′
m+1 + (1 − n

n
m

m
+1
)δ(θ − θ0)

ot)
lies in Pμ/nm+1 , for any θ0 ∈ Θ. So, we

define a prior

π(θ) = u

(
nm

nm+1
π

′
m +

(
1 − nm

nm+1

)
δ(θ − θ0)

)
+ (1 − u)π

′
m+1, (3.3)
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f
ρ̂

f
ρ̂

with 0 ≤ u ≤ 1. This is like considering a perturbation in the neighbour-
hood of π

′
m+1 and noting that the derivative of D (π) is positive as one

approaches π
′
m+1 as it minimizes D (π) on the set Pμ/nm+1 . Thus, we

have

0 ≤ d
du

f
ρ̂D (π)

∣∣∣∣∣
u=0

=
d

du

∫
X

dpπ(x) Df (ρ̂
π
B(x), ρ̂(x))

∣∣∣∣∣
u=0

=
∫
X

dpπ(x)
du

∣∣∣∣∣
u=0

ρ̂Df (
π
′
m+1

B (x), ρ̂(x))+

∫
X

dp
π
′
m+1

(x)
d

du
Df (ρ̂

π
B(x), ρ̂(x))

∣∣∣∣∣
u=0

. (3.4)

Let k = n
nm
m+1

. Then,

=dpπ(x)

∫
dp(x|θ)

(
u
( )

+

(1 − u)π
′
m+1(θ)

kπ
′
m(θ) + (1 − k)δ(θ − θ0))

dθ.

=⇒ dpπ(x)
du

∣∣∣∣∣
u=0

= kdp
π
′
m
(x) + (1 − k)dp(x|θ0)− dp

π
′
m+1

(x). (3.5)

So, the first term in (3.4) is

X

∫ (
kdp

π
′
m
(x) + (1 − k)dp(x|θ0)− dp

π
′
m+1

(x)
)

Df ρ
(

ˆ
π
′
m+1

B (x), ρ̂(x)
)
,

while the second term, using Lemma 16, is

=
∫
X

dp
π
′
m+1

(x)
d

du
tr f
(
ρ̂π

B(x)
)
− f ρ′( ˆ(x)

)(
ρ̂π

B ρ(x)− ˆ(x)
)∣∣∣∣∣

u=0

=
∫
X

dp
π
′
m+1

(x) tr
(

f ρ′( ˆ
π
′
m+1

B (x)
)
− f ρ′( ˆ(x)

)) d
du

ρ̂π
B(x)

∣∣∣
u=0

. (3.6)
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Let us now calculate the derivative of the Bayes estimator.

d
du

ρ̂π
B(x)

∣∣∣
u=0

=
d

du

∫
Θ

dp(x|θ)
dpπ(x)

∣∣∣ρθdπ(θ)
u=0

=
d

du

∫
Θ

1
dpπ(x)
dp(x|θ)

∣∣∣ρθdπ(θ)
u=0

=

∫
Θ

ρθ

(
kdπ

′
m(θ) + (1 − k)δ(θ − θ0)dθ − dπ

′
m+1(θ)

)
dp

π
′
m+1

dp(x|θ)

−∫
Θ

ρθdπ
′
m+1(θ)(

dp
π
′
m+1

dp(x|θ)

)2
d

du

(
dpπ(x)
dp(x|θ)

)∣∣∣∣∣
u=0

. (3.7)

Now, the derivative with respect to u in the second term can be calculated
by exchanging the order of differentiation as p(x|θ) is independent of u.
So, we have

d
du

dpπ(x)
dp(x|θ)

∣∣∣
u=0

=
d

dp(x|θ)

( )∣∣ (
dpπ(x)

du

)∣∣∣∣∣
u=0

= k
dp ′ (x)

dp
π

(
m

x|θ) + (1 − k)
dp(x θ0)

dp(x
|
|θ) −

dp
π
′
m+1

dp(x|θ) (x).

Plugging in (3.7) we obtain,

d
du

ρ̂π
B(x)

∣∣∣
u=0

=

∫
Θ

ρθ

(
kdπ

′
m(θ) + (1 − k)δ(θ − θ0)dθ − dπ

′
m+1(θ)

)
dp

π
′
m+1

dp(x|θ)

−∫
Θ

ρθdπ
′
m+1(θ)(

dp
π
′
m+1

dp(x|θ)

)2

(
k

dp
π
′
m
(x)

dp(x|θ) + (1 − k)
dp(x θ0)

dp(x
|
|θ) −

dp
π
′
m+1

(x)

dp(x|θ)

)
.
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Now, in the limit m → ∞, the coefficient of k vanishes in the expression
above due to weak convergence, while the last term of the first integral
cancels with the last term of the second integral. So, we have

lim
m→∞

d
du

ρ̂π
B(x)

∣∣∣
u=0

= lim
m→∞

(1 − k)
dp(x|θ0)

dp
π
′
m+1

(x)

(
ρθ0 − ρ̂B

π
′
m+1(x)

)
. (3.8)

Applying the limit and plugging (3.8) in (3.6), we find that the second
term in (3.4) is

= lim
m→∞ X

dp
π
′
m+1

(x) tr
∫ (

f ρ′( ˆ
π
′
m+1

B (x)
)
− f ρ′( ˆ(x)

))
(1 − k)

dp(x|θ0)

dp
π
′
m+1

(x)

(
ρθ0 − ρ̂

π
′
m+1

B (x)
)

= lim
m→∞

(1 − k)
∫
X

dp(x|θ0) tr
(

f ρ′( ˆ
π
′
m+1

B (x) ρ
)
− f ′

(
ˆ(x)

))(
ρθ0 − ρ̂

π
′
m+1

B (x)
)

.

Finally, combining both the terms of (3.4) and applying the limit, we find
that

0 ≤ lim
m→∞

d
du

f
ρ̂D (π)

∣∣∣∣∣
u=0

= lim
m→∞

∫ (
kdp

π
′ (x) + (1 − k)dp(x|θ0)− dp

π
′
m+1

(x)
)

Df ρ
(

ˆ
π
′
m+1

B (x), ρ̂(x)
)
+

(1 − k)

X∫
X

m+1

dp(x|θ0) tr
(

f ρ′( ˆ
π
′
m+1

B (x)
)
− f ρ′( ˆ(x)

))(
ρθ0 − ρ̂

π
′
m+1

B (x)
)

. (3.9)

This implies that

lim
m→∞

(1 − k)
∫
X

dp
π
′
m+1

)
(x) Df ρ

(
ˆ
π
′
m+1

B (x), ρ̂(x)
)
≤

lim
m→∞

(1 − k)
∫
X

(
ρ′( ˆ

π
′
m+1

B (x)
)
−

f ρ

dp(x|θ0) tr f

′( ˆ(x)
))(

ρθ0 − ρ̂
π
′
m+1

B (x)
)
+∫

X
dp(x|θ0)Df ρ

(
ˆ
π
′
m+1

B (x), ρ̂(x)
)
. (3.10)
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The right-hand side of the inequality above can be rearranged to obtain

lim
m→∞ X

dp
π
′
m+1

(x) Df ρ̂
πm+1
B (x), ρ̂(x)

)
︸ ︷︷ ︸

≥ 0, due to non-negativity of Bregman divergence.

≤ lim
m→∞

∫ ) ( ′ ∫
X

dp(x|θ0)Df
(

ρρθ0 , ˆ(x)
)
−

Df
(

ρ̂ρθ0 , B
π
′
m+1(x)

)
.

This implies that

lim
m→∞

ρ̂R(ρθ0 , B
π
′
m+1 ρ̂) ≤ R(ρθ0 , ), ∀θ0 ∈ Θ.

But, as Bregman divergence is lower semi-continuous (Section A.3), we
have

R(ρθ0 , lim
m→∞

ρ̂
π
′
m+1

B ) ≤ lim
m→∞

ρ̂R(ρθ0 , B
π
′
m+1).

Therefore, we arrive at our result, i.e.

R(ρθ0 , lim
m→∞

ρ̂
π
′
m+1

B ρ̂) ≤ R(ρθ0 , ), ∀θ0 ∈ Θ.

3.2 A Bayesian method for minimax state esti-

mation

ρ̂

Theorem 2. There exists a convergent sequence of priors (πn)n such that the
limit of the sequence maximizes the average risk, Equation (2.11), of the Bayes
estimator. The limit of such a sequence is referred to as a least favourable prior.
Moreover, the sequence of Bayes estimators ( B

πn)n converges such that the limit
of the sequence is minimax, i.e

ρ̂
inf sup

θ

ρR(ρθ, ˆ) = sup
θ

R(ρθ, lim
n→∞

ρ̂B
πn).
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Proof. Consider the average risk of the Bayes estimator for a prior π ∈
P(Θ) as the map

ρπ
Bh : π �→ r(π, ˆ ) =

∫
Θ

dπ(θ)
∫
X

dp(x|θ)Df
(

ρπ
Bρθ, ˆ (x)

)
.

ρπ
B

Due to the discontinuity of the Bayes estimator, we follow the same regu-
larization arguments as made earlier and define closed subsets of P(Θ),
Equation (3.2), such that the Bayes estimator is continuous on each of
these subsets. The map h : π �→ r(π, ˆ ) is then continuous on each of
the subsets. Since these subsets are closed subsets of a compact set they
are themselves compact. Therefore, h attains a maximum on each of the
subsets. Then, denoting the maxima in each subset Pμ/nm+1 as π

′
m+1, we

define a prior as done earlier in Equation (3.3) as a convex sum of π
′
m+1

and another element in Pμ/nm+1 . Since the average risk is maximized on
Pμ/nm+1 , the derivative of r(π, ρ̂π

B) is negative as one approaches π
′
m+1,

i.e.

0 ≥ d
du

π
Br(π, ρ̂ )

∣∣∣∣∣
u=0

=
d

du

∫
Θ

dπ(θ)
∫
X

dp(x|θ)Df
(

ρπ
Bρθ, ˆ (x)

)∣∣∣∣∣
u=0

=
∫

Θ

dπ(θ)

du

∣∣∣∣∣
u=0

∫
X

dp(x|θ)Df
(

ρ̂ρθ, B
π
′
m+1(x)

)
+

∫
Θ

dπ
′
m+1(θ)

∫
X

dp(x|θ) d
du

Df
(

ρπ
Bρθ, ˆ (x)

)∣∣∣∣∣
u=0

. (3.11)

Evaluating the derivatives using Lemma 16, the first term in (3.11) is

∫
X

dp(x|θ0)Df
(

ρ̂ρθ0 , B
π
′
m+1(x) −

) ∫
Θ

dπ
′
m+1(θ)

∫
X

dp(x|θ)Df
(

ρ̂ρθ, B
π
′
m+1(x)

)
,
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while the derivative in the second term of (3.11) is

d
du

Df
(

ρπ
Bρθ, ˆ (x)

)∣∣∣∣∣
u=0

=
d

du
tr
[

f (ρθ)− f (ρ̂π
B(x))− f ′(ρ̂π

B(x))
(
ρθ − ρ̂π

B(x)
)]∣∣∣∣∣

u=0

= tr
[
− ρf ′( ˆ

π
′
m+1

B (x))
d

du
ρ̂π

B(x)
∣∣∣
u=0

+ ρf ′( ˆ
π
′
m+1

B (x))
d

du
ρ̂π

B(x)
∣∣∣
u=0

−
(

ρ̂ρθ −
π
′
m+1

B (x)
) d

du
f ′(ρ̂π

B

∣∣∣(x))
u=

]
= tr ρ

[(
ˆ
π
′
m+1

B (x)− ρθ

) d
du

f ′(ρ̂π
B

0∣∣∣(x))
u=0

]
.

So, plugging this in the second term of (3.11), we have

Θ
dπ

′
m+1(θ)

∫ ∫
X

dp(x|θ) tr ρ
[(

ˆ
π
′
m+1

B (x)− ρθ

) d
du

f ′(ρ̂π
B

∣∣∣(x))
u=0

]
= tr

[ ∫
X

∫
Θ

dπ
′
m+1(θ)dp(x|θ) ρ

(
ˆ
π
′
m+1

B (x)− ρθ

) d
du

f ′(ρ̂π
B

∣∣∣(x))
u=0

]

= tr

[ ∫
X

(
dp

π
′
m+1

(x)ρ̂
π
′
m+1

B (x)−
∫

Θ
dπ

′
m+1(θ)dp(x|θ)ρθ

)
d

du
f ′(ρ̂π

B

∣∣∣(x))
u=0

]

= 0. (3.12)

Thus, applying the limit m → ∞ we arrive at the following inequality,

0 ≥ lim
m→∞

∫
X

dp(x|θ0)Df
(

ρ̂ρθ0 ,
π
′
m+1

B (x)
)
−∫

Θ
dπ

′
m+1(θ)

∫
X

dp(x|θ)Df
(

ρ̂ρθ, B
π
′
m+1(x)

)
, (3.13)

which implies that

lim
m→∞

∫
X

dp(x|θ0)Df
(

ρ̂ρθ0 ,
π
′
m+1

B (x)
)
≤

lim
m→∞

∫
Θ

dπ
′
m+1(θ)

∫
X

dp(x|θ)Df
(
ρθ, ρ̂

π
′
m+1

B (x)
)
. (3.14)

So, we have

lim
m→∞

ρ̂R(ρθ0 , B
π
′
m+1) ≤ lim

m→∞

∫
Θ

dπ
′
m+1(θ)R(ρθ, ρ̂

π
′
m+1

B ), ∀θ0 ∈ Θ.
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The lower semi-continuity of Bregman divergence implies that

R(ρθ0 , lim
m→∞

ρ̂
π
′
m+1

B ) ≤ lim
m→∞

∫
Θ

ρ̂dπ
′
m+1(θ)R(ρθ, B

π
′
m+1).

Thus, we have

sup
θ0

R(ρθ0 , lim
m→∞

ρ̂
π
′
m+1

B ) ≤ lim
m→∞

∫
Θ

ρ̂dπ
′
m+1(θ)R(ρθ, B

π
′
m+1).

But, the other direction of the inequality above is true trivially i.e.

sup
θ0

R(ρθ0 , lim
m→∞

ρ̂
π
′
m+1

B ) ≥ lim
m→∞

∫
Θ

ρ̂dπ
′
m+1(θ)R(ρθ, B

π
′
m+1).

Therefore, we obtain

sup
θ0

R(ρθ0 , lim
m→∞

ρ̂
π
′
m+1

B ) = lim
m→∞

∫
Θ

ρ̂dπ
′
m+1(θ)R(ρθ, B

π
′
m+1). (3.15)

But,

lim
m→∞

∫
Θ

dπ
′
m+1(θ)R(ρθ, ρ̂

π
′
m+1

B ) = lim
m→∞

sup
π∈Pμ/nm+1

∫
Θ

ρπ
Bdπ(θ)R(ρθ, ˆ ).

By Lemma 17, the limit of the suprema over subsets Pμ/nm+1 can be re-
placed by a supremum over the set P(Θ) since the sequence of subsets
Pμ/nm+1 is dense in P(Θ). Thus, we have

lim
m→∞

∫
Θ

ρ̂
′
m+1dπ

′
m+1(θ)R(ρθ,

π

B ) = sup
π∈P(Θ)

∫
Θ

ρπ
B

= sup
π∈P(Θ)

inf
ρ̂

dπ(θ)R(ρθ, ˆ )

∫
Θ

ρdπ(θ)R(ρθ, ˆ).(3.16)

Using the minimax theorem for lower semi-continuous and quasi-convex
functions [(Sion, 1958, Theorem 3.4)], we can exchange the infimum and
the supremum to obtain

sup
π∈P(Θ)

inf
ρ̂

∫
Θ

ρ
ρ̂

dπ(θ)R(ρθ, ˆ) = inf sup
π∈P(Θ)

∫
Θ

ρ
ρ̂

dπ(θ)R(ρθ, ˆ) = inf sup
Θ

ρR(ρθ, ˆ).
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Thus, by (3.15) and (3.16) we have the result

ρ̂
inf sup

θ

ρR(ρθ, ˆ) = sup
θ

R(ρθ, lim
m→∞

ρ̂
π
′
m+1

B ).

ρ ρ

Theorem 1 and Theorem 2 are based on the assumption that the underly-
ing POVM is fixed. However, in general, the risk depends on the POVM
P, i.e. R(ρθ, ˆ) ≡ RP(ρθ, ˆ). One way of defining an optimal POVM could
be to minimize the worst-case risk over P, the convex set of all POVMs.
The POVM that minimizes the worst-case risk is called a minimax POVM.

Definition 4 (Minimax POVM). A POVM P∗ is minimax if:

P∈P ρ̂ θ

ρ
ρ̂

RP(ρθ, ˆ) = inf sup
θ

ρinf supinf RP∗(ρθ, ˆ) (3.17)

ρ ρwhere ρθ is the estimand, ˆ : X �→ S(H) is an estimator with risk RP(ρθ, ˆ)
which is a function of the POVM P, and P is the convex set of all POVMs on
the measurement outcome space X .

We will obtain a minimax POVM for a restricted problem in the next
chapter.
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4

Covariant state estimation

While it remains unclear as to how one could obtain a minimax POVM
for general state estimation, if we restrict ourselves to the case of covariant
state estimation the situation simplifies.

In the covariant state estimation problem, as discussed in Ref. [Holevo
(1982)], one is given a fixed state ρθ0 and is interested in estimating all
the states ρθ that lie in the orbit {Vgρθ0Vg

†}, where g ∈ G is a parametric
group of transformations of the parameter space Θ and g �→ Vg is a
(continuous) projective unitary representation of G. One can think of this
as representing the following physical scenario. Given that the parameter
θ labels the quantum states of the Hilbert space H, θ can be assumed to be
describing some aspects of the preparation procedure for the state ρθ—a
transformation g of the parameter θ0 results in the preparation of the state
ρθ = Vgρθ0Vg

† where θ = gθ0. Covariant state estimation thus corresponds
to the estimation of the state ρθ with the measurement outcome space X
being identical to the parameter space Θ. Let us first define a covariant
measurement.

Definition 5 (Covariant measurement). Let G be a parametric group of trans-
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formations of a set Θ and g �→ Vg be a (continuous) projective unitary repre-
sentation of G in a Hilbert space H. Let M(dθ̂) be a positive operator-valued
measure defined on the σ-algebra A(Θ) of Borel subsets of Θ. Then M(dθ̂) is
covariant with respect to the representation g �→ Vg if

(4.1)Vg
†M(B)Vg = M(Bg−1), g ∈ G,

for any B ∈ A(Θ), where Bg = {θ′ : θ′ = gθ, θ ∈ B}.

If M(dθ̂) is covariant, then

tr M(B)ρθ = tr ρ0Vg
†M(B)Vg = tr ρ0M(Bg−1).

Thus,

Pr[θ̂ ∈ B| gθ0] = Pr[θ̂ ∈ Bg−1 | θ0],

i.e. a covariant measurement preserves the probability distribution under
the transformation of the state. We refer the reader to Ref. [Holevo (1982)]
for a more detailed discussion on covariant measurements.

Before we start building towards the proof of Theorem 3, let us look
at some of the properties of the parametric group G to understand the
situation better. First, the group G is chosen to act transitively on Θ. This
ensures that the map g �→ gθ0 maps G onto the whole Θ. Second, G is
assumed to be unimodular which implies that there exists an invariant
measure μ on G. Third, G is assumed to be compact which ensures that
the measure μ < ∞. The measure μ is normalized as μ(G) = 1. Now,
we are interested in an invariant measure ν on the Σ-algebra A(Θ) on Θ
such that

ν(B) = ν(Bg), B ∈ A(Θ),

where Bg = {θ′ : θ′ = gθ, θ ∈ B}. If G0, the stationary subgroup of G,
is unimodular then such a measure ν exists and if G0 is compact then ν
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is finite and can be constructed from μ by demanding that the following
relation holds for all integrable functions f on Θ:

G
f (gθ0)dμ(g) =

∫ ∫
Θ

f (θ)dν(θ). (4.2)

We now state Proposition 2.1 from Ref. [Holevo (1982)] as the following
lemma that gives a relation between the two measures.

Lemma 2. Let M(dθ) be a measurement covariant with respect to a projective
unitary representation g �→ Vg of the parametric group G acting on Θ. For any
density operator ρ ∈ H, and for any Borel set B ∈ A(Θ)∫

G
tr[VgρVg

†M(B)]dμ(g) = ν(B) (4.3)

Let us pause here to look at an example.

Example 3. Let us assume that we are interested in estimating all those states
in C2 that lie on the Bloch sphere. Thus, the parameter space Θ is S2. This is
a covariant estimation problem with the parametric group of transformations on
S2 being SO(3). Its projective unitary representation is the quotient subgroup
SU(2)/U(1). Let us assume that the initial state ρθ0 is |0〉〈0|. Then, the elements
of SU(2)/U(1) generate all the states on the Bloch sphere that are parametrized
by a set of two parameters: the latitude θ1 and azimuth φ, with the states being
identified as |θ, φ〉. Note that an element of SU(2)/U(1) can be written in terms
of these as

Uθ,φ =

[
cos θ

2 − θ
2

θ
2sin eiφ

sin e−iφ

cos θ
2

]
.

It can be shown [(Holevo, 1982, Theorem 2.1)] (stated as Lemma 18 for Ref.) that
starting from a positive operator P0 that commutes with all the elements of the
stationary subgroup of SU(2)/U(1) such that it satisfies Equation (A.4), setting

1We apologize for the redundancy, but it is best to stick to conventional symbols.
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M(θ, φ) = Uθ,φP0Uθ
†
,φ implies that the measurement defined with M(θ, φ) as

the operator-valued density with respect to the uniform measure on Θ is covari-
ant. In this case, P0 = 2|0〉〈0| and the operator-valued density is

M(θ, φ) = 2
cos θ

2
θ
2sin eiφ

[ ]
·
[

θ
2

θ
2cos sin e−iφ

]
= 2

[
θ
2

θ
2

θ
2cos sin e−iφ

θ
2

θ
2

cos2

cos sin eiφ sin2 θ
2

]
.

It is straightforward to verify that 4
1
π

∫
S2 M(θ, φ) sin θdθdφ = I.

ρ̂

ρ

ρ̂

Having defined and illustrated the problem of covariant state estimation,
we now recall Holevo’s theorem [(Holevo, 1982, Theorem 3.1)], which
states that for every loss function that is invariant under the group trans-
formation g, the minimax risk as well as the average risk attain their min-
ima at a covariant measurement. But, the analysis in Ref. [Holevo (1982)]
is done for loss functions expressed as functions of the true parameter
and the estimator of the parameter. It can be recast in terms of the gen-
eral framework involving estimators that are functions of the parameter,

: Θ �→ D(H) by simply choosing the domain of the loss function to be
the set of density matrices S(H) as opposed to the parameter space Θ.
We thus state it as the following lemma which is the main ingredient of
the proof of Theorem 3.

Lemma 3 (Theorem 3.1, [Holevo (1982)). ] In the quantum covariant statis-
tical estimation problem, given an estimator ρ̂ of the state, the minima of the
average risk rP(ν, ˆ) with respect to the uniform Haar measure ν on Θ and
the worst case risk supθ RP(ρθ, ) for all Θ−measurements are achieved on a
covariant measurement. Moreover, for any covariant measurement Pc, we have

ρrPc(ν, ˆ) = sup
θ

ρ ρRPc(ρθ, ˆ) = RPc(ρθ, ˆ), θ ∈ Θ (4.4)

Note: A covariant measurement is not a unique minimum for either the
average or the worst-case risk.
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ρ

The above theorem implies that for any measurement P, there exists a co-
variant measurement that minimizes the average risk as well as the worst
case risk for a fixed estimator ρ̂. But, we know that for a fixed measure-
ment the average risk is minimized by the Bayes estimator ˆB. Thus, the
Bayes estimator minimizes the average risk for a covariant measurement.
However, the invariance of the loss function implies that the Bayes estima-
tor must be covariant under the group transformations as shown below.

Lemma 4. The Bayes estimator is covariant under the group transformations
Vg, i.e.

ρ̂ ρ̂B(Bg) = Vg B(B)Vg
†, B ∈ A(Θ).

ρ

ρ̂ ρ̂

Proof. Recalling the invariance property of the loss function: L(ρθ, ˆ(x)) =
L(ρgθ, (gx)) = L(VgρθVg

†, Vg (x)Vg
†), let us verify for the case of Bayes

estimator. Recalling Equation (2.13), we have

ρ̂B(Bg) =

∫∫Θ dν(θ) tr ρθP(Bg)ρθ

Θ dν(θ) tr ρθP(Bg)
.

As we are interested in a covariant measurement P(Bg) = VgP(B)Vg
†,

therefore

ρ̂B(Bg) =

∫∫Θ dν(θ)ρθ tr ρθVgP(B)Vg
†

Θ dν(θ) tr ρθVgP(B)Vg
†

=

∫∫Θ dν(θ)ρθ tr Vg
†ρθVgP(B)

Θ dν(θ) tr Vg
†ρθVgP(B)

=

∫∫Θ dν(θ)ρθ tr ρg−1θP(B)

Θ dν(θ) tr ρg−1θP(B)
.
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By the invariance of ν and the fact that ρθ = Vgρg−1θVg
†, we finally obtain

ρ̂B(Bg) =

∫
Θ dν(g−1θ)Vgρg−1θVg

† tr ρg−1θP(B)∫
Θ dν(g−1θ) tr ρg−1θP(B)

= Vg

{∫
Θ dν(g−1θ)ρg−1θ tr ρg−1θP(B)∫

Θ dν(g−1θ) tr ρg−1θP(B)

}
ρ̂Vg

† = Vg B(B)Vg
†.

π
B

Thus, we have established two things about a covariant measurement.
First, that the risk of a covariant measurement is independent of the state
ρθ and second, that it minimizes the average as well as the worst-case
risk among all measurements. But, the problem of finding a minimax
POVM is closely tied to obtaining a least favourable prior which in turn
is tied to the underlying measurement. The following lemma gives a
least favourable prior and the corresponding measurement in the context
of covariant state estimation.

Lemma 5. The uniform measure on the parameter space Θ is a least favourable
prior for covariant measurements.

Proof. As the Bayes estimator ρ̂ minimizes the average risk with respect
to the prior π,

sup
θ

RPc(ρθ, ρν
B) = sup

π

∫
Θ

dπ(θ)RPc(ρθ, ρν
B) ≥ sup

π

∫
Θ

dπ(θ)RPc(ρθ, ρB
π).

sup
θ

RPc(ρθ, ρν
B) =

However, by Lemma 3, we know that for a covariant measurement the
risk is independent of the state ρθ, i.e.∫

Θ
dν(θ)RPc(ρθ, ρν

B).

This implies that∫
Θ

dν(θ)RPc(ρθ, ρν
B) ≥ sup

π

∫
Θ

dπ(θ)RPc(ρθ, ρB
π).
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The other direction of the above inequality holds trivially, i.e.

Θ
dν(θ)RPc(ρθ, ρν

B) ≤ sup
π

∫ ∫
Θ

dπ(θ)RPc(ρθ, ρB
π).

Therefore, ∫
Θ

dν(θ)RPc(ρθ, ρν
B) = sup

π

∫
Θ

dπ(θ)RPc(ρθ, ρB
π),

and so ν is a least favourable prior for a covariant measurement Pc.

The only remaining ingredient needed to prove Theorem 3 is the follow-
ing lemma.

Lemma 6. The Bayes estimator for a covariant measurement Pc is

ρ̂B(B) =
ν(B)

trR′ IR ⊗ Pc
R′
(B)

G
dμ(g) Vgρ0Vg

†)⊗21 [ ∫ ( ]
, B ∈ A(Θ). (4.5)

Proof. Recalling Equation (2.13), the Bayes estimator for a covariant mea-
surement Pc is

ρ̂B(B) =

∫
Θ∫dν(θ) tr[ρθPc(B)]ρθ

Θ dν(θ) tr ρθPc(B)
, B ∈ A(Θ).

Using Lemma 2, the denominator in the above expression is∫
Θ

dν(θ) tr ρθPc(B) = ν(B),

while the numerator is∫
Θ

dν(θ) tr[ρθPc(B)]ρθ =
∫

G

=
∫

G

dμ(g) tr[ρgθ0 Pc(B)]ρgθ0

dμ(g) tr[Vgρ0Vg
†Pc(B)]Vgρ0Vg

†

= trR′

[ ∫
IR ⊗ Pc

R′
(B)

G
dμ(g)

(
Vgρ0Vg

†)R ⊗
(
Vgρ0Vg

†)R′]
.
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4.1 Minimax measurement for covariant estima-

tion

Now that we have a class of measurements and the corresponding least
favourable prior, in order to show that it is minimax, we have to show that
this class of measurements also minimizes the average risk with respect
to such a least favourable prior.

Theorem 3. There exists a covariant measurement that is minimax for covariant
state estimation.

Proof. Recalling Definition 4 of a minimax POVM and the fact that the
Bayes estimator minimizes the average risk, we have

inf
P ρ̂

inf sup
θ

ρRP(ρθ, ˆ) = inf
P ρ̂

inf sup
π

∫
ρdπ(θ)RP(ρθ, ˆ)

≥ inf
P

sup
π

∫
Θ

Θ

dπ(θ)RP(ρθ, ρB
π).

But, as

sup
π

∫
Θ

dπ(θ)RP(ρθ, ρB
π) ≥

∫
Θ

dμ(θ)RP(ρθ, ρ
μ
B), ∀μ ∈ P(Θ),

it implies that the same holds for the uniform Haar measure ν as well.
Thus,

inf
P ρ̂

inf sup
θ

ρRP(ρθ, ˆ) ≥ inf
P

∫
Θ

dν(θ)RP(ρθ, ρν
B).

Now, we know from Lemma 3 that

inf
P

∫
Θ

dν(θ)RP(ρθ, ρν
B) =

∫
Θ

dν(θ)RPc(ρθ, ρν
B),

where Pc is a covariant measurement that minimizes the average risk.
Also, by Lemma 5, ν is a least favourable prior which means that ρ̂ν

B is a
minimax estimator. Therefore, we have∫

Θ
dν(θ)RPc(ρθ, ρν

B) = sup
θ ρ

Rc(ρθ, ρν
B) = inf

ˆ
sup

θ

ρRPc(ρθ, ˆ).
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Thus, we obtain

inf
P ρ̂

inf sup
θ

ρ
ρ̂

RP(ρθ, ˆ) ≥ inf sup
θ

ρRPc(ρθ, ˆ).

The other direction of the inequality above holds trivially, i.e.

inf
P ρ̂

inf sup
θ

ρ
ρ̂

RP(ρθ, ˆ) ≤ inf sup
θ

ρRPc(ρθ, ˆ)

Hence, we have proved that Pc is a minimax POVM, i.e.

inf
P ρ̂

inf sup
θ

ρ
ρ̂

RP(ρθ, ˆ) = inf sup
θ

ρRPc(ρθ, ˆ).

As the risk for a covariant measurement is independent of the state ρθ (by
Lemma 3) and depends only on the estimator (the Bayes estimator in this

G dμ(g)
∫ (

Vgρ0Vg
†)⊗2), we have the followingcase, which is a function of

corollary.

Corollary 1. Given a minimax covariant measurement Pc, if there exists a mea-
surement P′

c which is covariant under a subgroup H of G such that {Vh| h ∈ H},
where Vh is the projective unitary representation of the subgroup H, forms a uni-
tary 2-design, i.e.

Pc(B) = Vh
†Pc(Bg−1)Vh, B ∈ A(Θ); h ∈ H,

where Bg−1 = {g−1θ| θ ∈ B}, and Pc and P′
c have the same seed, then P′

c is also
minimax.

In order to understand the above corollary better let us look at what it
means for Example 3.

Example 3 (continued). Now, since any state |θ, φ〉 in S2 can be generated by
elements of SU(2)/U(1), the following equivalence holds:

1
4π S2

|θ, φ〉〈θ, φ| sin θdθdφ =
∫ ∫

SU(2)/U(1)
Uθ,φ|0〉〈0|Uθ

†
,φdUθ,φ,
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where dUθ,φ is the Haar measure on SU(2)/U(1). Infact, the above implies that

1
4π

∫
S2

(
|θ, φ〉〈θ, φ|

)⊗2 sin θdθdφ =
∫

SU(2)/U(1)

(
Uθ,φ|0〉〈0|Uθ

†
,φ
)⊗2dUθ,φ.

Now, the above equivalence along with [(Derakhshani, 2008, Theorem 3.3.1)]
implies that one can construct a unitary 2-design from a quantum 2-design.
Thus, the set of unitary matrices that generate the set of eigenstates of the Pauli
matrices σx, σy, σz is a unitary 2-design given as below.

U0,0 =
1 0

10
, Uπ,0 =

10
1 0

[ ] [ ]
,

Uπ/2,0 = √1
2

[
1 −1
1 1

]
, Uπ/2,π = √1

2

[
1 1

]
,

Uπ/2,π/2 = √1
2

[
1 i
i 1

]
, Uπ/2,3π/2 = √1

2

1 −i
−i 1

]
.

The corresponding measurement that is covariant under the above unitary 2-
design is then obtained via Mθ,φ = Uθ,φP0Uθ

†
,φ. It is straightforward to see that

the corresponding Mθ,φ are the same as the Pauli measurements apart from a
normalization constant. This measurement is thus minimax.

Note: In the above example we obtained a minimax POVM—a covariant
measurement for the parameter space S2 which describes only pure qubit
states. There is no a-priori reason to believe that the same measurement
would also be minimax for estimating an arbitrary state of a qubit. How-
ever, curiously, it happens to be true for a qubit as we will see in the next
chapter.
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5

Optimal state estimation for
qubits

We look at the single qubit case as studied in Ref. [Koyama et al. (2017)]
wherein the authors obtain such a minimax POVM with relative entropy
as the distance-measure. We generalize their results to squared-distance
‖ρ − σ‖2 = tr(ρ − σ)2. However, the proof does not follow the general-
ized treatment in terms of Bregman divergence as done in the previous
sections.

To begin with, let us write the most general expression for a POVM on
C2. Recalling Lemma 1, we can write any POVM, see Definition 1, as an
operator-valued density, i.e.

P(B) =
∫

B
μ(dx)M(x),

where B ∈ σ(X ), M(x) ≥ 0, Tr[M(x)] = 2 and μ(X ) = 1. Since positive
operators can be expanded in the Pauli basis {I, σx, σy, σz} with real co-
efficients, M(�x) = α0I +�x ·�σ, but the trace 1 condition on M(�x) implies
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α0 = 1/2. Without loss of generality,

M(�x) = (I +�x ·�σ).

Thus, the most general form of a POVM element on C2 is

P(B) =
∫

B
(I +�x ·�σ)dμ(�x). (5.1)

Now that we have obtained the general expression for a POVM on C2, we
next evaluate the Bayes estimator which in turn is needed to evaluate the
risk RP(ρθ, ρB

π). Recalling that the Bayes estimator is given as

ρB
π(x) =

∫
Θ

dp(x|θ)
dpπ(x)

ρθdπ(θ).

1
2

Recalling the differential form of Born’s rule (2.7), and using the Bloch
sphere notation of ρθ, ρθ = (I +�θ ·�σ), it is a straightforward calculation
to obtain

tr M(�x)ρθ = dμ(�x)(1 +�x ·�θ). (5.2)

However, to be able to further simplify the Bayes estimator, we need to
impose some restrictions on the prior π defined on the parameter space
Θ (which in this case is R3). In particular, we choose a uniform prior
π∗ supported only on pure states, i.e. π(θ) is zero for all vectors �θ with
‖θ‖ < 1 but is uniformly distributed on the set of unit vectors with ‖θ‖ =

1
3

1. It can be verified that such a prior has the following two properties :

1. Eπ∗ [θi] = 0, ∀i ∈ {x, y, z}.

2. Eπ∗ [θiθj] = δij ∀i, j ∈ {x, y, z}.

By property (1) of the prior π∗, we have

pπ(B) =
Θ

∫ ∫
B

dμ(�x)(1 +�x ·�θ)π∗(θ)dθ = μ(B). (5.3)
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Thus, the Bayes estimator reduces to

ρB
π∗
(�x) =

∫
Θ

1
dpπ∗ (x)
dp(x|θ)

ρθdπ∗(θ)

=

∫
Θ

1
dμ(x)

dp(x|θ)
ρθdπ∗(θ)

=

∫
Θ

dp(x|θ)
dμ(x)

ρθdπ∗(θ)

=
∫

Θ

=
1
2

ρθdπ∗(θ) tr M(x)ρθ∫
Θ

dπ∗(θ)(1 +�x ·�θ)(I +�θ ·�σ)

=
1
2

(
I +

Θ
dπ∗(θ)(�x ·�θ)(�θ ·�σ))

∫ )
=

1
2

(
I +

1
3
�x ·�σ

)
.

Now, recalling that the risk is a function of the POVM P, i.e.

RP(ρθ, ρB
π∗
) =

∫
X

dμ(�x) tr M(�x)ρθ Df (ρθ, ρB
π∗
(�x)), (5.4)

we evaluate the risk for both relative entropy and Hilbert-Schmidt dis-
tance below.

Lemma 7. The risk for relative entropy and Hilbert-Schmidt distance are given
as

RP
rel(ρθ, ρB

π∗
) = −h

(
1 + ‖θ‖

2

)
+

1
2

log
9
2
− log 2

2

∫
X

dμ(�x)∑
j,k

θjθkxjxk, and

RP
sq
(ρθ, ρB

π∗
) =

1
2

{
‖�θ‖2 +

1
9

∫
X

dμ(�x)‖�x‖2 +
1
9

∫
X

dμ(�x)‖�x‖2�x ·�θ −
2
3

∫
X

dμ(�x)∑
j,k

θjθkxjxk

}
,

respectively.
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Proof. (a) For relative entropy, see (Koyama et al., 2017, pg. 11).
(b) For Hilbert-Schmidt distance, substituting f = ‖A‖ in (5.4), we get

Dsq(ρθ, ρB
π∗
(x)) = tr

(
ρθ − ρB

π∗
(x)
)2.

Thus,

Dsq(ρθ, ρB
π∗
(B)) =

1
2

tr

[ [
1 + θz θx − iθy

θx + iθy 1 − θz

]
−
[

1 + z/3 (x − iy)/3
(x + iy)/3 1 − z/3

] ]2

=
1
2

tr
[
(θz − z/3)σz + (θx − x/3)σx + (θy − y/3)σy

]2

=
1
2

(
(θz − z/3)2 + (θx − x/3)2 + (θy − y/3)2

)
=

1
2

(
9

2
3
�x

)
‖�θ‖2 +

1‖�x‖2 − ·�θ .

This implies that the risk is

RP
sq
(ρθ, ρB

π∗
) =

1
2

∫
X

dμ(�x)(1 +�x ·�θ)
(
‖�θ‖2 +

1
9
‖�x‖2 − 2

3
�x ·�θ

)
.

We can write the above using the property of a general POVM on C2, i.e.∫
X dμ(�x)�x = 0 as

RP
sq
(ρθ, ρB

π∗
) =

1
2

{
‖�θ‖2 +

1
9

∫
X

dμ(�x)‖�x‖2 +
1
9

∫
X

dμ(�x)‖�x‖2�x ·�θ −
2
3

∫
X

dμ(�x)∑
j,k

θjθkxjxk

}
.

Note: Although in Ref. [Koyama et al. (2017)] it is assumed that the POVM P
is rank-1, the above expressions hold in general for any POVM P, i.e. the vector
�x in (5.1) need not be a unit vector.

Lemma 8. For any POVM P, the average risk of the Bayes estimator with respect
to the prior π∗ satisfies the inequalities:∫

Θ
log

9
2
− 1

6
log 2,∫

Θ

dπ∗(θ)RP
rel(ρθ, ρB

π∗
) ≥ 1

2

dπ∗(θ)RP
sq
(ρθ, ρB

π∗
) ≥ 2

9
,
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for relative entropy and Hilbert-Schmidt distance respectively.

Proof. (a) For relative entropy :
From Lemma 7 and the properties of the prior π∗ we get

Θ
dπ∗(θ)RP

rel(ρθ, ρB
π∗
) =

Θ
dπ∗(θ) − h

∫ ∫ { (
1 + ‖θ‖

2

)
+

1
2

log
9
2
−

log 2
2

∫
X

dμ(�x)∑
j,k

θjθkxjxk

}

=
1
2

log
9
2
− log 2

2

∫
X

dμ(�x)∑
j,k

δjk

3
xjxk

=
1
2

log
9
2
− 1

6
log 2 ∑

j
Eμ[rj

2].

However, since ∑j rj
2 ≤ 1, it implies ∑j Eμ[rj

2] ≤ 1, and we obtain the
required inequality :∫

Θ
dπ∗(θ)RP

rel(ρθ, ρB
π∗
) ≥ 1

2
log

9
2
− 1

6
log 2.

(b) For Hilbert-Schmidt distance :
From Lemma 7 and the properties of the prior π∗ we get

Θ
dπ∗(θ)R f

P
2(ρθ, ρB

π∗
) =

Θ
dπ∗(θ)

1
2

‖�θ‖2 +
1
9

∫ ∫ { ∫
X

dμ(�x)‖�x‖2 +
1
9

∫
X

dμ(�x)‖�x‖2�x ·�θ−
2
3

∫
X

dμ(�x)∑
j,k

θjθkxjxk

}

=
1
2

{
1 +

1
9 ∑

j
Eμ[rj

2]− 2
9 ∑

j
Eμ[rj

2]
}

=
1
2

{
1 − 1

9 ∑
j

Eμ[rj
2]
}

.

Again, as ∑j rj
2 ≤ 1, it implies ∑j Eμ[rj

2] ≤ 1, and we obtain the required
inequality : ∫

Θ
dπ∗(θ)R f

P
2(ρθ, ρB

π∗
) ≥ 1

2
(
1 − 1

9
)
=

4
9

.
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1
3Lemma 9. For any POVM P∗ that satisfies Eμ[rirj] = δij, the average risk of

the Bayes estimator coincides with the worst-case risk:∫
Θ

dπ∗(θ)RP∗(ρθ, ρB
π∗
) = sup

θ

RP∗(ρθ, ρB
π∗
).

Proof. (i) (a) For relative entropy : (a) See [(Koyama et al., 2017, pg. 11)].

(b) For Hilbert-Schmidt distance:

1
3As Eμ[rirj] = δij, it implies ∑j Eμ[rj

2] = 1, and thus by Lemma 8,

∫
Θ

dπ∗(θ)R f
P

2
∗(ρθ, ρB

π∗
) =

4
9

.

Now, for such a POVM P∗, ‖�x‖2 = 1, and the risk, see Lemma 7, becomes

=RP
sq
∗(ρθ, ρB

π∗
)

1
2

(
‖�θ‖2 +

1
9
− 2

9
‖�θ‖2

)
.

Clearly,

max
‖θ‖

RP
sq
∗(ρθ, ρB

π∗
) =

4
9

, at ‖�θ‖ = 1.

This implies that∫
Θ

dπ∗(θ)RP∗(ρθ, ρB
π∗
) = sup

θ

RP∗(ρθ, ρB
π∗
),

for both relative entropy and squared-distance.

Lemma 10. The uniform Haar measure on S2 is a least favourable prior for
spherical 2-designs in C2.
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1
3

1
3

π
B

Proof. Firstly, note that a POVM P∗ with Eμ[rirj] = δij is a spherical 2-
design. (See Definition 8 of spherical t-designs. Examples of spherical
2-designs include the SIC-POVM [Renes et al. (2004)] on C2 as well as
the POVM defined through the Pauli measurements.) It can be seen from
Lemma 7 that the risk is a polynomial function of degree 2 in the variables
x, y, z. It is straightforward to see that the average of the typical term xixj

with respect to the Haar measure on S2 is
δi
3
,j . Thus, any POVM with

Eμ[xixj] = δij is a spherical 2-design. Let us now proceed with the proof
of the lemma. As the Bayes estimator ρ̂ minimizes the average risk with
respect to the prior π,

sup
θ

RP∗(ρθ, ρB
π∗
) = sup

π

∫
Θ

dπ(θ)RP∗(ρθ, ρB
π∗
) ≥ sup

π

∫
Θ

dπ(θ)RP∗(ρθ, ρB
π).

sup
θ

RP∗(ρθ, ρB
π∗
) =

However, we just proved in Lemma 9 that∫
Θ

dπ∗(θ)RP∗(ρθ, ρB
π∗
),

=⇒
∫

Θ
dπ∗(θ)RP∗(ρθ, ρB

π∗
) ≥ sup

π

∫
Θ

dπ(θ)RP∗(ρθ, ρB
π).

The other direction of the above inequality holds trivially, i.e.∫ ∫
∫Θ π ∫Θdπ∗(θ)RP∗(ρθ, ρB

π∗
) ≤ sup dπ(θ)RP∗(ρθ, ρB

π),

=⇒ dπ∗(θ)RP∗(ρθ, ρB
π∗
) = sup dπ(θ)RP∗(ρθ, ρB

π).
Θ π Θ

Thus, π∗ is a least favourable prior for a spherical 2-design in C2.

Theorem 4. Any spherical 2-design for C2 is a minimax POVM.

Proof. Recalling Definition 8 of a minimax POVM and the fact that the
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Bayes estimator minimizes the average risk, we have:

inf
P ρ̂

inf sup
θ

ρRP(ρθ, ˆ) = inf
P ρ̂

inf sup
π

∫
Θ

ρdπ(θ)RP(ρθ, ˆ)

≥ inf
P

sup
π

∫
dπ(θ)RP(ρθ, ρB

π)

≥ inf
P

∫
Θ

Θ

dπ∗(θ)RP(ρθ, ρB
π∗
).

Now, Lemma 8 and Lemma 9 together imply that the average risk with
respect to π∗ is minimized by the POVM P∗, i.e.

inf
P Θ

dπ∗(θ)RP(ρθ, ρB
π∗
) =

∫ ∫
Θ

dπ∗(θ)RP∗(ρθ, ρB
π∗
).

Also, by Lemma 10, π∗ is a least favourable prior which means that ρB
π∗

is a minimax estimator. Therefore, we have∫
Θ

dπ∗(θ)RP∗(ρθ, ρB
π∗
) = sup

θ ρ
RP∗(ρθ, ρB

π∗
) = inf

ˆ
sup

θ

ρRP∗(ρθ, ˆ).

Thus, we obtain

inf
P ρ̂

inf sup
θ

ρ
ρ̂

RP(ρθ, ˆ) ≥ inf sup
θ

ρRP∗(ρθ, ˆ).

The other direction of the inequality above holds trivially, i.e.

P ρ̂ θ

ρ
ρ̂

RP(ρθ, ˆ) ≤ inf sup
θ

ρinf supinf RP∗(ρθ, ˆ)

Hence, we have proved that P∗, a spherical 2-design is a minimax POVM,
i.e.

inf
P ρ̂

inf sup
θ

ρ
ρ̂

RP(ρθ, ˆ) = inf sup
θ

ρRP∗(ρθ, ˆ).
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Part II

Work in quasi-thermal processes
for two-level systems
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6

Overview & model

6.1 Background

A standard thermodynamic setting comprises of large systems with rel-
atively short relaxation times wherein fluctuations in values of extensive
quantities such as work, that follow the law of large numbers, are negligi-
ble and one only cares about averages [Callen (2006); Jarzynski (2011)].
Work is essentially a deterministic quantity in such scenarios. Non-
equilibrium thermodynamics, on the other hand, is the study of fluctu-
ations in work as one departs from the standard thermodynamic setting.
Small systems with long relaxation times make the study of fluctuations
inevitable since these are no longer just statistical noise. Within the frame-
work of non-equilibrium statistical mechanics, fluctuations have been
characterised using fluctuation theorems [Jarzynski (1997); Crooks (1999)]
that play a key role in the control and study of biomolecular processes
such as the folding of proteins [Dobson (2003)]. In fact, single molecule
experiments involving stretching of biomolecules under external forces
are a ripe avenue for the study of non-equilibrium phenomena [Alemany
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and Ritort (2010); Bustamante et al. (2005); Kolomeisky and Fisher (2007);
Liphardt et al. (2002)].

A complementary approach to non-equilibrium thermodynamics is the
incipient field of one-shot statistical mechanics [Garner (2018); Åberg
(2013); Dahlsten et al. (2011); Del Rio et al. (2011); Faist et al. (2015)] which
draws techniques from one-shot information theory [Tomamichel (2015);
Rényi (1961); Renner and Wolf (2004); Renner (2005)] to characterize pro-
cesses that are far from equilibrium. And, within this non-equilibrium
framework, work is analysed as a random variable. In the one-shot
regime one considers single instances of the task at hand instead of look-
ing at ensemble averages. Fluctuations in work have been studied in this
regime in Ref. [Åberg (2013)] for a discrete classical model. The main
question in consideration was what constituted truly work-like work ex-
traction. The basic idea was that in order to define work for small systems
in contrast to heat, one should be able to extract a fixed amount of work
from a fixed system configuration. The author showed that for a sys-
tem that is initially not in equilibrium with the ambient bath even the
optimal process (that achieves maximum average work output) results in
fluctuations as large as the average work itself. Such an optimal process
is comprised of a) energy level transformations (quenches) rendering the
system effectively thermal, and b) reversible isothermal processes [Åberg
(2013)]. The latter is manifestly fluctuation-free because the system equi-
librates at each infinitesimal step of a reversible process and equilibra-
tion washes away the fluctuations. Of course this is only possible since
the time scale over which one performs the energy level transformations
(during the isothermal process) is much larger than the relaxation time
of the system. The question is what happens to these fluctuations when
the system only partially thermalizes, i.e. when the system is driven ex-
ternally over shorter time periods in comparison to its relaxation time
scale.
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The relaxation towards equilibrium can be studied within the framework
of collision models which have been used to study open quantum sys-
tem dynamics [Ziman et al. (2005); Scarani et al. (2002); Ciccarello (2017)].
Within these models the bath is treated as a composition of smaller non-
interacting particles that are copies of the system in the thermal Gibbs
state. Such a process of thermalization has been studied in Ref. [Scarani
et al. (2002)] for a qubit in contact with a bath composed of non-interacting
qubits. For a qubit in a general quantum state interacting with an ambi-
ent bath, thermalization was shown to be a two-component process com-
prising of decoherence and dissipation. And, a functional dependence
on time was obtained for both of these processes. In the present work,
we are interested in fluctuations in processes involving partial thermal-
izations for classical two-level systems and will limit ourselves to states
diagonal in the energy eigenbasis. With this we come to the question
we posed earlier regarding fluctuations in work for processes involving
partial thermalizations.

While work along these lines has been done in Ref. [Ma et al. (2018a)]
in the low-dissipation regime (where the system is driven for large but
finite time), a more closely related numerical study on this question was
undertaken in Ref. [Marathe and Dhar (2005)] where the authors studied
a single Ising spin driven by an external magnetic field. They obtained
work distributions using Monte Carlo simulations of the processes for
different driving rates. The authors found that such processes have broad
work distributions with significant probability for processes with negative
dissipated work in general. They also verified work fluctuation theorems
[Jarzynski (1997); Crooks (1999)] and derived analytic expressions for the
distribution of work when the spin’s energy gap was driven by the exter-
nal field in the slow and fast limits. Another recent work [Bäumer et al.
(2019)] looked into the same problem but again in the low-dissipation
regime. We will discuss this further in Section 6.2.
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Here, we investigate similar work extraction processes involving partial
thermalizations for a single classical two-level system driven by an ex-
ternal magnetic field changing linearly in time. We derive an analytic
expression for the average work yield of such a process as a function of
the total time, τ. This expression reduces to the average work outputs
of the corresponding adiabatic and isothermal processes in the τ → 0
and τ → ∞ limits, respectively. Next, in an attempt to characterize fluc-
tuations in the average work yield, we provide a lower bound for the
variance of work as a function of the total time duration of the process.
This lower bound is saturated in the adiabatic and the isothermal limits
thereby reproducing the result that isothermal processes are deterministic
as was shown in Ref. [Åberg (2013)]. Even though an analytical expres-
sion for the variance of work seems intractable, we employ Jarzynski’s
fluctuation-dissipation relation [Jarzynski (1997)] to compare the dissipa-
tion in work (τ < ∞) with our estimate of variance obtained by perform-
ing Monte Carlo simulations. We find that for a two-level system initially
in equilibrium with the bath, the fluctuation-dissipation relation provides
a good approximation which becomes exact as τ becomes large as was
also noted in Ref. [Marathe and Dhar (2005)]. Finally, we investigate
finite-time work extraction cycles inspired by the Carnot cycle, replacing
the ideal isothermal reversible processes with the realistic ones involving
partial thermalizations. We then numerically optimize the power output
of such finite-time work extraction cycles over different sets of constraints
and parameters keeping the time period of the cycles fixed and provide
comparisons between those scenarios.

6.2 Model

Given an ambient bath at temperature Th and a two-level system such
that its energy gap δ can only be driven within a fixed range between
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δmin and δmax (for example by an external magnetic field), let us assume
that the time period of the external driving is much shorter compared to
the relaxation time of the system interacting with the bath, and that the
spectral density of the bath is constant over the given range of values for δ.
Without loss of generality, let us further assume that the ground state en-
ergy is zero. For a two-level system with an energy gap δ one can always
define a temperature such that the occupation probability of the excited
state is given by the corresponding Gibbs distribution at that tempera-
ture. We choose time as the independent quantity under these settings
and denote it by the continuous variable t. This brings to the question
of how one could extract work under these settings. To this end, we
study finite-time work extraction processes involving partial thermaliza-
tions. Partial thermalization encapsulates a finite time restriction for the
system’s equilibration with the bath and can be studied by considering
a randomized model of interaction between the two—a collision model
[Ziman et al. (2005); Scarani et al. (2002); Ciccarello (2017)]. Such models
are based on the assumption that the bath is composed of smaller non-
interacting particles that are copies of the system in the thermal Gibbs
state. The system-bath interaction is then modelled as a sequence of col-
lisions between the system and bath particles where each collision itself
is considered to be a joint unitary on the system and the bath particle
in question. The additional assumptions of the bath being initially un-
correlated and the system colliding with exactly one bath particle at a
time result in a Markovian dynamics for the system which in turn can be
translated to a Lindblad master equation in the continuous time limit [Zi-
man et al. (2005); Brun (2002)]. The process of partial thermalization was
studied in Ref. [Scarani et al. (2002)] within the framework of a collision
model and was shown to be composed of dissipation and decoherence
for a general quantum state. For states that are diagonal in the energy
eigenbasis thermalization simply amounts to dissipation and the state of
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a two-level system can be described by the occupation probabilities p(t)
for the excited state and 1 − p(t) for the ground state. Denoting the ther-
mal Gibbs occupation probability for the excited state by γ(t), the ther-
malization process is given by the following equation as per Ref.[Scarani
et al. (2002)]:

p(t) = e−κt p(0) +
(
1 − e−κt)γ(t), (6.1)

where κ is the thermalization rate (dissipation), the inverse of the relax-
ation time T1 [Scarani et al. (2002)]. One can interpret 1 − e−κt as the
probability of collision between the qubit and a bath particle, denoting
it by λ. The case λ = 1 corresponds to exact thermalization and λ = 0
corresponds to no thermalization. Thus, for sufficiently short interaction
times Δt, the probability λ with which the system interacts with the bath
particles (and thermalizes) is linear in Δt, i.e. λ = κΔt. Microscopically,
partial thermalization is a time-dependent Markov process on a finite
state space—the ground and excited states of our two-level system. The
system with energy gap δ(t) at time t interacts with the bath for a time
Δt and with probability κΔt it collides with a bath particle. If the system
thermalizes then it can change its state such that the occupation prob-
ability for the excited state is γh δ(t + Δt)

( )
, the thermal Gibbs weight

associated with the excited state δ(t + Δt) for the bath temperature Th.
Work is done when the system is in the excited state and its energy gap
is changed from δ(t) to δ(t + Δt).

We can thus build a finite-time work extraction process that involves a
series of infinitesimal level transformations and partial thermalizations,
along the lines of Ref.[Åberg (2013)]. A discrete version of such a process
at a given time t is, therefore, composed of a series of two steps:

1. Level transformation: changing the energy gap δ(t) by an in-
finitesimal amount to δ(t+Δt) keeping the occupation probabilities
fixed.
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2. Partial thermalization: changing the state of the system such
that with probability 1 − κΔt it stays in the same state, while with
probability κΔt it thermalises with respect to the bath.

The above defines a time-dependent Markov process and corresponds to
the Markov diagram in Fig. 6.1.

0 1

κΔtγh
(
δ(t + Δt)

)

κΔt
(
1 − γh

(
δ(t + Δt)

))
1 − κΔtγh

(
δ(t + Δt)

)
1 − κΔt

(
1 − γh

(
δ(t + Δt)

))

Figure 6.1: Markov chain representing partial thermalization during a
finite-time work extraction process when the energy gap changes from
δ(t) to δ(t + Δt). The states 0 and 1 denote the ground and excited states
of the two level system, respectively. Each arrow is labelled by the corre-
sponding transition probability.

A continuous version of Fig. 6.1 can then be simply obtained as per the
following lemma.

Lemma 11. Given a two-level system undergoing partial thermalization with a
hot bath at temperature Th (characterized by short system-bath interaction times),
the occupation probability p for its excited state evolves according to the following
equation:

dp(t)
dt

( (
= κ γh δ(t)

)
− p(t)

)
, (6.2)

( )
where γh δ(t) = 1

1+eδ(t)/Th
, the Gibbs weight associated with the instantaneous

excited state energy δ(t).
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Proof. According to Fig. 6.1, the total probability of being in the excited
state p(t + Δt) at time step t + Δt can be obtained using the law of total
probability:

p(t + Δt) = p01(t + Δt)
(
1 − p(t)

)
+

p11(t + Δt)p(t), (6.3)

where p01(t + Δt) is the conditional probability for the system to be in
the excited state at time t + Δt when it was in the ground state at time
t, and p11(t + Δt) is the conditional probability for the system to be in
the excited state at time t + Δt when it was in the excited state at time t.
Plugging in the corresponding expressions using Fig. 6.1 we have( )

(6.4)p(t + Δt) = (1 − κΔt)p(t) + κΔtγh δ(t + Δt) .

Re-arranging the terms we obtain (
γh
(
δ( + )

)
( )
)

(6.5)p(t + Δt)− p(t) = κΔt t Δt − p t ,

which after dividing by Δt reduces to (6.2) in the limit Δt → 0.

As an aside, we would like to make a comment on the model of partial
thermalization as in Ref. [Bäumer et al. (2019)]. The authors consider a
situation where the probability of interaction between the system and the
bath is fixed. If we were to do the same then we would have to replace
κΔt by a constant, let us say λ. Then (6.5) would yield

p(t + Δt)− p(t) = λ
(

γh
(
δ(t + Δt)

)
− p(t)

)
, (6.6)

p(t) = γh δ(t + Δt)

which in the limit Δt → 0 would simply give( )
. (6.7)

This implies that the system would be in the thermal Gibbs state at each
infinitesimal step of the process. Naturally, one would obtain an isother-
mal reversible process with no fluctuations.
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So, given that we have a general work extraction process involving par-
tial thermalizations, let us make the following assumption in order to
completely specify the model.

Assumption 1. The energy gap δ(t) is driven at a constant rate.

We are now ready to derive the results. But, before we move on, let
us first look at an example of a discrete version of this problem for an
intuitive understanding of the underlying Markov process which would
also inform our derivations in Section 7.1.2.

Example 4. Let ε = δmax − δmin be the range over which we can vary δ as a
function of time t and let us choose δ(0) = δmax. Let p(0) to be a constant p0

and let the total time of the process be τ. Then, δ(τ) = δmin and p(τ) would be
determined by Lemma 11. Now, a work extraction process involving partial ther-
malization corresponds to a curve on the δ − p plane. The discretization of this
process is a discretization of that curve. So, let us divide the range ε for δ into
L = 2 equal steps. Then, the change in δ at each step would be Δδ = −ε/2 and
the extracted work during each step would be wex = ε/2. Moreover, Assump-
tion 1 under the above boundary conditions gives dδ/dt = −ε/τ which implies
that Δt = τ/2 for each step. Each of these discrete steps itself is composed of two
steps: a level transformation and then a partial thermalization. Let us say that
the system is in the ground state at time t = 0, see the Markov chain in Fig. 6.2.
Clearly, since the system starts in the ground state, the work done in the first
step during the level transformation denoted by wt=τ/2 is zero, first row in the
second column of the table. Next, the system thermalizes with respect to the hot
bath with probability κτ/2. The work done during this partial thermalization is
dissipated as heat and thus its contribution is zero. Upon partial thermalization
we might transition to the excited state or remain in the ground state. The two
possible paths are shown in the Markov chain in Fig. 6.2. If we transition to the
excited state then the work done during the level transformation in the second
step denoted by wt=τ would be ε/2, second row in the fourth column. In the
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end, partial thermalization in the second step would again lead to two different
paths with zero work contributions. A complete distribution can be obtained by
going through all such paths, enlisted in the table in Fig. 6.2.

1 1 1

0 0 01 − 2
κτ γh

(
δ( τ

2 )
)

1 − κτ
2

(
1 − γh

(
δ(τ)

))
κτ

2
(
1−

γ
h
(
δ(τ) ) )

κτ
2
γ h
( δ(

τ
2
)
)

κτ
2
γ h
( δ(τ

)
)

1 − 2
κτ γh

(
δ(τ)

)

t = 0 t = τ/2 t = τ

state at t = 0 wt=τ/2 state at t = τ/2 wt=τ wex Pr [Wex = wex]

0 0 0 0 0 (1 − p0)
(

1 − 2
κτ γh

(
δ( τ

2 )
))

0 0 1 (1 − p0) 2
κτ γ

( )
1 0 p0 2

κτ
(

1 − γh

h(
δ( τ

2 )

δ( τ
2 )))

1

ε/2

ε/2 1

ε/2

0

ε/2

ε/2

ε/2

ε p0

(
1 − 2

κτ
(
1 − γh

(
δ( τ

2 )
)))

Figure 6.2: The Markov chain above shows two specific paths corresponding to
the work extraction process given in Example 4, where the ground and excited
states of the two level system are denoted by 0 and 1, respectively. Each arrow
is labelled by the corresponding transition probability. The table lists all possible
paths for such a process with each row corresponding to a specific path. The first
and third columns denote the state of the system at the beginning of each step
which determines the work done during that step, namely wt=τ/2 and wt=τ in
the second and the fourth columns, respectively. Wex is the random variable for
extracted work and takes values wex which is the sum of work done at each step
along a given path. Pr[Wex = wex] is the probability that Wex takes the value
wex and can be obtained using the transition probabilities for each step as shown
in Fig. 6.1.
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7

Average work and variance

7.1 Analytical results

In this section, we derive an expression for average work done during
work extraction processes involving partial thermalizations (Section 7.1.1)
and prove that they are not fluctuation-free in general (Section 7.1.2).

7.1.1 Average work

Let us denote the work done during a general thermodynamic process
by the random variable W. Work is done when a two-level system is in
the excited state during a level transformation. Depending upon whether
this transformation decreases or increases the energy gap, one obtains
negative or positive values of W corresponding to a net work gain or a
net work cost. We shall denote a net work gain by the random variable
W and refer to it as just work done unless stated otherwise. Thus, the
average work done during a process where the energy gap of the system
is driven from δmax to δmin as it partially thermalizes with an ambient bath
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for a time τ is given by

μW(τ) = −

∫
δmin

δmax

p(δ)dδ, (7.1)

where p(δ) is the probability of the system to be in the excited state when
the energy gap is δ. Let us first list a few ingredients that would come
in handy in deriving the main result, i.e. an expression for average work,
Theorem 5.

Definition 6. Given the energy gap δ(t) of a two-level system at time t ≤ τ, we
define the function

G : t �→ −
∞

∑
n=1

(
(−

δ(t)
Th

)n

nε
κτTh

+ 1
) , (7.2)

where ε = δmax − δmin, κ is the thermalization rate, and Th is the temperature
of the ambient bath.

The function G is a monotone function in t. For δ monotonically decreas-
ing in t, G monotonically increases. This follows by noting that −e−δ(t)

is also monotonically decreasing in t. We also make use of a few stan-
dard functions in the proofs that have been redefined in Section B.2 for
completeness.

Lemma 12 (Time evolution of occupation probabilities under partial ther-
malization). Given a two-level system undergoing a work extraction process
along with partial thermalizations with a bath at temperature Th as per Assump-
tion 1 such that its energy gap changes from δmax to δmin over a time τ, the
occupation probability for the excited state at any time 0 < t < τ is given by

(7.3)p(t) = p0e−κt + G(t)− e−κtG(0),

where ε = δmax − δmin, p0 = p(0) and δ(t) = δmax − εt/τ.



7. AVERAGE WORK AND VARIANCE 64

Proof. Re-writing the differential equation for a general work extraction
with partial thermalizations, (6.2), we have

dp
dt

+ κp(t) = κγh
(
δ(t)
)
, (7.4)

which can be integrated along with the initial condition p(0) = p0 to
obtain

p(t) = p0e−κt + κe−κt
∫ t

0
eκt′γh

(
δ(t′)

)
dt′. (7.5)

Given Assumption 1 and the boundary conditions δ(0) = δmax and δ(τ) =

δmin, we have

δ(t) = δmax −
ε

τ
t,

(
δ(t)
)
= 1

1+eδ(t)/Th

(7.6)

and (7.6) in (7.5),where ε = δmax − δmin. Plugging γh

we obtain

p(t) = p0e−κt + κe−κt

∫
t

0

eκt′

1 + e
(δmax−εt′/τ)

Th

dt′. (7.7)

The integral above is given in terms of the Hypergeometric function as in
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(B.8). Thus,

p(t) = p0e−κt + κe−κt

{
e
(

κ+ τ
ε
Th

)
t′− δ

T
max

h

κ + τ
ε
Th

×

2F1

(
1,

κτTh
ε

+ 1,
κτTh

ε
+ 2;−e−

(δmax−εt′/τ)
Th

)∣∣∣∣∣
t

0

}

= p0e−κt +
κτTh

ε

{
e−

(δmax−εt/τ)
Th

κτTh
ε + 1

×

2F1

(
1,

κτTh
ε

+ 1,
κτTh

ε
+ 2;−e−

(δmax−εt/τ)
Th

)
−

e−κt e−
δ

T
max

h

κτTh
ε + 1

×

2F1

(
1,

κτTh
ε

+ 1,
κτTh

ε
+ 2;−e−

δ
T
max

h

)}
. (7.8)

Next, using (B.9) we can write(
az

a + 1

)
2F1(1, 1 + a, 2 + a;−z)

=

(
az

a + 1

) ∞

∑
n=0

n!(1 + a)n

(2 + a)n

(−z)n

n!

= −
∞

∑
n′=1

(−z)n′

(n
a
′
+ 1)

. (7.9)

Using (7.9) we can write (7.8) in terms of the function G, Definition 6, to
obtain (7.3).

We are now ready to derive the expression for average work.

Theorem 5 (Average work). The average work done by a two-level system
during a work extraction process involving partial thermalizations with respect
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to a bath at temperature Th, wherein its energy gap is driven from δmax to δmin

as per Assumption 1 over a time τ, is given by

μW(τ) = Wis
Th

o +
Wad
κτ

(
1 − e−κτ

)
− ε

κτ

{
G(τ)− e−κτG(0)

}
, (7.10)

where Wis
Th

o is (the work done during) the corresponding isothermal process, i.e.
Wis

Th
o = Th log Z(δmin)/Z(δmax) , with Z being the partition function Z : δ �→

1+ e−δ/Th, Wad is the work done during the corresponding adiabatic process, i.e.
Wad = εp0, where p0 = p(0) and ε = δmax − δmin.

Proof. We start by noting that

dp
dδ

=
dp
dt

.
dt
dδ

= −κτ

ε

(
γh(δ)− p

)
, (7.11)

where the last line follows from (6.2) & (7.6) and supressing the depen-
dence on t. Integrating (7.11) with respect to δ from δmax to δmin, we have

δmin

δmax

p dδ =
δmin

δmax

γh
(
δ
)
dδ +

ε

κτ

∫ ∫ ∫ δmin

δmax

dp
dδ

dδ. (7.12)

Then, plugging (7.12) in (7.1) implies

μW(τ) = −
∫ δmin

δmax

γh
(
δ
)
dδ − ε

κτ

∫ δmin

δmax

dp
dδ

dδ. (7.13)

Substituting the expression for γh(δ) and evaluating the integral gives us
the first term of (7.13) as∫ δmin

δmax

γh
(
δ
)
dδ = −Th ln

Z(δmin)

Z(δmax)
, (7.14)
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where Z is the partition function. The expression above is simply the
negative of the work done during the corresponding isothermal reversible
process,

Wis
Th

o = Th ln
Z(δmin)

Z(δmax)
. (7.15)

Next, we evaluate the integral in the second term in (7.13) using Lemma 12
together with the boundary conditions p(δmax) = p0 and p(δmin) = p(τ).
Thus, we have

∫ δmin

δmax

dp
dδ

dδ = p(δmin)− p(δmax)

= p0
(
e−κτ − 1

)
+ G(τ)− e−κtG(0). (7.16)

Now, if one changes the energy gap from δmax to δmin adiabatically the
distribution of work is simply a two-point distribution, where W = 0
occurs with probability 1 − p0 and W = ε occurs with probability p0.
Thus, the average work done would be

Wad = εp0. (7.17)

Plugging (7.14) and (7.16) in (7.13) together with (7.15) and (7.17) gives us
the result.

Corollary 2. The expression for average work in Theorem 5 reduces to the adia-
batic case in the limit τ → 0, i.e.

lim
τ→0

μW(τ) = Wad, (7.18)

and the isothermal case in the limit τ → ∞,

lim
τ→∞

μW(τ) = Wis
Th

o. (7.19)
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Proof. Let us first derive the adiabatic limit, τ → 0:

lim
τ→0

μW(τ) = Wis
Th

o + τ
lim
→0

{
Wad
κτ

(
1 − e−κτ

)
+

ε

κτ

(
G(τ)− e−κτG(0)

)}
. (7.20)

Let us first look at the second term in the limit

lim
τ→0

1
τ

(
1 − e−κτ

)
= lim

τ→0

1
τ

(
1 −
(

1 − κτ +
κ2τ2

2
− · · ·

))

= lim
τ→0

(
κ − κ2τ

2
+ · · ·

)
= κ. (7.21)

So, we have

lim
τ→0

μW(τ) = Wis
Th

o + Wad +
τ
lim
→0

ε

κτ

{ }

is
Th

o + Wad + Th

{
= W − e−

δ
T
mi

h
n

ΦL

(
− e−

δ
T
mi

h
n

, 1, 1

G(τ)− e−κτG(0)

)
+

( )}
e−

δ
T
max

h ΦL − e−
δ

T
max

h , 1, 1 , (7.22)

where we have used Definition B.2.2 in the second step. Since, z ΦL(z, 1, 1) =
− log(1 − z), we have

lim
τ→0

μW(τ) = W

Th

{ is
Th

o + Wad +

log (1 + e−
δ

T
mi

h
n
)− log (1 + e−

δ
T
max

h )

}
, (7.23)

where the first term cancels the third term due to (7.14), and thus we
obtain (7.18). The isothermal limit, τ → ∞, can be similarly obtained



7. AVERAGE WORK AND VARIANCE 69

since

lim
τ→∞

μW(τ) = WTh
iso − lim

τ→∞

{
− Wad

κτ

(
1 − e−κτ

)
+

ε

κτ

(
G(τ)− e−κτG(0)

)}
, (7.24)

and it is clear that the second term in the equation above would vanish in
the limit τ → ∞. Furthermore, using Definition 6, we find that the third
term would also vanish in the limit and so we recover (7.19).

7.1.2 Lower bound on variance

We will now establish, by means of the following theorem, that fluctua-
tions in work during processes involving partial thermalizations are non-
zero, independent of Assumption 1.

Theorem 6 (Fluctuations in work). Consider a two-level system undergoing
a work extraction process where the energy gap is driven from δmax to δmin in L
discrete steps along with partial thermalizations over a finite time τ. Then, the
following are true in general for the random variable WL denoting the total work
done during such a process:

lim
L→∞

Pr[WL = 0] =
(
1 − p0

)
e−κ

∫ τ
0 dtγh(δ(t)), (7.25)

and

lim
L→∞

Pr[WL = ε] = p0e−κ
∫ τ

0 dt(1−γh(δ(t)), (7.26)

where ε = δmax − δmin, L → ∞ is the continuous time limit, and p0 is the initial
excited state probability of the two-level system.

Proof. From Fig. 6.2, it is easy to see that the following expression holds
for a discrete partial thermalization process composed of L steps such
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that each step takes time Δt:

Pr[WL = 0] =
(
1 − p0

) L−1

∏
l=1

(
1 − κΔtγh

(
δ(lΔt)

))
. (7.27)

Taking log on both-sides of the above equation we have,

log
( )

Pr[WL = 0] = log
(
1 − p0

)
+

L−1

∑
l=1

log
(

1 − κΔtγh
(
δ(lΔt)

))
Δt � 1� log

(
1 − p0

)
−

κ
L−1

∑
l=1

Δtγh
(
δ(lΔt)

)
. (7.28)

Taking the limit Δt → 0 (L → ∞) and observing that the second term
above would thus be a Riemann sum, we obtain (7.25) by exponentiating
the resulting expression (and noting that limit commutes with continuous
functions). Similarily, the last row in Fig. 6.2 implies that

Pr[WL = ε] = p0

L−1

∏
l=1

(
1 − κΔt

(
1 − γh

(
δ(lΔt)

)))
. (7.29)

Again, taking log on both-sides we have

log
(

Pr[WL = ε]
)

= log p0 + ∑
−L 1

l=1
log
(

1 − κΔt
(

1 − γh
(
δ(lΔt)

)))
Δt � 1� log p0 − κ ∑

−L 1

l=1
Δt
(

1 − γh
(
δ(lΔt)

))
. (7.30)

Again, taking the limit Δt → 0 (L → ∞) results in an expression that gives
(7.26) upon exponentiation.
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This result analytically establishes that the distribution of work is typi-
cally broad as was also found numerically in Ref. [Marathe and Dhar
(2005)]. While the theorem above holds in general, a lower bound on the
variance of work done by systems driven linearly in time (Assumption 1)
can be obtained as a corollary to it.

Corollary 3 (Lower bound on variance of work). For a finite-time process
as per Assumption 1 along with partial thermalizations, the variance of work is
bounded from below as

σ2
W(τ) ≥

(
1 − p0

)(Z(δmin)

Z(δmax)

−) κτTh
ε

μ2
W(τ) +

p0 e−κτ

(
Z(δmin)

Z(δmax)

) κτTh
ε (

ε + μW(τ)
)2

, (7.31)

where Z is the partition function Z : δ �→ 1 + e−δ/Th and μW(τ) is the average
work output of the process as given by Theorem 5. Moreover, the lower bound is
saturated in the adiabatic limit,

lim
τ→0

σ2
W(τ) = p0(1 − p0)ε

2, (7.32)

as well as in the isothermal limit,

lim
τ→∞

σ2
W(τ) = 0. (7.33)

Proof. We will first derive expressions for the probabilities of work values
W = 0 and W = ε when undergoing a finite-time process s per Assump-
tion 1 along with partial thermalizations using Theorem 6. Using the
expression for δ(t) as given by (7.6) we change the variable of integration
to δ in (7.25) and obtain the following after taking log on both sides:

lim
L→∞

log
( )

Pr[WL = 0]

= log
(

1 − p0

)
+

κτ

ε

∫ δmin

δmax

dδ

1 + eδ/Th
. (7.34)
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Evaluating the integral and exponentiating the above we have

lim
L→∞

Pr[WL = 0] =
(
1 − p0

) Z(δmin)

Z(δmax)

−( ) κτTh
ε

, (7.35)

where Z is the partition function. Similarly, (7.26) gives

lim
L→∞

log
( )

Pr[WL = ε]

= log p0 +
κτ

ε

∫ δmin

δmax

dδ

1 + e−δ/Th
. (7.36)

Again, evaluating the integral and exponentiating the above we obtain

lim
L→∞

Pr[WL = ε] = p0 e−κτ Z(δmin)

Z(δmax)

( ) κTTh
ε

. (7.37)

Now that we have the expressions for Pr[WL = 0] and Pr[WL = ε] it is
straightforward to obtain a lower bound for the variance of work as the
sum of these two contributions. Thus,

(
μWL(τ)

)2
+σ2

WL
(τ) ≥ Pr[WL = 0]

Pr[WL = ε]
(
ε − μWL(τ)

)2. (7.38)

Taking the limit L → ∞ and assuming that WL converges in probability
to the random variable W for the continuous process, we have

σ2
W(τ) ≥ lim

L→∞

{
Pr[WL = 0]

(
μW(τ)

)2
+

Pr[WL = ε]
(
ε − μW(τ)

)2
}

. (7.39)

Plugging (7.35) and (7.37) in the equation above gives (7.31). Let us now
look at the lower bound in the following two limiting cases.
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• Adiabatic limit, τ → 0:

lim
τ→0

{(
1 − p0

)(Z(δmin)

Z(δmax)

−) κτTh
ε

μ2
W(τ) +

p0 e−κτ

(
Z(δmin)

Z(δmax)

) κτTh
ε ( )2

}

= lim
τ→0

{(
1 − p0

)
μ2

W(τ) + p0

ε − μW(τ)

(
ε − μW(τ)

)2
}

= p0(1 − p0)ε
2, (7.40)

where the last line follows from (7.18). Recall that the average work
done when changing the energy gap from δmax to δmin adiabatically
is given by (7.17). Moreover, the variance of work for an adiabatic
process can be obtained by noting that the distribution of Wad ∈
{0, ε} is simply {1 − p0, p0}, i.e.

σ2
W(τ = 0) = p0(ε − Wad)

2 + (1 − p0)W2
ad

= p0(1 − p0)ε
2. (7.41)

Therefore, (7.40) and (7.41) together imply that the lower bound is
saturated in the said limit.

• Isothermal limit, τ → ∞:

lim
τ→∞

{(
1 − p0

)(Z(δmin)

Z(δmax)

−) κτTh
ε

μ2
W(τ) +

p0 e−κτ

(
Z(δmin)

Z(δmax)

) κτTh
ε (

ε − μW(τ)
)2
}

. (7.42)

Now, let us look at the relevant part in the first term of (7.42). Plug-
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ging in the definition for the partition function Z, we have

lim
τ→∞

(
Z(δmin)

Z(δmax)

−) κτTh
ε

= lim
τ→∞

(
1 + e−δmin/Th

1 + e−δmax/Th

−) κτTh
ε

= 0, (7.43)

as 1 + e−δmin/Th > 1 + e−δmax/Th . Similarly, we look at the relevant
part of the second term in (7.42) to obtain

lim
τ→∞

e−κτ

(
Z(δmin)

Z(δmax)

) κτTh
ε

= lim
τ→∞

(
e−ε/Th

(
1 + e−δmin/Th

1 + e−δmax/Th

)) κτTh
ε

= lim
τ→∞

(
1 + eδmin/Th

1 + eδmax/Th

) κτTh
ε

= 0, (7.44)

where we have used the fact that ε = δmax − δmin along with 1 +

eδmin/Th < 1 + eδmax/Th . Thus, we obtain

lim
τ→∞

σ2
W(τ) ≥ 0. (7.45)

Moreover, from Ref. [Åberg (2013)], we know that isothermal work
extraction is fluctuation-free, i.e.

σ2
W(τ = ∞) = 0. (7.46)

Again, (7.45) and (7.46) together imply that the lower bound is sat-
urated in this limit.
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7.2 Numerical results

In this section we present the results of the Monte Carlo simulation for the
Markov process, Fig. 6.1, to obtain estimates of the variance as a function
of the time period of the process. Furthermore, for a two-level system
that is initially in equilibrium with the bath, we find that the variance can
be estimated using Jarzynski’s fluctuation-dissipation relation.

7.2.1 Monte Carlo for variance of work

In order to compare the gap between the analytical lower bound obtained
in Corollary 3 with the actual variance, we perform Monte Carlo simula-
tions since an analytical derivation seems to be intractable owing to the
time-dependent nature of the Markov process, Fig. 6.1. The Monte Carlo
basically simulates a discrete version of the Markov process under As-
sumption 1, see Example 4. We plot the results of the same in Fig. 7.1.
As a test of credibility, we find that the error-bars on our numerically
obtained values of average work successfully envelop the analytical form
as a function of τ (Theorem 5). The error bars were obtained using 104

independent runs. The independent runs were parallelized using GNU
parallel [Tange (2018)].

7.2.2 Fluctuation-dissipation relation

A fluctuation-dissipation relation governing an irreversible thermody-
namic process is a statement about the relation between the dissipated
work (on average) when a system is driven away from equilibrium and
the corresponding fluctuations of work during such a process. Jarzynski’s
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Figure 7.1: (Color online) On the x-axis we have total time of the work
extraction process, τ. The solid green (gray) curve interpolates between
the adiabatic Wad = 0.134 and the isothermal Wis

Th
o = 0.204 limits. The

dashed blue (black) curve also interpolates between the adiabatic σ2
W(τ =

0) = 0.049 and the isothermal σ2
W(τ = ∞) = 0 limits. The Monte Carlo

simulations were done with L = 1000 steps, where L is the discretization
(see Example 4) and for integer values of τ ∈ [1, 30]. The parameter
values used are δmax = 1, δmin = 0.5, Th = 2, p0 = 1

1
+e , and κ = 1.
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Figure 7.2: (Color online) Fluctuation-dissipation relation for finite-time
processes. On the x-axis we have the total time of the work extraction
process, τ. Wd is the dissipated work. The Monte Carlo simulations were
done for L = 1000 steps, where L is the discretization (see Example 4) and
for integer values of τ ∈ [1, 30]. The parameter values used are δmax = 1,
δmin = 0.5, Th = 2, p0 =

+
1

1/2 , and κ = 1.
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[Jarzynski (1997)] much touted result gave such a relation in the weak
system-bath interaction limit. Basically, once the system is in equilibrium
with the ambient bath it is disconnected from the bath and then the work
extraction process is performed which essentially amounts to changing
the value of some relevant parameter (that governs the Hamiltonian) over
a finite amount of time. When the time over which the process is carried
out—the switching time—is large enough it renders the distribution of
work Gaussian and the fluctuation-dissipation relation follows. Denot-
ing the random variable for the work done during such an irreversible
process by W and its mean and variance by μW and σ2

W , respectively, the
dissipated work is Wdiss = μW − ΔF, the difference between the average
work done during the process, μW , and the average work done during
the corresponding reversible process i.e. the free-energy difference, ΔF.
The fluctuation-dissipation relation can then be expressed as

Wdiss = 2
β

σ2
W , (7.47)

where β = 1/kBTh with Th being the temperature of the ambient bath.
This relation has been generalized [Miller et al. (2019); Scandi et al. (2020)]
to the case where the system continues to be in contact with the bath dur-
ing the work extraction process. Using Theorem 5 with p0 = 1/(1 + eδmax/Th),
we plot the dissipated work, μW(τ)−ΔF, and the estimate of the variance
from the Monte Carlo simulation as a function of the total time period of
the process τ in Fig. 7.2. We observe that the dissipated work provides
an upper bound for the variance of work in general. This bound is satu-
rated in the limit of large τ in agreement with the aforementioned result
of Refs. [Miller et al. (2019); Scandi et al. (2020)].
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7.3 Distribution of work

This section is based on numerical analysis that was done using a dif-
ferent driving rate for the energy-gap δ(t); we assumed that the partial
thermalization curve follows an isotherm at a lower temperature Tc, on
an average1. However, the conclusions drawn for the distribution of work
should hold in general (independent of the driving rate).

As the partial thermalization curve follows an isotherm on an average,
p(t) = γc(t), where γc(t) is the corresponding Gibbs weight. Thus, the
general expression for partial thermalization as given by (6.2) becomes

dγc(t)
dt

= κ
(
γh(t)− γc(t)

)
, (7.48)

where γc(t) = + δ
1
(t)/Tc . Taking the derivative in the above and rearrang-

1 e
ing the terms, we obtain

δ′(t) = κTc ·
(
γc(t()− γh(t)

)
γc(t) 1 − γc(t)

) . (7.49)

For the numerical simulation, we want the system-bath interaction time,
Δt, as the excited state’s energy changes by an amount Δδ = ε/L at each
step. So, using (7.49), we have

Δt = Δδ · dt
dδ

=
ε

κLTc
·

γ(c(t)(1 − γc(t)
)

γc(t)− γh(t)
) . (7.50)

One can thus obtain the distribution for work using the probability with
which the system thermalizes with the bath, λ = κΔt, as shown in Fig. 7.3.

The numerically obtained distribution suggests that the asymptotic distri-
bution (L → ∞) might be uniform in the range (0, ε). If that were indeed

1For the sake of a neat visualization and in the hope of simplifications.
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Figure 7.3: Distribution of work W along the isotherm Tc when partially
thermalising with respect to the bath at Th at different scales (negative
signs indicate work gain). p[W = 0] and p[W = −0.5] are calculated
analytically for L = 103 using the corresponding generalisation of ex-
pressions from Fig. 6.2 and are in agreement with the numerical values
as seen in the plot with κ = 1.

the case then it would imply that Pr[W ∈ I] for any interval I ⊂ (0, ε)

is proportional to |I| and that the constant of proportionality is indepen-
dent of I in the L → ∞ limit. If for each possible value of W ∈ (0, ε), the
probability was O(1/L) (for large but finite L), then

Pr[W ∈ I] = O 1
L

( )
nI , ∀ I ∈ (0, ε), (7.51)



7. AVERAGE WORK AND VARIANCE 81

where nI is the number of work values in the interval I. Given that in our
problem all possible work values are integer multiples of ε/L for finite L,
we have nI = L · |I|/ε and

Pr[W ∈ I] = O(1). (7.52)

So, if the constant of proportionality in the above was the same for all
intervals I ∈ (0, ε) then one would be through. Hence, showing that the
distribution is uniform in the range (0, ε) boils down to proving: a) that
for each possible value of W ∈ (0, ε) the probability actually is O(1/L)
and, b) that the constant that appears there is the same for all intervals I
in the L → ∞ limit.

Let us begin by recalling Example 4 and looking at how the individual
probabilities scale with L. For W = ε/L, the following diagram represents
a path in which the state starts at 0 and flips to 1 once and flips back to 0
in the next step.

0 0 0 0 0

1 1 1 1 1

λγ (
h

1)

λ(
1−

γ
(

h
2) )

l = 0 l = 1 l = 2 l = 3 l = L

The above corresponds to W = ε/L. Obviously, the flips could happen
after the first step, i.e.

0 0 0 0 0

1 1 1 1 1

1 − λγ
(
h
1)

λγ (
h

2)

λ(
1−

γ
(

h
3) )

l = 0 l = 1 l = 2 l = 3 l = L
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Clearly, there are L − 1 ways of flipping once starting at 0. But, there is
exactly one path corresponding to W = ε/L starting at 1:

0 0 0 0 0

1 1 1 1 1
λ(

1−
γ
(

h
1) )

l = 0 l = 1 l = 2 l = 3 l = L

Therefore, as λ ∝ 1/L, we have

Pr
[ ∣
W = ε/L∣∣paths with two flips

]
= O

(
L − 1

L2

)
,

while

Pr
[ ∣
W = ε/L∣∣paths with one flip

]
= O

(
1
L

)
,

and so

Pr
[
W = ε/L

]
= O

(
1
L

)
.

Next, for W = 2ε/L, we could have the following diagrams correspond-
ing to paths where the state starts at 0:

0 0 0 0 0

1 1 1 1 1

λγ (
h

1)

1 − λ(1 − γ
(
h
2)
)

λ(
1−

γ
(

h
3) )

l = 0 l = 1 l = 2 l = 3 l = L

There are (L
2
−2) such paths as the first flip could happen at the second

step, or the third, etc. and similarly for the second flip—really it is the
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number of ways of choosing two points on the lower chain out of the
available L − 2 spots as such paths always start at 0. For example:

0 0 0 0 0 0

1 1 1 1 1 1

λγ (
h

1)

λ(
1−

γ
(

h
2) )

λγ (
h

3)

λ(
1−

γ
(

h
4) )

l = 0 l = 1 l = 2 l = 3 l = 4 l = L

However, all paths that involve four flips can be neglected since

Pr
∣

W = 2εL
∣∣paths with four flips = O L2

L4

[ ] ( )
.

Thus,

Pr
[ ∣
W = 2εL

∣∣paths with two flips
]
= O

(
(L − 1)/2

L2

)
,

as there are (L − 2)/2 paths that have exactly two flips i.e. the red ones.
The third kind of paths are the ones for which the state starts in 1. The
following is one such path:

0 0 0 0 0 0

1 1 1 1 1 1
λ(

1−
γ
(

h
1) )

λ(
1−

γ
(

h
3) )

λγ (
h

2)

l = 0 l = 1 l = 2 l = 3 l = 4 l = L

As the second flip could happen at any of the next L − 3 steps, there are
L − 3 such paths with exactly three flips starting at 1 and hence can be
neglected as

Pr
[ ∣
W = 2εL

∣∣paths with three flips
]
= O

(L − 3
L3

)
.

The fourth kind of path is where the state starts at 1 and stays there and
then flips and there is exactly one such path:
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0 0 0 0 0

1 1 1 1 11 − λ(1 − γ
(
h
1)
)

λ(
1−

γ
(

h
2) )

l = 0 l = 1 l = 2 l = 3 l = L

The above diagram implies that

Pr
[ ∣
W = 2εL

∣∣path with one flip
]
= O

( 1
L

)
.

We could carry on like this but the counting process becomes intractable
as we start looking at higher values of W. For example, for W = ε/2, we
find that the paths that were ignored in the above two cases (three flips
and four flips) start contributing such that there seems to be no longer
O(1) number of O(1/L) terms in Pr[W = ε/2].
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8

Optimal processes

We considered specific models for partial thermalization in Chapter 6
and Chapter 7. However, one might be interested in partial thermaliza-
tion processes that are optimal in some sense—maximize average work
for fixed time or minimize time given a fixed threshold for work output.
We explore this question in this chapter, first by treating the probabil-
ity of occupation for the excited state, p, as an independent variable in
Section 8.1 and then, in terms of time t in Section 8.2.

8.1 p as independent variable

The average work done along a path δ(p) as in Fig. 8.1 with p as an
independent variable is

W[δ] =

∫ pb

pa

p δ′(p)dp, (8.1)
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Figure 8.1: The dashed lines are various possible paths connecting the
given initial and final points a and b each of which represents a partial
thermalization model.

while the time taken along the same path can be obtained using (6.2) to
obtain

T[δ] =

∫ pb

pa

dp
γh(δ)− p

, (8.2)

where we have suppressed the dependence on time. First, let us minimize
(8.2). The problem is that of variational calculus and the corresponding
Euler-Lagrange equation is as below.

∂

∂δ

( )
1

γh(δ)− p
−

dp
∂

∂δ′

(
1

γh(δ)− p

)
= 0. (8.3)

Taking the derivative yields

1
Th

eδ/Th(
1 − p(1 + eδ/Th)

)2 = 0. (8.4)

The solution to the above is δ(p) = −∞. As we know that isothermal pro-
cesses at Th for which δ(p) = Th ln 1/p − 1

( )
take the maximum amount

of time, i.e. infinitely long, the said solution must correspond to a mini-
mum.

However, there are a few issues with the above problem: (a) The la-
grangian in (8.2) is zeroeth order in δ′ and is over-determined by the
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boundary conditions δ(pa) = δa, δ(pb) = δb. (b) The zeroeth order solu-
tion is discontinuous and implies that the work done along the solution
is infinite!

In order to deal with the discontinuity, instead of minimizing time, we
could treat time as a constraint and maximize work. The problem is thus:

=Maximize: W[δ]
∫ b

a
p δ′(p)dp,

under the constraint: T[δ] =

∫ b

a

dp
γh(δ)− p

= T,

with boundary conditions: δ(pa) = δa,

δ(pb) = δb. (8.5)

The Euler-Lagrange equation for the above problem is

∂

∂δ
p δ′(p) −

dp
∂

∂δ′
p δ′(p) = λ1

∂

∂δ

( ) ( ) { (
1

γh(δ)− p

)
−

d
dp

∂

∂δ′

(
1

γh(δ)− p

)}
, (8.6)

where λ1 is the lagrange multiplier for the constraint. The above gives

−1 = λ1
∂

∂δ

( )
1

γ( h(δ)− p

= −λ1

∂
∂δ γh(δ)− p

)
(

γh(δ)− p
)2 (8.7)
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Substituting for γh(δ), we have

∂

∂δ

(
γh(δ)− p

)
=

∂

∂δ

(
1

1 + eδ/Th

)

= −
∂
∂δ

(
1 + eδ/Th

)
(
1 + eδ/Th

)2

= − 1
Th

eδ/Th(
1 + eδ/Th

)2 . (8.8)

Plugging (8.8) in (8.7) we get

−1 =
λ1

Th

eδ/Th(
1 − p(1 + eδ/Th)

)2 . (8.9)

As is evident (8.9) is still ill-defined even though we have dealt with the
discontinuity issue.1 The boundary conditions can’t be satisfied due to
the fact as the problem is linear in δ′(p). We need a second-order differ-
ential equation in δ(p) to be able to satisfy our boundary conditions. One
way to do so is to introduce a constraint that is non-linear in δ′(p). Thus,
we have the following modified problem:

=
∫ b

a
p δ′(p)dp,Maximize: W[δ]

under the constraints:

T[δ] =

∫ b

a

dp
γh(δ)− p

= T,

∫ b

a

(
δ′(p)

)2dp ≤ C2,

=with boundary conditions: δ(pa) δa,

δ(pb) = δb. (8.10)

1Swapping the objective and the constraint in (8.5) would still result in the same
issue.



8. OPTIMAL PROCESSES 89

The above constrained optimization problem is defined only when the
constraint is active i.e., when the strict equality holds as the solution for
the inactive constraints is the same as that of the unconstrained problem
which is ill-defined in this case. The Euler-Lagrange equation for the
problem with equality constraint is

∂

∂δ
p δ′(p) −

dp
∂

∂δ′
p δ′(p) = λ1

∂

∂δ

1
γh(δ)− p

( ) ( ) { ( )
−

d
dp

∂

{∂δ′

(
1

h(δ)− p

)}
+

λ2
∂

∂δ

(γ(
δ′(p)

)2
)
−

d ∂

∂δ′

((
δ′(p)

)2
)}

. (8.11)
dp

The above equation simplifies to the following:

−1 =
λ1

Th

eδ/Th(
1 − p(1 + eδ/Th)

)2 − 2λ2δ′′(p).

Redefining λ2 := −λ2 gives us

2λ2δ′′(p) +
λ1

Th

eδ/Th(
1 − p(1 + eδ/Th)

)2 + 1 = 0. (8.12)

The constraint
∫ b

a

(
δ′(p)

)2dp = C2 can be interpreted as enforcing smooth-
ness; recall that in the method of Lagrange multipliers, used to obtain the
Euler-Lagrange equations, the constraints are introduced into the objec-
tive functional as an additive term. Thus, a large and positive value of
the Lagrange multiplier λ2 implies a large penalty in the form of positive
work for a solution with a given amount of steepness.

Now, (8.12) can be solved numerically by treating λ1 and λ2 as param-
eters. But, there is no analytical way to prove that (8.12) has a solution
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for any specific range of values of (λ1, λ2). To probe this numerically, we
obtain2 a landscape of possible solutions on a λ1-λ2 plot in Fig. 8.2.

0.002 0.004 0.006 0.008 0.010 2

-0.10

-0.05

0.05

1

Figure 8.2: This is a plot of solutions for the variational calculus problem,
see (8.12) for reference, where each solid dot represents existence of a
solution while blank regions indicate no solutions.

While each pair of values of the parameters (λ1, λ2) (for which there exists
a numerical solution) corresponds to a specific optimal path on the δ(p)-
p plot, Fig. 8.3, there is no continuity of solutions in (λ1, λ2) as is clear
from Fig. 8.2. Even though we don’t expect continuity of solutions for
the whole (λ1, λ2) plane but only in some physically meaningful interval
there is no clear way to establish it analytically.

2Using Mathematica.



8. OPTIMAL PROCESSES 91

<latexit sha1_base64="wvHH22E5IxyFxXrsDt9yA6dqA/o="></latexit>

<latexit sha1_base64="L4849j2ZejH8AHM4Csfkeyp1eWQ="></latexit>

<latexit sha1_base64="YCrcYCPvlzUgNbzjUQcVz+DFoi4="></latexit>

<latexit sha1_base64="QCVmE5ugikAWgRMiz3vx8FrlD8E="></latexit>

<latexit sha1_base64="xp5a9oouAcLPhVodF3anjPaiFLg="></latexit>

<latexit sha1_base64="FICSjj9lxRq03xlCiPjenJoVUL4="></latexit>
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δ(p) = δa

Optimal paths
λ2 = 0.006 , λ1 ∈ [−0.06, 0.01]

p

Figure 8.3: This is a p-δ plot with optimal partial thermalization processes
for a range of values of (λ1, λ2). The isotherms at temperatures Tc and Th

are plotted for reference.

8.2 t as independent variable

In this section, we work with time t as the independent variable and
rewrite the optimization problem in (8.10) to see if we can arrive any
simplifications. As

δ̇(t)
δ′(p) = ,

ṗ(t)

we can write (8.1) using (6.2) in terms of t as

W[δ] =
∫ T

0
dt p(t)δ̇(t), (8.13)

where T is the total duration. The time constraint becomes trivial and so
we are left with the second constraint as in (8.10). The resulting Euler-
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Langrange equation would thus be

∂

∂δ
p(t) δ̇(t) −

dt
∂

∂δ̇

( ) (
p(t) δ̇(t)

)
= λ

{
∂

∂δ
˙

((
δ(t)
)2
)
−

d
dt

∂

∂δ̇
˙

((
δ(t)
)2
)}

. (8.14)

The above simplifies to the following equation:

ṗ(t) = −2λδ̈(t). (8.15)

The boundary conditions are δ(0) = δa and δ(T) = δb. Recalling (6.2) i.e.,

ṗ(t) = γh(t)− p(t), (8.16)

a first-order ODE which can be solved along with the initial condition
p(0) = pa, we are still left with the condition p(T) = pb that needs to be
enforced. Integrating (6.2) along with p(0) = pa gives us a solution that
is a functional of δ(t):

p(t) = pa + e−t
∫ t

0
dt′ et′γh

(
δ(t)
)
. (8.17)

So, the constraint p(T) = pb in turn results in a constraint on δ(t) i.e.

0
dt′ et γh δ(t)

∫ T ′ ( )
= (pb − pa)eT, (8.18)

under which we should optimize (8.13). Thus, we have the final problem
as stated below.

=
∫ T

0
dt p(t) δ̇(t),Maximize: W[δ]

under the∫constraints:
T

0

(
δ̇(t)
)2dt = C2,∫ T

0
dt etγh

(
δ(t)
)

= (pb − pa)eT,

with boundary conditions: δ(0) = δa,

δ(T) = δb. (8.19)
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The Euler-Lagrange equation for the above can be obtained as below.

∂

∂δ
p(t) δ̇(t) −

dt
∂

∂δ̇
p(t) δ̇(t) = λ1

( ) ( ) {
∂

∂δ
˙

((
δ(t)
)2
)
−

d
dt

∂

∂δ̇
˙

((
δ(t)
)2
)}

+

λ2

{
∂

∂δ

(
etγh

(
δ(t)
))

−

d
dt

∂

∂δ̇

(
etγh

(
δ(t)
))}

. (8.20)

Taking the derivatives above, we get

− ṗ(t) = 2λ1δ̈(t)− λ2 et

Th

eδ/Th

(1 + eδ/Th)2 . (8.21)

Plugging (6.2) on the left-hand-side, we obtain

−γh δ(t)
( )

+ p(t) = 2λ1δ̈(t)− λ2 et

Th

eδ/Th

(1 + eδ/Th)2 .

But since p(t) is a functional in δ(t), (8.17), we get the following integro-
differential equation:

pa + e−t
∫ t

0
dt′ et′γh

(
δ(t)
)

= 2λ1δ̈(t)− λ2 et

Th

eδ/Th

(1 + eδ/Th)2 +

γh
(
δ(t)
)
. (8.22)

The above could be solved under the given boundary conditions however
Mathematica is unable to do the integration directly. It needs to be brought
into an ODE form which is also not going to work here as revealed by
differentiating (8.22) once. In any case, there is still the problem of not
being able to establish that the above would have solutions for any given
pair of values of (λ1, λ2).



94

9

Application: finite-time heat
engines

Finite-time heat engines are characterized by their non-zero power out-
put in contrast to the ideal Carnot engine. In this section we discuss
finite-time heat engines operating in cycles that are composed of work
extraction processes involving partial thermalizations and instantaneous
adiabatic energy-level transformations. First, we review the Carnot en-
gine for a classical two-level system in Section 9.1 and then study one
such engine that incorporates work extraction processes mediated by par-
tial thermalizations replacing the ideal isothermal processes of the Carnot
cycle in Section 9.2. We then optimize the power output of such cycles for
fixed time periods over different set of parameters and constraints in Sec-
tion 9.2.1 and Section 9.2.2. Finally, we compare the two in Section 9.2.3.
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9.1 Carnot engine: review

Let us assume that we have access to a hot bath at temperature Th, a
cold bath at temperature Tc, and a two-level system whose energy gap
δ can be varied over a fixed range between δmin and δmax. And, let the
occupation probability for the excited state be denoted by p. As done
earlier, let us set the ground state energy of the system to be zero. We
use the formalism of Ref. [Quan et al. (2007)] where a Carnot engine was
studied in the quantum context but also applies to our case. Thus, a
Carnot cycle is composed of four stages that can be defined using points
a, b, c, d on the p − δ plot for a two-level system, Fig. 9.1. First, we have

Th

Tc

p

δ

b

c
d

a

Figure 9.1: Carnot cycle for a two-level system with energy gap δ and
excited state occupation probability p.

• a �→ b, an isothermal expansion: at point a, the system is in a Gibbs-
thermal state at temperature Th with an energy gap δa. The occupation
probability for the excited state is pa = 1 . During an isothermal

1+eδa/Th

expansion in a two-level system, the energy levels must change such
that they are scaled by the same factor k1 < 1, see Section B.1 for proof.
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The state of the system at point b is a Gibbs state at temperature Th with
an energy gap δb = k1δa. As has been shown in Ref. [Åberg (2013)] the
work done during such a reversible isothermal process is essentially
deterministic, and is given by

Z(δb)

Z(δa)
, (9.1)Wab = Th ln

where Z is the partition function.

• Then, b �→ c, an adiabatic process: during an adiabatic process the
energy levels of the system change without any accompanying change
in occupation probabilities. In particular, at this stage the energy levels
are changed by a factor such that the system is in the Gibbs state with
respect to the cold bath at temperature Tc implying

δb
Th

=
δc

Tc
. (9.2)

Thus, the energy gap of the system at point c is δc = Th/Tc k1δa. The
work done in this process Wbc is a random variable as it depends on the
state of the system at point b1. The average value of the work done
during this process is

Wbc =
1

1 + eδc/Tc
(δb − δc). (9.3)

• Next, the compression stage with c �→ d, an isothermal compression:
again, during this process the energy levels are scaled by a factor k2 >

1. So, the system is still in a Gibbs-thermal state with respect to the
cold bath at temperature Tc at point d but with an energy gap δd =

Th/Tc k1k2δa. The work cost of this process is deterministic and is given
by

Wcd = −Tc ln
Z(δd)

Z(δc)
. (9.4)

1This means that if the system was in the ground state then it continues to be in the
ground state of the new Hamiltonian.
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• Finally, we have d �→ a, an adiabatic process where the energy gap is
changed such that we go back to the starting point a with energy gap
δa and pd = pa. Therefore,

δd
Tc

=
δa

Th
. (9.5)

But, δd = Th/Tc k1k2δa. This implies that the constant k2 is not inde-
pendent but must satisfy the relation k2 = k

1
1
. The average work cost of

this process is

Wda =
1

1 + eδa/Th
(δa − δd). (9.6)

The total work done during the Carnot cycle, denoted by the random
variable WC, is just the sum of work done at each stage and is given by

WC = Wab + Wbc − Wcd − Wda. (9.7)

The distribution of work and expected efficiency of the Carnot engine
can then be obtained as stated in the following lemma whose proof can
be found in Section B.3.

Lemma 13. The total work done during a microscopic implementation of the
Carnot cycle is a random variable WC distributed according to a four-point dis-
tribution listed in the table below.

wC Pr [WC = wC]

(Th − Tc) ln Z(δb)/Z(δa)+0 (1 − pa)(1 − pb)

(Th − Tc) ln Z(δb)/Z(δa)−(δa − δd) (1 − pb)pa

(Th − Tc) ln Z(δb)/Z(δa)+δb − δc (1 − pa)pb

(Th − Tc) ln Z(δb)/Z(δa)+δb − δc − δa + δd pb pa
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The expected efficiency of the Carnot cycle is

η
avg
C =

(
1 − Tc

Th

)
. (9.8)

Now, for the given pair of temperatures Tc and Th the Carnot efficiency is
the maximum attainable efficiency. It is independent of the points a, b, c,
and d on the p− δ plot, Fig. 9.1, that define a work extraction cycle for the
engine connecting the two isotherms. However, there is another quantity
that becomes relevant under the constraint of being able to vary the en-
ergy gap δ only between δmin and δmax, the average work output. In fact,
the cycle that maximizes the average work output is the Carnot cycle that
encloses the largest area on the p − δ plot—it maximizes both efficiency
and average work. We state this intuition in the lemma below deferring a
formal proof to Section B.4 for completeness.

Lemma 14 (Optimal Carnot cycle for average work). Given a Carnot engine
formed by a classical two-level system operating between a hot bath at tempera-
ture Th and a cold bath at temperature Tc such that the energy gap of the system
δ can only be varied over a fixed range between δmin and δmax, the cycle (defined
by the points a, b, c, and d on the p − δ plot) that maximizes the average work
output of the Carnot engine is the one for which δa = δmax and δc = δmin.

The power output of such a cycle is zero due to the isothermal processes
that require infinitely long equilibration times. But, finite-time work ex-
traction cycles have non-zero power output and for such cycles one is
generally interested in the efficiency at maximum power [Seifert (2012)].
We analyze such engines in the next section.

9.2 Finite-time heat engines

For constant time periods, maximizing power amounts to maximizing the
average work output. We define a modification of the Carnot cycle that
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incorporates the finite-time element—replacing isothermal processes in a
Carnot cycle by work extraction processes with partial thermalizations.
So, a finite-time cycle denoted by a �→ b �→ c �→ d �→ a on the p − δ plot
constitutes a sequence of four processes. First we have

• a �→ b , work extraction with partial thermalizations with respect to the
hot bath. The coordinates of point a on the p − δ plot are (δa , pa). The
system is driven under Assumption 1 by an amount δa − δb1 for a time
τ1. The occupation probability for the excited state pb(τ1) can then be
obtained using Lemma 12. Furthermore, the average work done during
this process would be given by Theorem 5.

• Then, b �→ c, an adiabatic process. The energy gap is changed from δb

to δc keeping the occupation probabilities fixed, i.e. pc = pb(τ1). The
average work done during this process would be

Wbc = pb(τ1)
(
δc − δb

)
. (9.9)

• Next, we have c �→ d , work extraction with partial thermalizations with
respect to the cold bath. Starting from the point c with coordinates
(δc , pb(τ1)) the system is again driven under Assumption 1 for a time
τ2 such that the energy gap increases from δc to δd . To ensure that we
complete the cycle and reach point a in the end δd must be such that

pd (τ2) = pa . (9.10)

An expression for pd1(τ2) and average work cost of this process can
be derived along the lines of Lemma 12 and Theorem 5 as done in
Section B.5.

• Finally, we close the loop with d �→ a adiabatically. Having reached δd

in accordance with (9.10), we complete the cycle by changing the energy
gap keeping the occupation probabilities fixed. The average work cost
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Figure 9.2: (Color online) The optimal finite-time cycles as obtained in
Section 9.2. On the x-axis we have occupation probability for the excited
state p. On the y-axis we have the energy gap δ. We use parameters
δmax = 1, δmin = 0.25, Th = 2, and Tc = 1. On the left we have optimal
cycles as obtained in Section 9.2.1 with δa = δmax and δb = 2δmin. On the
right we have optimal cycles from Section 9.2.2.

of this process is simply

Wda = pa
(
δa − δd

)
. (9.11)

The time period of the cycle as described above would thus be T =

τ1 + τ2. Since we are interested in the efficiency at maximum power,
we want to maximize the average work output of a finite-time cycle with
a fixed time period T = τ1 + τ2, which would simply be the sum of the
average work done at each of the four steps described above. The pa-
rameters characterising a finite-time cycle as described above are given
by the set {δa , pa , δb , δc , τ1}. As T = τ1 + τ2, only one of them can
be chosen freely—let it be τ1. The fact that for every value of τ2 one has
to solve (9.10) for δd leaves no room for analytical analysis. We perform
numerical optimizations instead, setting the thermalization rates for both
the processes a �→ b and c �→ d to be unity without loss of generality.
The numerical optimizations were performed on Mathematica [Wolfram
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Figure 9.3: (Color online) The cumulative distribution function for the
random variable W, the work extracted during different optimal cycles
(different values of T ) as obtained in Section 9.2. On the x-axis we have
the possible work values. The Monte Carlo simulations were performed
for 104 samples for each of the optimum cycles. On the left is the distri-
bution for optimal cycles as obtained in Section 9.2.1, where δa = δmax

and δb = 2δmin. On the right is the distribution for optimal cycles from
Section 9.2.2.

Research, Inc.] using the Nelder-Mead method [Wolfram Language & Sys-
tem Documentation Center]. First, we perform optimizations for the spe-
cial case where one can recover the Carnot cycle, Lemma 14, in the limit
of large T .

9.2.1 Optimal finite-time cycles limiting to Carnot cycle

In order to recover the Carnot cycle in the limit of large time period of a
finite-time cycle, we need to fix the values of the parameters accordingly.
For the first process to approach the hot isotherm, it is clear that δa and δb

should be the same as in the case of the optimal Carnot cycle, Lemma 14.
However, δc must be chosen to lie on the cold isotherm, i.e. it should
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satisfy the relation

pb(τ1) =
1

1 + eδc /Tc
, (9.12)

since only then would the third leg, i.e. c �→ d approach the cold isotherm
in the limit of large T . This implies that we are left with only one free pa-
rameter, namely τ1. Thus, maximizing average work output for different
values of T results in different optimal cycles which we plot on the left
in Fig. 9.2. We also plot the cumulative distribution for the different op-
timal cycles along with that of the Carnot cycle to study the fluctuations
as we approach equilibrium in Fig. 9.3 (left). Note that the Carnot cycle
has a four-point work distribution, see Lemma 13. The distributions for
finite-time cycles are obtained by performing Monte Carlo simulations.
We find that even though the average work cycles start approaching the
Carnot cycle quickly the cumulative distribution still remains smooth un-
til we go to very large values of T .

9.2.2 General optimal finite-time cycles

Previously we were interested in the special case that gave the Carnot
cycle in the limit of large time periods. However, for the most general
problem, where one has access to a hot bath at temperatures Th and a
cold one at temperature Tc and the energy gap can only be driven be-
tween δmax and δmin, one should optimize all the parameters in the set
{δa , pa , δb , δc , τ1}. Here, we find that the optimal cycle in the limit
of large time period approaches a different cycle; one where the two
isotherms are connected by two purely thermal processes. So, d �→ a
and b �→ c would be thermalizations connecting the two isotherms at
d = a = δmax and δb = δc = δmin, respectively, the limiting cycle as
shown in Fig. 9.2 on the right. This can be understood intuitively since
we want to maximize work output—the processes where we have to per-
form work are not favourable. As the work output of an adiabatic process
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is less than that of the corresponding isothermal process (and vice-versa
for work input), the adiabatic legs are completely lost and get replaced
by isothermal extensions. Even though this cycle is not relevant from
the point of view of power maximization as for large time periods power
is no longer a meaningful metric, it is worth noting the curious form of
the cycle in contrast to the corresponding maximum efficiency cycle—the
Carnot cycle. We plot the optimal cycles for different values of time peri-
ods T in Fig. 9.2 (right) along with the cumulative distributions in Fig. 9.3
(right).

9.2.3 Comparing finite-time optimal cycles

First, we compare the two scenarios discussed above in terms of their
cumulative distributions and find that the general optimal cycles have a
better quality of work—less fluctuations. For example, in Fig. 9.4 we plot
the distributions for T = 10 and observe that the cumulative distribution
for the solution of the general optimum problem crosses the one obtained
in Section 9.2.1 around w = 0 and lies below it for almost all negative
values of w. This means that the probability with which one has to input
work in the former case is always less than the latter. Intuitively, there is
no real reason to constrain the parameter values as we did in Section 9.2.1
other than the imposed restriction of recovering the Carnot cycle in the
limit of large T . This limit is not particularly interesting from the point of
view of maximizing power as it vanishes in the said limit. However, such
a comparison is at the level of fluctuations only. Next, we compare P∗,
the maximum power itself as a function of T for the two cases in Fig. 9.5
and find that the general optimal power is higher than the corresponding
power from optimal cycles that approach the Carnot cycle in the limit of
large time periods. This is what one would expect anyway as the latter is
a restricted version of the general optimization problem, Section 9.2.2.
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Figure 9.4: (Color online) Comparing cumulative distribution of work for
optimal cycles obtained in Section 9.2.1 and Section 9.2.2. On the x-axis
we have the possible work values. Negative values of w imply a net work
input.

Fig. 9.4 and Fig. 9.5 together imply that the general optimal cycles are
better as far as power output and fluctuations are concerned. Finally, we
compare the optimal efficiencies η∗ for the two scenarios as a function of
T in Fig. 9.6 and find that the optimal cycles that approach the Carnot
cycle in the limit of large time period T have much higher efficiencies
compared to the optimal cycles for the general problem. We also com-
pare these with the Curzon-Ahlborn efficiency ηCA = 1 −

√
Tc/Th and

note the curious cross-over between η∗(T ) for the general problem and
ηCA. Moreover, we observe that the optimal cycles obtained in both the
cases have an assymmetric relation between the corresponding values of



9. APPLICATION: FINITE-TIME HEAT ENGINES 105

10 15 20 25 30
T

1.0

1.5

2.0

P
∗ (
T
)

×10−3

general

approaching Carnot

Figure 9.5: (Color online) Comparing maximum power output for opti-
mal cycles obtained in Section 9.2.1 and Section 9.2.2. On the y-axis we
have the efficiency at maximum power P∗(T ). On the x-axis we have
the time period of the finite-time cycles, T . We use parameters Th = 2,
Tc = 1, ηC = 0.5.

τ1 and τ2. While there is no a-priori reason to expect a symmetric partion-
ing, namely one where τ1 = τ2 = T /2, similar results were obtained for
a heat engine using a quantum dot in Ref. [Harunari et al. (2021)] where
the efficiencies at maximum power were found to exceed the Curzon-
Ahlborn value. The Curzon-Ahlborn efficiency [Curzon and Ahlborn
(1975); Novikov (1958)] was derived for a specific model of heat transfer—
it is not a universal bound. However, as discussed in Ref. [Seifert (2012)],
ηCA is close to the efficiency at maximum power for many different mod-
els. Further discussion on the topic is beyond the scope of this paper
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Figure 9.6: (Color online) Comparing efficiency at maximum power for
optimal cycles obtained in Section 9.2.1 and Section 9.2.2. On the x-axis
we have the time period of the finite-time cycles, T . On the y-axis we
have efficiency η. We use parameters Th = 2, Tc = 1, ηC = 0.5, and
ηCA = 0.293.

and we refer the interested reader to the aforementioned review. Our
view is that the problem of maximizing power is system specific and de-
pends upon the given set-up. To ask for universal bounds on the same
requires establishing general features in the model. An attempt along
the same direction was made in Ref. [Esposito et al. (2010)] where the
authors studied a low-dissipation Carnot engine, i.e. one that was op-
erating for a large but finite time period and obtained bounds on the
efficiency at maximum power by maximizing power over the thermaliza-
tion times with the hot and cold reservoirs. (Our problems as studied in
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Section 9.2.1 and Section 9.2.2 are different since we only optimize over
one of the two thermalization times.) They were then able to obtain the
Curzon-Ahlborn efficiency as a special case when the dissipation with
respect to the reservoirs was symmetric. Further generalizations to the
bounds obtained in Ref. [Esposito et al. (2010)] and related work can be
found in Refs. [Holubec and Ryabov (2016); Ma et al. (2018b)].
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Conclusion & Outlook

To summarize, we pursued two themes within the single-shot quantum
information theoretic framework. In Part I, we extended the work done in
Ref. [Koyama et al. (2017)] on minimax analysis to Bregman divergences
for single-shot measurements. Moreover, by re-formulating Holevo’s the-
orem [(Holevo, 1982, pg. 171)] for the covariant state estimation problem in
terms of estimators, we found that a covariant POVM is, in fact, minimax
with Bregman divergence as the distance-measure. In addition to that,
we found that it suffices that a measurement be covariant only under a
subgroup H of covariant group G such that the unitary representation
of H forms a unitary 2-design for it to be minimax. Finally, in order to
understand the problem of finding a minimax POVM for arbitrary quan-
tum states, we studied the problem for a qubit observing that a spherical
2-design defines a minimax POVM for a qubit.

In the covariant state estimation problem, we assumed that the under-
lying group G was compact. It is natural to ask if these results can be
extended to infinite-dimensional systems, or equivalently, non-compact
groups. A simple system that comes to mind when one thinks of an
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infinite-dimensional system is the set of coherent states of a Harmonic
oscillator. The underlying group is the translation group T acting on
the complex plane. The projective unitary representation of which is the
Weyl-Heisenberg translation operator {D(α) | α ∈ C}. Now, the trans-
lation group is non-compact. This means that one cannot define a nor-
malisable measure on the group. Our derivation of the main result on
covariant state estimation, Theorem 3, to obtain a minimax measurement
uses a Bayesian approach. Recall that a minimax measurement is the one
that minimizes the worst-case risk of a minimax estimator. Thus, we are
interested in the following expression:

inf
P ρ̂

inf sup
θ

ρRP(ρθ, ˆ).

The very first step of the proof involves re-writing the supremum over θ

as a supremum over the probability distributions on Θ, i.e.

inf
P ρ̂

inf sup
θ

ρRP(ρθ, ˆ) = inf
P ρ̂

inf sup
π

∫
Θ

ρdπ(θ)RP(ρθ, ˆ).

Obviously, we cannot do so in the case of the translation group T that acts
on the complex plane. So, our approach will not apply to the most general
problem of estimating coherent states generated by the Weyl-Heisenberg
translation operator {D(α) | α ∈ C}. Indeed, a more general theorem for
the case of locally compact groups [Bogomolov (1982); Hayashi (2017)]
shows that covariant measurements minimize the worst-case risk (average
risk cannot be defined for non-compact groups). However, the formalism
considered in [Bogomolov (1982)] does not include estimators. It would
be interesting to extend the same to our setting, and to come up with an
appropriate definition of a Bayesian estimator for such cases.

Another extension would be to find minimax POVMs for arbitrary quan-
tum states. It would be intriguing to see if some kind of a t-design
comes out as a solution. However, it would require a more general-
ized approach than mere brute-force calculations which become tedious



10. CONCLUSION & OUTLOOK 110

in higher dimensions. One could also generalize these results to other
distance-measures such as Fidelity and Renyi divergences. The authors
of Ref. [Ferrie and Blume-Kohout (2016)] have derived the Bayes estima-
tor for distance-measures based on Bhattacharya distance. Partial results
[Kueng and Ferrie (2015)] are known for fidelity as the distance-measure,
but the Bayes estimator remains unknown for a general state with fidelity
as the distance-measure. But, these generalizations are not so straight
forward either.

In Part II, changing gears, we looked at single-shot finite-time work ex-
traction processes. We analyzed fluctuations of work in such processes for
two-level systems and obtained analytic expressions for (a) average work
and (b) lower bound for variance as functions of time. We also studied
these processes in the context of work extraction cycles performing nu-
merical optimizations for the power output of such cyclic processes. We
found that finite-time processes are inherently prone to fluctuations that
result in broad distributions of work, noting that since the Markov pro-
cess that lies at the heart of the overall physical model is not a simple
one, an expression for the variance of work could not be obtained. To
illustrate this point, we recall Fig. 6.2. It is clear then that one can write
the variance for a discrete L-step process as

σ2
W = ∑

x

p(x)W2(x)−
(
∑

x

p(x)W(x)
)2

, (10.1)

where x counts all the paths that correspond to a fixed amount of work
W(x) and p(x) is the total probability of occurrence of those paths during
the process. For example, there would be various paths corresponding to
W = ε/2 and one needs to count these paths and sum their contribution
which is where the complexity lies. However, there is exactly one path
each corresponding to W = 0 and W = ε, respectively. We were able
to use this fact to obtain the lower bound for variance. In fact, a similar
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reasoning was used by the authors of Ref. [Marathe and Dhar (2005)] to
derive the distribution of work for a similar process in the limit of slow
driving which allowed them to ignore all but a few relevant paths. On this
note, we would like to mention that there exist approaches [Miller et al.
(2020); Silaev et al. (2014)] for deriving the distribution of work within
the Lindblad master equation formalism for arbitrarily driven quantum
systems interacting weakly with the bath. However, such analyses lead
to generic expressions for average work and variance. Whether they can
be solved to obtain closed form analytical expressions given specific driv-
ing rates and fixed thermalization times is beyond the scope of this work
and constitutes a future study. Finally, we remark that one of the original
motivations for this work was to observe the resource resonance phe-
nomenon as seen in Ref.[Korzekwa et al. (2019)] (within the resource the-
ory for thermodynamics) in a physical system but we could not make any
relevant connections.
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Appendix A

Part I

A.1 Quantum Bayes estimator for Bregman di-

vergence

ρ ρ

ρ ρ

Theorem 7. If the loss function is Bregman divergence, see Definition 3, then

EθEX|θ[Df (ρθ, ˆ(X))− Df (ρθ, ˆB(X))] ≥ 0,

for all states θ ∈ Θ and estimators ˆ, where ˆB is the Bayes estimator, see
Equation(2.3).

Proof.

ρ ρEθEX|θ[Df (ρθ, ˆ(X))− Df (ρθ, ˆB(X))] =
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Θ

dπ(θ)
∫

dp(x|θ) tr
[

ρf (ρθ)− f ( ˆ(x))−

ρ̂ ρ̂ ρ̂f ′( (x))(ρθ

X
− (x))− f (ρθ) + f ( B(x)) +

ρ̂ ρ̂
]

f ′( (x))(ρθ − B(x))

=
Θ

dπ(θ)
∫ B ∫

dp(x|θ) tr
[

ρ ρ

f ′(ρ̂ ρ̂ ρ̂ ρ̂(x))(ρθ

X
− (x)) + f ′( B(x))(ρθ − B(x))

f ( ˆB(x))− f ( ˆ(x))−]
=

∫
f ′
X

dpπ(x) tr
[

ρ ρf ( ˆB(x))− f ( ˆ(x))−

(ρ̂ ρ ρ(x))( ˆB(x)− ˆ(x))
]
+∫

X

[
ρ̂ ρ̂ ρ̂

]
=

∫
X

ρ ρ

dpπ(x) tr f ′( B(x))( B(x)− B(x))

dpπ(x)Df ( ˆB(x), ˆ(x)) ≥ 0. (A.1)

ρ ρ

The last inequality follows from the non-negativity of Bregman diver-
gence.

Corollary 4. For all a-priori probability distributions πΘ(θ) over the parameter
space ΩΘ,

r(π, ˆ) ≥ r(π, ˆB),

i.e. the Bayes estimator minimizes the average risk for Bregman divergence.

A.2 Proof of Lemma 1

We first present the Radon-Nikodym theorem for operator-valued mea-
sures Maynard (1972), without proof, as stated in (Holevo, 1982, pg. 167).

Proposition 1 (Radon-Nikodym theorem for operator-valued measures).
Let (X , Σ) be a measurable space and let {M(B); B ∈ Σ} be an additive
operator-valued function dominated by a measure {m(B); B ∈ Σ} in the sense



122APPENDIX A. PART I

that

|〈φ|M(B)|ψ〉| ≤ m(B)‖φ‖ ‖ψ‖, B ∈ Σ,

for all φ, ψ ∈ H. Then, there exists an operator-valued function P(.) defined
uniquely for m-almost all x ∈ X (i.e. for all x except for a set of zero m-measure),
satisfying ‖P(x)‖ ≤ 1 such that

〈φ|M(B)|ψ〉 =
∫

B
〈φ|P(x)|ψ〉m(dx), B ∈ Σ

for all φ, ψ ∈ H. If M(B) ≥ 0 for all B ∈ Σ, then P(x) ≥ 0 for m-almost all
x ∈ X .

Lemma 1 (Existence of a POVM density). Every P ∈ P admits a density, i.e.
for any POVM P there exists a finite measure μ(dx) over X such that μ(X ) = 1
and ∫

P(B) = dμ(x)M(x), (2.5)
B

with M(x) ≥ 0, and tr[M(x)] = d μ-almost everywhere.

Proof. Define μ(B) = tr[P(B)], then

〈φ|P(B)|φ〉 ≤ μ(B), ∀ |φ〉 ∈ H.

By Cauchy-Schwarz inequality,

|〈φ|P(B)|ψ〉| ≤ μ(B), ∀|φ〉, |ψ〉 ∈ H.

Thus, P(B) is dominated by μ(B). By the Radon-Nikodym theorem, it
admits a density M(x) defined uniquely μ-almost everywhere:

P(B) =
∫

B
μ(dx)M(x).

As P(B) ≥ 0, M(x) ≥ 0. Taking trace on both sides of the above equation
implies tr[M(x)] = d, μ-almost everywhere.
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A.3 Proof of l.s.c. for Bregman divergence

Before proving lower semi-continuity for Df , we state the following lemma
which will be used in the proof.

Lemma 15. The map ρ �→ tr f (ρ) is continuous on Ω = [0, 1].

Proof. Consider a sequence of density operators (ρn)n that weakly con-
verge to a density operator ρ, i.e. tr ρna → tr ρa for all a ∈ B(H), where
H is a finite dimensional Hilbert space. By choosing [a] = |i〉〈j|, where
|i〉〈j| is a basis in B(H), we obtain element-wise convergence of ρn to ρ,
which in turn implies the convergence of the corresponding eigenvalues.

Now, tr f (ρn) = ∑j
rk
=
(
1
ρn) f (λj

n) where {λj
n}j

rk
=
(
1
ρn) are the eigenvalues of ρn.

But, as f is continuous on [0,1], f (λj
n) → f (λj), where {λj}j

rk
=
(
1
ρ) are the

eigenvalues of ρ. Thus, the sum tr f (ρn) = ∑j
rk
=
(
1
ρn) f (λj

n) also converges

to tr f (ρ) = ∑j
rk
=
(
1
ρ) f (λj), and this proves the continuity of ρ �→ tr f (ρ) on

[0,1].

Theorem 8. Bregman divergence Df (., .) is lower semi-continuous.

Proof. We generalize the proof of lower semi-continuity of relative en-
tropy as given in Ref. [Wehrl (1978)]. To begin with, we show that there
exists a representation of d f in which the argument of trace does not con-
tain a product of two non-commuting operators. In order to do so, let us
define a quantity Df

λ as

Df
λ(ρ, σ) =

1
λ

tr
(
λ f (ρ) + (1 − λ) f (σ)− f (λρ + (1 − λ)σ)

)
,

∣∣where λ ∈ (0, 1). It is straightforward to verify that the map λ �→ λDf
λ

is concave on the interval (0, 1). Note that d
d
λ (λDf

λ)
λ=0 = Df . Thus, as

the map λ �→ λDf
λ is concave on (0,1), the slope at λ = 0 will always be
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greater than the differences
λDf

λ−0.Df
λ

λ for all λ ∈ (0, 1). Assuming that
0.Df

0 = 0, we have

As lim
λ→0

λDf
λ ≤ λDf ⇔ Df

λ ≤ Df , ∀λ ∈ (0, 1).

Df
λ = Df , we have

sup
λ

Df
λ(ρ, σ) = Df (ρ, σ).

Let ρn ⇒ ρ and σn ⇒ σ be given. Then, by Lemma 15, the map (ρ, σ) �→
Df

λ(ρ, σ) is continuous. Therefore,

Df (ρ, σ) = sup
λ

Df
λ(ρ, σ)

= sup
λ

lim
n→∞

Df
λ(ρn, σn)

≤ lim inf
n→∞

sup
λ

Df
λ(ρn, σn)

= lim inf
n→∞

Df (ρn, σn).

But, Df (ρ, σ) ≤ lim inf
n→∞

Df (ρn, σn) defines a lower semi-continuous func-
tion.

A.4 Why the Bayes estimator is discontinuous.

For the Bayes estimator to be continuous in the prior, it should hold that
for any convergent sequence (πn)n,

lim
n→∞

ρ̂B
πn(x) = ρ̂

lim
n→∞

πn

B (x), ∀x ∈ X .

Below is an example that shows that the above is not true in general.

Example 5. Let us assume that we are doing a σz measurement, thus, X =

{0, 1}. Now, consider a sequence of priors (πn)n that converges to μ(θ) =
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δ(θ − θ0) where θ0 corresponds to |0〉〈0| and let each element of the sequence be
defined as below:

πn(θ) =
(
1 − 1

n
)
δ(θ − θ0) +

1
n

δ(θ − θ1),

with θ1 corresponding to |1〉〈1|. Then, the Bayes estimator, see Equation (2.13),
for each element of the sequence is

ρ̂B
πn(x) =

(
1 − 1

n
)

1
n

1
n

p(x|θ0)ρθ0

(1 − )p(x|θ0) + p(x|θ1)
+

1
n

p(x|θ1)ρθ1
1
n

1
n(1 − )p(x|θ0) + p(x|θ1)

,

which in the limiting case reduces to

lim
n→∞

ρ̂

⎧⎨
πn
B (x) = ⎩ρθ0 if x=0,

ρθ1 if x=1.

But, the Bayes estimator for the limit μ of the sequence (πn)n is

ρ̂

⎧⎨
μ
B(x) = ⎩ρθ0 if x=0,

not defined if x=1.

Since the Bayes estimator for μ is not defined at x = 1, we can define it to be

ρ̂
μ
B(x = 1) = lim

n→∞
ρ̂B

πn(x = 1).

However, for the Bayes estimator to be continuous in the prior the above should
be true for all sequences of priors that have the same limit point. Let us consider
another sequence (μn)n that converges to μ with each element defined as below:

μn(θ) = 1 − 1
n

( )
δ(θ − θ0) +

1
n

δ(θ − θ+),

where θ+ corresponds to |+〉〈+|. Then, the Bayes estimator for μn would be

ρ̂
μn
B (x) = 1 − 1

n
( ) p(x|θ0)ρθ0

1
n

1
n(1 − )p(x|θ0) + p(x|θ+)

+
1
n

p(x|θ+)ρθ+
1
n

1
n(1 − )p(x|θ0) + p(x|θ+)

,
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which in the limiting case reduces to

lim
n→∞

ρ̂

⎧⎨
μn
B (x) = ⎩ρθ0 if x=0,

ρθ+ if x=1.

Now, if we again chose to define the Bayes estimator for μ at x = 1 as lim
n→∞

ρ̂
μn
B (x =

1), we would run into a contradiction since lim
n→∞

ρ̂
μn
B (x = 1) �= lim

n→∞
ρ̂πn

B (x =

1).

The above example establishes that the Bayes estimator does not admit a
continuous extension on the null set (where it is not defined) of the given
prior.

A.5 Additional lemma(s)

Lemma 16. Given a self-adjoint operator A parametrized by u, the derivative of
a function of the operator with respect to the parameter at u = u0 is given by

d
du

tr
[

f
(

A(u)
)]∣∣∣∣∣

u=u0

= tr
[ ∣∣∣A′(u)

u=u0
f ′
(

A(u0)
)]

Proof. See Ref. [Prato and Tsallis (2000)].

Lemma 17. Consider a continuous function F defined on a compact set B and
closed subsets Bx ⊆ B such that B1 ⊆ B2... ⊆ B. Then, assuming that the
sequence (Bx)x is dense in B, the following holds:

lim
x→∞

sup
Bx

F = sup
B

F .

Proof. As B1 ⊆ B2...B, it implies that

lim
x→∞

sup
Bx

F ≤ sup
B

F . (A.2)
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Note that B is a compact set and hence

sup
B

F = max
B

F .

Let b := arg maxBF . Then, as the sequence of subsets (Bx)x is dense in
B, it implies that there exists a sequence (bx)x that converges to b such
that bx ∈ Bx. Moreover, we know that

sup
Bx

F ≥ F(bx).

Thus,

lim
x→∞

sup
Bx

F ≥ lim
x→∞

F(bx).

As F is continuous, we get

lim
x→∞

sup
Bx

lim
x→∞

(
F ≥ F bx

)
= F (b) = sup

B

F . (A.3)

Equations (A.2) and (A.3) imply the result.

Lemma 18 (Holevo (1982), Theorem 2.1). Let P0 be a positive operator in the
representation space such that [P0, Vg] = 0 ∀g ∈ G0, where G0 is the stationary
subgroup of G, and satisfying:∫

G
VgP0Vg

†dμ(g) = I (A.4)

Then setting P(gθ0) = VgP0Vg
†, we get an operator-valued function of θ such

that:

M(B) =
∫

B
P(θ)dν(θ), B ∈ A(Θ) (A.5)

is a covariant measurement with respect to g �→ Vg. Conversely, for any covari-
ant measurement M(dθ) there is a unique operator P0 satisfying (A.4) such that
M(B) can be expressed as in (A.5). P0 is referred to as the seed of the covariant
measurement.
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A.6 Aside on t-designs

Definition 7 (Unitary t-design). Consider the set of unitary matrices U(d) on
⊂a d-dimensional Hilbert space H. A unitary t-design is a finite subset {Ui}i

N
=1

U(d), such that for all states ρ ∈ S(H) the following holds:

1 N

∑N i=1
Ui

⊗tρ(Ui
†)⊗t =

∫
U(d)

dUU⊗tρ(U†)⊗t,

where ‘dU’ is the Haar measure on U(d).

Definition 8 (Spherical t-design). Consider the unit sphere Sd−1 in the d-
dimensional Euclidean space Rd. A spherical t-design is a finite subset S ⊂
Sd−1, such that the average value of a polynomial f of degree ≤ t on S equals its
average on Sd−1:

1
|S| ∑

sn∈S
f (sn) =

∫
Sd−1

ds f (s),

where ‘ds’ is the Lebesgue measure on Sd−1.
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Appendix B

Part II

B.1 Quantum Isothermal processes

In the following lemma, we denote the change in the energy of a system
during a thermodynamic process a �→ b by ΔUab, the heat exchanged by
Qab and the work done by Wab.

Lemma 19. A quantum isothermal expansion is such that the gaps between the
energy levels of the Hamiltonian H are scaled by a factor k < 1.

Proof. A-priori, there is nothing constraining the value of k other than the
trivial requirement of k > 0. However, it is clear that if we choose k > 1
then we are stretching the energy levels apart while if k < 1 then we are
compressing them together. For an isothermal process (a �→ b) to be an
expansion, the following should be true

Qab > 0 ⇐⇒ ΔUab > Wab.

We know that Wab = ΔFab = Th ln Za/Zb
( )

[Åberg (2013)], where Za =

∑i e−εi/Th and Zb = ∑i e−kεi/Th . Therefore, the following inequality must
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be satisfied by any quantum isothermal expansion:

∑
j

εj k
e−kεj/Th

Zb
− e−εj/Th

Za

( )
> Th

(
ln Za − ln Zb

)
. (B.1)

Let us assume that k > 1, then

e−kεi/Th < e−εi/Th (B.2)

=⇒ Zb < Za. (B.3)

Thus, (B.1) implies

∑
j

εj

(
k

e−kεj/Th

Zb
− e−εj/Th

Za

)
> 0,

which implies

k
e−kεj/Th

Zb
>

e−εj/Th

Za
. (B.4)

Now, (B.3) implies

e−kεi/Th

Zb
>

e−kεi/Th

Za
, (B.5)

but, by (B.2), one has

e−εi/Th
>

e−kεi/Th

Zb
. (B.6)

Zb

Combining (B.5) with (B.6), we have

e−εi/Th

Zb

e−kεi/Th

Za
> . (B.7)

Differentiating both sides with respect to εi, we obtain

e−εi/Th

Zb

ke−kεi/Th

Za
< .

But, this contradicts (B.4). So, the assumption is wrong which implies
that k < 1 for a quantum isothermal expansion.
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B.2 Aside on special functions

Definition B.2.1 (Hypergeometric function in integral form).∫
dx

epx

1 + e(q−rx)
=

e(p+r)x+q

p + r
× 2F1

(
1,

p
r
+ 1,

p
r
+ 2;−e−(q−rx)

)
, (B.8)

where p, q, and r are rationals and the hypergeometric function is

2F1 : (a, b, c, z) �→
∞

∑
n=0

(c)n

(a)n(b)n zn

n!
, |z| ≤ 1, (B.9)

and (x)n denotes the rising factorial

(x)n =

⎧⎨
⎩1, n = 0,

x(x + 1) · · · (x + n − 1), n > 0.
(B.10)

Definition B.2.2 (Lerch transcendent).

ΦL : (z, s, a) �→
∞

∑
n=0

zn

(n + a)s . (B.11)

where z ∈ C and Re(a) > 0. We can then write the function G (Definition 6) in
terms of the Lerch transcendent as

G(t) = κτTh
ε

e−δ(t)/Th ΦL(−e−δ(t)/Th , 1,
κτTh

ε
+ 1). (B.12)

B.3 Proof of Lemma 13

Proof. Wab and Wcd are essentially deterministic and are given by (9.1)
and (9.4) while Wbc and Wda are random variables. In Table B.1, we list all
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the possible states that the system could be in at each of the four nodes a,
b, c, d and thus obtain all the possible values for Wbc − Wda.

a �→ b �→ c �→ d �→ a Wbc − Wda Pr [Wbc − Wda]

0 0 0 0 0 0 (1 − pa)2(1 − pb)

0 0 0 1 1 −(δa − δd) (1 − pa)(1 − pb)pa

0 1 1 0 0 δb − δc (1 − pa)2pb

0 1 1 1 1 δb − δc − δa + δd (1 − pa)pb pa

1 0 0 0 0 0 pa(1 − pa)(1 − pb)

1 0 0 1 1 −(δa − δd) p2
a(1 − pb)

1 1 1 0 0 δb − δc pa pb(1 − pa)

1 1 1 1 1 δb − δc − δa + δd p2
a pb

Table B.1: Occupation of the ground state is designated by 0 and that of
the excited state by 1. The Carnot cycle is a �→ b �→ c �→ d �→ a. Starting
at a with the system in the ground state as one completes the cycle the
system could be in the excited state—it undergoes thermalization from
c �→ d. Same colour entries under the Wbc +Wda column are identical and
the probabilities corresponding to those entries add up.

Thus, we can obtain an expression for the average work done by simply
multiplying and adding the corresponding entries of columns WC and
Pr [WC] to arrive at

μWC =
(
Th − Tc

)
ln

Z(δb)

Z(δa)
−
(

1 − Tc

Th

)
δa pa +(

1 − Tc

Th

)
δb pb

=
(
Th − Tc

)
ln

Z(δb)

Z(δa)
−
(

1 − Tc

Th

)(
δa pa − δb pb

)

=

(
1 − Tc

Th

)(
Th ln

Z(δb)

Z(δa)
+ δb pb − δa pa

)
. (B.13)
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We can then derive the average Carnot efficiency ηC
avg by dividing the

average work done by the heat input (which is when the system under-
goes isothermal expansion from point a to b), Qab. The heat exchanged
during a process, denoted by Q, is given by the first law of Thermody-
namics, i.e. Q = ΔU − W, where ΔU is the change in the total energy
of the system during the process while W is the corresponding work
yield/cost. In our case, the process is an isothermal expansion a �→ b,
so ΔUab =

( )
δb pb − δa pa and W = −Wab where Wab is the deterministic

work yield of the process and is given by (9.1). Thus, we have

Qab = δb pb − δa pa
( )

+ Th ln
Z(δb)

Z(δa)
. (B.14)

Since efficiency is defined as the ratio of the work output and the heat
input, (B.13) and (B.14) imply (9.8).

B.4 Proof of Lemma 14

Proof. Note that the points a, b, c, and d as in Fig. 9.1, defining a cycle of
a Carnot engine, are not independent—see (9.2) and (9.5). Thus, there
are only two free variables that define any particular cycle. Let us set
δa and δc as the independent ones. Then, changing variables in (B.13)
and plugging the expressions for the partition function Z, pa and pb, we
obtain

μWC(δa, δc) =
(

Th − Tc

)(
ln
(

1 + e−δa/Th

1 + e−δc/Tc

)
+

δa/Th

1 + eδa/Th
− δc/T

(cB.15).
1 + eδc/Tc

)

Introducing x := δa/Th and y := δc/Tc reduces the equation above to

μWC(x, y) = Th − Tc ln
1 + e−x

1 + e−y +
x

1 + ex − y
1 + ey

( )( ( ) )
. (B.16)
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Let us now look at the function

f : x �→ (1 + e−x) e 1+
x
ex . (B.17)

Evaluating the derivative of this function we obtain

f ′(x) = − x
1 + ex

( )
e 1+

x
ex < 0, ∀ x > 0. (B.18)

This means that f is a monotonically decreasing function on R+. Hence,
the minimum/maximum would be attained on the boundaries of the in-
terval I ⊂ R+. Note that (B.16) can be written in terms of f simply
as

μWC(x, y) =
(

Th − Tc

)(
ln f (x)− ln f (y)

)
. (B.19)

As ln is a monotonically increasing function, ln ◦ f would thus be mono-
tonically decreasing since f is monotonically decreasing. Now, as μWC <

0 where the negative sign implies work output, maximizing the average
work output amounts to minimizing μWC with respect to x and y. So, we
have

min
x, y∈I

μWC(x, y) = min
x, y∈I

(
Th − Tc

)(
ln f (x)− ln f (y)

)
=
(

Th − Tc

)(
min
x∈I

ln f (x)− max
y∈I

ln f (y)
)

.(B.20)

As ln ◦ f is monotonically decreasing it implies that

min
x, y∈I

μWC(x, y) = Th − Tc ln f max
x∈I

x
( )( ( )

− ln f
(

min
y∈I

y
))

.(B.21)

Substituting for x and y in terms in of δa and δc and noting that

δa
δa = δmax, and min

δc
max δc = δmin, (B.22)

gives us

arg max
δa, δc

μWC(δa, δc) = (δmax, δmin). (B.23)
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B.5 Partial thermalization under Assumption 1

while increasing the energy gap

Definition B.5.1. Given the energy gap δ(t) of a two-level system at time t < τ,
we define the function

H : t �→
∞

∑
n=0

(
e−

δ
T
(t
c
))n

(
nε

κτTc
+ 1
) , (B.24)

where ε = δmax − δmin, κ is the thermalization rate, and Tc is the temperature
of the ambient bath.

The function H is a monotone function in t. For δ monotonically increas-
ing in t, H monotonically decreases. This follows by noting that e−δ is
also monotonically decreasing in t.

Lemma 20 (Time evolution of occupation probabilities under partial ther-
malization while increasing the energy gap). Given a two-level system that
undergoes partial thermalization as per Assumption 1 in the presence of a bath at
temperature Tc for a time τ such that its energy gap changes from δmin to δmax,
the probability of the system to be in the excited state at any time 0 < t < τ is

(B.25)p(t) = p0e−κt +H(t)− e−κtH(0),

where ε = δmax − δmin, p0 = p(0) and δ(t) = δmin + εt/τ.

Proof. Re-writing the differential equation for general partial thermaliza-
tion processes where the hot bath is replaced by the cold bath in (6.2), we
have

dp ( )
dt

+ κp(t) = κγc δ(t) , (B.26)

which can be integrated along with the initial condition p(0) = p0 to
obtain

p(t) = p0e−κt + κe−κt
∫ t

0
eκt′γc

(
δ(t′)

)
dt′. (B.27)
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Given Assumption 1 and the boundary conditions δ(0) = δmin and δ(τ) =

δmax, we have

δ(t) = δmin +
ε

τ
t,

(
δ(t)
)
= 1

1+eδ(t)/Tc

(B.28)

and (B.28) in (B.27),where ε = δmax − δmin. Plugging γc

we obtain

p(t) = p0e−κt + κe−κt

∫
t

0

eκt′

1 + e
(δmin+εt′/τ)

Tc

dt′. (B.29)

Evaluating the integral above, we obtain

p(t) = p0e−κt + κe−κt

{
eκt′

κ
2F1

(
1,

κτTc

ε
,

κτTc

ε

(δmin+εt′/τ)
Tc ∣∣

)∣∣∣t
0

}

= p0e−κt + κe−κt

{
eκt

κ
2F1

(
1,

κτTc

ε
,

κτTc

ε

+ 1;−e

+ 1;−e
δ
T
(t
c
))

−

κ
2F1

1 (
1,

κτTc

ε
,

κτTc

ε
+

)}

= p0e−κt + 2F1

(
1,

κτTc

ε
,

1;−e
δ

T
min

c

κτTc

ε
+ 1;−e

δ
T
(t
c
))

−

e−κt
2F1

(
1,

κτTc

ε
,

κτTc

ε
+ 1;−e

δ
T
min

c

)
. (B.30)
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Next, using Definition 6 we can write

2F1(1, a, 1 + a;−z) =

∞

∑
n=0

n!(a)n

(1 + a)n

(−z)n

n!

=

∞

∑
n=0

(a)(1 + a) · · · (n − 1 + a)
(1 + a)(2 + a) · · · (n + a)

(−z)n

=

∞

∑
n=0

a (−z)n

(n + a)

=

∞

∑
n=0

(−z)n

(n
a + 1)

. (B.31)

Using (B.31) we can write (B.30) in terms of H to obtain (B.25).

Lemma 21 (Average work when increasing the energy gap). The average
work done by a two-level system during a process as per Assumption 1 along
with partial thermalizations in the presence of a bath at temperature Th for a
time τ such that its energy gap changes from δmin to δmax is

μW(τ) = −WTc
iso −

Wad
κτ

(
1 − e−κτ

)
+

ε

κτ

{
H(τ)− e−κτH(0)

}
,(B.32)

where ε = δmax − δmin, p0 = p(0), and Wis
Tc

o is the work output of the corre-
sponding isothermal process, i.e. Wis

Tc
o Z= −Tc log Z

(
(
δ
δ

max
min)

)
, where Z is the parti-

tion function Z : δ �→ 1 + e−δ/Tc .

Proof. We start by noting that

dp
dδ

=
dp
dt

.
dt
d(δ

= −κτ

ε
γh(δ)− p

)
, (B.33)
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where the last line follows from (6.2) and Assumption 1 while supressing
the dependence on t. Integrating (7.11) with respect to δ from δmin to
δmax, we have

δmax

δmin

p dδ =
δmax

δmin

γc
(
δ
)
dδ +

ε

κτ

∫ ∫ ∫ δmax

δmin

dp
dδ

dδ. (B.34)

Thus, (7.1) and (B.34) together imply

μW(τ) =

∫ δmax

δmin

γc
(
δ
)
dδ +

ε

κτ

∫ δmax

δmin

dp
dδ

dδ. (B.35)

The first term on the right-hand side is the negative of the work done
during the corresponding isothermal process (when energy gap changes
from δmax to δmin). Substituting the expression for γc(δ) and evaluating
the integral gives us the first term of (B.35) as∫ δmax

δmin

γc
(
δ
)
dδ = Tc log

Z(δmin)

Z(δmax)
= −Wis

Tc
o, (B.36)

where Z is the partition function Z : δ �→ 1 + e−δ/Tc . Next, we evaluate
the integral in the second term in (B.35) using Lemma 20. First we note
that ∫ δmax

δmin

dp
dδ

dδ = p(δmax)− p(δmin).

As p(δmin) = p(0) = p0 is given and p(δmax) = p(τ), we use (B.25) to
obtain

p(δmax)− p(δmin) = −p0(1 − e−κτ) +H(τ)− e−κτH(0). (B.37)

Plugging (B.36) and (B.37) in (B.35) along with (7.17) we obtain (B.32).
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