
 

  

  

Predicting Open Source Forked 
Pattern Survivability  
 
by Bee Bee Chua 
 
Thesis submitted in fulfilment of the requirements for  
the degree of  
 
Doctor of Philosophy 
 
under the supervision of Professor Ying Zhang & Associate 
Professor Lu Qin 

University of Technology Sydney 
Faculty of Engineering and Information Technology 
 
October 2021 



ii 

CERTIFICATE OF ORIGINAL AUTHORSHIP 

I, Bee Bee Chua, declare that this thesis, is submitted in fulfilment of the requirements 

for the award of Doctor of Philosophy in Information Technology, in the School of 

Computer Science at the University of Technology Sydney.  

This thesis is wholly my own work unless otherwise referenced or acknowledged. In 

addition, I certify that all information sources and literature used are indicated in the 

thesis.  

This document has not been submitted for qualifications at any other academic institution. 

This research is supported by the Australian Government Research Training Program. 

Signature: 

Date: 21st October 2021 

Production Note:

Signature removed prior to publication.



iii 

  



iv 

Acknowledgements  

Really, I have many people I wish to say thank you but to the very special and honourable 

ones are below:  

Firstly, my research supervisory team, Professor Ying Zhang and Associate Professor Lu 

Qin, for their kind guidance and support throughout my PhD journey. Especially to 

Professor Zhang, a truly amazing and highly intellectual supervisor who I find to be 

extremely hardworking, critical, humble and knowledgeable. I am deeply indebted and 

wish to acknowledge his high-quality supervisory efforts, support, encouragement, belief 

and trust in me that I can produce good quality research.  

Secondly, my family. I am grateful to my parents and my family members, including five 

adorable nieces and a nephew, for their continued love and support. To my special god 

daughter Maris Stella who I fondly miss.  

To the team of medical specialists for their amazing expertise in healing my neck and 

right arm injury. My neurosurgeon Dr. Prakash Damodaran, my pain specialist Dr. Hasher 

Kadvil, my general practitioners Dr. Pramod Singh and Dr. Deep Kumar for a successful 

medical procedure and to my most respectful hand therapist Miss Tamara Carter for her 

hard work on healing my neck and hand. To all nurses and front desk receptionist staff 

for cheering me up during that most difficult and challenging time. Without them, my 

thesis writing is impossible.  

To my research collaborators and mentors at UTS for advice and teaching collaboration, 

including Mr. Ravindra Bagia, Professor Roger Hadgraft, Dr. Danilo Valeros Bernardo, 

Dr. Jane Brennan. Dr. Laurel Dyson, Dr. Yulei Sui and Dr. Wentao. Li. 



v 

To many other researchers who I know sincerely to thank them for their esteemed support 

and encouragement: Professor June Verner, Professor Fethi Rabhi, Professor Paul 

Rowland, Professor Aileen Cartel-Steel, Associate Professor Shannon Kennedy-Clark, 

Professor Mehregan Mahdavi and Associate Professor Andrew Levula. 

My heartfelt gratitude to Dr. Amy Nisselle for her expertise on guiding me how to write 

for an academic audience, copyediting and proofing my conference papers and thesis.  

Finally, my deepest gratitude to Dr. Danilo Valeros Bernardo for his years of unwavering 

endearment and patience with me. Without his words of kind encouragement and 

motivation, I would not be able to achieve this degree. 

  



vi 

List of Publications 

This thesis comprised of a series of published and to-be-published articles together with 

an exegesis. The list of the publications is as follows: 

1. B. B. Chua and Y. Zhang, “Applying a systematic literature review and content 

analysis method to analyse open source developers’ forking motivation interpretation, 

categories and consequences.” Journal of Australasian Information Systems, 

2020.Vol. 24 No.1, pp. 1–19. 

2. B. B. Chua, and Y. Zhang, “Predicting open source programming language repository 

file survivability from forking data.” OpenSym’19: Proceedings of the 15th 

International Symposium on Open Collaboration. 2019. Skövde Sweden 

3. B. B. Chua, “A survey paper on open source forking motivation reasons and 

challenges.” Conference Proceedings of the Pacific Asia Conference of Information 

Systems (PACIS), 2017, Langkawi, Malaysia  

4. B. B. Chua. Detecting sustainable programming languages through forking on open 

source projects for survivability. Proceedings of the IEEE International Symposium 

on Software Reliability Engineering (ISSRE) in conjunction with a WOSAR 

workshop, IEEE, 2015, Gaithersburg, USA. 120–124 

5. B. B. Chua and Y. Zhang. “Healthy Fork File Repository (HFFR) Performance 

Prediction”. Journal of Systems and Information Technology (JST) Elsevier, Under 

review.  

 

 

 



vii 

Other relevant publications developed but not included in this thesis include: 

1. B. B. Chua. “Analysing Version Control Open-Source Software Survivability”. 

Proceedings of the 19th International Conference on Distributed Multimedia Systems, 

DMS 2013, August 8-10 2013, Brighton, UK. Knowledge Systems Institute.  

2. B. B. Chua and D.V. Bernardo. Open-Source Developer Download Tiers: A Survival 

Framework. 13th IEEE International Conference on IT Convergence and Security, 

ICITCS, 2013, Macau, China. 

  



viii 

Contents 

....................................................................................................................................................................... i 

CERTIFICATE OF ORIGINAL AUTHORSHIP ........................................................................................ ii 

Acknowledgements ..................................................................................................................................... iv 

List of Publications ..................................................................................................................................... vi 

Contents .................................................................................................................................................... viii 

List of Figures ............................................................................................................................................. xi 

List of Tables ............................................................................................................................................. xii 

List of Acronyms....................................................................................................................................... xiv 

Abstract ........................................................................................................................................................ 1 

Chapter 1 ...................................................................................................................................................... 3 

1.0 Introduction ................................................................................................................................ 3 

1.1 Background ................................................................................................................................. 5 

1.2 Research Motivation ................................................................................................................... 6 

1.3 Research Contributions ............................................................................................................... 7 

Chapter 2: Forking Literature Survey..................................................................................................... 8 

2.1 Overview .................................................................................................................................... 8 

2.2 Motivation .................................................................................................................................. 8 

2.3 Approaches ............................................................................................................................. 8 

2.4 Introduction ................................................................................................................................ 9 

2.5 Research Study Motivation and Research Questions ................................................................12 

2.5.1 Research study motivation ...........................................................................................12 

2.5.2 Research questions ........................................................................................................13 

2.6 Methodology: Systematic Literature Review and Content Analysis Method ............................15 

2.6.1 Systematic literature review search criteria ......................................................................17 

2.6.2 Search strategy ..................................................................................................................18 

2.6.3 Methodological framework ..........................................................................................20 

2.6.4 Content analysis method ...............................................................................................21 

2.7 Forking Motivation Interpretations ............................................................................................22 

2.7.1 How do researchers interpret developer forking and categorise forking 

motivational behaviour? .................................................................................................23 

2.7.2 What were the most popular methodologies used by forking researchers from 

1990 to 2017? .....................................................................................................................32 



ix 

2.7.3 What aspects of open source forking have been researched and reported? ..........32 

2.7.4 Newcomers or new developers forking motivation from 2020 to 2021 ............................34 

2.7.5 Shifting motivation through time and journey ..................................................................35 

2.7.6 Shifting forking motivation ...............................................................................................36 

2.8 Summary from the literature survey ..........................................................................................37 

Chapter 3: Literature Survey Research Methodology ................................................................................ 40 

3.1 Overview ...................................................................................................................................40 

3.2 Motivation .................................................................................................................................40 

3.3 Introduction ...............................................................................................................................40 

3.4 Literature Survey Selection Criteria and Categorisation ...........................................................41 

3.5 Category I: Survey-based Research Methodology ....................................................................42 

3.6 Category II: Data Mining Algorithm-based Research Methodology .........................................50 

3.7 Category III: Machine Learning Algorithm-based Research Methodology ..............................58 

3.8 Machine Learning: A K Nearest Neighbour Method.................................................................65 

3.8.1 Euclidean distance metric .................................................................................................66 

3.8.2 Adopting Euclidean distance: characteristics identification and rationale ........................66 

3.8.3 Identifying Euclidean distance characteristics ..................................................................67 

3.8.4 Our research dataset characteristics ..................................................................................67 

Chapter 4: Models ...................................................................................................................................... 69 

4.1 Overview ...................................................................................................................................69 

4.2 Literature Survey Road Map Model ..........................................................................................69 

4.3 Chua and Zhang Open Source Software Forking Pattern Prediction Model ...........70 

Chapter 5: A Pilot Study ............................................................................................................................ 72 

5.1 Overview ...................................................................................................................................72 

5.2 Motivation .................................................................................................................................72 

5.3 Background ................................................................................................................................73 

5.4 Forking Patterns .........................................................................................................................74 

5.5 Software Survival and Programming Language Survival Importance.......................................75 

5.6 Survivability Prediction on the K Nearest Neighbour Method ..................................................77 

5.7 Programming Language Repository File Categorisation and Fork Pattern Classifiers ..............81 

5.8 Classifier Results .......................................................................................................................82 

5.9 K Nearest Neighbour Results .....................................................................................................83 



x 

5.9.1 Case One ...........................................................................................................................84 

5.9.2 Case Two ..........................................................................................................................85 

5.9.3 Case Three ........................................................................................................................85 

5.9.4 Case Four ..........................................................................................................................85 

5.10 Evaluation ................................................................................................................................86 

5.11 Conclusions and Future Work .................................................................................................88 

Chapter 6: A Longitudinal Study ............................................................................................................... 90 

6.1 Overview ...................................................................................................................................90 

6. 2 Motivation ................................................................................................................................90 

6.3 Background ................................................................................................................................91 

6.4 Fork Pattern Identification and Data Collection ........................................................................92 

6.5 Normalisation and Euclidean Distance ......................................................................................95 

6.6 Results .....................................................................................................................................100 

6.7 Evaluative Test Results ...........................................................................................................102 

6.8 Discussion................................................................................................................................104 

Chapter 7: Conclusion .............................................................................................................................. 106 

7.1 Overview .................................................................................................................................106 

7.2 Contributions ...........................................................................................................................107 

7.3 Recommendations ...................................................................................................................108 

7.4 Future Work .............................................................................................................................109 

Bibliography ......................................................................................................................................... 110 

 

  



xi 

List of Figures  

Figure 2. 1: Combined approaches: systematic literature review and content analysis 

method .............................................................................................................................. 16 

Figure 2. 2: The systematic literature review search strategy for research papers ...................... 19 

Figure 2. 3: Data collection methods in the 21 papers ................................................................ 32 

Figure 2. 4: Units of analysis in the 21 papers ............................................................................ 33 

Figure 2. 5: Forking lessons learnt across the 21 papers............................................................. 34 

Figure 2. 6: The open source developers’ motivation movement ............................................... 36 

 

Figure 3. 1: Paper selection criteria ............................................................................................ 42 

 

Figure 4. 1: Literature survey mapping model ............................................................................ 70 

Figure 4. 2: The Chua and Zhang OSS forking pattern prediction model .................................. 71 

 

Figure 5. 1: Categorising programming language repository file forks as short- or long-

lived. ................................................................................................................................. 82 

Figure 5. 2: Evaluative results comparison of the dataset ........................................................... 88 

 

Figure 6. 1: Euclidean distance ranking .................................................................................... 102 

Figure 6. 2: Evaluative results .................................................................................................. 104 

 

  



xii 

List of Tables 

Table 2. 1: The systematic literature review identified 21 relevant and suitable papers 19 

Table 2. 2 A forking motivation methodological framework ......................................... 20 

Table 2. 3: Forking interpretation types .......................................................................... 21 

Table 2. 4: Fork categorisation, sustainability and lessons learnt ................................... 28 

 

Table 3. 1: Literature Survey Research Methodology in OSS .................................................... 46 

Table 3. 2: Data Mining algorithm-based type research methodology ....................................... 55 

Table 3. 3: Machine learning research-based methodology in OSS ........................................... 61 

Table 3. 4: Four widely-adopted KNN distance metrics............................................................. 66 

 

Table 5. 1: Fork patterns ................................................................................................. 75 

Table 5. 2: Variables defined for programming language survivability ......................... 79 

Table 5. 3: Forking patterns ............................................................................................ 81 

Table 5. 4: Categorising programming language repository files forks as short- or long-

lived ................................................................................................................................. 82 

Table 5.5: Categorising programming language repository files sorted by Euclidean 

distance ............................................................................................................................ 84 

Table 5. 6: Environment compliance .............................................................................. 86 

 

Table 6. 1: Examples of file repository monthly forking ............................................................ 93 

Table 6. 2: Big query statement .................................................................................................. 93 

Table 6. 3: Forking data of selected file repositories, 2015–2020 .............................................. 94 

Table 6. 4: Variables defined for a healthy fork file repository .................................................. 96 

Table 6. 5: Forking in 5 years (2015-2020) after normalisation ................................................. 97 



xiii 

Table 6. 6: Healthy fork file repository types and counts ........................................................... 99 

Table 6. 7: Healthy fork file repository types ranked by Euclidean distance ........................... 100 

Table 6. 8: Healthy fork file repository types ranked by Euclidean distance ........................... 101 

Table 6. 9: Definition and formula for accuracy, precision, sensitivity and specificity ........... 103 

 

  



xiv 

List of Acronyms 

CAM Content Analysis Method 

CVS Control Version System 

FN False Negative 

FP False Positive  

HFFR Healthy File Fork Repository  

KNN K Nearest Neighbour Method 

OS Open Source 

OSS Open Source Software 

SLR Systematic Literature Review 

SPF Specific Repository File  

SRFHF Specific Repository File that did not meet the full environment 

licence but has Healthy Fork  

SRFMSPL Specific Repository File that met official licence compliance and 

adopted a Modern Sustainable Programming Language  

SRFOL Specific Repository File that met Official Licence compliance  

SRFOLHF Specific Repository File that met Official Licence compliance that has 

Healthy Fork  

SRFOLMSPLHF Specific Repository File that met Official Licence compliance and 

adopted a Modern Sustainable Programming Language that has 

Healthy Fork  

SRFOLTSPL Specific Repository File that met Official Licence and adopted a 

Traditional Sustainable Programming Language 

SRFTSPL Specific Repository File that adopted a Traditional Sustainable 

Programming Language  

SRFTSPLHF Specific Repository File that adopted a Traditional Sustainable 

Programming Language that has Healthy Fork  

TN True Negative 

TP True Positive  

VT Virus Total  

 



 

1 

Abstract  

The motivational behaviour of open source (OS) developers has always been an active 

focus of research. With the introduction of the forking technique a related research area 

of developer forking motivational behaviour has gained significance, partly due to the 

problem of forking scarcity and low fork visibility performance.  

The objective of forking is to improve and innovate source code quality from voluntary 

developers. Unfortunately, the forking technique is not very sustainable in improving fork 

efficiency and efficacy. Further, developers may spend time forking source codes that 

may become inactive and consequently prove to be a waste of time and effort. From the 

perspective of project owners, if their repositories do not receive a good fork response 

from developers, their repositories will not grow.  

This doctoral research study aimed to address these problems by avoiding forking 

scarcity, increasing high fork visibility performance, and promoting positive developer 

forking motivation. We also needed to investigate OS environment compliance to 

determine whether it contributes to improved fork visibility, reduced fork deficiency 

and/or is viewed positively by developers.  

The research approach was to apply a model to predict high fork visibility. The model is 

based on the K Nearest Neighbour machine learning algorithm, using the Euclidean 

distance metric to predict high fork visibility performance. We piloted it using nine 

repository classifiers and then conducted a longitudinal study of five select repository 

classifiers to determine accuracy and distance approximation. Our work adds a new body 

of knowledge to OS forking theory and provides a deeper understanding of developer 

forking motivational behaviour. 
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In the first phase of this study, we conducted a literature review of forking motivation and 

research methods used in OSS. We then developed and tested our model. In the last phase,  

we identified OSS patterns and detected fork longevity to determine whether   

environmental compliance was fully, partially or not at all satisfied. Most importantly, 

we showed that high fork visibility environmental compliance distance approximation 

can positively predict developer forking interest.  
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Chapter 1 

1.0 Introduction 

This chapter introduces the research area, background to the research questions, the 

motivation to conduct the research, and contributions to the discipline. 

Forking scarcity and low fork visibility are two serious problems for developers aiming 

to produce high-quality, open source (OS) software (OSS). Forking is a useful technique 

for developers that encourages them to contribute to modifying or fixing codes or making 

recommendations to enhance original project file repositories [1]. However, when forking 

is not used effectively it can lead to substantial code development wastage; additionally, 

low fork visibility for repositories can cause resource allocation issues that can impact 

repository survivability. Investigating developers’ forking motivation and behaviour can 

help reduce forking scarcity and low repository forking visibility. Further, developing a 

predictive forking technique can promote forking efficiency and effectiveness.  

A number of reputable OS hosting platforms such as GitHub [2], SourceForge [3] and 

Bitbucket [4] offer project owners create a file repository by allowing them to host their 

source files. These platforms also aim to attract developers to voluntarily fork and 

contribute to software development. 

In the existing forking literature, many studies [5-8] indicate that developer forking 

interest or motivation is important. To comprehend factors that may influence developer 

interest or motivation or interest, we reviewed the OS literature to identify and categorise 

developers’ forking behaviour. Self-development factors related to individual developer 

learnability and the domain knowledge of a project, as well as variables relating to 

programming language, discussed widely in the literature over two decades.  
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Other studies [8-12] identified additional personal variables such as developers seeking a 

coding career, to network with other experienced developers, or to form a new coding 

group. Discontinuing to fork a file repository was associated with involvement in a 

conflicting OS project or team or leadership dispute, or commercial, legal or political 

reasons [6, 13-15]. 

There are limited studies [16-18] on how OS licence restriction, less sustainable 

programming languages or less innovative frontiers technology may affect developer 

forking behaviour. There are no studies that aim to understand the impact of OS forking 

environmental compliance factors on developer forking behaviour. For instance, the top 

three important OS variables on quality programming languages, OS licence compliance 

and the new or emerging technology trend [19-21] often recognised as prevalent topics 

discussed widely by communities. although the introduction of social networks is a recent 

and hot topic on understanding communities social interaction influences the way how 

developers fork but it was not discussed in literature heavily over the past two decades 

Moreover, research to date on predicting fork success outcomes were based in single 

variables rather than investigating how multiple variables influence outcomes.  

The novelty of our research is predicting the accuracy of high fork visibility performance 

from repository populations that satisfy full OS environmental compliance, in response 

to developers’ positive forking motivation and behaviour. Our research study 

encompasses forking features that are highly desirable OS environmental variables to 

analyse monthly forking data generated from two datasets downloaded from the GitHub 

database. We applied a supervised machine learning algorithm – the K Nearest Neighbour 

method – with the Euclidean Distance metric to predict the closest distance of high fork 

visibility performance on repositories with and without complete OS environmental 

compliance.  
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Our research results are original and novel and include several peer-reviewed 

publications. They are convincing and promising, using longitudinal data on monthly fork 

movement in repositories across a six-year period.  

We are the first research group to contribute novel findings to the OS forking body of 

knowledge by applying a machine learning algorithm to predict healthy fork performance 

by analysing forking count to quantify positive developer motivation.  

1.1 Background 

Open source software development is a new technology platform that simplifies the 

process of collaborating source code writing between disparate developers. Its simplicity 

lies in a project owner who owns a piece of source code that can be uploaded and made 

visible in a hosting platform for other developers to fork, share and contribute. The OS 

process can not only help by reducing development time and costs but it also promotes 

the quality of source code through iterative improvement and innovation.  

A number of reputable OS hosting platforms – such as such as GitHub [2], SourceForge 

[3] and Bitbucket [4] – offer project owners the opportunity to create file repositories, 

allowing them to host source files. These platforms also aim to attract developers to join, 

fork and contribute voluntarily. Different hosting platforms have different OS language, 

an OS licence and developers.  

For example, GitHub infrastructure includes a declaration of programming language, OS 

licence and being a sizeable developer. Despite basic OS infrastructure settings being 

provided to project owners, the forking status of many file repositories is still not healthy. 

This could be due to insufficient developers or forking deficiency.  
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There are no associations reported in the literature between developer forking motivation 

and developer insufficiency or forking deficiency [22]. Personal reasons, commercial 

reasons and OS infrastructure settings are barriers that can impact on developer forking 

motivation [5, 7, 9-11]. Personal and commercial reasons may be subjective, as they may 

be preconceived, opinionated, discriminatory or prejudiced; hence these findings are less 

convincing in predicting the forking behaviour or larger populations of developers. OS 

infrastructure parameters are standardised, objective, unbiased and non-discriminatory, 

making them more practical and convincing to predict developer forking motivation on a 

large population.  

OS infrastructure parameters may restrict or prohibit developers and reduce their 

motivation to fork. For instance, the OS licence permission restriction can hinder a 

developer forking an original repository into his or her own environment; a specific 

programming language used by a project owner may be unfamiliar to developers, so can 

reduce the chance of forking; or a new technology may be challenging in its complexity.  

1.2 Research Motivation 

This study was driven by three primary motivations. Firstly, to improve clarity on 

interpretation of developer forking behaviour. Clarification is required because different 

researchers interpret the term differently, and some do not have sufficient empirical data 

to support these varied interpretations. As such, we want to contribute a new body of 

knowledge from the theoretical understanding of forking, based on an OS environmental 

compliance perspective, which places importance on quantifying fork count as an 

indicator of developers’ positive forking motivation.  

The second motivation is to address the forking scarcity and low fork visibility 

performance for some repositories, so that they can survive.  
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The third is to develop a new predictive model based on programming language 

repository classifiers to detect high fork visibility performance. 

1.3 Research Contributions  

The three main contributions from our work are:  

1. Improving the OS theory on the fundamental concept of developer forking motivation 

and behaviour interpretation by understanding how high fork visibility performance 

can positively predict programming language repository compliance from a classifier’s 

perspective. 

2. Introducing a new predictive forking model based on a machine learning approach that 

incorporates OS environmental compliance variables to predict high forking visibility 

performance as a way to judge developers’ forking behaviour.  

3. Solving the forking scarcity and low fork visibility problem by acknowledging three 

types of developer forking behaviour patterns: 1) fork once only; 2) fork intermittently; 

and 3) fork steadily.  
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Chapter 2: Forking Literature Survey 

2.1 Overview  

This chapter reviews the relevant literature, firstly relating to interpretations of OS 

developers’ forking motivations, reasons and challenges. We then applied systematic 

literature review (SLR) [23, 24] and content analysis method (CAM) [25] methodological 

frameworks to investigate OS forking divergence to evaluate OSS developer forking 

motivation, how motivations are interpreted and, categorised, and consequences. This 

work was published as two research articles [26, 27]. 

2.2 Motivation  

The primary motivation in conducting the literature survey was to critically examine the 

many interpretations of developer forking motivation and see which had a specific 

interpretation on evaluating forking to understand OS environmental parameters. We also 

aimed to contribute to the OSS forking community through publishing the results of the 

combined SLR and Content Analysis reviews to evaluate OS forking motivation reasons 

and challenges as there was no peer-reviewed research on this topic, despite several 

surveyed papers discussing motivational forking reasons from OS developers to 

contribute. We also sought to determine whether forking motivations differed for first-

time developers versus others.  

2.3 Approaches  

Our literature review consisted of surveying OS forking paper published in two time 

periods: from 1990 to 2017, then from 2018 to 2021. The latter focused on understanding 

first-time developers’ forking motivation.  
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In the first part of our literature survey, we adopted the SLR method [23, 24] to provide 

a rigorous and vigorous literature review, as the method can synthesise controversial 

views and dilemmas when discussing different perspectives on the same topic. SLR is 

one of the most reliable methods for conducting a software engineering literature review 

and is widely used in computer science, software engineering, social science and 

information systems research [28-30]. Software engineering researchers [23, 31] even 

proclaimed that SLR is a form of evidence-based software engineering that can address 

many engineering questions posed by researchers. Here we outline the process for 

conducting a SLR by specifying research questions, describing the search and retrieval 

process, collecting evidence, synthesising the evidence and providing results. 

2.4 Introduction  

GitHub is a hosting website for developing OSS through social coding by multiple 

developers. GitHub stores projects, files, programming languages, licences and developer 

profiles. In May 2014 GitHub was the largest hosting coding platform, reported as having 

over 37 million population users and over 100 million public and private repositories [32]. 

In 2017, GitHub had 26 million registered developers from 110,000 organisations and an 

additional 20 million developers and users visit GitHub daily without registering [33]. 

GitHub has long-term viability and remains on the cutting edge of technology, 

particularly the forking feature, which many developers adopt and use. 

Forking is an important feature in GitHub, allowing developers to make a copy of original 

source code, download it into their own environment to learn from or make changes, then 

submit adapted code back to the project owners (sometimes referred to as ‘upstream’). 

When a file is forked by developers in GitHub, the developer may indirectly adapt it to 

enhance the programming language longevity. Developers may download a programming 
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language not only because the language file repository is interesting and unique but 

because it also may have strong compliance and interoperability with local developmental 

environments. 

However, most OS projects do not receive high forking counts and there is currently no 

reliable method of determining whether developer motivation behind projects with the 

most forked files is ‘genuine’ or ‘non-genuine’. Genuine motivation would be developers 

who are willing to contribute, rewrite source codes and submit them upstream for owners 

to accept and merge; non-genuine developers would simply retain the code – adapted or 

not – for their own purposes, without submitting it upstream. Moreover, programming 

language use, adoption and forking varies, based on the number of projects and file 

repositories, so the evidence base on developer forking motivation behaviour is unclear. 

A project can have one or multiple programming languages to allow one or more 

developers to create single or multiple file repositories. GitHub hosts 339 active 

programming languages yet less than one twelfth are sustainable or widely adopted in 

projects by organisations [1]. However, there are other factors beyond popular use that 

influence sustainability of a programming language, including organisational and project 

boundaries, the programming languages themselves, and above all, social psychology 

aspects such as developer motivation, preference, and interest. Flexible coding provides 

many software developments companies and developers the freedom to submit their 

source codes on GitHub and allow other developers to respond and fork the code. 

Despite a number of published OS forking studies that highlight critical factors attributed 

to successful software forking and forking failure [7, 8, 13, 15, 34], there has been no 

systematic study mapping understanding of forking motivation, interpretation, 

categorisation and consequences. This paper therefore presents a systematic review of 

studies to compare, contrast, summarise and synthesise existing studies to inform future 
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decisions about OS forking research by providing an understanding of why some projects 

are forked more than others, through the lens of project and programming language 

characteristics. 

There are currently few studies that have identified or classified developer forking 

motivation to enhance forking visibility, and little knowledge about potential differences 

in forking motivation between junior and senior developers across software engineering, 

computing science and information systems literature. Therefore, clarifications are 

required. There is no framework to categorise forking motivation behaviour and its effect 

on forking visibility. A methodological framework would be useful for researchers to 

implement sustainable ways to motivate developers to fork more programming language 

files. 

The research objective was therefore to identify types of developer forking motivation 

and forking consequences cited in the existing OS literature through SLR adopted from 

[23] of conference papers and literature in relevant databases. A SLR uses specific search 

criteria to identify appropriate papers that are then read and analysed carefully using 

content analysis (a qualitative research technique) [35] to extract themes and words, in 

this instance, describing forking. Each paper is scrutinised to understand research 

methodology, methods of data collection, units of analysis and conclusions. 

The contributions of this research include: 1) summarising the existing evidence base on 

forking motivation and consequences into a methodological framework; 2) providing 

guidelines for those interested in conducting research on understanding developer forking 

motivation and consequences influencing the ability of projects and organisations to 

predict project survivability and sustainability [survivability as in the duration of a 

programming language and sustainability as in measuring a programming language’s 

continued use by developers]; 3) filling a gap on forking risk literature to inform future 
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research; and 4) proposing a strategy to map how forking motivation and programming 

language influence forking visibility. We aim to support OSS communities and 

researchers with theoretical insights on developer forking motivation, consequences and 

impacts. 

2.5 Research Study Motivation and Research Questions 

2.5.1 Research study motivation 

This study was designed primarily to contribute to a theoretical understanding of OS 

forking and to potentially identify new influencing factors. It is important to address the 

current disparity in the literature around a theoretical understanding of what forking 

features and functions can offer in OSS, that is, perspectives on interpreting and defining 

forking as software, project, file repository and programming language source code. 

There is also a need to understand what influencing factors can cause OS project forking 

to succeed or fail. Forking activity has been reported using a variety of measures, 

including activity growth, developer interest and licensing [5, 7, 34, 36] but there are few 

analyses measuring forking motivation implicitly or explicitly. Moreover, there is limited 

evidence to confirm forking activeness in spin-off projects that may be strongly 

influenced by project topic, organisation and licence, or developer forking motivation 

(genuine or non-genuine). Further, a myriad of programming languages have tried to spur 

developer interest but not all succeed or sustain developer forking interest. Lastly, there 

is little evidence on whether genuine developers are more positively motivated to fork 

compared with non-genuine developers; for example, Murgia et al. [37] noted that 

developers have expressed love and joy when they fix OSS artefacts successfully, while 

other developers expressed anger, surprise, sadness or fear over challenging OSS 

artifacts. 
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2.5.2 Research questions 

According to Jiang et al [7], they defined forking is copying a repository to create a new 

software repository. Software forking is increasingly adopted by many OSS communities 

for various reasons, including social and political. For instance, a relational database 

management system project – MYSQL, owned by Sun Microsystems – was forked into 

another project –, called Maria DB – due to uncertainty whether Oracle stewardship could 

maintain MYSQL’s survivability [38]. 

For new OS projects, it is critical to seek developers’ participation and collaboration. 

Interestingly, most junior developers prefer to fork new projects more than old projects, 

despite less involvement from senior developers, and junior developers seem to prioritise 

forking in favour of using new programming languages [1].  

The number of terminated projects is also increasing due to low sustainable community 

participation and collaboration to fix bugs and improve features [7]. It is therefore 

important to identify types of developer forking motivational behaviour and risk to 

prevent project termination due to low developer interest. Identifying forking motivation 

may help communities increase sustainability and build more long-term contributors. 

Three research questions (RQs) guided this study. 

RQ1: How do researchers interpret forking and categorise developer forking 

motivational behaviour? 

Types of developer motivation to fork OSS were captured to address RQ1, referencing a 

definition of ‘motivational behaviour’ as a reason or reasons for acting or behaving in a 

particular way [39]. As the topic is closely related to the study of human behaviour, 

databases spanning a variety of disciplines – such as humanities and social science, 
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management science, policy, psychology and sociology – were selected to search for OSS 

papers. 

RQ2: What were the most popular methodologies used to research forking from 1990 

to 2017? 

The Open Source Software Initiative (OSI) [20] started in 1990 with support from many 

of the world’s largest OSS projects and contributors. They are Mozilla Foundation, Free 

BSD Foundation, Debian, Drupal Association, Linux Foundation, Wikimedia Foundation 

and WordPress Foundation. While the evolution of forking started in 1990, it is unclear 

what forking research papers have been published over the past nearly three decades. 

Through RQ2 we therefore aim to provide up- to-date information on forking throughout 

the period of OS development. 

RQ3: What aspects of OS forking have been researched and reported? 

Open source forking is not a new topic but has gained popularity in recent years, with 

many researchers and communities interested in investigating forking reliability [7, 34]. 

When GitHub launched there was an overwhelming response from researchers 

investigating forking technique performance to analyse forking in sustainable projects by 

programming language committees or version control files [40]. Unfortunately, research 

findings remain unclear, particularly a lack of data to understand possible impacts and 

consequences of negative forking. Therefore, RQ3 sought to find barriers to forking to 

better guide further research. 
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2.6 Methodology: Systematic Literature Review and Content Analysis 

Method 

The SLR method was employed to examine and review developers’ motivational forking 

behaviour in OS literature as the topic has been published across multiple disciplines for 

a number of years. SLR was chosen to provide a rigorous and vigorous literature review, 

as the method can synthesise controversial views and dilemmas when discussing different 

perspectives on the same topic. SLR is one of the most reliable methods for conducting a 

software engineering literature review and is widely used in computer science, software 

engineering, social science and information systems research [28, 29]. Software 

engineering researchers [23, 24, 31] even proclaimed that SLR is a form of evidence-

based software engineering that can address many engineering questions posed by 

researchers.  

A SLR has several features. First, a research question is being addressed and a systematic 

method applied to perform the review. Second, a search strategy is defined to detect the 

relevance of retrieved literature as far as possible. Third, a search strategy is used to 

review documents to assess rigour, completeness and repeatability. Lastly, explicit and 

implicit criteria are listed before conducting a SLR. Here we outline the process we used 

when conducting a SLR by specifying research questions, describing the search and 

retrieval process, collecting evidence, synthesising the evidence and providing results. 

Applying SLR guidelines provided discrete steps to locate and review appropriate 

documents describing OS forking motivation. As the content of each paper was 

comprehensive the Content Analysis method (CAM) was then applied to analyse and 

interpret articles (Error! Reference source not found.), as it is a reliable method for 
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analysing text data, themes or concepts, including intuitive, impressionistic and

interpretive, quantifying them into systematic and strict textual analyses [25, 41].

Highly cited content analysis researchers [35] defined three approaches: 1) a conventional

analysis based on text data, categorised into coding types; 2) a directed approach based 

on a theory or research findings, where user analysis begins with guidance for initial

codes; and 3) a summative content analysis based on words or phrase count, compared

by the underlying context interpretation.

Here we adopted a summative content analysis of the SLR articles to identify and count

common themes and words used to describe forking motivation and sustainability

(Error! Reference source not found.).

Figure 2. 1: Combined approaches: systematic literature review and content analysis

method

Word Frequency
(Title, Abstract and Introduction)

Content Analysis Method

Papers retrieved from databases

Search Strategy

Systematic Literature Review
Method
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2.6.1 Systematic literature review search criteria 

To ensure the literature search was specific and to identify the most relevant, high-quality 

articles, in line with SLR guidelines [28, 29], the explicit and implicit criteria used to 

evaluate each study were: 

• Peer-reviewed conference or journal papers, published and indexed either in Google 

Scholar, ACM, IEEE, Science Direct, Springer or MISQ; AND 

• Written in English; AND 

• Titles or content included phrases “open source forking motivation”, “open source 

software forking”, “open source project forking”, “open source social forking”, “open 

source code forking”, “open source language forking” OR “file repository forking”; 

AND 

• Published from 1990 to 2017; AND 

• Published from top quality Information Systems Conferences or Journals; AND 

• Described the research methodology used – systematic study, stratified sampling, case 

study, survey, interview, experiment, quasi-experiment or other study types – to 

collect, analyse and interpret results to address research questions in the paper. This 

criterion was necessary to determine common and similar research methodologies 

used by OSS researchers to inform the methods and reduce bias of method selection 

to study forking patterns, frequency, etc. 

When searching for quality papers, exclusion criteria were articled that: 

1. Were too short (e.g., less than five pages), general, based on a different perspective or 

did not include empirical evidence to demonstrate the authors’ claim; OR 
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2. Did not identify positive and/or negative impacts or consequences of motivating 

factors, and did not discuss challenges or barriers, as the objective was to understand 

developer forking motivation. For example, if there was no discussion on positive or 

negative factors impacting developer forking motivation; OR 

3. Did not include empirical evidence from the stated methods, be they quantitative, 

qualitative or mixed. 

2.6.2 Search strategy 

Two approaches were applied to conduct the SLR search (Error! Reference source not 

found.). The first search was conducted on 1 October 2017 on Google Scholar for the 

term “open source forking behaviour”, resulting in 21,200 URLs. Because the first 

approach based on text searching is broad, the second search approach aimed to narrow 

the search on ACM, IEEE, SCOPUS and other databases, which have more OSS 

publications. Results were then sorted by relevance and filtered for papers published from 

1996 to 2017, resulting in 9530 URLs. These papers were both peer-reviewed and non-

peer-reviewed by multiple disciplines ranging from economics, management, 

information systems, software engineering and sociology [28-30].  
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Figure 2. 2: The systematic literature review search strategy for research papers 

As each Google Scholar results page lists 10 URLs linking to peer-reviewed articles cited 

in databases, the first five pages were reviewed by clicking each link to each URL, and 

the summary or abstract and introduction were read to confirm relevancy and suitability. 

In total, 13 papers were identified in ACM, IEEE, Science Direct and or MISQ databases 

plus 8 other relevant papers in other databases (Error! Reference source not found.). 

Table 2. 1: The systematic literature review identified 21 relevant and suitable papers 

Database Number Authors 

Google Scholar 8 Biazzini & Baudry, 2014 [42]; Ernst et al., 2010 [40]; Fujita & Ikuine, 

2014 [43]; Fung et al., 2012 [34]; Gamalielesson & Lundell, 2013 [8]; 

Ikuine & Fujita, 2014 [6]; Moen, 1999 [18]; Nyman et al., 2012 [44] 

ACM 6 Dabbish et al., 2012 [36]; Glass, 2003 [15]; Neville-Neil, 2011 [45]; 

Nyman, 2014 [46]; Ray & Kim, 2012 [47]; Ray et al. 2014 [17]  

IEEE 2 Chua, 2015 [48]; Cosentino et al., 2017 [14]  

MISQ 1 Van Krogh et al., 2012 [9] 

Springer 4 Azarbakht & Jensen, 2017 [13]; Jiang et al., 2017 [7]; Robles & 

Gonzalez-Barahona, 2012 [5]; Nyman & Mikkonen, 2011 [3] 
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2.6.3 Methodological framework 

Of the 21 papers, five focused on forking sustainability, three on forking challenges and 

17 on lessons learnt. Forking motivation, sustainability and lessons learnt were 

synthesised into a methodological framework with three steps to address the research 

questions via retrieval, categorisation and reporting (Error! Reference source not 

found.). 1) Identify variables used to define motivation and its interpretation from both 

broad and specific perspectives by applying the three RQs via the SLR to select and 

review papers. 2) Categorise forking interpretations into three categories (OS forking 

motivation, sustainability and lessons learnt) by applying the CAM using the same theme 

or word. 3) Group similar keywords and papers that describe the three categories of 

forking motivation, sustainability and lessons learnt. Conclusions were then drawn from 

these findings regarding forking challenges and lessons to be learnt. 

Table 2. 2 A forking motivation methodological framework 

Purpose Process Outcome 

1. Identify variables that describe forking 

motivation and its interpretation 

Apply SLR to select 

relevant papers from 

selective databases 

Retrieve relevant papers 

on forking motivation 

2. Categorise forking into motivation, 

sustainability and lessons learnt 

Apply CAM and classify 

common themes or words 

Categorise forking 

motivation into three 

classes 

3. Group similar keywords to describe OS 

developer forking motivation, 

sustainability and forking lessons learnt 

Analyse word count 

frequency (title, abstract 

and introduction) 

Report forking 

motivation factors 
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2.6.4 Content analysis method 

Each of the 21 papers identified was scrutinised for context using content analysis. Papers 

were first scanned to confirm the word ‘fork*’ was mentioned and the research evidence 

was empirical, then themes and key words were extracted. Next, each title was checked, 

abstract read, and adjectives that described ‘fork*’ quantified (Error! Reference source 

not found.). For example, when reviewing the papers “Code Forking in Open-Source 

Software: A Requirements Perspective” [40] and “Perspective on Code Forking and 

Sustainability in Open Source Software” [44] the word ‘code’ occurred twice so ‘2’ was 

entered under ‘code’ forking type identified by the Google Scholar search in Error! 

Reference source not found.. Occurrences of forking motivation (n=10), forking 

sustainability (n=4), consequences (n=2), impacts (n=2) and threats (n=1) were also 

noted. Paper content was then analysed, noting research method, unit of analysis and 

results, then the introduction and conclusion were reviewed in more detail. 

Table 2. 3: Forking interpretation types 

Forking type 

Paper identified via 

TOTAL ACM IEEE Springer MISQ 

Google 

Scholar 

Open source    1  1 

Project 4 1 1  1 7 

Software  1   2 3 

Social 2  1  2 5 

Code   1  2 3 

Language     1 1 

File repository   1   1 

TOTAL 6 2 4 1 8 21 

 

Next, papers were grouped into four categories to address RQ1: 
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• Developer forking interpretations: 7 interpretations of forking (Error! Reference 

source not found.). 

• Developer motivation and reasons: a subset of papers reported similar variables (Table 

3). For instance, [7, 9, 15, 34] reported divergent specialisation, objective 

misalignment, poor governance and leadership and culture. 

• Forking sustainability: four groups of researchers [3, 7, 8, 40] undertook real-world 

projects, comparing original versus forked projects (Error! Reference source not 

found.). Successful and sustainable projects included community-level projects, such 

as MariaDB forked by MYSQL, the software level of MS Word and LibreOffice and 

ecosystem levels of LibreOffice forked from OpenOffice. 

• Forking lessons learnt on project compatibility issues: 19 papers cited forking lessons 

and seven described more than one type of forking reason, including no guidance or 

direction, copyright, licensing conflict, project ownership or dividing the forking 

community [6, 13-15, 18, 43, 45] pointed out that technical developers’ roles are 

becoming specialised. 

2.7 Forking Motivation Interpretations 

Although a number of motivating factors identified in previous OS studies are applicable 

in the forking context, a number of diverse forking motivation factors were detected in 

this literature review, including project revival and alignment, culture traits, divergent 

specialisation, individual ownership, licence and software compliance, community 

disintegration, community practice and extending community social coding development. 

Therefore prior to investigating forking motivation factors, an additional research 

question was posed. 
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2.7.1 How do researchers interpret developer forking and categorise 

forking motivational behaviour? 

These findings reveal a diversity of forking interpretations (Error! Reference source not 

found.), with project forking most common (7 papers), and OS, programming language 

and file repository the least (1 each). However, fork type was interpreted differently by 

different researchers, due to the metadata of the dataset they downloaded from the hosting 

server. For example, GitHub was the only hosting server to categorise file repository 

forking. To further understand the forking interpretation each paper, the categories were 

defined in more detail (paper classifications shown in Error! Reference source not 

found.). 

2.7.1.1 Open Source Forking 

The early 1990s saw a proliferation of research on OS motivation. Krogh et al. [9] 

reviewed seven years of publications and identified 40 papers that focused on OS 

developer motivation, including [49-52]. They synthesised findings across these papers 

into three classes of motivation: intrinsic, internalised intrinsic and extrinsic. Intrinsic 

motivation included ideology, altruism, kinship and fun, and can drive developers to fork 

software. Internalised intrinsic motivation included reputation, reciprocity, learning and 

own-use [49-52]. Extrinsic motivation may include being paid for the work or finding a 

career in coding [49-52]. Hippel and Von Krogh [53] and Goode [54, 55] studied 

organisational information sharing of OSS and innovation models as influencing factors 

on motivation between adopters and non-adopters. They found more reputable 

organisations and innovative projects are more likely to attract OSS developer attention 

to download or copy repository files. 
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2.7.1.2 Concept of Forking  

Forking can be defined in different ways. Nyman et al. [3, 44, 46] defined it in a project 

context, where the development of an independent project is based on a developer who 

copies original source code from a software package. Ikuine and Fujita [6] defined 

software forking as the continuous development of software. Fung, Aurum and Tang [34] 

defined social forking to identify relationships within communities, and studied how forks 

are used to facilitate OSS development. Code forking is defined as a forked project copied 

from an existing code base and moved away from the original project leadership direction 

[3]. 

In our paper, we define language forking as a repository language that is copied by other 

developers. Defining programming language success varies from researcher to 

researcher. For instance, programming language interoperability performance being a 

major contributor to success [16]. Despite this, most languages are not interoperable [16, 

17, 47]. Investigating when and why developers may fork a programming language file 

requires consideration of language needs and developer motivation. For example, some 

developers may fork a programming language because the original language has been 

combined with another new programming language. Other developers may fork a 

programming language to add or amend features to the language or to a subset of the 

original programming language.  

A file repository fork is defined as an original repository where source code developers 

contribute sufficiently to benefit the OSS community [7].  

As such, we need to understand developer forking motivation. There are currently a broad 

range of perspectives on OS developer motivation, ranging from individual to 

communities, and fork consequences on projects and organisations. 
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Although a variety of research methods have been adopted to predict OSS popularity, 

sustainability and survivability [3, 5-7, 9, 13, 16, 26, 34, 36, 42, 44, 46, 48], these methods 

are less useful for predicting programming language forking survivability. These research 

methods include surveys, interviews, content analysis and empirical studies that are 

subjective and potentially biased. For example, data samples were not large, reducing 

accuracy; data analyses and interpretation could be subjective or biased; and the study 

designs were unable to handle large datasets. In contrast, machine learning techniques 

work effectively with an abundance of data to leverage for training and testing. 

2.7.1.3 Project forking 

According to Nyman and Mikkonen’s definition [3], a project fork is defined as source 

code copied from software, with the copy version used by the fork developers to develop 

their work. In other words, the piece of source code that is forked is an independent 

version, separate from the original source. Nyman and Mikkonen [3] looked at forking 

behaviour in the context of forked project survivability, quantifying project forking as the 

number of original projects forked by developers and comparing the number of original 

projects versus forked projects in GitHub. Many researchers seek to understand how 

forking impacts an original forked project and Nyman and Mikkonen’s study [3] provided 

real-life examples of current high-profile OS projects that either started from a fork or 

were common targets for forking. 

2.7.1.4 Software forking 

Ikuine and Fujita [6] defined software forking as the continuous development of software, 

by the original developer or others. An original developer must share the source code 
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when other developers take over. Software forking focuses on the product itself, such as 

Microsoft software, Facebook software and email applications. 

2.7.1.5 Social forking 

Fung, Aurum and Tang [34] defined social forking in their study of nine JavaScript 

development communities in GitHub, with the highest amount of forks to identify the 

relationships within them and study how forks are used to facilitate OSS development. In 

their analysis, almost 7000 developers made approximately 8000 forks in different 

communities, with the most active developers making contributions to multiple 

communities. Their research indicated that forks are actively used by the development 

community to fix defects and to experiment with new features. What separates these forks 

from normal branching is that the changes do not necessarily need to be promoted to the 

original project upstream and can live in a separate fork that can still take any changes 

and improvements from the original project as updates. What separates a fork from a 

branch even more is that a fork can originate from either a subset of the forked 

predecessor’s artifacts or from multiple predecessors’ artifacts. A branch in turn is a copy 

of all the predecessor’s artifacts [34]. 

2.7.1.6 Code forking 

Code forking is defined as a forked project copied from an existing code base and moved 

away from the original project leadership direction. While addressing new requirements, 

code forking enables contributors or developers to add existing functionality. Despite its 

flexibility, there are developer community concerns, including forking maintenance, 

evolution and social factors. Another definition of a code fork is when a piece of source 
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code is downloaded or copied by a developer from an existing program which has the 

original version of the source code [3]. 

2.7.1.7 Programming language forking 

Chua [26] examined language forking from the perspective of programming language 

adoption by project owners, finding three projects where Apache, Mozilla and Ubuntu 

Javascript languages were actively forked by developers. Chua and Zhang [27] then 

proposed three forking pattern types (‘once-only’, intermittent or steady) and potential 

reasons behind short-lived programming languages. According to [27], the definition of 

a programming language forking is an active and sustainable programming language that 

is adopted by developers or project owners and forked voluntarily by developers.   

2.7.1.8 File repository forking 

A file repository fork is defined as an original repository where source code developers 

contribute sufficiently to benefit the OSS community [7]. Developers who fork an 

original file repository can modify it for correcting bugs or adding new features, 

submitting bug fixes, adding new features, submitting pull requests and archiving copies. 

A repository written by a developer in their own programming language that is liked by 

other developers is also highly likely to be forked.  
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Table 2. 4: Fork categorisation, sustainability and lessons learnt 

Type Interpretation Studies Citing authors within paper set 

Forking motivation 

Coding for revising 

requirements 

Requirement change Ernst et al., 2010 [40] Ernst et al., 2010 [40] cited by 

Fung et al., 2012 [34]; Jiang et al., 

2017 [7] 

Seeking a coding job Recruitment of 

contributors 

Biazzini & Baudry, 2014 [42] Nil 

Licensing compliance Licensing compliance Biazzini & Baudry, 2014 [42]; Dabbish et al., 2012 [36]; Jiang et al., 

2017 [7] 

Nil 

Software compliance Software 

interoperability 

Von Krogh et al., 2012 [9]; Meyerovich & Rabkin, 2013 [1]; Nyman, 

2014 [46]; Tegawendé et al., 2013 [16], Jiang et al., 2017 [7] 

Nil 

Reviving original project 

development duration 

Cessation of original 

project 

Nyman, 2014 [46]; Robles & Gonzalez- Barahona, 2012 [5]; Ray & 

Kim, 2012 [47]; Tegawendé et al., 2013 [16]; Chua, 2017 [26] 

Nyman, 2014 [46] cited by Jiang et 

al., 2017 [7] 

Extending community social 

coding development 

More community 

driven development 

Dabbish et al., 2012 [36] Ray et al., 2014 [17] cited by Jiang 

et al., 2017 [7] 
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Type Interpretation Studies Citing authors within paper set 

Ownership implication Legal implication on 

ownership and conflict 

over brand ownership 

Fung et al., 2012 [34]; Nyman, 2014 [46]; Nyman & Mikkonen, 2011 

[3]; Ray & Kim, 2012 [47] 

Business strategy risk Commercial strategy 

forks 

Dabbish et al., 2012 [36] 

Team coding skill inequality Differences among 

developer team 

Nyman, 2014 [46] 

Community socialisation Building new 

community through 

social interaction, 

sharing and 

collaboration 

Dabbish et al., 2012 [36]; Fung et al., 2012 [34];  Robles & Gonzalez-

Barahona, 2012 [5] 

Coding by socialising Social network coding Jiang et al., 2017 [7]; Fung et al., 2012 [34] 

Divergent specialisation New specialisation, 

divergent technical 

views 

Nyman, 2014 [46]; Nyman & Mikkonen, 2011 [3]; Ray & Kim, 2012 

[47] 

Nil 

Objective misalignment Different technical 

objectives 

Poor leadership Poor project Nyman, 2014 [46]; Nyman & Mikkonen, 2011 [3]; Robles & 
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Type Interpretation Studies Citing authors within paper set 

governance Gonzalez-Barahona, 2012 [5] 

Culture trait Cultural differences 

Software activity Project specialty to 

generate commits 

Ray & Kim, 2012 [47]; Tegawendé et al., 2013 [16] Nil 

Ecosystem System between system 

sharing resources and 

infrastructure 

Forking sustainability 

Community activity Communities retention Ernst, et al., 2010 [40]; Gamalielesson & Lundell, 2013 [8]; Jiang et al., 

2017 [7]; Nyman & Mikonnen, 2011 [3]; Azarbakht & Jensen [13]; 

Cosentino et al., 2017 [14] 

Ray et al., 2014 [17] cited by Jiang 

et al., 2017 [7]; Gama-lielesson & 

Lundell, 2013 [8]  

Forking lessons learnt 

No formal process No guidance/ direction Ikuine & Fujita, 2014 [6]; Fujita & Ikuine, 2014 [43]; Azarbakht & 

Jensen, 2017 [13] 

Nil 

Legal implication Copyright Glass, 2003 [15]; Azarbakht & Jensen, 2017 [13]  

Licensing conflict Moen, 2016 [18]; Azarbakht & Jensen, 2017 [13]  

Transfership Project ownership Ikuine & Fujita, 2014 [6]; Fujita & Ikuine, 2014 [43]; Cosentino et al., 

2017 [14]; Azarbakht & Jensen, 2017 [13] 
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Type Interpretation Studies Citing authors within paper set 

Product expertise shortage Technical developers 

become product expert 

Neville-Neil, 2011 [45]  

Upgrade of developer role to 

product role 

Role movement Glass, 2003 [15]; Ikuine & Fujita, 2014 [6]; Cosentino et al., 2017 [14]  Glass, 2003 [15] cited by Fung et 

al., 2012 [34]  

Community divide Divide community fork Azarbakht & Jensen, 2017 [13]; Cosentino et al., 2017 [14]  Nil 
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2.7.2 What were the most popular methodologies used by forking 

researchers from 1990 to 2017? 

Error! Reference source not found. presents data relating to methodologies across the 

21 papers after they were carefully reviewed for study type, research methodology and 

data collection methods and type. Thirteen of the 21 papers were qualitative with data 

collection methods including stratified sampling (n=8), systematic study (n=5), 

qualitative interview (n=2), qualitative case study (n=2), survey and interview (n=1), 

stratified sampling and survey (n=2) and qualitative interview and survey (n=1). 

 

Figure 2.3: Data collection methods in the 21 papers 

2.7.3 What aspects of open source forking have been researched and 

reported? 

Error! Reference source not found. shows the units of analysis used in the 21 papers. 

In seven papers this was a comparison between non-forking and forking projects. Of the 

remaining 14 papers, six papers focused on the forking relationship on software releases, 

version control files and file repository and eight focused on OS project interactions with 

components, such as popular programming languages, the product and the successful 
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Qualitative interview
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Qualitative interview and survey
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system, and analysing forking behaviour between the manager, developer, and end user

(GitHub versus non-GitHub).

Figure 2. 4: Units of analysis in the 21 papers

Error! Reference source not found. shows eight types of forking lessons learnt on

project compatibility issues that were identified in the 21 papers. In order of decreasing

frequency of reporting, these were: no project ownership (n=4); no project guidance and

the developer role becoming specialised (n=3); copyright, licensing and the software less

likely to become proprietary, and a split community (all n=2 each). There was also one

paper on losing developers as technical developers become product experts.
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Figure 2. 5: Forking lessons learnt across the 21 papers

2.7.4 Newcomers or new developers forking motivation from 2020 to 2021

From 2017 to 2021, we reviewed other papers on forking motivation and could not find

new forking motivational variable/s or reasons except for some papers that investigated

OS newcomers’ forking motivation. We examined this literature closely to evaluate

motivations for first-time developers.

Subramanian et al. [56] analysed and investigated 3501 first-time developers who forked

OS projects for the following core motivations: documentation, feature, bugs, refactoring,

GIT-related issues and test cases. They commented first-time developers fork a repository

to: 1) update documentation changes on files such as READMEs and/or explanatory

comments; 2) add a new feature or a new functionality onto the project; 3) fix unexpected

bug behaviour in code; and 4) make code more readable and understandable by

refactoring it and conforming to coding standards.

What attracted to first-time developers to fork based on top three reasons are 1) editing

documents, 2) adding or modifying new features and 3) correcting bugs. Instead of fixing
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major features, the first-time developers contributed to fixing minor feature changes and 

bug fixing, for examples, they can fix an unexpected behaviour in the source code, 

memory allocation errors, concurrent tasks errors and requirements. inconsistency for 

instance, misspellings and assigned values mistakenly etc. 

For first-time developers to complete these tasks, it is important to ensure OS 

environmental settings are properly configured, including the OS project is aligned with 

new or emerging technology as far as possible, a sustainable programming language is 

used and the project has a legitimate OS licence.  

In this paper, the researchers mentioned they studied first-time developers who forked 

projects from The Apache Foundation (ASF) in GitHub [57] is to provide their support 

and services and support in ASF activities. Having the OS environmental setting 

configured can motivate first-time developers to fork and find the forking process 

enjoyable.  

2.7.5 Shifting motivation through time and journey 

The work of Gerosa et al. [58] reports shifting motivations through time and the shifting 

motivations through the ‘self-journey’ of developers. They refer to the shifting motivation 

through time as some developers’ motivations contribute to OSS as a test of time from 

learning, fun and knowledge, sharing at the ‘curiosity’ period on every first-time OSS 

developers fork. After the curiosity period is over, developers shift their motivation focus 

onto social aspects, such as altruism, kinship and reputation. Shifting motivation through 

self-journey means that developers first contribute to OSS based on extrinsic motivations 

– such as ideology, own-use or education-related programs – and consequently shift to 

intrinsic reasons such as fun, altruism, reputation, and kinship. 
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2.7.6 Shifting forking motivation

We evaluated how first-time and non-first-time developers’ forking motivation

diminished, not only for personal reasons (figure 2.6). An absence of a good OS

environment compliance can also affect both groups. A complete OS environment

compliance is very important because it brings convenience and flexibility to them. It

gives them confidence to explore, learn and contribute in a secure and safe yet challenging

learning space. A highly desirable OS infrastructure environment allows developers to

have the space to learn, grow and develop source code. A less desirable OS infrastructure

environment has a negative effect on their motivation, especially when they face

environmental barriers like using a less sustainable programming language, which may

not provide benefits to them. They choose not to fork other repositories as often as they

prefer. Similarly, a less useful technology and a highly restrictive OS licence would create

multiple barriers to forking and increase the chance for first-time and non-first-time

developers to stay away from the forking environment.

Figure 2. 6: The open source developers’ motivation movement
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2.8 Summary from the literature survey  

Forking is one of the most critical techniques in OS research today. Our analysis of 21 

papers from the first part of literature survey can help the OS community – educators, 

academicians, developers, project investors – to improve awareness of forking as a 

sustainable way to revive project health. The categories of forking lessons learnt highlight 

that forking consequences are likely to continue and remain a survival challenge to OSS 

developers. For example, if forking life span becomes short-lived developers could close 

a project or terminate the file repository. 

According to our investigation, there is no research discussing how a lack of sustainable 

programming languages could reduce forking sustainability and viability. Programming 

language attractiveness drives and motivates developer desire to fork, helping to maintain 

forking health and activity. The usefulness of a programming language is the likelihood 

a fork can be generated effectively by developers. We strongly believe it is important to 

investigate how competitive programming languages can impact forking sustainability 

and to seek ways to prevent low forking performance, if necessary. 

The following outlines our findings from the literature survey from Part I:  

1. Append new findings into the body of knowledge on OS forking behaviour. 

Applying the combined approaches of SLR and Content Analysis revealed seven 

forking types interpreted by academic researchers and the latest interpretation found is 

file language repository fork. This novel insight will assist researchers on how forking 

is presented and interpreted and industry practitioners in reviewing project forking 

health, especially projects with programming language file repositories that are less 

adopted or forked by developers. 
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2. Understanding forking consequences. Case studies are an important way to highlight 

lessons learnt by researchers. This paper identified forking impacts and consequences, 

with one of the worst impacts being a political strategy that divides a project 

community and forms a new community. Forming a new community results in less 

contributions by developers to the original file repository, bug fixes or feature 

enhancement. Allowing accumulated bugs and feature enhancements to remain 

unfixed for a period of time can affect project health risk. 

3. More research is required on forking sustainability. Reviewing these 21 papers 

revealed the importance of forking sustainability investigation as a top priority with 

two specific areas of interest. 

a. Analysing forking from a social community perspective. For instance, Azarbakht 

and Jensen [13] conducted a study to determine what motivates people to decide to 

fork (break away) in complex software development networks, and the type of 

changes a community needs to consider when deciding to divide [13]. Differences 

or conflicts on team communication, goals, styles or values can positively or 

negatively influence community interactions. 

b. Understanding the relationship between programming languages, repositories and 

developer forking interest to more accurately predict OSS forking motivation and 

behaviour. 

4. Studying forking sustainability using a SLR for software development with 

GitHub. Consentino et al. [14] used a SLR to show that project longevity and forking 

chances are the two highly dependent variables on the project. They also discovered 

that developers provide additional contact information (e.g., email address, personal 

website URLs that are clearly active) to increase social interactions between a project 

owner and forker [14]. Future work could include developing a prediction model for 
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fork effectiveness from forking motivation classifications in response to language 

repository files, where programming language survival time is critical to an OS 

projects’ health and survivability. 
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Chapter 3: Literature Survey Research Methodology  

3.1 Overview  

This chapter reviews the research methodologies used to investigate OSS, classified into 

methodologies based in literature surveys, data mining or machine learning. As this work 

is yet to be published the chapter is formatted in a more traditional style. 

3.2 Motivation  

The primary motivation in conducting the research methodology survey was to achieve a 

holistic understanding of the types of research methods that have been adopted by 

researchers previously to investigate OSS variables, and to contribute a paper to the field 

describing these different methods. We also aimed to affirm our choice of using a 

predictive learning algorithm, KNN, to address our research problem on forking scarcity 

and low forking visibility to understand developer forking motivation and behaviour.  

3.3 Introduction 

GitHub is a social software development platform that is widely used by developers to 

collaborate on OS projects. Since its inception, the number of GitHub users, developers, 

projects and repositories have all increased significantly: as of January 2020, the GitHub 

user population was over 40 million users, with over 190 million repositories, of which 

28 million were public [59].  

Improving GitHub’s hosting platform quality requires investigation of the factors that 

may impact it. For example, topics that could be explored include the motivational 

behaviour of newcomers, the sustainability of long-term contributors, social network 

success ability, forking longevity, the reliability of a software repository, bug defects and 
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fixing resolutions, sustainable programming languages, and/or OS licences that meet full 

compliance.  

There is extensive research on GitHub; however, very little attention is paid to research 

methods employed in OSS. Selecting a proper research method is important in addressing 

the research problem in the appropriate way to provide meaningful data that can be 

interpreted accurately by others and applied to their context if useful. We aimed to fill 

this academic gap.  

3.4 Literature Survey Selection Criteria and Categorisation 

We searched academic databases using the following keywords: “Open Source Survey”, 

“Open Source Forking”, “Open Source Prediction” and “Open Source GitHub”. We then 

applied the following criteria to the search results (

 

Figure 3. 1): 

1. The research study must be in OS GitHub.  

2. The research article must explain a research methodology and how it was applied. 

3. The discussion of an OSS variable in the research article must be relevant to our 

research context addressing the forking topic or a function of the OSS infrastructure 

OSS Github

Research 
Methodology 

Selection 
Criteria 

OSS variable 
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of concern to developers, users, newcomers, OS licence, programming languages, file 

repositories, business process models, fork, etc.  

4. The research article must be high quality and peer reviewed. 

5. The research article must have been published between 2003 and 2021.  

Research articles that met these criteria were scrutinised. The abstract was reviewed for 

OSS variables and descriptions of research methodologies were reviewed to ensure it 

related to OS and GitHub.  

 

Figure 3. 1: Paper selection criteria 

 

After reviewing the research articles, they were categorised as being based in:  

1. Surveys: Articles that focused on understanding OS variables previously investigated 

by other researchers in disciplines such as Information Systems, Social Science, 

Software Engineering, Information Technology and Computer Science.  

2. Data Mining Algorithms: Articles that focused on understanding which type of OS 

variables were mined, identified and detected.  

OSS Github

Research 
Methodology 

Selection 
Criteria 

OSS variable 
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3. Machine Learning Algorithms: Articles that focused on a specific OS variable that 

was mined, identified, and outcomes predicted. 

3.5 Category I: Survey-based Research Methodology  

Ten literature survey research papers that we reviewed discussed OS variables related 

either to forking topics or a function of the OSS infrastructure (Table 3. 1). Three of the 

eight (37.5%) survey papers targeted roles such as developers, users, promoters and 

newcomers. The objective of conducting a literature survey for three researchers [7, 11, 

60] was to seek clarity and interpretations of roles.  

Three papers adopted two research methods to examine GitHub users. Jiang et al. [7] 

applied a survey method and a regression analysis on 236,344 developers and 1,841,324 

forks to categorise developers into three groups. The first group is 1) bug maintenance 

developers they forked repositories to solve issues like pull requests, fix bugs, add new 

features; 2) the second group is programming language developers who are more likely 

to fork a repository if a programming language is written familiarize to them and 3) the 

third group of forked developers who fork repositories from their project owners. 

Celińska [60] applied a logit model and descriptive statistics to classify 3,915,138 GitHub 

users into three groups: those who used popular programming languages; those who have 

a good reputation within the community; and those who provided additional information 

to attract more developers to join GitHub. Lastly, Balali et al. [11] used a SLR to identify 

barriers to using GitHub then interviewed 10 newcomers about their experiences of 

barriers while using GitHub. From the interviews, they found 34 of the 44 identified 

barriers can affect newcomers, while only 19 can affect mentors. 

Four research articles examined software repositories as an OS variable [61-64]. Software 

repositories is one of the features of GitHub and is an essential function for OS 
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infrastructure. Teng et al. [63] were interested in social networks as there is little research 

on software repositories and social network and the interaction between them. They 

conducted a literature survey and discussed five types of mined software repositories 

which they are 1) email archive; 2) online forked communities; 3) blogs; 4) bug tracking 

systems; and 5) version control – to determine how OS communities interact. They then 

studied their behaviour patterns and concluded that the social networks, blogs and online 

communities have gained popularity and further research in this area looks promising. 

Similarly, Zhang et al. [64] applied Teng et al.’s categories to the results of a literature 

survey of 20 papers that emphasised developer social network construction, analysis and 

construction importance when studying developers social network patterns.  

The additional contribution from Siddiqui and Ahmad [62] on software repositories 

survey is Deployment Logs (DL) and code repositories. They surveyed and compared 

Mining Software Repository (MSR) tools used in six major open source projects: 

Dynamine (DME); SoftChange (SCG); Chianti (CNI); Hipikat (HKT); Kenyon (KYN); 

and Apfel (AFL). Their metrics included different parameters under several categories: 

the user dimension group included manager, developer, user and tester; time included 

past, present and future; information source included Control Version System (CVS), 

issue tracking and software release systems. They found all six OS projects used the CVS 

system while for the other metrics the support systems varied across projects, e.g., change 

management, defect tracking, archive mailing lists, infrastructure requirement, 

online/offline, storage required, input data and language dependency. Borges et al. [61] 

applied multiple linear regressions to 4,248 software repositories starred by developers to 

predict popularity and successability. However, they did not discuss starring of forked 

repositories.  
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Hora and Valente [65] studied the factors that impacted GitHub repository popularity. 

They downloaded a GitHub dataset that consisted of rated stars by developers on 2279 

popular GitHub repositories and found the star rating on programming languages affects 

project popularity. The programming language JavaScript scored 3697 stars, versus the 

programming language Go with 3549 stars and the non-programming language HTML 

with 3513 stars. The lowest star ranking of the three programming language repositories 

was PHP (3245), Java (3224) and Python (3099). They identified the application domain 

as another important factor. OS files such as systems software, web libraries, frameworks 

and documentation rated more stars on application domains, and organisation repositories 

were more popular than individuals’ repositories.  

In contrast, Do et al. [22] proposed a new way for fork detection and duplication residing 

in repositories. They downloaded more than 3 million software repositories and 

determined that 52,484 were active, 8434 were forked and 7441 were release-based 

forked repositories. Their preliminary investigation revealed a significance relationship 

between forking patterns and fork success indicators.  

A more recent OS variable of interest is communities’ code of conduct. Li et al. [66] 

applied a qualitative analysis approach on a small sample size of GitHub issues 

concerning whether the code of conduct had been used positively or negatively to address 

project issues. They downloaded 52,000 public GitHub repositories and found 50,000 

were the most popular (based on star ratings) and the remaining 2000 were not rated. 

6,566 (12.6%) of the repositories from the project root had a code of conduct.  
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Table 3. 1: Literature Survey Research Methodology in OSS 

No 

Category/ 

Cluster OSS Variable  Classification  Reported Size  Dataset  

Non-Machine 

Learning 

Technique  Paper 

1 Role Forking 

developer  

1) Bug maintenance 

developers forked 

repositories to solve issues 

like pull requests, fix bugs, 

add new features; 2) 

Programming language 

developers were more likely 

to fork a repository if a 

programming language is 

written in a familiar 

language; and 3) Forked 

developers who fork 

repositories from their 

project owners 

236,344 

developers, 

1,841,324 forks 

GitHub Literature 

survey, 

statistical 

regression  

Why and how developers 

fork what from whom in 

GitHub 2017 Software 

engineering. 2017. [7] 
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No 

Category/ 

Cluster OSS Variable  Classification  Reported Size  Dataset  

Non-Machine 

Learning 

Technique  Paper 

2 Role  GitHub user  Programming language users  3,915,138 users GitHub 

Torrent  

Logit model, 

descriptive 

statistics  

Coding together in a 

social network: 

collaboration among 

GitHub users. 2018. [60] 

3 Role  Newcomers  Newcomers’ barriers Two women and 

eight men who 

are experienced 

OSS Five of them 

had industry 

closed-source 

projects, and one 

of them had 

experience in OSS 

and academia 

GitHub,  Systematic 

survey, 

interview 

Newcomers’ Barriers. . . 

is that all? An analysis of 

mentors’ and newcomers’ 

barriers in OSS projects. 

2018. [11] 

4 Social network Software 

repositories  

Five Software repositories 

classification  

1,251 software 

repositories 

GitHub Literature 

review  

A survey of mining 

software repositories in 

social network. 2020. [63] 
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No 

Category/ 

Cluster OSS Variable  Classification  Reported Size  Dataset  

Non-Machine 

Learning 

Technique  Paper 

5 Developer 

social 

networks 

Construction, 

analysis, and 

applications 

Social interaction from 

developers regarding 

information related to 

software development, 

construction, analysis and 

projects. 

104 papers GitHub  Literature 

review  

Developer social 

networks in software 

engineering: 

construction, analysis, 

and applications. 2014. 

[64] 

6 Software 

repositories: 

Mining software 

repositories  

Run time repositories, code 

repositories, fault prediction  

9 papers  GitHub Literature 

review  

Data mining tools and 

techniques for mining 

software repositories: A 

systematic review. 2017. 

[62] 

7 GitHub stars  Star rating on 

each GitHub 

repository 

Star popularity  4248 repositories GitHub Multiple linear 

regressions, 

KSC clustering 

algorithm 

Predicting the popularity 

of GitHub repositories. 

2016. [61] 

8 Main factors 

that impact 

stars, including 

programming 

Factors  2279 repositories  GitHub Descriptive 

statistics  

Understanding the 

factors that impact the 
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No 

Category/ 

Cluster OSS Variable  Classification  Reported Size  Dataset  

Non-Machine 

Learning 

Technique  Paper 

GitHub project 

stars, 

including 

programming 

language, 

application 

domain 

language, 

application 

domain 

popularity of GitHub 

repositories. 2016. [65]  

9 Software 

repositories  

To detect fork 

and duplicate 

repositories 

Fork and duplicate 

repositories  

3 million software 

repositories 

GitHub Descriptive 

statistics  

Mining and creating a 

software repositories 

dataset. 2020. [22] 

10 Code of 

conduct 

conversation 

Codebook 

development, 

reliability, and 

application.  

Code of conduct 

conversation detected on 

repositories  

6,566 responses 

on commenting 

the issues  

GitHub 

API 

Qualitative 

analysis  

Code of conduct 

conversations in open 

source software projects 

on GitHub. 2021. [66] 
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3.6 Category II: Data Mining Algorithm-based Research Methodology  

This section summarises ten research articles that used data mining methodologies (Table 

3. 2). These articles aimed to investigate: 1) OS licence changes; 2) business process 

management notation methods and tools used in GitHub; 3) source code changes in OS 

projects; 4) change analysis activity patterns; 5) malware activity in source codes; 6) 

identifying programming languages that can improve productivity and quality; 7) 

identifying programming languages via images; 8) how communication may serve a 

function on the bug fixing activity between developers; 9) the communicative activity on 

forking and 10) fork types at windows and network level. Each article discussed the 

purpose of using a data mining method for analysis, either text-based, data-based, pattern-

based or sentiment-based. Other OS variables are also important to consider for mining 

purposes as its aim is to identify patterns or classifications.  

These papers were selected as part of the literature review to understand the current trends 

on OSS variables that being investigated. All ten articles are highly relevant to our work 

on predicting forking performance, with the OS infrastructure playing a pivotal role in 

predicting forking patterns and performance that align with developer motivational 

behaviour. OS infrastructure consists of OS licences, programming languages, 

developers, software repositories, business process methods and models, bug fixing 

activities, fork mechanism, etc.  

From our knowledge, the field of forking performance prediction research is small but 

growing. Six of the 10 papers were published very recently, in 2020 or 2021, and these 

studies are very helpful in informing choice of research method.  

Vendome et al. [67] mined and downloaded 16,221 projects written in a Java 

programming language hosted on GitHub and analysed licence changes in 1,731,828 
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commits. They classified the licence changes into three patterns: 1) from no licence to 

some licence (N2L); 2) from some licence to no licence (L2N); and 3) from some licences 

to some licences (L2L).  

Heinze et al. [68] mined 6,163,217 repositories and identified 1,251 repositories of 

Business Process Modelling Notation (BPMN) artifact. They determined the total 

artifacts across four types of files: 16,907 artifacts on XML BPMN 2.0; 384 XML 

artifacts; 1635 Image file artifacts; and 2380 artifacts from other files. They analysed and 

studied how BPMN process model artifacts distributed across geographical locations and 

found China has the most BPM contributors, followed by Germany then the US. They 

also discovered a high percentage of BPM artifact duplications. 

The research paper entitled “Predicting source code changes by mining change history” 

by Ying et al. [69] discussed the identification of patterns on source code changes by 

applying data mining techniques. Ying et al. [69] evaluated two OS projects – Eclipse 

and Mozilla – from GitHub and evaluated the predictability. They applied association 

rule mining algorithms [70, 71] to determine the frequency occurrence of a set of source 

files changing patterns in the database. They also applied pattern mining [70, 71] to detect 

the source code change history pattern. They categorised Mozilla and Eclipse by 

interestingness value as surprising, neutral or obvious, according to how well the files 

were structured so that developers were notified. The Mozilla project had two surprising 

recommendations, two neutral and five obvious, compared with the Eclipse project, 

which had one surprising, two neutral and seven obvious. The two ‘surprising’ Mozilla 

projects were categorised based on one “cross-language” case (file dependencies written 

in different programming languages were not easily found by developers) and a source 

code duplication case, where the code was generated from a number of source code 

modifications. 
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Saini et al. [72] performed change evolutionary patterns on 106 OSS projects over a time 

period of 76–81 months to study the types of changes. They applied a keyword-based 

classifier technique on change messages and categorised them into corrective, adaptive, 

perfective, preventive or enhancement. Next, they adopted a cluster analysis technique to 

detect hidden distinctive change patterns for each change type range from low, moderate 

and high. They classified a high and moderate activity project has the highest number of 

changes over the project lifetime. However, their results unfortunately did not show 

significant correlation between change types and domains or languages in their projects.  

La Cholter [73] mined 1,835 repositories to study malware-related files as source code 

written in either C or C++ in a window environment has been targeted frequently by 

malware.They classified malware as benign, suspicious or malicious. The highest 

malware pattern was benign (20,060), followed by suspicious (4335). System files from 

Win32/64, DLLs, EXEs and PreWind32 were then mined and, unsurprisingly, Win32/64 

was found to contain the highest benign malware. Their detection Virus Total (VT) test 

showed 1353 files with malware and 9060 files without malware.  

One of the decisions made by developers when forking a software repository related to 

the programming language is that if a developer is familiar with the programming 

language used by the project owner, he or she is likely to fork the repository and 

contribute. Altherwi et al. [74] predicted software development productivity and quality 

by comparing scripting languages and traditionally compiled system programming 

languages. They mined a population of 15,000 GitHub projects from a five-year period 

(January 2012 to December 2017) and identified eleven programming languages in a 

sample of 4349 projects. JavaScript, Python, PHP and Ruby were classified as the four 

scripted programming languages and Java, Go, Objective-C, Swift, C#, C++ and C were 

classified as the seven system programming languages. They found that scripting 
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programming languages are more widely used than system programming languages, with 

evidence that JavaScript is the dominant scripting language, used in 2174 projects. Java 

dominated the system programming languages, found in 2154 projects. They concluded 

the programming language choice can affect the development process but did not have an 

opinion on which type of programming language can affect productivity, as other 

variables need to be considered, such as developer coding experience, skill and 

background, as well as the project type and development environment.  

A group of researchers from Italy and France [75] developed a programming languages 

identification (PLI) technique. 149 programming languages were detected from their 

mining of 1000 repositories from 300,000 code snippet images. The researchers classified 

them into four types: alphabetic characters, digits, symbols and a combination of 

characters with substitutions of all non-blank characters. They evaluated the performance 

of these five classifications and found alphabetic characters and symbols for instance 

parenthesis, punctuation and mathematical operators have higher visual recognisability 

than digits and indentation.  

Bug fixing is an active area in OS development. Ramírez-Mora et al. [76] looked into 

three tracking systems and extracted over 500,000 comments and 89,000 bugs from a 

hundred OSS projects. They found a significant difference on the distribution of 

comments across Apache, Red Hat and Spring on fixed and not fixed issues. The other 

important finding was a higher rate of emotional and emotive comments from developers 

when dealing with bug resolutions or for bugs that took a long time to implement.  

In a slightly different approach, Brisson et al. [77] studied 385 software families of 13,431 

software repositories to understand how developers communicate. They found out that 

projects in the same family (forking) of multiple repositories showed a positive 

relationship between the fork volume and the number of users who contributed. Further, 
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the number of repository stars showed a positive relationship with communication for 

fixing bugs by followers who were outside the family.  

Interestingly, Pietri et al. [78] examined the structure and size of fork networks to better 

understand forking. They classified forks as forged, committed or shared roots. They 

found 18.5 million fork repositories and 25.3 million network repositories were forge 

forks, 20.1 million fork repositories and 24 million network repositories were commit 

forks, and 25.3 million fork repositories and 18.5 million network repositories were 

shared root forks. Their evidence also suggested that what developers typically recognise 

as “forks” are the share commit forks.  
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Table 3. 2: Data Mining algorithm-based type research methodology 

No. Category OSS Variable  Classification  Reported Size  Dataset  Data Mining 

Technique  

Paper 

1 Component Licence OS licence changes  Licence changes in 

1,731,828 commits, 

16,221 GitHub Java 

projects 

GitHub Code analysis, 

data mining  

Licence usage and 

changes: A large-scale 

study on GitHub. 2017. 

[67] 

2 Component  BPMN process 

model artifacts 

xml 6,163,217 repositories GitHub, GitHub 

Torrent, GitHub 

API 

Google query  Mining BPMN processes 

on GitHub for tool 

validation and 

development. 2020. [68] 

3 Source code 

development  

Source code 

changes 

Eclipse and Mozilla 

project 

Changes to >20,000 files, 

>100,000 versions of 

source files 

GitHub Association rule 

mining 

algorithm 

Predicting source code 

Changes by Mining 

Change History. 2003. 

[69] 

4 Component  OS software 

change 

Change classification, 

corrective, adaptive, 

perfective, preventative, 

GitHub recorded 

message changes from 

106 OSS projects  

GitHub  Cluster analysis 

K-medoids 

algorithm  

Change profile analysis 

of open-source software 

systems to understand 
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No. Category OSS Variable  Classification  Reported Size  Dataset  Data Mining 

Technique  

Paper 

change cluster: high, 

moderate or low activity 

their evolutionary 

behaviour. 2017. [72] 

5 Software or code 

threat  

Malware 

written in C or 

C++ 

Malware written in C or 

C++ 

1835 repositories GitHub, Git Virus total 

query  

Windows malware 

binaries in C/C++ 

GitHub repositories: 

Prevalence and lessons 

learned. 2021. [73] 

6 Component 

programming 

languages  

Programming 

languages 

productivity 

and quality  

software development 

productivity and quality 

Mined 15,000 projects, 

including 4349 sample 

projects. 

GitHub Data mining, 

statistical 

analysis  

Assessing programming 

language impact on 

software development 

productivity based on 

mining OSS repositories. 

2019. [74] 

7 Component: 

programming 

language  

Programming 

language 

identification  

Scrambling alphabetic 

characters, digits, 

symbols, combinations 

and substitution of non-

blank characters 

code snippet of 300,000 

images, 149 

programming languages 

GitHub K snippets 

convolutional 

neural networks 

(CNNs), 

Image-based many-

language programming 

language identification. 

2021. [75] 
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No. Category OSS Variable  Classification  Reported Size  Dataset  Data Mining 

Technique  

Paper 

8 Software code 

development  

Communication 

function  

Fixed and not fixed bugs, 

comments classification 

under projects, Apache, 

Red Hat, Spring  

>500,000 comments, 

89,000 bugs from 100 

OSS projects 

Issue tracking 

system from: 

Apache’s JIRA, 

Red Hat and 

Spring 

Data analysis  Exploring the 

communication 

functions of comments 

during bug fixing in 

open source software 

projects. 2021. [76] 

9 Communication  Commun-

ication within 

software 

repositories and 

forks 

Communications within 

software repositories and 

forks  

385 software families, 

13,431 software 

repositories 

GitHub  Sentiment 

analysis 

We are family: 

Analyzing 

communication in 

GitHub software 

repositories and their 

forks. 2020. [77] 

10 Fork 

classification  

Fork classif-

ication based on 

activities 

Forge forks, commit forks, 

shared root forks 

Software Heritage 

Graph Dataset and 

GHTorrent of 71.9M 

repositories 

GitHub projects  Fork network 

algorithm  

Forking without 

clicking: On how to 

identify software 

repository forks. 2020. 

[78] 
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3.7 Category III: Machine Learning Algorithm-based Research 

Methodology  

In this section we explore machine learning methodology in the context of OSS to 

investigate which methods are used in OSS research, and how. No doubt the machine 

learning technique is promising, but not all articles published on machine learning are 

suitable for our analysis. To be considered relevant to our study, articles must satisfy two 

criteria: the OS variables must be associated with the OS environmental infrastructure 

variables and the database must be GitHub. In total, six relevant papers were reviewed as 

relevant and useful (Table 3. 3). Role, issue and source code were the three OS variables 

that we found using more than one type of machine learning methods. Here we compare 

each machine learning method used in the same group; for instance, a variety of machine 

learning methods are introduced for role, with different OS variables for different 

machine learning methods.  

Altogether four roles are used when applying machine learning methods for performance 

prediction: technical users [79], long-term contributors [80, 81], promoters [82] and 

newcomers [83]. Technical users include backend, frontend and full stack users, as well 

as mobile development and data science users. Montandon et al. [79] downloaded and 

analysed 2284 developer records then adopted stratified baseline, random forest and naïve 

Bayes. Competitive results obtained. Random forest achieved a high precision of 0.77 

and naïve Bayes scored 0.62 for the recall result. In addition, their results showed 

programming languages were predominant across all five roles. To examine long-term 

contributors, Eluri, et al. [80, 81] downloaded 917 projects and 75046 contributors from 

GitHub and grouped them into five dimensions. Next, they used five machine learning 

algorithms to determine which machine learning technique provided the most accurate 

result. Random forest performed the best on evaluating long-term contributors; 
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newcomers are long-term contributors who stay for a period of time in forking projects. 

Similarly, newcomers became long-term contributors after a period of use on a 

programming language with many commit submissions. 

Du et al. [82] studied the third role, promoter, by identifying 1023 suspected promotion 

accounts from GitHub Archive from 2015 to 2019 then applying a SVM classifier to 

detect 63,872 suspected promotion accounts from all active users . They then analysed 

these accounts, showing GitHub promotion services were exploited by a group of small 

businesses to promote their products. They found normal accounts have, on average, 4.50 

forks, which is lower than the suspected promotion accounts. Normal accounts have 21.17 

stars and suspected promotion accounts have 91.54. This means the suspected promotion 

accounts have 1.98 times the fork operations and the 4.32 times the star operations. 

The fourth role is newcomer. Fronchetti et al. [83] downloaded 450 GitHub repositories 

and applied the K-spectral centroid (KSC) clustering machine learning algorithm to 

investigate whether project age, number of stars, programming language used and the 

number of pull requests contributed to newcomers’ growth rate.  

They applied a random forest classifier to predict three patterns: logarithmic, exponential 

and linear growth. They then determined that time, such as the review of pull requests, 

project age and programming language contribute to newcomers’ growth patterns. 

The second OS variable is issue, examined using a ticket tagger machine learning 

algorithm. Kallis et al. [84] downloaded 30,000 issues and classified them either 1) a bug 

report, 2) a feature request or 3) a question. They compared evaluations using J48 versus 

ticket tagger and found metrics on ticket tagger were more accurate on bug, feature 

request and question. The precision and recall results were at least 20% higher than J48.  
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The third variable is source code on bug defects [85], with bug reports classified by 

programming language (Python, Java, C and C++). A total of 14,950 GitHub bug reports 

were evaluated by a number of machine learning algorithms – including linear SVM, 

(LSVM)], SVM and Nu-SVM (NSVM) – with radial, sigmoid and poly kernels, based on 

libSVM, Gaussian process (Gauss) classifier, and K Nearest Neighbour (KNN). Rokon 

et al. [86] investigated malware source code to understand malware behaviour and the 

techniques used to detect malware source code repositories. They downloaded 97,000 

repositories and identified 7504 malware source codes. They then applied the natural 

processing language (NPL) machine learning algorithm to filter the naming convention. 

They evaluated fork, stars and watchers on repositories to determine which influence 

malware, findings that at least 100 fork repositories have a high influence compared with 

stars and watchers.  

To understand the dynamics of GitHub, Zhou et al. [87] developed a tool called 

GitEvolve, which predicts GitHub repository evolution and the ways in which users 

interact with them. They used the deep neural network machine learning algorithm and 

developed a system that can predict when, where and what user group will next interact 

with a given repository. A graphic representation learns to encode the relationship 

between repositories to better predict popularity.  

Lastly, Weber et al. [88] investigated features that can differentiate between popular and 

non-popular Python projects on GitHub. They mined 2000 projects and identified 38 

features, which they evaluated using a random forest classifier to predict current 

popularity. They discovered that, unlike non-popular projects, popular projects have in-

code features that strongly signal more documentation and use the ‘with’ statement more 

frequently.  
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Table 3. 3: Machine learning research-based methodology in OSS 

No. Group OSS Non-fork 

Variable  

Classification  Reported Size  Dataset  Machine Learning 

Technique  

Paper  

1 Role Technical user  System level: 

backend, frontend, 

Discipline level: full-

stack, mobile 

development, data 

science 

2284 developers Stack 

exchange 

data 

explorer 

(SEDE) 

Random forest and 

naïve Bayes  

Mining the technical 

roles of GitHub users. 

2020. [79] 

2 Role  Long-term 

contributor  

Project level:  

Activity level:  

917 projects, 75,046 

contributors 

GitHub  

GH 

Torrent  

Naïve Bayes, SVM, 

decision tree, KNN, 

random forest 

A large-scale study of 

long-time contributor 

prediction for GitHub 

projects. 2021. [80] 

3 Role Long-term 

contributor 

Long-term or non-

long-term 

contributors  

70,899 

observations, 888 

repositories, 56766 

developers  

GitHub Naïve Bayes, KNN, 

logistic regression, 

decision tree, random 

forest 

Predicting long-time 

contributors for 

GitHub projects using 

machine learning. 

2021. [81] 
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No. Group OSS Non-fork 

Variable  

Classification  Reported Size  Dataset  Machine Learning 

Technique  

Paper  

4 Role  Promoter Promotion account: 

1) hidden GitHub 

functionality;  

2) small businesses 

exploit GitHub 

promotion services  

63,872 suspicious 

promotion accounts  

(2015–2019) 

GitHub 

archive 

SVM classifier Understanding 

promotion as a service 

on GitHub. 2020. [82] 

5 Role  Newcomer  Mixed factors: 

project age, star 

number, program-

ming language, text 

files to help 

contributors.  

450 repositories GitHub KSC clustering 

algorithm 

What attracts 

newcomers to onboard 

on OSS projects? 

TL;DR: Popularity. 

2019. [83] 

6 Issues  GitHub issues Classify issue by 

topic title and 

description into bug 

report, feature 

request or question 

30,000 issues GitHub Ticket tagger, text 

Mining 

Predicting issue types 

on GitHub. 2021. [84] 

7 Source code  Source code Bug reports by 14,950 bug reports  GitHub LSVM, SVM, NSVM Estimating 
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No. Group OSS Non-fork 

Variable  

Classification  Reported Size  Dataset  Machine Learning 

Technique  

Paper  

defects programming 

language (C, C++, 

Java, and Python) 

with radial, sigmoid 

and poly kernels 

(based on libSVM, 

Gaussian process, 

KNN and) Classifier 

random forest and 

multi-layer perceptron 

classifiers 

defectiveness of source 

code: A predictive 

model using GitHub 

content. 2018. [85] 

8 Source Code Malware source 

code 

Malware IoT, 

Window, Linux 

phone 

97,000 repositories, 

7504 malware 

source codes 

GitHub Natural language 

processing  

SourceFinder: Finding 

malware source code 

from publicly available 

repositories in GitHub. 

2020. [86] 

9 To predict 

GitHub 

repository 

evolution and 

different ways 

Multitask 

architecture  

Current model could 

be simplified to 

remove multitask 

output and be 

trained to predict 

 GitHub Deep neural network, 

graphical 

representation 

learning 

GitEvolve: Predicting 

the evolution of 

GitHub repositories. 

2020. [87] 
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No. Group OSS Non-fork 

Variable  

Classification  Reported Size  Dataset  Machine Learning 

Technique  

Paper  

users interact 

with them 

single specific 

popularity aspects, 

e.g., number of fork 

or watch events 

10 OSS popularity Classify GitHub 

Python projects 

into Popular and 

non-popular  

1000 projects  More users, more 

statement 

GitHub Random forest 

classifier 

What makes an open 

source code popular on 

GitHub? 2014. [88] 
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3.8 Machine Learning: A K Nearest Neighbour Method  

Silverman and Jones [89] describe how Fix and Hodges were the first group to 

introduce the K Nearest Neighbour – KNN – method in 1951. In 1967, Cover and 

Hart [90] then reviewed and refined the method. However, Cunningham and 

Delany [91] called KNN ‘lazy’ because the entire dataset does not require 

learning; there is no training time and the training data does not train itself. 

Instead, the training dataset memorised by itself.  

The popularity of the non-parametric algorithm, KNN, increased because of its 

simplicity; it is easy to implement, easy to understand, effective and more accurate 

than many other classification algorithms [92-99]. It is one of the algorithms used 

in machine learning for a variety of applications required to solve a range of 

business problems, including unclassified and unpredictable. It has an ability to 

provide high accuracy, based on the fact that the prediction precision varies on the 

distance measured to determine similar features between observations. Unlike 

Cunningham and Delany [91], Jiang et al. [95] and McCord et al. [96] claimed 

that KNN is, in fact, a very successful and useful algorithm, especially as the 

calculation time is quick, data easy to interpret, and the algorithm has regression 

and classification versatility and high accuracy. Furthermore, there is no need to 

make any assumptions about data or build a model. In fact, it is far better than 

some other supervised learning algorithms, for instance, decision trees and the 

naïve Bayes classifier.  

One of the critical success factors of KNN is that it uses mathematical calculations 

of distance metric from the similarity measure of features to determine the 
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“nearest neighbour”. It also chooses the best parameter – K – which is found 

through cross-validation techniques. where K is dependent upon the data value. 

3.8.1 Euclidean distance metric 

There are nine distance metrics in KNN, with four of them widely adopted: 

Euclidean, Manhattan, Minkowski and Hamming distance [91] (Table 3. 4). All 

distance metrics calculate the distance dimension in a different way and, as a 

result, the output values differ.  

Table 3. 4: Four widely adopted KNN distance metrics 

Type Concept Distance Dimension 

Euclidean It is a straight-line 

distance between 2 real-

valued vectors. 

It calculates the shortest distance 

between two points 

Manhattan It calculates the distance 

between two data points 

in a grid-like path. 

It calculates the sum of absolute 

differences between points across all the 

dimensions. 

Minkowski It is a generalized 

distance metric.  

It calculates the sum of distance between 

two points in any two vector spaces (N 

dimensional real space). 

Hamming It is for comparing two 

binary data strings.  

It calculates the string similarity 

between two strings of the same length. 

 

3.8.2 Adopting Euclidean distance: characteristics identification and 

rationale  

We chose to use the Euclidean distance metric after determining that its 

characteristics align best with our research study. We aimed to compare and 

determine fork visibility performance dissimilarity.  
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3.8.3 Identifying Euclidean distance characteristics  

We identified four relevant characteristics: 

• Default metric: often mentioned as the “default” distance used for measuring 

the similarity between observation and effective for identifying classification 

and K means clustering for finding the K nearest points of a specific point. 

• Dimension: good at handling low dimensional data.  

• Real, successful applications: Amazon and Netflix use this to recommend 

books and programs to watch based on previous customer behaviour.  

• Standardised variables: This is necessary for variables in different 

measurement scales to balance the computation of distance effect. The 

Euclidean distance computed on standardised variables is called the 

standardised Euclidean distance 

3.8.4 Our research dataset characteristics 

The monthly fork data in the dataset can be large, difficult to analyse and interpret 

easily or correctly as they are quantitative count. Meaning to say, Monthly fork 

count ranging can be quite wide ranging from 100 to 10,000 per month. To 

calculate high fork visibility distance between repositories classification, 

Euclidean distance is strongly recommended. 

We defined five characteristics of our dataset that would need to use Euclidean 

distance: 

1. 108 related fork features were identified and used to predict healthy fork file 

repositories in response to developer motivation and behaviour.  
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2. A six-year period was chosen for the dataset (2015–2020), containing a large 

fluctuation in monthly fork count, ranging from tens to thousands. The 

variables were mostly binary.  

3. We normalised fork count range from tens to thousands.  

4. To calculate how close a distance point would be based on a similar feature of 

OS infrastructure compliance to predict healthy fork performance that can 

increase developer forking motivation and behaviour.  

5. To calculate how far the distance point would be based on a different feature 

of OS infrastructure compliance to predict healthy fork performance that can 

increase developer forking motivation behaviour.  

In the next chapter, we present the two models used in this study. One of them is 

a roadmap to summarise the literature review methods to investigate the two 

topics in Chapters 2 and 3. Chapters 5 and 6 provide detailed explanations of 

how we applied Euclidean distance to test our dataset. 
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Chapter 4: Models  

4.1 Overview  

This chapter introduces the two models used in this study. The first is a literature 

survey road map, showing the processes used to conduct the literature survey in 

Chapters 2 and Chapter 3 to cover both breadth and depth of literature and address 

the research problem.  

The second model presented is the ‘Chua and Zhang Predicting OSS Forking 

Pattern Model’, which incorporates the KNN algorithm to predict high forking 

visibility. The model proposes detecting OSS patterns and predicting high fork 

visibility from repository classifications to interpret developer forking motivation 

and behaviour. 

4.2 Literature Survey Road Map Model  

The model shown in Figure 4. 1 outlines the two processes used in Chapters 2 and 

3 to summarise the literature on OS variables and research methodologies. The 

first process aimed to identify OS forking variables to better understand OS 

developer forking motivation and behaviour; the second aimed to collate, compare 

and contrast existing research methodologies that were applicable to our research 

questions to inform our study design.  

While reviewing the OSS forking literature, we realised that it is important to first 

understand and study the GitHub hosting platform and its features. By analysing 

GitHub features we can examine the way developers communicate between 

themselves and with project owners, fix bugs, enhance features, fork and star file 

repositories, and submit code.  
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Figure 4. 1: Literature survey mapping model  

4.3 Chua and Zhang Open Source Software Forking Pattern 

Prediction Model  

Our Chua and Zhang OSS Forking Pattern Prediction Model is shown in Figure 

4. 2. We created it during this PhD study to identify and predict OSS forking 

patterns after analysing monthly fork data performance. It shows three types of 

developer forking behaviour patterns: 1) fork once only; 2) fork intermittently; 

and 3) fork steadily. Developer interest and learning experience can be detected 

from the three forking patterns. The difference between the patterns is that some 

developers forked once only and never intended to contribute; some forked source 

codes occasionally that were relevant and of interest to them to fix or provide 

feedback to project owners for a short period of time; and some developers forked 
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steadily as they are actively involved in the project throughout or frequently 

follow projects. To conduct the prediction, we tested our model by mining 

repositories from a GitHub dataset, analysed the related forking features, then 

applied the KNN algorithm using the Euclidean distance metric.  

 

Figure 4. 2: The Chua and Zhang OSS forking pattern prediction model 
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Chapter 5: A Pilot Study 

5.1 Overview  

In this chapter, we introduce Euclidean distance to solve the problem of OSS 

forking performance for programming language repository longevity. This work 

has been accepted by OpenSym’19 [100]. 

5.2 Motivation  

The motivation of writing the paper for this chapter was to identify forking 

patterns and predict the distance between repositors longevity and forking data 

using an Euclidean distance metric to determine fork performance optimisation, 

based on programming language file repository compliance classifiers, which we 

analysed for a year-old dataset from GitHub of 47,000 forking instances in 1000 

projects.  

Despite a vast of literature on programming language popularity and 

successability, there are very few studies on repositories’ programming language 

survivability in response to forking conditions. As far as we are aware a high 

number of repository programming languages is not sufficient to ensure good 

forking performance. To address this issue and assist project owners in adopting 

the right programming language, it is necessary to predict programming language 

survivability from forking in repositories. This chapter therefore addresses two 

related questions:  

• are there statistically meaningful patterns within repository data, and, if so,  

• can these patterns be used to predict programming language survival?  
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To answer these questions, we analysed 47,000 forking instances in 1000 GitHub 

projects. The anecdotal evidence showed long-lived programming languages have 

a positive impact of extending file repositories and fork longevity whereas short-

lived programming languages are less able to drive the file repositories and fork 

continuity.  

5.3 Background 

Programming language survivability can be predicted in different ways, with 

different evaluative methods generating different predictive results. Forking is 

sometimes ignored when predicting repositories’ programming language 

survivability in GitHub, as the GitHub forking function is an essential mechanism 

to assist OS developers to quickly code software with support from the internal 

and external community. 

Whether a programming language can survive (perform) or not is highly 

dependent on forking performance. Each repository file is tied to a programming 

language that provides developers the freedom to copy and fork the file. Forking 

features include speed, size and type. Speed refers to the forking period in days, 

weeks or months; size refers to the number of developers who fork the file; and 

type refers to source code file characteristics, such as programming language, 

licence compliance, etc. 

However, forking has some challenges; for example, forking performance could 

be a “high demand but low supply”, “low demand and supply” or “low demand 

but high supply” situation. For example, “high demand but low supply” may 

reflect using a popular programming language but the repository is not forked by 

many developers. Conversely, “low demand and supply” may be a niche 
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programming language, developers and market, e.g., using R language for 

statistics and data analytics. “Low demand but high supply” may be a new and 

popular programming language – Swift, Objective C – that developers would be 

more likely to adopt because of language migration. 

It is unclear what causes uncertainty in low or high forking count, affecting 

programming language survivability. Our research therefore focuses on 

programming language survivability. This research is critical as an increasing 

number of repository files are adopted to sustain programming languages, but 

creators may not be able to find the right developers to fork their language. 

Further, there is a recent decline in forking as correct programming languages are 

not being adopted onto repository files. To tackle these issues, our goal in this 

paper is to report evidence of the effect of forking in programming language 

repository files. 

We are the first researchers to analyse a large forking dataset for developer forking 

behaviour based on repository file characteristics to predict sustainable 

programming language survivability. We are also the first to adopt a machine 

learning method – K Nearest Neighbour (KNN) – to predict sustainable 

programming language survivability and introduce a robust method to evaluate 

OS file forking success ability. 

5.4 Forking Patterns 

Regardless of forking type, there are three forking patterns that can be identified 

in GitHub: single, or once only; intermittent; and steady. A single fork pattern 

refers to developers who fork programming language repository files once a 

month and then not at all in consecutive months. Intermittent refers to forking over 



 

75 

some months, then not in others, then again in later months. A steady fork pattern 

refers forking files consistently for a defined period, such as every month for 12 

months (Error! Reference source not found.). 

Table 5. 1: Fork patterns 

Repository Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Fork 

Pattern 

Rick/ 

dotfiles 

1 0 0 0 0 0 0 0 0 0 0 0 Single 

Droogans/ 

unmaint-

ainable 

code 

4 0 4 2 4 0 2 69 3 3 2 2 Interm-

ittent 

Electron/ 

electron 

287 260 266 198 229 225 191 190 164 223 183 175 Steady 

 

5.5 Software Survival and Programming Language Survival 

Importance  

Many critical factors have been discussed in the literature on success of closed 

source language development [101] but a focus on programming language 

assessment must continue in the new OSS development culture. Not only can we 

expect voluminous source codes to be contributed by developers but also an 

increase of new OS programming languages added, driving competition for 

programming language survival. 

The survival of a programming language is critical to a repository and a project 

owner, as a language without forking is equivalent to no new source code, 

implying no development, potentially as the chosen programming language failed 
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to produce source code that was ready in time to develop and deliver a software 

product. In other words, it is difficult to develop a programming language used in 

a repository file quickly and submit it to a production environment. The longer a 

repository file remains in GitHub without developer interest, the greater the 

likelihood of termination once the public repository file expires. It is therefore a 

waste of development time and effort to create that repository file. 

A surviving programming language is one that is more open to interoperability 

and integration to build ecosystems and emerging technology agility and mobility. 

A surviving programming language can also reduce the risk of replacing another 

programming language and developing other components. 

Ranking of popular or sustainable programming languages is one way to assure 

developers a language is reliable to adopt. Unfortunately, however, programming 

language popularity, sustainability and successability assessments vary across 

companies, projects, platforms and communities [7, 16], making comparing 

results difficult. 

There is no one method to assess programming language popularity and rank 

importance regardless of how the language is used and adopted. There is limited 

literature on assessing programming language popularity, success and 

sustainability by measuring fork performance as, to date, forking has not been 

instrumental as a viable process for time to production on repository files. 

Since forking forms an integral part of OSS development, ranking importance of 

programming languages is relevant. A programming language forking rank result 

could be of benefit when considering and selecting the right programming 

language to adopt, use and fork in a platform, and obtain the right community 

support. However, ranking programming language forking success or popularity 
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is a challenging task, coupled with several factors to consider, including the target 

platform, elasticity of a programming language, topic of interest, time to 

production, programming language fork performance, and community support. 

Most importantly, both forking and programming language are time-independent 

and assessing them can be daunting as forking fluctuates inconsistently. 

5.6 Survivability Prediction on the K Nearest Neighbour Method  

The K Nearest Neighbour (KNN) method is often used in the field of data mining 

and statistics [97-99] because of its implementation simplicity and significant 

classification performance that produces more accurate results than many other 

algorithms. 

The success of the KNN method lies in its simplicity, ease of use and accuracy 

[90, 92, 94, 97-99]. In fact, the method is widely used in the field of statistics and 

data mining due to its implementation simplicity and the fact that its classification 

performance produces more accurate results than many other algorithms [92-94]. 

In this paper, the KNN method can handle mixed Euclidean distance. 

The KNN method includes the following steps:   

1. Load the training data and test dataset. 

2. Find K-Nearest Neighbours and assign a value to K. 

3. Apply Euclidean distance formula to calculate the distance between the query-

instance and all the training samples. 

4. Sort and determine the distance nearest neighbours based on the Kth minimum 

distance. 

5. End. 
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We aimed to predict the lifespan of a programming language through forking 

using KNN, given forks range from a few months to several months. The 

algorithm calculates Euclidean distance from the 12 months of the forking period 

based on the forking pattern categories to evaluate which types of programming 

language repository file are short-lived or long-lived by the minimum distance. 

We chose a 12-month period rather than days or weeks as we did not find a 

significant number of forked changes on repositories over the shorter timeframe. 

We used the three patterns defined above: single, intermittent, and steady. 

According to the Euclidean distance formula [93], the distance between two points 

in a plane with coordinates (x,y) and (a,b) is given by 

𝑑𝑖𝑠𝑡((𝑥, 𝑦), (𝑎, 𝑏)) = √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 

and the a, b, c and d variables must be numeric. As such, we converted non-

numeric variables from a forking dataset downloaded from GitHub (January–

December 2017) into numeric variables (Error! Reference source not found.).  

We adopted one of the queries from [102] into the Google Big Query using the 

Select Statement and highlighted the condition to retrieve only created forked 

repositories:  

SELECT events.repo.name AS events_repo_name, COUNT(DISTINCT events.actor.id) AS 

events_actor_count 

FROM (SELECT * FROM TABLE_DATE_RANGE 

([githubarchive:day.],TIMESTAMP('2017-01- 01'),TIMESTAMP('2017-12-31'))) AS 

events 

WHERE events.type = 'ForkEvent' 
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We downloaded 1000 repository files from GitHub and randomly categorised 

them alphabetically. 

To satisfy environment compliance around product, programming language and 

licence, we referenced Open Source Technology’s list of top products developers 

are interested in [21], the top officially recognised OS licences [20], and IEEE’s 

top programming languages and licences adopted in OS repository files [19], 

namely Python, C, Java, C, C#, PHP, R, JavaScript, Go and Assembly. 

Table 5. 2: Variables defined for programming language survivability 

Name Description Source Variable Typea Binary 

Events_repo_ 

name 

A repository file name GitHub x1 C N/A 

Repo_type Own creation (from the description of 

the source code link) 

NA x2 C N/A 

Prog Lang 

Name 

Programming language: 1. Python, 2. 

C++,  

3. Java, 4. C, 5. C#, 6. PHP, 7. R, 8. 

JavaScript,  

9. Go, 10. Assembly 

[19] x3..x13 C 1 Yes,  

0 No 

OS recognised 

licence 

BSD 3-Clause ‘new’ or ‘revised’ licence, 

BSD 2-Clause ‘simplified’ or ‘FreeBSD’ 

licence, GNU general public licence 

(GPL), GNU library or ‘lesser’ general 

public licence (LGPL), MIT licence, 

Mozilla, Common development and 

distribution licence (CCDL), Public 

licence 2.0, Eclipse public licence 

[20] x14..x21 C 1 Yes,  

0 No 

OS 

technology 

OpenStack, Progressive Web Apps, 

Rust, R, cognitive cloud, artificial 

intelligence, Internet of Things 

[21] x22..x32 C 1 Yes,  

0 No 

Fork 12 Fork detected every month from Jan to NA x33 B 1 Yes,  
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Name Description Source Variable Typea Binary 

surviving 

months 

Dec 0 No 

Environment 

compliance 

Satisfy environment compliance: 

sustainable top 10 programming 

language, recognised licence, OS 

technology 

NA x34 B 1 Yes,  

0 No 

Forking 

month 

January to December NA x35..x47 N N/A 

a binary, B; character, C; numeric, N. 

 

A repository file name is a name given to uniquely identify a piece of source code 

stored in GitHub. Due to some filenames being non-interpretable, the conversion 

from characters into binary is difficult, e.g., a repository file name labelled 

“1ppm/1ppmLog”. For all variables except the repository file name, attributes 

with text characters were converted into binary numbers (1=yes, 0=no); e.g., 

programming language names, repository file and licence. For instance, for the 

programming language JavaScript, 1 indicated JavaScript was used and 0 

indicated it was not JavaScript. 

In total, there were 47 attributes, with two added to determine duration of 

programming language repository file survival (in months) and how many 

repository files complied with the criteria published in [20, 21]. 

Our definition of a long-lived programming language repository file was based on 

detecting a consecutive 12- month forking performance; short-lived was no fork 

counts detected in the 12-month period. For example, a JavaScript social media 

repository file was predicted to have a short-lived outcome as there was no fork 
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in the 12-month period versus a Python machine learning repository file was 

predicted to be long-lived, having visible monthly forking. 

In total, 47,000 forking data over the 12-month period were evaluated for 

Euclidean distance, using the three patterns, to determine which programming 

language repository files were short- or long-lived by the minimum distance. 

5.7 Programming Language Repository File Categorisation and Fork 

Pattern Classifiers 

Categorising the forking dataset into single, intermittent or steady patterns 

revealed nine types of programming language repository files based on 

environment compliance and fork performance (Error! Reference source not 

found.).  

Table 5. 3: Forking patterns 

Forking 

Pattern 

Programming Language Repository Files 

Single Specific repository file (SPF) 

Intermittent Specific repository file met official licence compliance and adopted a 

modern sustainable programming language (SRFMSPL) 

Specific repository file met official licence compliance (SRFOL) 

Specific repository file met official licence adopted a traditional 

sustainable programming language (SRFOLTSPL) 

Specific repository file adopted a traditional sustainable programming 

language (SRFTSPL) 

Steady Specific repository file that did not meet the full environment licence 

but has healthy fork (SRFHF) 

Specific repository file met official licence compliance that has healthy 

fork (SRFOLHF) 

Specific repository file met official licence compliance and adopted a 
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Forking 

Pattern 

Programming Language Repository Files 

modern sustainable programming language that has healthy fork 

(SRFOLMSPLHF) 

Specific repository file adopted a traditional sustainable programming 

language that has healthy fork (SRFTSPLHF) 

 

5.8 Classifier Results  

The results of using Euclidian distance to categorise the programming language 

repository file forks are shown in Error! Reference source not found. and 

Error! Reference source not found.. A high number were short-lived (79.4%) 

and only a small number were long-lived (20.6%). 

Table 5. 4: Categorising programming language repository files forks as short- or 

long-lived  

Long-lived Short-lived 

Abbreviation # Abbreviation # 

SPF 138 SRFOLHF 32 

SRFOL 104 SRFHF 20 

SRFTSPL 172 SRFTSPLHF 42 
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Figure 5. 1: Categorising programming language repository file forks as short-

or long-lived.

Our results identified that some non-sustainable programming languages that

lacked environment compliance survived as long as sustainable programming

languages that met environment compliance: 94/206 repository files did not

completely meet environment compliance but survived well, e.g., CSS, Kotlin,

Emacs Lisp and Jupiter Notebook. Long fork survival could be due to a developer

community supporting an OS technology trend, e.g., machine learning, web

applications or android operating systems.

We found the majority of sustainable programming languages were short-lived

because of low or no licence compliance. The data revealed many developers

chose a low compliance licence – development mountain copyright, CC-NC-SA,

Creative Commons Attribution 4.1, WTFPL, or Educational Content Licence –

however, as these licences are less popular and/or have low compliance some

developers are hesitant to contribute [20]. In contrast, long-lived programming

language repository files aligned with the top 10 sustainable programming

languages [19]. Nevertheless, some repository files that adopted programming
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languages not in the top 10 – such as Python, PHP, Swift, Shell and Ruby – also 

survived well. 

5.9 K Nearest Neighbour Results  

The coordinates value (of forking data) is defined as how the X-axis refers to the 

environment compliance and the Y-axis refers to the forking period. The threshold 

for classification is based on averaging monthly forking data. The ground truth for 

testing the classification result is to confirm if it is true that high visible fork data 

can only be only detected on repositories that fully satisfy environmental 

compliance. 

We applied Euclidean distance to calculate each file repository environment 

compliance distance by comparing the distance of the first repository with the 

distance of the last repository. We then ranked them according to distance length, 

with the shortest distance being the lowest the rank is and the longest the being 

the highest the rank. For instance, under the file classifications, SRFTSPLHF has 

a Euclidean distance of 1, and a rank of 109. 

The results of the KNN method are summarised in Error! Reference source not 

found., which shows the classification of programming language repository files 

by KNN/ Euclidean distance. These are illustrated with four case studies below. 

Table 5.5: Categorising programming language repository files sorted by 

Euclidean distance  

Classification File Count Euclidean Distance Rank 

SRFOTLSPLHF/SRFOLMSPLHF 113 0 1 

SRFTSPLHF 41 1 109 

SRFOLHF/SRFOTLSPLHF 33 1 113 
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Classification File Count Euclidean Distance Rank 

SRFOLSPL/SRFOLMSPL 374 1.4 187 

SRFHF 20 2 562 

SRF 1 3.2 566 

SRFSPL/SRFOL 281 2.2 582 

SRF 137 3.2 863 

 

5.9.1 Case One 

A programming language repository file is found to associate with the following 

properties: one of the top ten OS technologies [21], met legitimate licence 

compliance [20], adopted a sustainable programming language [19], and 

displayed monthly forking over the last 12 months. This file is predicted to be a 

long-lived surviving programming language file with healthy forking. Our results 

predict SRFOTLSPLHF or SRFMTLSPLHF would fall under this category. 

5.9.2 Case Two 

A programming language repository file is found not to associate with one of the 

following properties: one of the top ten OS technologies [21], met legitimate 

licence compliance [20], adopted a sustainable programming language [19], and 

displayed monthly forking over the last 12 months. This file is predicted to be a 

long-lived surviving programming language file with healthy forking. Our results 

predict SRFHF would fall under this category. 

5.9.3 Case Three 

A programming language repository file is found not to associate with more than 

one of the following properties: one of the top ten OS technologies [21], met 
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legitimate licence compliance [20], adopted a sustainable programming language 

[19], and did not display monthly forking over the last 12 months. This file is 

predicted to be a lower surviving programming language. Our results predict SRF 

would fall under this category. 

5.9.4 Case Four 

A programming language repository file is found not to associate with more than 

one of the following properties: one of the top ten OS technologies [21], met 

legitimate licence compliance [20], adopted a sustainable programming language 

[19], but displayed monthly forking over the last 12 months. This file is predicted 

to be a lower surviving programming language. Our results predict SRFOL would 

fall under this category. 

5.10 Evaluation 

In this paper, we proposed evaluating sensitivity and specificity to describe test 

performance, as these parameters remain true regardless of the population of 

programming language repository files to which the test is applied. 

Definitions of environment compliance parameters are presented in Error! 

Reference source not found., where: true positive (TP) is defined as the number 

of programming language repository files that met environment compliance and 

were classified as long-lived; false positive (FP) is defines as the number that met 

environment compliance and were mistakenly classified as short-lived; true 

negative (TN) is defined as the number that did not meet environment compliance 

and were classified as long-lived; and false negative (FN) is defined as the number 
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that did not meet environment compliance and were mistakenly classified as short-

lived. 

Table 5. 6: Environment compliance 

Full Compliance Long-lived Short-lived Total 

Yes 111 (TP) 94 (FP) 205 

No 0 (FN) 795 (TN) 795 

 111 889 1000 

 

For this study, we classified the data into training (80%) and testing (20%) 

samples. We used the KNN method to classify the class of the repository files then 

calculated the Euclidean distance between the forking period and forking pattern. 

After determining the parameter k and running the KNN algorithm, accuracy was 

calculated using precision, sensitivity and specificity. The formulas of the four 

measures [93] are outlined below. 

Accuracy refers to the proportion of true results from the number of programming 

language repository files that met environment compliance and the true negative 

results from the number that did not meet environment compliance and were 

classified as long-lived 

Accuracy = TP+TN/(TP+TN+FP+FN) 

For this study, accuracy is 111+795/(111+795+94+0)= 0.906 (90.6%). 

Precision refers the ratio of correctly predicted all programming repository files 

that appeared to survive, how many have actually survived? High precision 

therefore relates to a low false positive rate. 

Precision = TP/TP+FP 
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For this study, precision is 111/111+94=0.542 (54.2%). Error! Reference source 

not found. summarises all four metrics. 

Sensitivity refers the proportion of long-lived programming language repository 

files that meet full environment compliance, and specificity refers the proportion 

of short-lived programming language repository files that meet full environment 

compliance. Hence, the formula is 

  Sensitivity = TP/TP+FN  Specificity = TN/TN+FP 

For this study, sensitivity is 111/111+0=1 (1%) and specificity is 

795/795+94=0.894 (89.4%). 

 

Figure 5. 2: Evaluative results comparison of the dataset 

5.11 Conclusions and Future Work  

Error! Reference source not found. highlights that there are less long-lived 

programming language repository files than short-lived. For a programming 

language repository file to survive it must satisfy environment compliance 

properties; the data reveal most do not comply and are therefore short-lived. In 



 

89 

other words, many project developers or owners who created repository files may 

have ignored, or failed to pay attention to, environment compliance factors, such 

as technology trends and licensing. 

Error! Reference source not found.6 is a statistical overview of programming 

language repository file lifespan and Error! Reference source not found. is an 

overview of the test result accuracy showing a breakdown of accuracy, precision, 

sensitivity and specificity. Our findings reveal that it is necessary for developers 

to pay attention to environment compliance before developing a repository file if 

they want to ensure healthy forking and file survivability. 

The predictive results help us to better categorise developers’ motivations for 

forking. The existing literature identified seven categories of forking: OS, project, 

software, social, code, programming language and repository. Our data show 

long-lived forked programming language repositories that satisfy environment 

compliance are potentially related to social, programming language and repository 

forking. In contrast, short-lived forked programming languages that are 

environment compliant are related to code, OS and project forking. 

Our future work in this area will focus on introducing new environment 

compliance variables to fast-growing project code that is forked from very large-

scale programming languages with boundary conditions. In addition, we will 

evaluate which machine learning method can accurately and reliably predict fork 

patterns for short-lived and long-lived programming languages. 
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Chapter 6: A Longitudinal Study  

6.1 Overview  

This chapter presents a paper that extends the work in Chapter 5. The same 

research method was used except this time we studied and analysed the dataset 

over a six-year timeframe instead of one year. The research paper is under review.  

The importance of this study is the evidence gathered on recognising the role of 

repository compliance as an attribute in forking sustainability. A complete 

compliance programming language repository can attract developers to fork and 

maintain fork sustainability, whereas programming language repositories with 

partial or no compliance are less likely to maintain their fork sustainability.  

This chapter also introduces data normalisation, which was applied due to the 

large fluctuation in monthly fork count – from tens to thousands – which made it 

difficult to predict distance. 

6. 2 Motivation  

The motivation of this chapter was to conduct a longitudinal study that used 

longitudinal forking data over a six-year period validated under the same KNN 

Euclidian distance method. The study objective was to observe and collect project 

data on a number of variables without trying to interrupt or influence variables. In 

addition, we wanted to examine the same repository to detect any changes of 

forking data that might occur over a longer period of time.  
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6.3 Background 

According to Jiang et al. [7], there are three main reasons why developers want to 

fork. 1) They want to modify and improve source codes by fixing bugs, adding 

new features and making copies in GitHub. 2) They want to learn a programming 

language, so choose files to fork in their preferred language. Or, 3) The 

repositories are attractive. Other less common motivations may be to create a new 

project or repository in response to team conflicts or to find a job as a coder.  

Chua et al. [27] recently conducted a Systematic Literature Review (SLR) that 

identified reasons for, and challenges associated with, OS forking [26]. They 

identified twenty-three factors across three categories. Firstly, forking motivation, 

which includes coding for: revising requirements [40], job seeking [42], licensing 

compliance [7, 36, 42] or software compliance [1, 9, 16, 46]; coding to extend the 

duration of an original project development [16, 46, 47] or community social 

coding development [36]; coding to address ownership implications [8, 44, 46, 

47] or business strategy risks [36], or risks associated with team coding skill 

inequality [3], divergent specialisation [3, 46, 47], misaligned objectives [3, 46, 

47], poor leadership [5, 46, 47] or cultural differences [3, 5, 46]; coding for 

community socialisation [5, 34, 36] or by socialising [34, 95], or for software 

activity [16, 47] or the ecosystem [16, 47].  

The second category is forking sustainability with the primary factor of 

community activity [7, 40, 44]. The third category is forking lessons learnt with 

factors including presence of a formal process [43], legal implications [15, 18], 

transfership [6], product expertise shortage [45] and upgrading a developer role to 
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a product role [6, 15, 45]. All these factors are reasons to justify why developers 

want to fork.  

There is limited research on how forking motivation aligns with aspects of OS 

infrastructure support, such as combined OS licence compliance, programming 

language sustainability and OS technology. Our study focused on deepening 

understanding of developers’ forking motivation as our philosophical view on 

healthy fork performance is based on the alignment of developer forking 

motivation and OS infrastructure support. A large dataset of monthly forking from 

2015 to 2020 with 2–4-digit fork counts was downloaded from our previous study 

[48] for analysis, classification and prediction.  

We are the first group of researchers to conduct a comprehensive analysis of 

healthy file fork repository (HFFR) to normalise data before applying the KNN 

machine learning method to predict HFFR classifications.  

6.4 Fork Pattern Identification and Data Collection 

In our previous work [100], 47,000 forking instances in 1000 GitHub projects 

were downloaded and analysed. We identified three forking patterns: 1) single 

(once only), 2) intermittent, and 3) steady. A single fork pattern refers to 

developers who fork programming language repository files once a month and 

then not at all in consecutive months. Intermittent refers to forking over some 

months, then not in others, then again in later months. A steady fork pattern refers 

to forking files consistently for a defined period, such as every month for 12 

months (Error! Reference source not found.).  
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Table 6. 1: Examples of file repository monthly forking  

Repository Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Fork 

Pattern 

adam-p/ 

markdown-

here 

1 0 0 0 0 0 0 0 0 0 0 0 Single 

Airbnb/ 

JavaScript 

4 0 4 2 4 0 2 69 3 3 2 2 Interm-

ittent 

Alamofire/ 

Alamofire 

287 260 266 198 229 225 193 190 164 223 183 175 Steady 

 

In this paper, our aim was to investigate HFFR performance. This study extended 

our previous work [100]; we adopted one of the queries from [100] into a Google 

Big Query using a select statement that highlighted the condition to retrieve only 

created forked repositories (Error! Reference source not found.).  

Table 6. 2: Big query statement  

Select statement for Google Big Query 

SELECT events.repo.name AS events_repo_name,  

COUNT(DISTINCT events.actor.id) AS events_actor_count  

FROM (SELECT * FROM TABLE_DATE_RANGE ([githubarchive:day.], 

TIMESTAMP('2017-01- 01'),TIMESTAMP('2017-12-31'))) AS events  

WHERE events.type = 'ForkEvent' 

 

Of the 1000 file repositories from [100] retrieved over a period of 6 years (72 

months), 62 met the study criterion of being a healthy fork repository, defined as 
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having been forked by developers every month from Jan 2015 to Dec 2020 

(Error! Reference source not found.). 

Table 6. 3: Forking data of selected file repositories, 2015–2020  

Repository 

Name  

Year Fork 

Status  J F M A M J J A S O N D 

2015 

numpy/ 

numpy 
53 57 95 56 45 52 55 48 51 63 73 86 Steady 

Airbnb/ 

JavaScript 
135 132 346 490 199 221 514 265 261 240 248 274 Steady 

nightscout/ 

cgm-

remote-

monitor 

408 278 839 208 199 155 168 205 251 198 169 224 Steady 

2016 

numpy/ 

numpy 
57 69 69 55 59 58 61 60 61 75 56 53 Steady 

Airbnb/ 

JavaScript 
319 312 425 375 326 325 341 384 338 357 361 323 Steady 

nightscout/ 

cgm-

remote-

monitor 

296 259 323 296 364 374 366 330 432 509 442 426 Steady 

2017 

numpy/ 

numpy 
69 80 78 71 80 77 66 73 72 91 104 91 Steady 

Airbnb/ 

JavaScript 
355 410 447 345 371 378 432 384 348 331 440 328 Steady 

nightscout/ 

cgm-

remote-

monitor 

446 440 392 420 444 
505

6 
412 430 578 580 545 663 Steady 

2018 

numpy/ 

numpy 
99 87 75 81 70 80 91 75 85 85 94 79 Steady 

Airbnb/ 

JavaScript 
362 289 346 306 305 267 303 297 248 285 270 221 Steady 

nightscout/ 

cgm-

remote-

monitor 

788 828 823 696 739 719 698 823 863 788 868 884 Steady 
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Repository 

Name  

Year Fork 

Status  J F M A M J J A S O N D 

2019 

numpy/ 

numpy 
97 90 116 121 110 99 125 106 106 130 113 100 Steady 

Airbnb/ 

JavaScript 
259 306 294 308 293 263 284 238 238 260 229 208 Steady 

nightscout/ 

cgm-

remote-

monitor 

1028 1086 1172 1184 1260 1154 1373 1177 1177 1287 1327 1378 Steady 

2020 

numpy/ 

numpy 
134 111 120 135 161 130 141 93 132 116 116 116 Steady 

Airbnb/ 

JavaScript 
192 283 260 275 332 296 259 225 226 279 214 293 Steady 

nightscout/ 

cgm-

remote-

monitor 

1528 1246 931 712 912 954 1086 1298 1800 4015 4015 1730 Steady 

 

6.5 Normalisation and Euclidean Distance  

For this study, we divided the data into training (80%) and testing (20%) samples. 

The 108 variables used to define a HFFR are shown in Error! Reference source 

not found.. 
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Table 6. 4: Variables defined for a healthy fork file repository  

Name Description Source Variable Type Binary 

Event_repo_ 

name 
Repository file name GitHub x1 C N/A 

Repo_type 
Own creation (from source code 

link description) 
NA x2 C N/A 

Programming 

language 

name 

1, Python; 2, C++; 3, Java; 4, C; 

5, C#; 6, PHP; 7, R; 8, JavaScript; 

9, Go; 10, Assembly 

[100] x3..x13 C 1 Yes, 0 No 

OS licence 

BSD 3-Clause ‘new’ or ‘revised’ 

licence; BSD 2-Clause 

‘simplified’ or ‘FreeBSD’ licence; 

GNU general public licence 

(GPL); GNU library or ‘lesser’ 

general public licence (LGPL); 

MIT licence; Mozilla; Common 

development and distribution 

licence (CCDL); Public licence 

2.0; Eclipse public licence 

[20] x14..x21 C 1 Yes, 0 No 

OS 

technology 

OpenStack; Progressive web apps; 

Rust; R; cognitive cloud; artificial 

intelligence (AI); Internet of 

Things 

[21] x22..x32 C 1 Yes, 0 No 

Fork 72 

surviving 

months 

Fork detected every month from 

Jan 2015 to Dec 2020 
N/A x33 B 1 Yes, 0 No 

Environment 

compliance 

Satisfy environment compliance: 

Sustainable top 10 programming 

language, recognised licence, OS 

technology 

N/A x34 B 1 Yes, 0 No 

Forking 

month 
January 2015 to December 2020 N/A x35..x107 N NA 

HFFR type  
Each repository file contains a 

fork count across the 72 months  
N/A x108 C 

SRFHF, 

SRFOLHF, 

SRFOLMSPLHF, 

SRFTSPLHF, 

SRFOLTSPLHF 

*Binary, B; Character, C; Numeric, N. N/A=Not applicable. 
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The large fluctuation in monthly fork count – from tens to thousands – makes it 

difficult to predict distance so the fork count values first needed to be normalised 

to reduce this range. For instance, one variable may be binary while another may 

be a number with two, three or four digits. Normalising enables comparisons and 

meaningful correlations, and can be done using the following method [103]:  

𝑍 = (𝑥 + 𝜇)/𝜎 

Z = normalisation result 

x = mean of the sample 

 = mean of the population 

 = standard deviation of the population 

Error! Reference source not found. presents the same forking data after 

normalisation. 

Table 6. 5: Forking in 5 years (2015-2020) after normalisation 

Repository 

Name  

Year Fork  

J F M A M J J A S O N D Status 

2015 

numpy/ 

numpy 
-0.76 -0.74 -0.16 -0.07 -0.61 -0.57 -0.04 -0.42 -0.44 -0.42 -0.38 -0.29 Steady 

Airbnb/ 

JavaScript 
-0.90 -0.88 -0.76 -0.88 -0.90 -0.89 -0.88 -0.88 -0.88 -0.84 -0.81 -0.77 Steady 

nightscout/ 

cgm-

remote-

monitor 

-0.29 -0.47 1.02 -0.60 -0.61 -0.70 -0.68 -0.55 -0.46 -0.52 -0.58 -0.42 Steady 

2016 

numpy/ 

numpy 
-0.27 -0.21 0.02 -0.01 -0.16 -0.09 -0.07 0.06 -0.07 -0.08 0.04 0.03 Steady 

Airbnb/ 

JavaScript 
-0.86 -0.82 -0.83 -0.85 -0.84 -0.83 -0.83 -0.83 -0.82 -0.80 -0.83 -0.82 Steady 

nightscout/ 

cgm-
-0.32 -0.34 -0.23 -0.22 -0.07 0.05 0.00 -0.09 0.19 0.31 0.27 0.35 Steady 



 

98 

Repository 

Name  

Year Fork  

J F M A M J J A S O N D Status 

remote-

monitor 
 

2017 

numpy/ 

numpy 
0.03 0.18 0.07 -0.07 0.00 -0.13 0.14 0.00 -0.27 -0.15 0.15 -0.12 Steady 

Airbnb/ 

JavaScript 
-0.79 -0.76 -0.81 -0.80 -0.78 -0.81 -0.82 -0.80 -0.84 -0.76 -0.72 -0.75 Steady 

nightscout/ 

cgm-

remote-

monitor 

0.29 0.26 -0.06 0.13 0.20 10.53 0.09 0.12 0.20 0.48 0.43 0.78 Steady 

2018 

numpy/ 

numpy 
-0.13 -0.16 -0.80 -0.17 -0.21 -0.17 -0.06 -0.09 -0.36 -0.15 -0.13 -0.22 Steady 

Airbnb/ 

JavaScript 
-0.76 -0.74 -0.95 -0.78 -0.81 -0.75 -0.71 -0.77 -0.78 -0.74 -0.69 -0.72 Steady 

nightscout/ 

cgm-

remote-

monitor 

0.88 1.38 -0.55 0.87 0.90 1.24 1.16 1.50 1.21 1.35 1.77 2.12 Steady 

2019 

numpy/ 

numpy 
-0.44 -0.06 -0.26 -0.37 -0.25 -0.25 -0.25 -0.32 -0.32 -0.29 -0.32 -0.36 Steady 

Airbnb/ 

JavaScript 
-0.79 -0.72 -0.71 -0.75 -0.71 -0.71 -0.67 -0.69 -0.69 -0.64 -0.66 -0.69 Steady 

nightscout/ 

cgm-

remote-

monitor 

1.19 2.31 1.91 1.40 2.22 2.28 2.59 2.34 2.34 2.49 2.88 3.17 Steady 

2020 

numpy/ 

numpy 
-0.42 -0.14 -0.32 -0.41 -0.34 -0.36 -0.44 -0.43 -0.45 -0.31 -0.46 -0.17 Steady 

Airbnb/ 

JavaScript 
-0.60 -0.66 -0.68 -0.71 -0.68 -0.71 -0.69 -0.76 -0.67 -0.71 -0.70 -0.67 Steady 

nightscout/ 

cgm-

remote-

monitor 

3.55 2.76 1.42 0.52 0.79 1.06 1.34 2.22 3.34 8.86 8.97 3.85 Steady 
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After normalisation, we then applied Euclidean distance [90] to calculate the 

distance between HFFR types and the OS infrastructure support.  

 

The equation [90] is as follows:  

𝑑(𝑝, 𝑞) = √(∑( 𝑞𝑖 − 𝑝𝑖)

𝑛

𝑖=1

)

2

 

p, q = two points in Euclidean n-space 

qi, pi = Euclidean vectors, starting from the origin of the space (initial point) 

n = n-space 

The algorithm calculates Euclidean distance over the 72 months of the forking 

period based on pattern categories to evaluate the classifier HFFR accuracy. We 

chose a 72-month period to identify long-lived HFFRs. Error! Reference source 

not found. outlines the total counts for the five HFFRs.  

Table 6. 6: Healthy fork file repository types and counts 

No. 

OS Infra-

structure 

Compliance 

Cluster  

Healthy Fork File Repository Type 

Total 

count Description Abbreviation 

1 None 
Did not meet environment 

licence  
SRFHF 6 

2 Partial Met official licence compliance  SRFOLHF 13 

3 Partial 
Adopted traditional sustainable 

programming language  
SRFTSPLHF 3 

4 Full 
Met official licence compliance 

Adopted modern sustainable 
SRFOLMSPLHF 2 
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No. 

OS Infra-

structure 

Compliance 

Cluster  

Healthy Fork File Repository Type 

Total 

count Description Abbreviation 

programming language  

5 Full 

Met official licence compliance 

Adopted traditional sustainable 

programming language  

SRFOLTSPLHF 38 

 

6.6 Results  

We used the KNN method to classify HFFRs then calculated the Euclidean 

distance between the forking period and forking pattern. Error! Reference 

source not found. shows the clusters with full compliance – SRFOLTSPLHF and 

SRFOLMSPLHF – have Euclidean distances of 4 and 4.6. For the cluster groups 

with partial compliance, SRFOLHF had non-sustainable programming languages 

whereas SRFTSPLHF did not comply, using Creative Commons Attribution Non-

Commercial ShareAlike (CC-NC-SA) or undeclared licences. The Euclidian 

distances were 9.1 for SRFOLHF and 8.5 for SRFTSPLHF, with a difference of 

0.6.  

Table 6. 7: Healthy fork file repository types ranked by Euclidean distance 

OS 

Infrastructure 

Compliance 

Cluster  

Classification Rank 
Euclidean 

Distance 

Full  SRFOLTSPLHF 1 4 

Full  SRFOLMSPLHF 13 4.6 

Partial  SRFOLHF 18 8.5 

Partial  SRFTSPLHF 19 9.1 



 

101 

None SRFHF 33 17.5 

 

The remaining cluster group was SRFHF, which was non-compliant with an 

Euclidean distance of 17.5, the furthest away from the other two clusters. These 

distances draw our perspective on a deeper understanding of developer forking 

motivation, by showing that compliance is positively associated with motivation, 

from multiple environments in multiple disciplines. For example, moodle/moodle 

is an HFFR forked by developers who want to know how to build e-learning 

platforms. These developers do not work individually but are in software 

development companies or e-learning environments. For example, the 

“rdpeng/ExData_Plotting1” file repository is forked heavily by students, 

researchers, and statisticians for data analytics.  

Logically, a HFFR is a repository that should have the most compliance. However, 

our findings show that some HFFRs have partial or no compliance. We therefore 

tested K based on 1, 3, 5, 10, 13, 14, 15, 18, 19, 20, 30, 40, 50 and 60 (Error! 

Reference source not found.; Error! Reference source not found.). Error! 

Reference source not found. shows the results for K = 1, 3, 5, 10, 15, 20 using 

SRFOLTSPLHF as the predictive file. In this dataset, the majority of the file 

repositories comply to with OS infrastructure licences and adopt a sustainable 

programming language. There is a small percentage of partial and non-compliance 

HFFRs detected in the dataset – SRFOLHF, SFTSPLHF and SRFHF – when K is 

ranked 18, 19, 50 and 60.  

Table 6. 8: Healthy fork file repository types ranked by Euclidean distance  

K HFFR K HFFR 

1 SRFOLTSPLHF 18 SRFOLHF 
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3 SRFOLTSPLHF 19 SRFTSPLHF 

5 SRFOLTSPLHF 20 SRFOLTSPLHF 

10 SRFOLTSPLHF 30 SRFOLTSPLHF 

13 SRFOLMSPLHF 40 SRFOLTSPLHF 

14 SRFOLMSPLHF 50 SRFHF 

15 SRFOLTSPLHF 60 SRFHF 

 

 

Figure 6. 1: Euclidean distance ranking 

 

6.7 Evaluative Test Results 

To evaluate test performance, we evaluated accuracy, precision, sensitivity, and 

specificity, as these parameters remain true regardless of the population of HFFRs 

to which the test is applied. Definitions of OS compliance parameters are 

presented in Error! Reference source not found. in relation to identifying fork 

in a population through a diagnostic test. In this study, true positive (TP) refers to 

the number of HFFRs that met environment compliance and were classified as 

healthy forking; a false positive (FP) refers to the number of HFFRs that did not 
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meet environment compliance but were mistakenly classified as healthy forking; 

true negative (TN) refers the number of HFFRS that did not meet environment 

compliance and were classified as healthy forking; and false negative (FN) refers 

to the number of HFFRS that did not meet environment compliance but were 

mistakenly classified as healthy forking. 

Accuracy refers to the proportion of true results of HRRFS among the total 

number of positive and negative cases examined. Precision refers to the ratio of 

correctly predicted positive observations of HFFRS to the total predicted positive 

observations; that is, of all HFFRs that appeared to survive, how many survived? 

High precision therefore relates to a low false positive rate. Sensitivity is the 

proportion of HFFRs that meet full environment compliance, and specificity is the 

proportion of HFFRs that do not meet full environment compliance [93]. 

Table 6. 9: Definition and formula for accuracy, precision, sensitivity and 

specificity 

Algorithm Example Formula 

Accuracy  

Proximity of 

measurement 

results to true 

value 

(True Positive + True Negative)/(True Positive
+ False Positive + True Negative
+ False Negative) 

Precision 

Repeatability and 

reproducibility of 

measurement 

(True Positive)/(True Positive + False Positive) 

Sensitivity  

Proportion of 

disease correctly 

identified 

(True Positive)/(True Positive + False Negative) 

Specificity  

Proportion of 

healthy patients in 

who disease 

(True Negative)/(True Positive + False Negative) 
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correctly excluded

The four metrics [94] for this study are therefore as follows (also shown in Error! 

Reference source not found.):

Figure 6. 2: Evaluative results

6.8 Discussion

Our results indicate the majority of healthy forking longevity in OS projects

comply with OS licences, which means a well-protected digitally forking

environment can make developers realise and trust that particular HFFR is safe to

fork. However, this does not equate to being invulnerable to risk of legal copyright
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implications. A study of most popular programming languages by country ranked 

Java second after the world’s most popular programming language, C [104]. Fifty-

three countries favoured five programming languages – Java, C++, Python, SQL, 

and Ruby – with Java and C++ most popular [104]. In other words, HFFRs written 

in any of these five programming languages are more likely to be forked and 

downloaded. We validated our findings again these studies and confirmed the 

categories of SRFOLTSPLHF and SRFOLMSPLHF HFFRs have at least one of 

these top five programming languages. Additionally, SRFOLMSPLHF HFFRs 

have at least one ancillary programming language, e.g., Swift plus Ruby or Go 

plus C.  

Our results also show a small number of surviving HFFRs do not comply with OS 

licences and programming language adoption. These HFFRs are not seeking 

developers to innovate the source code; rather they are forked by developers for 

downloading purposes, to use for a specific reason, not related to developing a 

system or an application. That is, forking by users, not developers. 

A limitation of our study is that while our test performs well in terms of sensitivity, 

correctly classifying 93% of HFFRs, it had lower specificity, i.e., correctly 

excluding only 32% of unhealthy file fork repositories. The test was moderately 

accurate, with 72% true results, and precise, with 75% of identified HFFRs being 

40 healthy.  

In conclusion, we predict three types of HFFR clusters and have proven the 

importance of OS licence compliance and that adopting a suitable and sustainable 

programming language can motivate developers to fork. We suspect the third 

group of HFFRs, SRFHF, is highly vulnerable to an OS security threat [105], such 

as openness and the lack of compliance. 
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Our future work includes applying a deep learning technique to analyse grouping 

of HFFRs based on clusters by specific OS licence compliance or adoption of a 

specific sustainable programming language for its significance to further develop 

our understanding of developers’ forking trust and motivation. 
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Chapter 7: Conclusion 

7.1 Overview 

This chapter summarises our conclusions and contributions from the study. We 

outline salient recommendations from these conclusions and suggest further work 

that will build on this PhD.  

The excitement surrounding forking research has grown in recent years, with an 

increase in studies of the variables involved in OS forking, including role, 

activities, type and performance. Particularly, within OS communities, users or 

developers would like to determine how best to optimise fork performance and 

project owners want to boost their coding confidence by understanding which 

methods are most viable and sustainable, or that can be used to predict or monitor 

their repository fork status – no, low or high forking. Programming language 

developers are also interested in forking, to learn a new skill, receive an incentive, 

or find a job or get a promotion.  

OSS environment compliance and compatibility is also important in making OSS 

communities feel safe, secure, and accurate while forking a repository. It can 

promote forking and help reduce fork code waste. It also offers developers flexible 

opportunities to download and fork healthier and faster, with no concerns over 

intellectual property or copyright infringement issues on OS licences. Sustainable 

programming languages, on the other hand, provide greater coding opportunities 

for developers to fork and increase the forking chances on other file repositories 

that are coded in similar programming languages. As such, it translates directly to 

better forking performance, which in turn increases project performance. Forking 
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repositories in relation to a new or emerging technology motivates developers 

likely to fork and increases fork visibility  

The research aimed to identify a reliable forking prediction method to solve 

forking scarcity problem. The results presented in Chapter 5 using Euclidean 

distance showed that a year-old dataset of programming language file repositories 

that satisfied OS infrastructure compliance can predict high fork visibility. We 

applied the same research method to a longitudinal dataset (six years) and also 

predicted high fork visibility. The empirical data from these studies was discussed 

in Chapter 6.  

Based on our quantitative and qualitative analysis of forking patterns in response 

to OS development environment compliance we concluded that full environment 

compliance of a file repository – that is, a sustainable programming language, a 

legitimate OS licence and a new or emerging technology – can strengthen 

developers positive forking motivation behaviour, irrespective of time period (one 

year versus six years). 

7.2 Contributions  

Our research contributions were as follows:  

1. Interpretation clarity: We addressed the forking interpretation issue by 

clarifying forking from a new perspective based on developer forking 

motivation behaviour. Previous research had focused on identifying reasons for 

forking, such as personal, project, communities, social network, bugs fixed, 

etc., In contrast, we focused on an OS infrastructure environmental compliance 

perspective from a large fork population and concluded the strengthening effect 

on developer forking motivation.  
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2. Forking scarcity: We addressed the forking scarcity issue by predicting high 

forking visibility from five file repository classifiers and determined 

repositories that are less compliant with programming languages, OS licence 

and technology trends will not generate high fork visibility.  

3. Highly desirable OS variables analysis: The existing literature, reviewed in 

Chapters 2 and 3, examined one desirable environment OS variable with 

respect to developers’ forking popularity and successability. We instead 

reviewed three highly desirable environmental variables: programming 

languages, OS licence and technology trends to predict low to high forking 

visibility. 

4. OS forking pattern: Previous analyses of forking features covered forking 

size, type and volume. Our analysis was more comprehensive. We analysed 

monthly forking data and predicted three types of develop fork patterns: single 

(once only), intermittent (some months with fork counts and some months 

without) and steady (fork every month).  

5. Euclidean distance, KNN: Our research method – the Euclidean distance of 

KNN – showed high accuracy based on the two empirical works evaluated. The 

prediction accuracy of the model is more precise than other techniques like data 

mining, regression analysis or descriptive statistics.  

7.3 Recommendations  

While previous forking prediction methods limited generalisability of results, our 

approach provides new insight into forking survivability performance. This 

research clearly illustrates forking prediction method accuracy but it also raised a 

question on fork survivability analysis. Our dataset does not include other OSS 
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variables concerned with forking. For instance, activities on fixed bug, feature 

enhancements, star ranking of a repository, developer demographics, or fork 

practices, for instance, the intent of forking and multiple fork times as duplicated 

copies.  

Tracking these kinds of activities is time intensive. Moreover, the monthly fork 

counts we downloaded from GitHub are no longer original once modified or 

massaged during the Euclidian distance KNN method. The interpretation of these 

results can therefore be misleading. Our recommendation is to download forking 

data from the hosting platform directly as data and information are real-time and 

objective. 

7.4 Future Work  

Our results are based on predicting high fork visibility from a single machine 

learning method, Euclidean distance KNN. Further research could validate the 

impact, and compare accuracy, of other predictive machine learning methods, 

such as Linear Regression, Decision Tree, Random Forest, Naïve Bayes and 

Support Vector Machine. The popularity of forking will continue to increase. As 

such, there is a continued need to explore and extend repository classifications, 

for example, to classify a homogeneous technology group, a programming 

language or OS licence clusters for deep learning. 
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