

Predicting Open Source Forked
Pattern Survivability

by Bee Bee Chua

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy

under the supervision of Professor Ying Zhang & Associate
Professor Lu Qin

University of Technology Sydney
Faculty of Engineering and Information Technology

October 2021

ii

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Bee Bee Chua, declare that this thesis, is submitted in fulfilment of the requirements

for the award of Doctor of Philosophy in Information Technology, in the School of

Computer Science at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature:

Date: 21st October 2021

Production Note:

Signature removed prior to publication.

iii

iv

Acknowledgements

Really, I have many people I wish to say thank you but to the very special and honourable

ones are below:

Firstly, my research supervisory team, Professor Ying Zhang and Associate Professor Lu

Qin, for their kind guidance and support throughout my PhD journey. Especially to

Professor Zhang, a truly amazing and highly intellectual supervisor who I find to be

extremely hardworking, critical, humble and knowledgeable. I am deeply indebted and

wish to acknowledge his high-quality supervisory efforts, support, encouragement, belief

and trust in me that I can produce good quality research.

Secondly, my family. I am grateful to my parents and my family members, including five

adorable nieces and a nephew, for their continued love and support. To my special god

daughter Maris Stella who I fondly miss.

To the team of medical specialists for their amazing expertise in healing my neck and

right arm injury. My neurosurgeon Dr. Prakash Damodaran, my pain specialist Dr. Hasher

Kadvil, my general practitioners Dr. Pramod Singh and Dr. Deep Kumar for a successful

medical procedure and to my most respectful hand therapist Miss Tamara Carter for her

hard work on healing my neck and hand. To all nurses and front desk receptionist staff

for cheering me up during that most difficult and challenging time. Without them, my

thesis writing is impossible.

To my research collaborators and mentors at UTS for advice and teaching collaboration,

including Mr. Ravindra Bagia, Professor Roger Hadgraft, Dr. Danilo Valeros Bernardo,

Dr. Jane Brennan. Dr. Laurel Dyson, Dr. Yulei Sui and Dr. Wentao. Li.

v

To many other researchers who I know sincerely to thank them for their esteemed support

and encouragement: Professor June Verner, Professor Fethi Rabhi, Professor Paul

Rowland, Professor Aileen Cartel-Steel, Associate Professor Shannon Kennedy-Clark,

Professor Mehregan Mahdavi and Associate Professor Andrew Levula.

My heartfelt gratitude to Dr. Amy Nisselle for her expertise on guiding me how to write

for an academic audience, copyediting and proofing my conference papers and thesis.

Finally, my deepest gratitude to Dr. Danilo Valeros Bernardo for his years of unwavering

endearment and patience with me. Without his words of kind encouragement and

motivation, I would not be able to achieve this degree.

vi

List of Publications

This thesis comprised of a series of published and to-be-published articles together with

an exegesis. The list of the publications is as follows:

1. B. B. Chua and Y. Zhang, “Applying a systematic literature review and content

analysis method to analyse open source developers’ forking motivation interpretation,

categories and consequences.” Journal of Australasian Information Systems,

2020.Vol. 24 No.1, pp. 1–19.

2. B. B. Chua, and Y. Zhang, “Predicting open source programming language repository

file survivability from forking data.” OpenSym’19: Proceedings of the 15th

International Symposium on Open Collaboration. 2019. Skövde Sweden

3. B. B. Chua, “A survey paper on open source forking motivation reasons and

challenges.” Conference Proceedings of the Pacific Asia Conference of Information

Systems (PACIS), 2017, Langkawi, Malaysia

4. B. B. Chua. Detecting sustainable programming languages through forking on open

source projects for survivability. Proceedings of the IEEE International Symposium

on Software Reliability Engineering (ISSRE) in conjunction with a WOSAR

workshop, IEEE, 2015, Gaithersburg, USA. 120–124

5. B. B. Chua and Y. Zhang. “Healthy Fork File Repository (HFFR) Performance

Prediction”. Journal of Systems and Information Technology (JST) Elsevier, Under

review.

vii

Other relevant publications developed but not included in this thesis include:

1. B. B. Chua. “Analysing Version Control Open-Source Software Survivability”.

Proceedings of the 19th International Conference on Distributed Multimedia Systems,

DMS 2013, August 8-10 2013, Brighton, UK. Knowledge Systems Institute.

2. B. B. Chua and D.V. Bernardo. Open-Source Developer Download Tiers: A Survival

Framework. 13th IEEE International Conference on IT Convergence and Security,

ICITCS, 2013, Macau, China.

viii

Contents

... i

CERTIFICATE OF ORIGINAL AUTHORSHIP .. ii

Acknowledgements ... iv

List of Publications ... vi

Contents .. viii

List of Figures ... xi

List of Tables ... xii

List of Acronyms... xiv

Abstract .. 1

Chapter 1 .. 3

1.0 Introduction .. 3

1.1 Background ... 5

1.2 Research Motivation ... 6

1.3 Research Contributions ... 7

Chapter 2: Forking Literature Survey... 8

2.1 Overview .. 8

2.2 Motivation .. 8

2.3 Approaches ... 8

2.4 Introduction .. 9

2.5 Research Study Motivation and Research Questions ..12

2.5.1 Research study motivation ...12

2.5.2 Research questions ..13

2.6 Methodology: Systematic Literature Review and Content Analysis Method15

2.6.1 Systematic literature review search criteria ..17

2.6.2 Search strategy ..18

2.6.3 Methodological framework ..20

2.6.4 Content analysis method ...21

2.7 Forking Motivation Interpretations ..22

2.7.1 How do researchers interpret developer forking and categorise forking

motivational behaviour? ...23

2.7.2 What were the most popular methodologies used by forking researchers from

1990 to 2017? ...32

ix

2.7.3 What aspects of open source forking have been researched and reported?32

2.7.4 Newcomers or new developers forking motivation from 2020 to 202134

2.7.5 Shifting motivation through time and journey ..35

2.7.6 Shifting forking motivation ...36

2.8 Summary from the literature survey ..37

Chapter 3: Literature Survey Research Methodology .. 40

3.1 Overview ...40

3.2 Motivation ...40

3.3 Introduction ...40

3.4 Literature Survey Selection Criteria and Categorisation ...41

3.5 Category I: Survey-based Research Methodology ..42

3.6 Category II: Data Mining Algorithm-based Research Methodology ...50

3.7 Category III: Machine Learning Algorithm-based Research Methodology58

3.8 Machine Learning: A K Nearest Neighbour Method...65

3.8.1 Euclidean distance metric ...66

3.8.2 Adopting Euclidean distance: characteristics identification and rationale66

3.8.3 Identifying Euclidean distance characteristics ..67

3.8.4 Our research dataset characteristics ..67

Chapter 4: Models .. 69

4.1 Overview ...69

4.2 Literature Survey Road Map Model ..69

4.3 Chua and Zhang Open Source Software Forking Pattern Prediction Model70

Chapter 5: A Pilot Study .. 72

5.1 Overview ...72

5.2 Motivation ...72

5.3 Background ..73

5.4 Forking Patterns ...74

5.5 Software Survival and Programming Language Survival Importance.......................................75

5.6 Survivability Prediction on the K Nearest Neighbour Method ..77

5.7 Programming Language Repository File Categorisation and Fork Pattern Classifiers81

5.8 Classifier Results ...82

5.9 K Nearest Neighbour Results ...83

x

5.9.1 Case One ...84

5.9.2 Case Two ..85

5.9.3 Case Three ..85

5.9.4 Case Four ..85

5.10 Evaluation ..86

5.11 Conclusions and Future Work ...88

Chapter 6: A Longitudinal Study ... 90

6.1 Overview ...90

6. 2 Motivation ..90

6.3 Background ..91

6.4 Fork Pattern Identification and Data Collection ..92

6.5 Normalisation and Euclidean Distance ..95

6.6 Results ...100

6.7 Evaluative Test Results ...102

6.8 Discussion..104

Chapter 7: Conclusion .. 106

7.1 Overview ...106

7.2 Contributions ...107

7.3 Recommendations ...108

7.4 Future Work ...109

Bibliography ... 110

xi

List of Figures

Figure 2. 1: Combined approaches: systematic literature review and content analysis

method .. 16

Figure 2. 2: The systematic literature review search strategy for research papers 19

Figure 2. 3: Data collection methods in the 21 papers .. 32

Figure 2. 4: Units of analysis in the 21 papers .. 33

Figure 2. 5: Forking lessons learnt across the 21 papers... 34

Figure 2. 6: The open source developers’ motivation movement ... 36

Figure 3. 1: Paper selection criteria .. 42

Figure 4. 1: Literature survey mapping model .. 70

Figure 4. 2: The Chua and Zhang OSS forking pattern prediction model 71

Figure 5. 1: Categorising programming language repository file forks as short- or long-

lived. ... 82

Figure 5. 2: Evaluative results comparison of the dataset ... 88

Figure 6. 1: Euclidean distance ranking .. 102

Figure 6. 2: Evaluative results .. 104

xii

List of Tables

Table 2. 1: The systematic literature review identified 21 relevant and suitable papers 19

Table 2. 2 A forking motivation methodological framework ... 20

Table 2. 3: Forking interpretation types .. 21

Table 2. 4: Fork categorisation, sustainability and lessons learnt 28

Table 3. 1: Literature Survey Research Methodology in OSS .. 46

Table 3. 2: Data Mining algorithm-based type research methodology 55

Table 3. 3: Machine learning research-based methodology in OSS ... 61

Table 3. 4: Four widely-adopted KNN distance metrics... 66

Table 5. 1: Fork patterns ... 75

Table 5. 2: Variables defined for programming language survivability 79

Table 5. 3: Forking patterns .. 81

Table 5. 4: Categorising programming language repository files forks as short- or long-

lived ... 82

Table 5.5: Categorising programming language repository files sorted by Euclidean

distance .. 84

Table 5. 6: Environment compliance .. 86

Table 6. 1: Examples of file repository monthly forking .. 93

Table 6. 2: Big query statement .. 93

Table 6. 3: Forking data of selected file repositories, 2015–2020 .. 94

Table 6. 4: Variables defined for a healthy fork file repository .. 96

Table 6. 5: Forking in 5 years (2015-2020) after normalisation ... 97

xiii

Table 6. 6: Healthy fork file repository types and counts ... 99

Table 6. 7: Healthy fork file repository types ranked by Euclidean distance 100

Table 6. 8: Healthy fork file repository types ranked by Euclidean distance 101

Table 6. 9: Definition and formula for accuracy, precision, sensitivity and specificity 103

xiv

List of Acronyms

CAM Content Analysis Method

CVS Control Version System

FN False Negative

FP False Positive

HFFR Healthy File Fork Repository

KNN K Nearest Neighbour Method

OS Open Source

OSS Open Source Software

SLR Systematic Literature Review

SPF Specific Repository File

SRFHF Specific Repository File that did not meet the full environment

licence but has Healthy Fork

SRFMSPL Specific Repository File that met official licence compliance and

adopted a Modern Sustainable Programming Language

SRFOL Specific Repository File that met Official Licence compliance

SRFOLHF Specific Repository File that met Official Licence compliance that has

Healthy Fork

SRFOLMSPLHF Specific Repository File that met Official Licence compliance and

adopted a Modern Sustainable Programming Language that has

Healthy Fork

SRFOLTSPL Specific Repository File that met Official Licence and adopted a

Traditional Sustainable Programming Language

SRFTSPL Specific Repository File that adopted a Traditional Sustainable

Programming Language

SRFTSPLHF Specific Repository File that adopted a Traditional Sustainable

Programming Language that has Healthy Fork

TN True Negative

TP True Positive

VT Virus Total

1

Abstract

The motivational behaviour of open source (OS) developers has always been an active

focus of research. With the introduction of the forking technique a related research area

of developer forking motivational behaviour has gained significance, partly due to the

problem of forking scarcity and low fork visibility performance.

The objective of forking is to improve and innovate source code quality from voluntary

developers. Unfortunately, the forking technique is not very sustainable in improving fork

efficiency and efficacy. Further, developers may spend time forking source codes that

may become inactive and consequently prove to be a waste of time and effort. From the

perspective of project owners, if their repositories do not receive a good fork response

from developers, their repositories will not grow.

This doctoral research study aimed to address these problems by avoiding forking

scarcity, increasing high fork visibility performance, and promoting positive developer

forking motivation. We also needed to investigate OS environment compliance to

determine whether it contributes to improved fork visibility, reduced fork deficiency

and/or is viewed positively by developers.

The research approach was to apply a model to predict high fork visibility. The model is

based on the K Nearest Neighbour machine learning algorithm, using the Euclidean

distance metric to predict high fork visibility performance. We piloted it using nine

repository classifiers and then conducted a longitudinal study of five select repository

classifiers to determine accuracy and distance approximation. Our work adds a new body

of knowledge to OS forking theory and provides a deeper understanding of developer

forking motivational behaviour.

2

In the first phase of this study, we conducted a literature review of forking motivation and

research methods used in OSS. We then developed and tested our model. In the last phase,

we identified OSS patterns and detected fork longevity to determine whether

environmental compliance was fully, partially or not at all satisfied. Most importantly,

we showed that high fork visibility environmental compliance distance approximation

can positively predict developer forking interest.

3

Chapter 1

1.0 Introduction

This chapter introduces the research area, background to the research questions, the

motivation to conduct the research, and contributions to the discipline.

Forking scarcity and low fork visibility are two serious problems for developers aiming

to produce high-quality, open source (OS) software (OSS). Forking is a useful technique

for developers that encourages them to contribute to modifying or fixing codes or making

recommendations to enhance original project file repositories [1]. However, when forking

is not used effectively it can lead to substantial code development wastage; additionally,

low fork visibility for repositories can cause resource allocation issues that can impact

repository survivability. Investigating developers’ forking motivation and behaviour can

help reduce forking scarcity and low repository forking visibility. Further, developing a

predictive forking technique can promote forking efficiency and effectiveness.

A number of reputable OS hosting platforms such as GitHub [2], SourceForge [3] and

Bitbucket [4] offer project owners create a file repository by allowing them to host their

source files. These platforms also aim to attract developers to voluntarily fork and

contribute to software development.

In the existing forking literature, many studies [5-8] indicate that developer forking

interest or motivation is important. To comprehend factors that may influence developer

interest or motivation or interest, we reviewed the OS literature to identify and categorise

developers’ forking behaviour. Self-development factors related to individual developer

learnability and the domain knowledge of a project, as well as variables relating to

programming language, discussed widely in the literature over two decades.

4

Other studies [8-12] identified additional personal variables such as developers seeking a

coding career, to network with other experienced developers, or to form a new coding

group. Discontinuing to fork a file repository was associated with involvement in a

conflicting OS project or team or leadership dispute, or commercial, legal or political

reasons [6, 13-15].

There are limited studies [16-18] on how OS licence restriction, less sustainable

programming languages or less innovative frontiers technology may affect developer

forking behaviour. There are no studies that aim to understand the impact of OS forking

environmental compliance factors on developer forking behaviour. For instance, the top

three important OS variables on quality programming languages, OS licence compliance

and the new or emerging technology trend [19-21] often recognised as prevalent topics

discussed widely by communities. although the introduction of social networks is a recent

and hot topic on understanding communities social interaction influences the way how

developers fork but it was not discussed in literature heavily over the past two decades

Moreover, research to date on predicting fork success outcomes were based in single

variables rather than investigating how multiple variables influence outcomes.

The novelty of our research is predicting the accuracy of high fork visibility performance

from repository populations that satisfy full OS environmental compliance, in response

to developers’ positive forking motivation and behaviour. Our research study

encompasses forking features that are highly desirable OS environmental variables to

analyse monthly forking data generated from two datasets downloaded from the GitHub

database. We applied a supervised machine learning algorithm – the K Nearest Neighbour

method – with the Euclidean Distance metric to predict the closest distance of high fork

visibility performance on repositories with and without complete OS environmental

compliance.

5

Our research results are original and novel and include several peer-reviewed

publications. They are convincing and promising, using longitudinal data on monthly fork

movement in repositories across a six-year period.

We are the first research group to contribute novel findings to the OS forking body of

knowledge by applying a machine learning algorithm to predict healthy fork performance

by analysing forking count to quantify positive developer motivation.

1.1 Background

Open source software development is a new technology platform that simplifies the

process of collaborating source code writing between disparate developers. Its simplicity

lies in a project owner who owns a piece of source code that can be uploaded and made

visible in a hosting platform for other developers to fork, share and contribute. The OS

process can not only help by reducing development time and costs but it also promotes

the quality of source code through iterative improvement and innovation.

A number of reputable OS hosting platforms – such as such as GitHub [2], SourceForge

[3] and Bitbucket [4] – offer project owners the opportunity to create file repositories,

allowing them to host source files. These platforms also aim to attract developers to join,

fork and contribute voluntarily. Different hosting platforms have different OS language,

an OS licence and developers.

For example, GitHub infrastructure includes a declaration of programming language, OS

licence and being a sizeable developer. Despite basic OS infrastructure settings being

provided to project owners, the forking status of many file repositories is still not healthy.

This could be due to insufficient developers or forking deficiency.

6

There are no associations reported in the literature between developer forking motivation

and developer insufficiency or forking deficiency [22]. Personal reasons, commercial

reasons and OS infrastructure settings are barriers that can impact on developer forking

motivation [5, 7, 9-11]. Personal and commercial reasons may be subjective, as they may

be preconceived, opinionated, discriminatory or prejudiced; hence these findings are less

convincing in predicting the forking behaviour or larger populations of developers. OS

infrastructure parameters are standardised, objective, unbiased and non-discriminatory,

making them more practical and convincing to predict developer forking motivation on a

large population.

OS infrastructure parameters may restrict or prohibit developers and reduce their

motivation to fork. For instance, the OS licence permission restriction can hinder a

developer forking an original repository into his or her own environment; a specific

programming language used by a project owner may be unfamiliar to developers, so can

reduce the chance of forking; or a new technology may be challenging in its complexity.

1.2 Research Motivation

This study was driven by three primary motivations. Firstly, to improve clarity on

interpretation of developer forking behaviour. Clarification is required because different

researchers interpret the term differently, and some do not have sufficient empirical data

to support these varied interpretations. As such, we want to contribute a new body of

knowledge from the theoretical understanding of forking, based on an OS environmental

compliance perspective, which places importance on quantifying fork count as an

indicator of developers’ positive forking motivation.

The second motivation is to address the forking scarcity and low fork visibility

performance for some repositories, so that they can survive.

7

The third is to develop a new predictive model based on programming language

repository classifiers to detect high fork visibility performance.

1.3 Research Contributions

The three main contributions from our work are:

1. Improving the OS theory on the fundamental concept of developer forking motivation

and behaviour interpretation by understanding how high fork visibility performance

can positively predict programming language repository compliance from a classifier’s

perspective.

2. Introducing a new predictive forking model based on a machine learning approach that

incorporates OS environmental compliance variables to predict high forking visibility

performance as a way to judge developers’ forking behaviour.

3. Solving the forking scarcity and low fork visibility problem by acknowledging three

types of developer forking behaviour patterns: 1) fork once only; 2) fork intermittently;

and 3) fork steadily.

8

Chapter 2: Forking Literature Survey

2.1 Overview

This chapter reviews the relevant literature, firstly relating to interpretations of OS

developers’ forking motivations, reasons and challenges. We then applied systematic

literature review (SLR) [23, 24] and content analysis method (CAM) [25] methodological

frameworks to investigate OS forking divergence to evaluate OSS developer forking

motivation, how motivations are interpreted and, categorised, and consequences. This

work was published as two research articles [26, 27].

2.2 Motivation

The primary motivation in conducting the literature survey was to critically examine the

many interpretations of developer forking motivation and see which had a specific

interpretation on evaluating forking to understand OS environmental parameters. We also

aimed to contribute to the OSS forking community through publishing the results of the

combined SLR and Content Analysis reviews to evaluate OS forking motivation reasons

and challenges as there was no peer-reviewed research on this topic, despite several

surveyed papers discussing motivational forking reasons from OS developers to

contribute. We also sought to determine whether forking motivations differed for first-

time developers versus others.

2.3 Approaches

Our literature review consisted of surveying OS forking paper published in two time

periods: from 1990 to 2017, then from 2018 to 2021. The latter focused on understanding

first-time developers’ forking motivation.

9

In the first part of our literature survey, we adopted the SLR method [23, 24] to provide

a rigorous and vigorous literature review, as the method can synthesise controversial

views and dilemmas when discussing different perspectives on the same topic. SLR is

one of the most reliable methods for conducting a software engineering literature review

and is widely used in computer science, software engineering, social science and

information systems research [28-30]. Software engineering researchers [23, 31] even

proclaimed that SLR is a form of evidence-based software engineering that can address

many engineering questions posed by researchers. Here we outline the process for

conducting a SLR by specifying research questions, describing the search and retrieval

process, collecting evidence, synthesising the evidence and providing results.

2.4 Introduction

GitHub is a hosting website for developing OSS through social coding by multiple

developers. GitHub stores projects, files, programming languages, licences and developer

profiles. In May 2014 GitHub was the largest hosting coding platform, reported as having

over 37 million population users and over 100 million public and private repositories [32].

In 2017, GitHub had 26 million registered developers from 110,000 organisations and an

additional 20 million developers and users visit GitHub daily without registering [33].

GitHub has long-term viability and remains on the cutting edge of technology,

particularly the forking feature, which many developers adopt and use.

Forking is an important feature in GitHub, allowing developers to make a copy of original

source code, download it into their own environment to learn from or make changes, then

submit adapted code back to the project owners (sometimes referred to as ‘upstream’).

When a file is forked by developers in GitHub, the developer may indirectly adapt it to

enhance the programming language longevity. Developers may download a programming

10

language not only because the language file repository is interesting and unique but

because it also may have strong compliance and interoperability with local developmental

environments.

However, most OS projects do not receive high forking counts and there is currently no

reliable method of determining whether developer motivation behind projects with the

most forked files is ‘genuine’ or ‘non-genuine’. Genuine motivation would be developers

who are willing to contribute, rewrite source codes and submit them upstream for owners

to accept and merge; non-genuine developers would simply retain the code – adapted or

not – for their own purposes, without submitting it upstream. Moreover, programming

language use, adoption and forking varies, based on the number of projects and file

repositories, so the evidence base on developer forking motivation behaviour is unclear.

A project can have one or multiple programming languages to allow one or more

developers to create single or multiple file repositories. GitHub hosts 339 active

programming languages yet less than one twelfth are sustainable or widely adopted in

projects by organisations [1]. However, there are other factors beyond popular use that

influence sustainability of a programming language, including organisational and project

boundaries, the programming languages themselves, and above all, social psychology

aspects such as developer motivation, preference, and interest. Flexible coding provides

many software developments companies and developers the freedom to submit their

source codes on GitHub and allow other developers to respond and fork the code.

Despite a number of published OS forking studies that highlight critical factors attributed

to successful software forking and forking failure [7, 8, 13, 15, 34], there has been no

systematic study mapping understanding of forking motivation, interpretation,

categorisation and consequences. This paper therefore presents a systematic review of

studies to compare, contrast, summarise and synthesise existing studies to inform future

11

decisions about OS forking research by providing an understanding of why some projects

are forked more than others, through the lens of project and programming language

characteristics.

There are currently few studies that have identified or classified developer forking

motivation to enhance forking visibility, and little knowledge about potential differences

in forking motivation between junior and senior developers across software engineering,

computing science and information systems literature. Therefore, clarifications are

required. There is no framework to categorise forking motivation behaviour and its effect

on forking visibility. A methodological framework would be useful for researchers to

implement sustainable ways to motivate developers to fork more programming language

files.

The research objective was therefore to identify types of developer forking motivation

and forking consequences cited in the existing OS literature through SLR adopted from

[23] of conference papers and literature in relevant databases. A SLR uses specific search

criteria to identify appropriate papers that are then read and analysed carefully using

content analysis (a qualitative research technique) [35] to extract themes and words, in

this instance, describing forking. Each paper is scrutinised to understand research

methodology, methods of data collection, units of analysis and conclusions.

The contributions of this research include: 1) summarising the existing evidence base on

forking motivation and consequences into a methodological framework; 2) providing

guidelines for those interested in conducting research on understanding developer forking

motivation and consequences influencing the ability of projects and organisations to

predict project survivability and sustainability [survivability as in the duration of a

programming language and sustainability as in measuring a programming language’s

continued use by developers]; 3) filling a gap on forking risk literature to inform future

12

research; and 4) proposing a strategy to map how forking motivation and programming

language influence forking visibility. We aim to support OSS communities and

researchers with theoretical insights on developer forking motivation, consequences and

impacts.

2.5 Research Study Motivation and Research Questions

2.5.1 Research study motivation

This study was designed primarily to contribute to a theoretical understanding of OS

forking and to potentially identify new influencing factors. It is important to address the

current disparity in the literature around a theoretical understanding of what forking

features and functions can offer in OSS, that is, perspectives on interpreting and defining

forking as software, project, file repository and programming language source code.

There is also a need to understand what influencing factors can cause OS project forking

to succeed or fail. Forking activity has been reported using a variety of measures,

including activity growth, developer interest and licensing [5, 7, 34, 36] but there are few

analyses measuring forking motivation implicitly or explicitly. Moreover, there is limited

evidence to confirm forking activeness in spin-off projects that may be strongly

influenced by project topic, organisation and licence, or developer forking motivation

(genuine or non-genuine). Further, a myriad of programming languages have tried to spur

developer interest but not all succeed or sustain developer forking interest. Lastly, there

is little evidence on whether genuine developers are more positively motivated to fork

compared with non-genuine developers; for example, Murgia et al. [37] noted that

developers have expressed love and joy when they fix OSS artefacts successfully, while

other developers expressed anger, surprise, sadness or fear over challenging OSS

artifacts.

13

2.5.2 Research questions

According to Jiang et al [7], they defined forking is copying a repository to create a new

software repository. Software forking is increasingly adopted by many OSS communities

for various reasons, including social and political. For instance, a relational database

management system project – MYSQL, owned by Sun Microsystems – was forked into

another project –, called Maria DB – due to uncertainty whether Oracle stewardship could

maintain MYSQL’s survivability [38].

For new OS projects, it is critical to seek developers’ participation and collaboration.

Interestingly, most junior developers prefer to fork new projects more than old projects,

despite less involvement from senior developers, and junior developers seem to prioritise

forking in favour of using new programming languages [1].

The number of terminated projects is also increasing due to low sustainable community

participation and collaboration to fix bugs and improve features [7]. It is therefore

important to identify types of developer forking motivational behaviour and risk to

prevent project termination due to low developer interest. Identifying forking motivation

may help communities increase sustainability and build more long-term contributors.

Three research questions (RQs) guided this study.

RQ1: How do researchers interpret forking and categorise developer forking

motivational behaviour?

Types of developer motivation to fork OSS were captured to address RQ1, referencing a

definition of ‘motivational behaviour’ as a reason or reasons for acting or behaving in a

particular way [39]. As the topic is closely related to the study of human behaviour,

databases spanning a variety of disciplines – such as humanities and social science,

14

management science, policy, psychology and sociology – were selected to search for OSS

papers.

RQ2: What were the most popular methodologies used to research forking from 1990

to 2017?

The Open Source Software Initiative (OSI) [20] started in 1990 with support from many

of the world’s largest OSS projects and contributors. They are Mozilla Foundation, Free

BSD Foundation, Debian, Drupal Association, Linux Foundation, Wikimedia Foundation

and WordPress Foundation. While the evolution of forking started in 1990, it is unclear

what forking research papers have been published over the past nearly three decades.

Through RQ2 we therefore aim to provide up- to-date information on forking throughout

the period of OS development.

RQ3: What aspects of OS forking have been researched and reported?

Open source forking is not a new topic but has gained popularity in recent years, with

many researchers and communities interested in investigating forking reliability [7, 34].

When GitHub launched there was an overwhelming response from researchers

investigating forking technique performance to analyse forking in sustainable projects by

programming language committees or version control files [40]. Unfortunately, research

findings remain unclear, particularly a lack of data to understand possible impacts and

consequences of negative forking. Therefore, RQ3 sought to find barriers to forking to

better guide further research.

15

2.6 Methodology: Systematic Literature Review and Content Analysis

Method

The SLR method was employed to examine and review developers’ motivational forking

behaviour in OS literature as the topic has been published across multiple disciplines for

a number of years. SLR was chosen to provide a rigorous and vigorous literature review,

as the method can synthesise controversial views and dilemmas when discussing different

perspectives on the same topic. SLR is one of the most reliable methods for conducting a

software engineering literature review and is widely used in computer science, software

engineering, social science and information systems research [28, 29]. Software

engineering researchers [23, 24, 31] even proclaimed that SLR is a form of evidence-

based software engineering that can address many engineering questions posed by

researchers.

A SLR has several features. First, a research question is being addressed and a systematic

method applied to perform the review. Second, a search strategy is defined to detect the

relevance of retrieved literature as far as possible. Third, a search strategy is used to

review documents to assess rigour, completeness and repeatability. Lastly, explicit and

implicit criteria are listed before conducting a SLR. Here we outline the process we used

when conducting a SLR by specifying research questions, describing the search and

retrieval process, collecting evidence, synthesising the evidence and providing results.

Applying SLR guidelines provided discrete steps to locate and review appropriate

documents describing OS forking motivation. As the content of each paper was

comprehensive the Content Analysis method (CAM) was then applied to analyse and

interpret articles (Error! Reference source not found.), as it is a reliable method for

16

analysing text data, themes or concepts, including intuitive, impressionistic and

interpretive, quantifying them into systematic and strict textual analyses [25, 41].

Highly cited content analysis researchers [35] defined three approaches: 1) a conventional

analysis based on text data, categorised into coding types; 2) a directed approach based

on a theory or research findings, where user analysis begins with guidance for initial

codes; and 3) a summative content analysis based on words or phrase count, compared

by the underlying context interpretation.

Here we adopted a summative content analysis of the SLR articles to identify and count

common themes and words used to describe forking motivation and sustainability

(Error! Reference source not found.).

Figure 2. 1: Combined approaches: systematic literature review and content analysis

method

Word Frequency
(Title, Abstract and Introduction)

Content Analysis Method

Papers retrieved from databases

Search Strategy

Systematic Literature Review
Method

17

2.6.1 Systematic literature review search criteria

To ensure the literature search was specific and to identify the most relevant, high-quality

articles, in line with SLR guidelines [28, 29], the explicit and implicit criteria used to

evaluate each study were:

• Peer-reviewed conference or journal papers, published and indexed either in Google

Scholar, ACM, IEEE, Science Direct, Springer or MISQ; AND

• Written in English; AND

• Titles or content included phrases “open source forking motivation”, “open source

software forking”, “open source project forking”, “open source social forking”, “open

source code forking”, “open source language forking” OR “file repository forking”;

AND

• Published from 1990 to 2017; AND

• Published from top quality Information Systems Conferences or Journals; AND

• Described the research methodology used – systematic study, stratified sampling, case

study, survey, interview, experiment, quasi-experiment or other study types – to

collect, analyse and interpret results to address research questions in the paper. This

criterion was necessary to determine common and similar research methodologies

used by OSS researchers to inform the methods and reduce bias of method selection

to study forking patterns, frequency, etc.

When searching for quality papers, exclusion criteria were articled that:

1. Were too short (e.g., less than five pages), general, based on a different perspective or

did not include empirical evidence to demonstrate the authors’ claim; OR

18

2. Did not identify positive and/or negative impacts or consequences of motivating

factors, and did not discuss challenges or barriers, as the objective was to understand

developer forking motivation. For example, if there was no discussion on positive or

negative factors impacting developer forking motivation; OR

3. Did not include empirical evidence from the stated methods, be they quantitative,

qualitative or mixed.

2.6.2 Search strategy

Two approaches were applied to conduct the SLR search (Error! Reference source not

found.). The first search was conducted on 1 October 2017 on Google Scholar for the

term “open source forking behaviour”, resulting in 21,200 URLs. Because the first

approach based on text searching is broad, the second search approach aimed to narrow

the search on ACM, IEEE, SCOPUS and other databases, which have more OSS

publications. Results were then sorted by relevance and filtered for papers published from

1996 to 2017, resulting in 9530 URLs. These papers were both peer-reviewed and non-

peer-reviewed by multiple disciplines ranging from economics, management,

information systems, software engineering and sociology [28-30].

19

Figure 2. 2: The systematic literature review search strategy for research papers

As each Google Scholar results page lists 10 URLs linking to peer-reviewed articles cited

in databases, the first five pages were reviewed by clicking each link to each URL, and

the summary or abstract and introduction were read to confirm relevancy and suitability.

In total, 13 papers were identified in ACM, IEEE, Science Direct and or MISQ databases

plus 8 other relevant papers in other databases (Error! Reference source not found.).

Table 2. 1: The systematic literature review identified 21 relevant and suitable papers

Database Number Authors

Google Scholar 8 Biazzini & Baudry, 2014 [42]; Ernst et al., 2010 [40]; Fujita & Ikuine,

2014 [43]; Fung et al., 2012 [34]; Gamalielesson & Lundell, 2013 [8];

Ikuine & Fujita, 2014 [6]; Moen, 1999 [18]; Nyman et al., 2012 [44]

ACM 6 Dabbish et al., 2012 [36]; Glass, 2003 [15]; Neville-Neil, 2011 [45];

Nyman, 2014 [46]; Ray & Kim, 2012 [47]; Ray et al. 2014 [17]

IEEE 2 Chua, 2015 [48]; Cosentino et al., 2017 [14]

MISQ 1 Van Krogh et al., 2012 [9]

Springer 4 Azarbakht & Jensen, 2017 [13]; Jiang et al., 2017 [7]; Robles &

Gonzalez-Barahona, 2012 [5]; Nyman & Mikkonen, 2011 [3]

20

2.6.3 Methodological framework

Of the 21 papers, five focused on forking sustainability, three on forking challenges and

17 on lessons learnt. Forking motivation, sustainability and lessons learnt were

synthesised into a methodological framework with three steps to address the research

questions via retrieval, categorisation and reporting (Error! Reference source not

found.). 1) Identify variables used to define motivation and its interpretation from both

broad and specific perspectives by applying the three RQs via the SLR to select and

review papers. 2) Categorise forking interpretations into three categories (OS forking

motivation, sustainability and lessons learnt) by applying the CAM using the same theme

or word. 3) Group similar keywords and papers that describe the three categories of

forking motivation, sustainability and lessons learnt. Conclusions were then drawn from

these findings regarding forking challenges and lessons to be learnt.

Table 2. 2 A forking motivation methodological framework

Purpose Process Outcome

1. Identify variables that describe forking

motivation and its interpretation

Apply SLR to select

relevant papers from

selective databases

Retrieve relevant papers

on forking motivation

2. Categorise forking into motivation,

sustainability and lessons learnt

Apply CAM and classify

common themes or words

Categorise forking

motivation into three

classes

3. Group similar keywords to describe OS

developer forking motivation,

sustainability and forking lessons learnt

Analyse word count

frequency (title, abstract

and introduction)

Report forking

motivation factors

21

2.6.4 Content analysis method

Each of the 21 papers identified was scrutinised for context using content analysis. Papers

were first scanned to confirm the word ‘fork*’ was mentioned and the research evidence

was empirical, then themes and key words were extracted. Next, each title was checked,

abstract read, and adjectives that described ‘fork*’ quantified (Error! Reference source

not found.). For example, when reviewing the papers “Code Forking in Open-Source

Software: A Requirements Perspective” [40] and “Perspective on Code Forking and

Sustainability in Open Source Software” [44] the word ‘code’ occurred twice so ‘2’ was

entered under ‘code’ forking type identified by the Google Scholar search in Error!

Reference source not found.. Occurrences of forking motivation (n=10), forking

sustainability (n=4), consequences (n=2), impacts (n=2) and threats (n=1) were also

noted. Paper content was then analysed, noting research method, unit of analysis and

results, then the introduction and conclusion were reviewed in more detail.

Table 2. 3: Forking interpretation types

Forking type

Paper identified via

TOTAL ACM IEEE Springer MISQ

Google

Scholar

Open source 1 1

Project 4 1 1 1 7

Software 1 2 3

Social 2 1 2 5

Code 1 2 3

Language 1 1

File repository 1 1

TOTAL 6 2 4 1 8 21

Next, papers were grouped into four categories to address RQ1:

22

• Developer forking interpretations: 7 interpretations of forking (Error! Reference

source not found.).

• Developer motivation and reasons: a subset of papers reported similar variables (Table

3). For instance, [7, 9, 15, 34] reported divergent specialisation, objective

misalignment, poor governance and leadership and culture.

• Forking sustainability: four groups of researchers [3, 7, 8, 40] undertook real-world

projects, comparing original versus forked projects (Error! Reference source not

found.). Successful and sustainable projects included community-level projects, such

as MariaDB forked by MYSQL, the software level of MS Word and LibreOffice and

ecosystem levels of LibreOffice forked from OpenOffice.

• Forking lessons learnt on project compatibility issues: 19 papers cited forking lessons

and seven described more than one type of forking reason, including no guidance or

direction, copyright, licensing conflict, project ownership or dividing the forking

community [6, 13-15, 18, 43, 45] pointed out that technical developers’ roles are

becoming specialised.

2.7 Forking Motivation Interpretations

Although a number of motivating factors identified in previous OS studies are applicable

in the forking context, a number of diverse forking motivation factors were detected in

this literature review, including project revival and alignment, culture traits, divergent

specialisation, individual ownership, licence and software compliance, community

disintegration, community practice and extending community social coding development.

Therefore prior to investigating forking motivation factors, an additional research

question was posed.

23

2.7.1 How do researchers interpret developer forking and categorise

forking motivational behaviour?

These findings reveal a diversity of forking interpretations (Error! Reference source not

found.), with project forking most common (7 papers), and OS, programming language

and file repository the least (1 each). However, fork type was interpreted differently by

different researchers, due to the metadata of the dataset they downloaded from the hosting

server. For example, GitHub was the only hosting server to categorise file repository

forking. To further understand the forking interpretation each paper, the categories were

defined in more detail (paper classifications shown in Error! Reference source not

found.).

2.7.1.1 Open Source Forking

The early 1990s saw a proliferation of research on OS motivation. Krogh et al. [9]

reviewed seven years of publications and identified 40 papers that focused on OS

developer motivation, including [49-52]. They synthesised findings across these papers

into three classes of motivation: intrinsic, internalised intrinsic and extrinsic. Intrinsic

motivation included ideology, altruism, kinship and fun, and can drive developers to fork

software. Internalised intrinsic motivation included reputation, reciprocity, learning and

own-use [49-52]. Extrinsic motivation may include being paid for the work or finding a

career in coding [49-52]. Hippel and Von Krogh [53] and Goode [54, 55] studied

organisational information sharing of OSS and innovation models as influencing factors

on motivation between adopters and non-adopters. They found more reputable

organisations and innovative projects are more likely to attract OSS developer attention

to download or copy repository files.

24

2.7.1.2 Concept of Forking

Forking can be defined in different ways. Nyman et al. [3, 44, 46] defined it in a project

context, where the development of an independent project is based on a developer who

copies original source code from a software package. Ikuine and Fujita [6] defined

software forking as the continuous development of software. Fung, Aurum and Tang [34]

defined social forking to identify relationships within communities, and studied how forks

are used to facilitate OSS development. Code forking is defined as a forked project copied

from an existing code base and moved away from the original project leadership direction

[3].

In our paper, we define language forking as a repository language that is copied by other

developers. Defining programming language success varies from researcher to

researcher. For instance, programming language interoperability performance being a

major contributor to success [16]. Despite this, most languages are not interoperable [16,

17, 47]. Investigating when and why developers may fork a programming language file

requires consideration of language needs and developer motivation. For example, some

developers may fork a programming language because the original language has been

combined with another new programming language. Other developers may fork a

programming language to add or amend features to the language or to a subset of the

original programming language.

A file repository fork is defined as an original repository where source code developers

contribute sufficiently to benefit the OSS community [7].

As such, we need to understand developer forking motivation. There are currently a broad

range of perspectives on OS developer motivation, ranging from individual to

communities, and fork consequences on projects and organisations.

25

Although a variety of research methods have been adopted to predict OSS popularity,

sustainability and survivability [3, 5-7, 9, 13, 16, 26, 34, 36, 42, 44, 46, 48], these methods

are less useful for predicting programming language forking survivability. These research

methods include surveys, interviews, content analysis and empirical studies that are

subjective and potentially biased. For example, data samples were not large, reducing

accuracy; data analyses and interpretation could be subjective or biased; and the study

designs were unable to handle large datasets. In contrast, machine learning techniques

work effectively with an abundance of data to leverage for training and testing.

2.7.1.3 Project forking

According to Nyman and Mikkonen’s definition [3], a project fork is defined as source

code copied from software, with the copy version used by the fork developers to develop

their work. In other words, the piece of source code that is forked is an independent

version, separate from the original source. Nyman and Mikkonen [3] looked at forking

behaviour in the context of forked project survivability, quantifying project forking as the

number of original projects forked by developers and comparing the number of original

projects versus forked projects in GitHub. Many researchers seek to understand how

forking impacts an original forked project and Nyman and Mikkonen’s study [3] provided

real-life examples of current high-profile OS projects that either started from a fork or

were common targets for forking.

2.7.1.4 Software forking

Ikuine and Fujita [6] defined software forking as the continuous development of software,

by the original developer or others. An original developer must share the source code

26

when other developers take over. Software forking focuses on the product itself, such as

Microsoft software, Facebook software and email applications.

2.7.1.5 Social forking

Fung, Aurum and Tang [34] defined social forking in their study of nine JavaScript

development communities in GitHub, with the highest amount of forks to identify the

relationships within them and study how forks are used to facilitate OSS development. In

their analysis, almost 7000 developers made approximately 8000 forks in different

communities, with the most active developers making contributions to multiple

communities. Their research indicated that forks are actively used by the development

community to fix defects and to experiment with new features. What separates these forks

from normal branching is that the changes do not necessarily need to be promoted to the

original project upstream and can live in a separate fork that can still take any changes

and improvements from the original project as updates. What separates a fork from a

branch even more is that a fork can originate from either a subset of the forked

predecessor’s artifacts or from multiple predecessors’ artifacts. A branch in turn is a copy

of all the predecessor’s artifacts [34].

2.7.1.6 Code forking

Code forking is defined as a forked project copied from an existing code base and moved

away from the original project leadership direction. While addressing new requirements,

code forking enables contributors or developers to add existing functionality. Despite its

flexibility, there are developer community concerns, including forking maintenance,

evolution and social factors. Another definition of a code fork is when a piece of source

27

code is downloaded or copied by a developer from an existing program which has the

original version of the source code [3].

2.7.1.7 Programming language forking

Chua [26] examined language forking from the perspective of programming language

adoption by project owners, finding three projects where Apache, Mozilla and Ubuntu

Javascript languages were actively forked by developers. Chua and Zhang [27] then

proposed three forking pattern types (‘once-only’, intermittent or steady) and potential

reasons behind short-lived programming languages. According to [27], the definition of

a programming language forking is an active and sustainable programming language that

is adopted by developers or project owners and forked voluntarily by developers.

2.7.1.8 File repository forking

A file repository fork is defined as an original repository where source code developers

contribute sufficiently to benefit the OSS community [7]. Developers who fork an

original file repository can modify it for correcting bugs or adding new features,

submitting bug fixes, adding new features, submitting pull requests and archiving copies.

A repository written by a developer in their own programming language that is liked by

other developers is also highly likely to be forked.

28

Table 2. 4: Fork categorisation, sustainability and lessons learnt

Type Interpretation Studies Citing authors within paper set

Forking motivation

Coding for revising

requirements

Requirement change Ernst et al., 2010 [40] Ernst et al., 2010 [40] cited by

Fung et al., 2012 [34]; Jiang et al.,

2017 [7]

Seeking a coding job Recruitment of

contributors

Biazzini & Baudry, 2014 [42] Nil

Licensing compliance Licensing compliance Biazzini & Baudry, 2014 [42]; Dabbish et al., 2012 [36]; Jiang et al.,

2017 [7]

Nil

Software compliance Software

interoperability

Von Krogh et al., 2012 [9]; Meyerovich & Rabkin, 2013 [1]; Nyman,

2014 [46]; Tegawendé et al., 2013 [16], Jiang et al., 2017 [7]

Nil

Reviving original project

development duration

Cessation of original

project

Nyman, 2014 [46]; Robles & Gonzalez- Barahona, 2012 [5]; Ray &

Kim, 2012 [47]; Tegawendé et al., 2013 [16]; Chua, 2017 [26]

Nyman, 2014 [46] cited by Jiang et

al., 2017 [7]

Extending community social

coding development

More community

driven development

Dabbish et al., 2012 [36] Ray et al., 2014 [17] cited by Jiang

et al., 2017 [7]

29

Type Interpretation Studies Citing authors within paper set

Ownership implication Legal implication on

ownership and conflict

over brand ownership

Fung et al., 2012 [34]; Nyman, 2014 [46]; Nyman & Mikkonen, 2011

[3]; Ray & Kim, 2012 [47]

Business strategy risk Commercial strategy

forks

Dabbish et al., 2012 [36]

Team coding skill inequality Differences among

developer team

Nyman, 2014 [46]

Community socialisation Building new

community through

social interaction,

sharing and

collaboration

Dabbish et al., 2012 [36]; Fung et al., 2012 [34]; Robles & Gonzalez-

Barahona, 2012 [5]

Coding by socialising Social network coding Jiang et al., 2017 [7]; Fung et al., 2012 [34]

Divergent specialisation New specialisation,

divergent technical

views

Nyman, 2014 [46]; Nyman & Mikkonen, 2011 [3]; Ray & Kim, 2012

[47]

Nil

Objective misalignment Different technical

objectives

Poor leadership Poor project Nyman, 2014 [46]; Nyman & Mikkonen, 2011 [3]; Robles &

30

Type Interpretation Studies Citing authors within paper set

governance Gonzalez-Barahona, 2012 [5]

Culture trait Cultural differences

Software activity Project specialty to

generate commits

Ray & Kim, 2012 [47]; Tegawendé et al., 2013 [16] Nil

Ecosystem System between system

sharing resources and

infrastructure

Forking sustainability

Community activity Communities retention Ernst, et al., 2010 [40]; Gamalielesson & Lundell, 2013 [8]; Jiang et al.,

2017 [7]; Nyman & Mikonnen, 2011 [3]; Azarbakht & Jensen [13];

Cosentino et al., 2017 [14]

Ray et al., 2014 [17] cited by Jiang

et al., 2017 [7]; Gama-lielesson &

Lundell, 2013 [8]

Forking lessons learnt

No formal process No guidance/ direction Ikuine & Fujita, 2014 [6]; Fujita & Ikuine, 2014 [43]; Azarbakht &

Jensen, 2017 [13]

Nil

Legal implication Copyright Glass, 2003 [15]; Azarbakht & Jensen, 2017 [13]

Licensing conflict Moen, 2016 [18]; Azarbakht & Jensen, 2017 [13]

Transfership Project ownership Ikuine & Fujita, 2014 [6]; Fujita & Ikuine, 2014 [43]; Cosentino et al.,

2017 [14]; Azarbakht & Jensen, 2017 [13]

31

Type Interpretation Studies Citing authors within paper set

Product expertise shortage Technical developers

become product expert

Neville-Neil, 2011 [45]

Upgrade of developer role to

product role

Role movement Glass, 2003 [15]; Ikuine & Fujita, 2014 [6]; Cosentino et al., 2017 [14] Glass, 2003 [15] cited by Fung et

al., 2012 [34]

Community divide Divide community fork Azarbakht & Jensen, 2017 [13]; Cosentino et al., 2017 [14] Nil

32

2.7.2 What were the most popular methodologies used by forking

researchers from 1990 to 2017?

Error! Reference source not found. presents data relating to methodologies across the

21 papers after they were carefully reviewed for study type, research methodology and

data collection methods and type. Thirteen of the 21 papers were qualitative with data

collection methods including stratified sampling (n=8), systematic study (n=5),

qualitative interview (n=2), qualitative case study (n=2), survey and interview (n=1),

stratified sampling and survey (n=2) and qualitative interview and survey (n=1).

Figure 2.3: Data collection methods in the 21 papers

2.7.3 What aspects of open source forking have been researched and

reported?

Error! Reference source not found. shows the units of analysis used in the 21 papers.

In seven papers this was a comparison between non-forking and forking projects. Of the

remaining 14 papers, six papers focused on the forking relationship on software releases,

version control files and file repository and eight focused on OS project interactions with

components, such as popular programming languages, the product and the successful

0 1 2 3 4 5 6 7 8 9

Stratified sampling

Systematic study

Qualitative interview

Qualitative case study

Stratified sampling and survey

Survey and interview

Qualitative interview and survey

Single Method Mixed Method

33

system, and analysing forking behaviour between the manager, developer, and end user

(GitHub versus non-GitHub).

Figure 2. 4: Units of analysis in the 21 papers

Error! Reference source not found. shows eight types of forking lessons learnt on

project compatibility issues that were identified in the 21 papers. In order of decreasing

frequency of reporting, these were: no project ownership (n=4); no project guidance and

the developer role becoming specialised (n=3); copyright, licensing and the software less

likely to become proprietary, and a split community (all n=2 each). There was also one

paper on losing developers as technical developers become product experts.

34

Figure 2. 5: Forking lessons learnt across the 21 papers

2.7.4 Newcomers or new developers forking motivation from 2020 to 2021

From 2017 to 2021, we reviewed other papers on forking motivation and could not find

new forking motivational variable/s or reasons except for some papers that investigated

OS newcomers’ forking motivation. We examined this literature closely to evaluate

motivations for first-time developers.

Subramanian et al. [56] analysed and investigated 3501 first-time developers who forked

OS projects for the following core motivations: documentation, feature, bugs, refactoring,

GIT-related issues and test cases. They commented first-time developers fork a repository

to: 1) update documentation changes on files such as READMEs and/or explanatory

comments; 2) add a new feature or a new functionality onto the project; 3) fix unexpected

bug behaviour in code; and 4) make code more readable and understandable by

refactoring it and conforming to coding standards.

What attracted to first-time developers to fork based on top three reasons are 1) editing

documents, 2) adding or modifying new features and 3) correcting bugs. Instead of fixing

35

major features, the first-time developers contributed to fixing minor feature changes and

bug fixing, for examples, they can fix an unexpected behaviour in the source code,

memory allocation errors, concurrent tasks errors and requirements. inconsistency for

instance, misspellings and assigned values mistakenly etc.

For first-time developers to complete these tasks, it is important to ensure OS

environmental settings are properly configured, including the OS project is aligned with

new or emerging technology as far as possible, a sustainable programming language is

used and the project has a legitimate OS licence.

In this paper, the researchers mentioned they studied first-time developers who forked

projects from The Apache Foundation (ASF) in GitHub [57] is to provide their support

and services and support in ASF activities. Having the OS environmental setting

configured can motivate first-time developers to fork and find the forking process

enjoyable.

2.7.5 Shifting motivation through time and journey

The work of Gerosa et al. [58] reports shifting motivations through time and the shifting

motivations through the ‘self-journey’ of developers. They refer to the shifting motivation

through time as some developers’ motivations contribute to OSS as a test of time from

learning, fun and knowledge, sharing at the ‘curiosity’ period on every first-time OSS

developers fork. After the curiosity period is over, developers shift their motivation focus

onto social aspects, such as altruism, kinship and reputation. Shifting motivation through

self-journey means that developers first contribute to OSS based on extrinsic motivations

– such as ideology, own-use or education-related programs – and consequently shift to

intrinsic reasons such as fun, altruism, reputation, and kinship.

36

2.7.6 Shifting forking motivation

We evaluated how first-time and non-first-time developers’ forking motivation

diminished, not only for personal reasons (figure 2.6). An absence of a good OS

environment compliance can also affect both groups. A complete OS environment

compliance is very important because it brings convenience and flexibility to them. It

gives them confidence to explore, learn and contribute in a secure and safe yet challenging

learning space. A highly desirable OS infrastructure environment allows developers to

have the space to learn, grow and develop source code. A less desirable OS infrastructure

environment has a negative effect on their motivation, especially when they face

environmental barriers like using a less sustainable programming language, which may

not provide benefits to them. They choose not to fork other repositories as often as they

prefer. Similarly, a less useful technology and a highly restrictive OS licence would create

multiple barriers to forking and increase the chance for first-time and non-first-time

developers to stay away from the forking environment.

Figure 2. 6: The open source developers’ motivation movement

37

2.8 Summary from the literature survey

Forking is one of the most critical techniques in OS research today. Our analysis of 21

papers from the first part of literature survey can help the OS community – educators,

academicians, developers, project investors – to improve awareness of forking as a

sustainable way to revive project health. The categories of forking lessons learnt highlight

that forking consequences are likely to continue and remain a survival challenge to OSS

developers. For example, if forking life span becomes short-lived developers could close

a project or terminate the file repository.

According to our investigation, there is no research discussing how a lack of sustainable

programming languages could reduce forking sustainability and viability. Programming

language attractiveness drives and motivates developer desire to fork, helping to maintain

forking health and activity. The usefulness of a programming language is the likelihood

a fork can be generated effectively by developers. We strongly believe it is important to

investigate how competitive programming languages can impact forking sustainability

and to seek ways to prevent low forking performance, if necessary.

The following outlines our findings from the literature survey from Part I:

1. Append new findings into the body of knowledge on OS forking behaviour.

Applying the combined approaches of SLR and Content Analysis revealed seven

forking types interpreted by academic researchers and the latest interpretation found is

file language repository fork. This novel insight will assist researchers on how forking

is presented and interpreted and industry practitioners in reviewing project forking

health, especially projects with programming language file repositories that are less

adopted or forked by developers.

38

2. Understanding forking consequences. Case studies are an important way to highlight

lessons learnt by researchers. This paper identified forking impacts and consequences,

with one of the worst impacts being a political strategy that divides a project

community and forms a new community. Forming a new community results in less

contributions by developers to the original file repository, bug fixes or feature

enhancement. Allowing accumulated bugs and feature enhancements to remain

unfixed for a period of time can affect project health risk.

3. More research is required on forking sustainability. Reviewing these 21 papers

revealed the importance of forking sustainability investigation as a top priority with

two specific areas of interest.

a. Analysing forking from a social community perspective. For instance, Azarbakht

and Jensen [13] conducted a study to determine what motivates people to decide to

fork (break away) in complex software development networks, and the type of

changes a community needs to consider when deciding to divide [13]. Differences

or conflicts on team communication, goals, styles or values can positively or

negatively influence community interactions.

b. Understanding the relationship between programming languages, repositories and

developer forking interest to more accurately predict OSS forking motivation and

behaviour.

4. Studying forking sustainability using a SLR for software development with

GitHub. Consentino et al. [14] used a SLR to show that project longevity and forking

chances are the two highly dependent variables on the project. They also discovered

that developers provide additional contact information (e.g., email address, personal

website URLs that are clearly active) to increase social interactions between a project

owner and forker [14]. Future work could include developing a prediction model for

39

fork effectiveness from forking motivation classifications in response to language

repository files, where programming language survival time is critical to an OS

projects’ health and survivability.

40

Chapter 3: Literature Survey Research Methodology

3.1 Overview

This chapter reviews the research methodologies used to investigate OSS, classified into

methodologies based in literature surveys, data mining or machine learning. As this work

is yet to be published the chapter is formatted in a more traditional style.

3.2 Motivation

The primary motivation in conducting the research methodology survey was to achieve a

holistic understanding of the types of research methods that have been adopted by

researchers previously to investigate OSS variables, and to contribute a paper to the field

describing these different methods. We also aimed to affirm our choice of using a

predictive learning algorithm, KNN, to address our research problem on forking scarcity

and low forking visibility to understand developer forking motivation and behaviour.

3.3 Introduction

GitHub is a social software development platform that is widely used by developers to

collaborate on OS projects. Since its inception, the number of GitHub users, developers,

projects and repositories have all increased significantly: as of January 2020, the GitHub

user population was over 40 million users, with over 190 million repositories, of which

28 million were public [59].

Improving GitHub’s hosting platform quality requires investigation of the factors that

may impact it. For example, topics that could be explored include the motivational

behaviour of newcomers, the sustainability of long-term contributors, social network

success ability, forking longevity, the reliability of a software repository, bug defects and

41

fixing resolutions, sustainable programming languages, and/or OS licences that meet full

compliance.

There is extensive research on GitHub; however, very little attention is paid to research

methods employed in OSS. Selecting a proper research method is important in addressing

the research problem in the appropriate way to provide meaningful data that can be

interpreted accurately by others and applied to their context if useful. We aimed to fill

this academic gap.

3.4 Literature Survey Selection Criteria and Categorisation

We searched academic databases using the following keywords: “Open Source Survey”,

“Open Source Forking”, “Open Source Prediction” and “Open Source GitHub”. We then

applied the following criteria to the search results (

Figure 3. 1):

1. The research study must be in OS GitHub.

2. The research article must explain a research methodology and how it was applied.

3. The discussion of an OSS variable in the research article must be relevant to our

research context addressing the forking topic or a function of the OSS infrastructure

OSS Github

Research
Methodology

Selection
Criteria

OSS variable

42

of concern to developers, users, newcomers, OS licence, programming languages, file

repositories, business process models, fork, etc.

4. The research article must be high quality and peer reviewed.

5. The research article must have been published between 2003 and 2021.

Research articles that met these criteria were scrutinised. The abstract was reviewed for

OSS variables and descriptions of research methodologies were reviewed to ensure it

related to OS and GitHub.

Figure 3. 1: Paper selection criteria

After reviewing the research articles, they were categorised as being based in:

1. Surveys: Articles that focused on understanding OS variables previously investigated

by other researchers in disciplines such as Information Systems, Social Science,

Software Engineering, Information Technology and Computer Science.

2. Data Mining Algorithms: Articles that focused on understanding which type of OS

variables were mined, identified and detected.

OSS Github

Research
Methodology

Selection
Criteria

OSS variable

43

3. Machine Learning Algorithms: Articles that focused on a specific OS variable that

was mined, identified, and outcomes predicted.

3.5 Category I: Survey-based Research Methodology

Ten literature survey research papers that we reviewed discussed OS variables related

either to forking topics or a function of the OSS infrastructure (Table 3. 1). Three of the

eight (37.5%) survey papers targeted roles such as developers, users, promoters and

newcomers. The objective of conducting a literature survey for three researchers [7, 11,

60] was to seek clarity and interpretations of roles.

Three papers adopted two research methods to examine GitHub users. Jiang et al. [7]

applied a survey method and a regression analysis on 236,344 developers and 1,841,324

forks to categorise developers into three groups. The first group is 1) bug maintenance

developers they forked repositories to solve issues like pull requests, fix bugs, add new

features; 2) the second group is programming language developers who are more likely

to fork a repository if a programming language is written familiarize to them and 3) the

third group of forked developers who fork repositories from their project owners.

Celińska [60] applied a logit model and descriptive statistics to classify 3,915,138 GitHub

users into three groups: those who used popular programming languages; those who have

a good reputation within the community; and those who provided additional information

to attract more developers to join GitHub. Lastly, Balali et al. [11] used a SLR to identify

barriers to using GitHub then interviewed 10 newcomers about their experiences of

barriers while using GitHub. From the interviews, they found 34 of the 44 identified

barriers can affect newcomers, while only 19 can affect mentors.

Four research articles examined software repositories as an OS variable [61-64]. Software

repositories is one of the features of GitHub and is an essential function for OS

44

infrastructure. Teng et al. [63] were interested in social networks as there is little research

on software repositories and social network and the interaction between them. They

conducted a literature survey and discussed five types of mined software repositories

which they are 1) email archive; 2) online forked communities; 3) blogs; 4) bug tracking

systems; and 5) version control – to determine how OS communities interact. They then

studied their behaviour patterns and concluded that the social networks, blogs and online

communities have gained popularity and further research in this area looks promising.

Similarly, Zhang et al. [64] applied Teng et al.’s categories to the results of a literature

survey of 20 papers that emphasised developer social network construction, analysis and

construction importance when studying developers social network patterns.

The additional contribution from Siddiqui and Ahmad [62] on software repositories

survey is Deployment Logs (DL) and code repositories. They surveyed and compared

Mining Software Repository (MSR) tools used in six major open source projects:

Dynamine (DME); SoftChange (SCG); Chianti (CNI); Hipikat (HKT); Kenyon (KYN);

and Apfel (AFL). Their metrics included different parameters under several categories:

the user dimension group included manager, developer, user and tester; time included

past, present and future; information source included Control Version System (CVS),

issue tracking and software release systems. They found all six OS projects used the CVS

system while for the other metrics the support systems varied across projects, e.g., change

management, defect tracking, archive mailing lists, infrastructure requirement,

online/offline, storage required, input data and language dependency. Borges et al. [61]

applied multiple linear regressions to 4,248 software repositories starred by developers to

predict popularity and successability. However, they did not discuss starring of forked

repositories.

45

Hora and Valente [65] studied the factors that impacted GitHub repository popularity.

They downloaded a GitHub dataset that consisted of rated stars by developers on 2279

popular GitHub repositories and found the star rating on programming languages affects

project popularity. The programming language JavaScript scored 3697 stars, versus the

programming language Go with 3549 stars and the non-programming language HTML

with 3513 stars. The lowest star ranking of the three programming language repositories

was PHP (3245), Java (3224) and Python (3099). They identified the application domain

as another important factor. OS files such as systems software, web libraries, frameworks

and documentation rated more stars on application domains, and organisation repositories

were more popular than individuals’ repositories.

In contrast, Do et al. [22] proposed a new way for fork detection and duplication residing

in repositories. They downloaded more than 3 million software repositories and

determined that 52,484 were active, 8434 were forked and 7441 were release-based

forked repositories. Their preliminary investigation revealed a significance relationship

between forking patterns and fork success indicators.

A more recent OS variable of interest is communities’ code of conduct. Li et al. [66]

applied a qualitative analysis approach on a small sample size of GitHub issues

concerning whether the code of conduct had been used positively or negatively to address

project issues. They downloaded 52,000 public GitHub repositories and found 50,000

were the most popular (based on star ratings) and the remaining 2000 were not rated.

6,566 (12.6%) of the repositories from the project root had a code of conduct.

46

Table 3. 1: Literature Survey Research Methodology in OSS

No

Category/

Cluster OSS Variable Classification Reported Size Dataset

Non-Machine

Learning

Technique Paper

1 Role Forking

developer

1) Bug maintenance

developers forked

repositories to solve issues

like pull requests, fix bugs,

add new features; 2)

Programming language

developers were more likely

to fork a repository if a

programming language is

written in a familiar

language; and 3) Forked

developers who fork

repositories from their

project owners

236,344

developers,

1,841,324 forks

GitHub Literature

survey,

statistical

regression

Why and how developers

fork what from whom in

GitHub 2017 Software

engineering. 2017. [7]

47

No

Category/

Cluster OSS Variable Classification Reported Size Dataset

Non-Machine

Learning

Technique Paper

2 Role GitHub user Programming language users 3,915,138 users GitHub

Torrent

Logit model,

descriptive

statistics

Coding together in a

social network:

collaboration among

GitHub users. 2018. [60]

3 Role Newcomers Newcomers’ barriers Two women and

eight men who

are experienced

OSS Five of them

had industry

closed-source

projects, and one

of them had

experience in OSS

and academia

GitHub, Systematic

survey,

interview

Newcomers’ Barriers. . .

is that all? An analysis of

mentors’ and newcomers’

barriers in OSS projects.

2018. [11]

4 Social network Software

repositories

Five Software repositories

classification

1,251 software

repositories

GitHub Literature

review

A survey of mining

software repositories in

social network. 2020. [63]

48

No

Category/

Cluster OSS Variable Classification Reported Size Dataset

Non-Machine

Learning

Technique Paper

5 Developer

social

networks

Construction,

analysis, and

applications

Social interaction from

developers regarding

information related to

software development,

construction, analysis and

projects.

104 papers GitHub Literature

review

Developer social

networks in software

engineering:

construction, analysis,

and applications. 2014.

[64]

6 Software

repositories:

Mining software

repositories

Run time repositories, code

repositories, fault prediction

9 papers GitHub Literature

review

Data mining tools and

techniques for mining

software repositories: A

systematic review. 2017.

[62]

7 GitHub stars Star rating on

each GitHub

repository

Star popularity 4248 repositories GitHub Multiple linear

regressions,

KSC clustering

algorithm

Predicting the popularity

of GitHub repositories.

2016. [61]

8 Main factors

that impact

stars, including

programming

Factors 2279 repositories GitHub Descriptive

statistics

Understanding the

factors that impact the

49

No

Category/

Cluster OSS Variable Classification Reported Size Dataset

Non-Machine

Learning

Technique Paper

GitHub project

stars,

including

programming

language,

application

domain

language,

application

domain

popularity of GitHub

repositories. 2016. [65]

9 Software

repositories

To detect fork

and duplicate

repositories

Fork and duplicate

repositories

3 million software

repositories

GitHub Descriptive

statistics

Mining and creating a

software repositories

dataset. 2020. [22]

10 Code of

conduct

conversation

Codebook

development,

reliability, and

application.

Code of conduct

conversation detected on

repositories

6,566 responses

on commenting

the issues

GitHub

API

Qualitative

analysis

Code of conduct

conversations in open

source software projects

on GitHub. 2021. [66]

50

3.6 Category II: Data Mining Algorithm-based Research Methodology

This section summarises ten research articles that used data mining methodologies (Table

3. 2). These articles aimed to investigate: 1) OS licence changes; 2) business process

management notation methods and tools used in GitHub; 3) source code changes in OS

projects; 4) change analysis activity patterns; 5) malware activity in source codes; 6)

identifying programming languages that can improve productivity and quality; 7)

identifying programming languages via images; 8) how communication may serve a

function on the bug fixing activity between developers; 9) the communicative activity on

forking and 10) fork types at windows and network level. Each article discussed the

purpose of using a data mining method for analysis, either text-based, data-based, pattern-

based or sentiment-based. Other OS variables are also important to consider for mining

purposes as its aim is to identify patterns or classifications.

These papers were selected as part of the literature review to understand the current trends

on OSS variables that being investigated. All ten articles are highly relevant to our work

on predicting forking performance, with the OS infrastructure playing a pivotal role in

predicting forking patterns and performance that align with developer motivational

behaviour. OS infrastructure consists of OS licences, programming languages,

developers, software repositories, business process methods and models, bug fixing

activities, fork mechanism, etc.

From our knowledge, the field of forking performance prediction research is small but

growing. Six of the 10 papers were published very recently, in 2020 or 2021, and these

studies are very helpful in informing choice of research method.

Vendome et al. [67] mined and downloaded 16,221 projects written in a Java

programming language hosted on GitHub and analysed licence changes in 1,731,828

51

commits. They classified the licence changes into three patterns: 1) from no licence to

some licence (N2L); 2) from some licence to no licence (L2N); and 3) from some licences

to some licences (L2L).

Heinze et al. [68] mined 6,163,217 repositories and identified 1,251 repositories of

Business Process Modelling Notation (BPMN) artifact. They determined the total

artifacts across four types of files: 16,907 artifacts on XML BPMN 2.0; 384 XML

artifacts; 1635 Image file artifacts; and 2380 artifacts from other files. They analysed and

studied how BPMN process model artifacts distributed across geographical locations and

found China has the most BPM contributors, followed by Germany then the US. They

also discovered a high percentage of BPM artifact duplications.

The research paper entitled “Predicting source code changes by mining change history”

by Ying et al. [69] discussed the identification of patterns on source code changes by

applying data mining techniques. Ying et al. [69] evaluated two OS projects – Eclipse

and Mozilla – from GitHub and evaluated the predictability. They applied association

rule mining algorithms [70, 71] to determine the frequency occurrence of a set of source

files changing patterns in the database. They also applied pattern mining [70, 71] to detect

the source code change history pattern. They categorised Mozilla and Eclipse by

interestingness value as surprising, neutral or obvious, according to how well the files

were structured so that developers were notified. The Mozilla project had two surprising

recommendations, two neutral and five obvious, compared with the Eclipse project,

which had one surprising, two neutral and seven obvious. The two ‘surprising’ Mozilla

projects were categorised based on one “cross-language” case (file dependencies written

in different programming languages were not easily found by developers) and a source

code duplication case, where the code was generated from a number of source code

modifications.

52

Saini et al. [72] performed change evolutionary patterns on 106 OSS projects over a time

period of 76–81 months to study the types of changes. They applied a keyword-based

classifier technique on change messages and categorised them into corrective, adaptive,

perfective, preventive or enhancement. Next, they adopted a cluster analysis technique to

detect hidden distinctive change patterns for each change type range from low, moderate

and high. They classified a high and moderate activity project has the highest number of

changes over the project lifetime. However, their results unfortunately did not show

significant correlation between change types and domains or languages in their projects.

La Cholter [73] mined 1,835 repositories to study malware-related files as source code

written in either C or C++ in a window environment has been targeted frequently by

malware.They classified malware as benign, suspicious or malicious. The highest

malware pattern was benign (20,060), followed by suspicious (4335). System files from

Win32/64, DLLs, EXEs and PreWind32 were then mined and, unsurprisingly, Win32/64

was found to contain the highest benign malware. Their detection Virus Total (VT) test

showed 1353 files with malware and 9060 files without malware.

One of the decisions made by developers when forking a software repository related to

the programming language is that if a developer is familiar with the programming

language used by the project owner, he or she is likely to fork the repository and

contribute. Altherwi et al. [74] predicted software development productivity and quality

by comparing scripting languages and traditionally compiled system programming

languages. They mined a population of 15,000 GitHub projects from a five-year period

(January 2012 to December 2017) and identified eleven programming languages in a

sample of 4349 projects. JavaScript, Python, PHP and Ruby were classified as the four

scripted programming languages and Java, Go, Objective-C, Swift, C#, C++ and C were

classified as the seven system programming languages. They found that scripting

53

programming languages are more widely used than system programming languages, with

evidence that JavaScript is the dominant scripting language, used in 2174 projects. Java

dominated the system programming languages, found in 2154 projects. They concluded

the programming language choice can affect the development process but did not have an

opinion on which type of programming language can affect productivity, as other

variables need to be considered, such as developer coding experience, skill and

background, as well as the project type and development environment.

A group of researchers from Italy and France [75] developed a programming languages

identification (PLI) technique. 149 programming languages were detected from their

mining of 1000 repositories from 300,000 code snippet images. The researchers classified

them into four types: alphabetic characters, digits, symbols and a combination of

characters with substitutions of all non-blank characters. They evaluated the performance

of these five classifications and found alphabetic characters and symbols for instance

parenthesis, punctuation and mathematical operators have higher visual recognisability

than digits and indentation.

Bug fixing is an active area in OS development. Ramírez-Mora et al. [76] looked into

three tracking systems and extracted over 500,000 comments and 89,000 bugs from a

hundred OSS projects. They found a significant difference on the distribution of

comments across Apache, Red Hat and Spring on fixed and not fixed issues. The other

important finding was a higher rate of emotional and emotive comments from developers

when dealing with bug resolutions or for bugs that took a long time to implement.

In a slightly different approach, Brisson et al. [77] studied 385 software families of 13,431

software repositories to understand how developers communicate. They found out that

projects in the same family (forking) of multiple repositories showed a positive

relationship between the fork volume and the number of users who contributed. Further,

54

the number of repository stars showed a positive relationship with communication for

fixing bugs by followers who were outside the family.

Interestingly, Pietri et al. [78] examined the structure and size of fork networks to better

understand forking. They classified forks as forged, committed or shared roots. They

found 18.5 million fork repositories and 25.3 million network repositories were forge

forks, 20.1 million fork repositories and 24 million network repositories were commit

forks, and 25.3 million fork repositories and 18.5 million network repositories were

shared root forks. Their evidence also suggested that what developers typically recognise

as “forks” are the share commit forks.

55

Table 3. 2: Data Mining algorithm-based type research methodology

No. Category OSS Variable Classification Reported Size Dataset Data Mining

Technique

Paper

1 Component Licence OS licence changes Licence changes in

1,731,828 commits,

16,221 GitHub Java

projects

GitHub Code analysis,

data mining

Licence usage and

changes: A large-scale

study on GitHub. 2017.

[67]

2 Component BPMN process

model artifacts

xml 6,163,217 repositories GitHub, GitHub

Torrent, GitHub

API

Google query Mining BPMN processes

on GitHub for tool

validation and

development. 2020. [68]

3 Source code

development

Source code

changes

Eclipse and Mozilla

project

Changes to >20,000 files,

>100,000 versions of

source files

GitHub Association rule

mining

algorithm

Predicting source code

Changes by Mining

Change History. 2003.

[69]

4 Component OS software

change

Change classification,

corrective, adaptive,

perfective, preventative,

GitHub recorded

message changes from

106 OSS projects

GitHub Cluster analysis

K-medoids

algorithm

Change profile analysis

of open-source software

systems to understand

56

No. Category OSS Variable Classification Reported Size Dataset Data Mining

Technique

Paper

change cluster: high,

moderate or low activity

their evolutionary

behaviour. 2017. [72]

5 Software or code

threat

Malware

written in C or

C++

Malware written in C or

C++

1835 repositories GitHub, Git Virus total

query

Windows malware

binaries in C/C++

GitHub repositories:

Prevalence and lessons

learned. 2021. [73]

6 Component

programming

languages

Programming

languages

productivity

and quality

software development

productivity and quality

Mined 15,000 projects,

including 4349 sample

projects.

GitHub Data mining,

statistical

analysis

Assessing programming

language impact on

software development

productivity based on

mining OSS repositories.

2019. [74]

7 Component:

programming

language

Programming

language

identification

Scrambling alphabetic

characters, digits,

symbols, combinations

and substitution of non-

blank characters

code snippet of 300,000

images, 149

programming languages

GitHub K snippets

convolutional

neural networks

(CNNs),

Image-based many-

language programming

language identification.

2021. [75]

57

No. Category OSS Variable Classification Reported Size Dataset Data Mining

Technique

Paper

8 Software code

development

Communication

function

Fixed and not fixed bugs,

comments classification

under projects, Apache,

Red Hat, Spring

>500,000 comments,

89,000 bugs from 100

OSS projects

Issue tracking

system from:

Apache’s JIRA,

Red Hat and

Spring

Data analysis Exploring the

communication

functions of comments

during bug fixing in

open source software

projects. 2021. [76]

9 Communication Commun-

ication within

software

repositories and

forks

Communications within

software repositories and

forks

385 software families,

13,431 software

repositories

GitHub Sentiment

analysis

We are family:

Analyzing

communication in

GitHub software

repositories and their

forks. 2020. [77]

10 Fork

classification

Fork classif-

ication based on

activities

Forge forks, commit forks,

shared root forks

Software Heritage

Graph Dataset and

GHTorrent of 71.9M

repositories

GitHub projects Fork network

algorithm

Forking without

clicking: On how to

identify software

repository forks. 2020.

[78]

58

3.7 Category III: Machine Learning Algorithm-based Research

Methodology

In this section we explore machine learning methodology in the context of OSS to

investigate which methods are used in OSS research, and how. No doubt the machine

learning technique is promising, but not all articles published on machine learning are

suitable for our analysis. To be considered relevant to our study, articles must satisfy two

criteria: the OS variables must be associated with the OS environmental infrastructure

variables and the database must be GitHub. In total, six relevant papers were reviewed as

relevant and useful (Table 3. 3). Role, issue and source code were the three OS variables

that we found using more than one type of machine learning methods. Here we compare

each machine learning method used in the same group; for instance, a variety of machine

learning methods are introduced for role, with different OS variables for different

machine learning methods.

Altogether four roles are used when applying machine learning methods for performance

prediction: technical users [79], long-term contributors [80, 81], promoters [82] and

newcomers [83]. Technical users include backend, frontend and full stack users, as well

as mobile development and data science users. Montandon et al. [79] downloaded and

analysed 2284 developer records then adopted stratified baseline, random forest and naïve

Bayes. Competitive results obtained. Random forest achieved a high precision of 0.77

and naïve Bayes scored 0.62 for the recall result. In addition, their results showed

programming languages were predominant across all five roles. To examine long-term

contributors, Eluri, et al. [80, 81] downloaded 917 projects and 75046 contributors from

GitHub and grouped them into five dimensions. Next, they used five machine learning

algorithms to determine which machine learning technique provided the most accurate

result. Random forest performed the best on evaluating long-term contributors;

59

newcomers are long-term contributors who stay for a period of time in forking projects.

Similarly, newcomers became long-term contributors after a period of use on a

programming language with many commit submissions.

Du et al. [82] studied the third role, promoter, by identifying 1023 suspected promotion

accounts from GitHub Archive from 2015 to 2019 then applying a SVM classifier to

detect 63,872 suspected promotion accounts from all active users . They then analysed

these accounts, showing GitHub promotion services were exploited by a group of small

businesses to promote their products. They found normal accounts have, on average, 4.50

forks, which is lower than the suspected promotion accounts. Normal accounts have 21.17

stars and suspected promotion accounts have 91.54. This means the suspected promotion

accounts have 1.98 times the fork operations and the 4.32 times the star operations.

The fourth role is newcomer. Fronchetti et al. [83] downloaded 450 GitHub repositories

and applied the K-spectral centroid (KSC) clustering machine learning algorithm to

investigate whether project age, number of stars, programming language used and the

number of pull requests contributed to newcomers’ growth rate.

They applied a random forest classifier to predict three patterns: logarithmic, exponential

and linear growth. They then determined that time, such as the review of pull requests,

project age and programming language contribute to newcomers’ growth patterns.

The second OS variable is issue, examined using a ticket tagger machine learning

algorithm. Kallis et al. [84] downloaded 30,000 issues and classified them either 1) a bug

report, 2) a feature request or 3) a question. They compared evaluations using J48 versus

ticket tagger and found metrics on ticket tagger were more accurate on bug, feature

request and question. The precision and recall results were at least 20% higher than J48.

60

The third variable is source code on bug defects [85], with bug reports classified by

programming language (Python, Java, C and C++). A total of 14,950 GitHub bug reports

were evaluated by a number of machine learning algorithms – including linear SVM,

(LSVM)], SVM and Nu-SVM (NSVM) – with radial, sigmoid and poly kernels, based on

libSVM, Gaussian process (Gauss) classifier, and K Nearest Neighbour (KNN). Rokon

et al. [86] investigated malware source code to understand malware behaviour and the

techniques used to detect malware source code repositories. They downloaded 97,000

repositories and identified 7504 malware source codes. They then applied the natural

processing language (NPL) machine learning algorithm to filter the naming convention.

They evaluated fork, stars and watchers on repositories to determine which influence

malware, findings that at least 100 fork repositories have a high influence compared with

stars and watchers.

To understand the dynamics of GitHub, Zhou et al. [87] developed a tool called

GitEvolve, which predicts GitHub repository evolution and the ways in which users

interact with them. They used the deep neural network machine learning algorithm and

developed a system that can predict when, where and what user group will next interact

with a given repository. A graphic representation learns to encode the relationship

between repositories to better predict popularity.

Lastly, Weber et al. [88] investigated features that can differentiate between popular and

non-popular Python projects on GitHub. They mined 2000 projects and identified 38

features, which they evaluated using a random forest classifier to predict current

popularity. They discovered that, unlike non-popular projects, popular projects have in-

code features that strongly signal more documentation and use the ‘with’ statement more

frequently.

61

Table 3. 3: Machine learning research-based methodology in OSS

No. Group OSS Non-fork

Variable

Classification Reported Size Dataset Machine Learning

Technique

Paper

1 Role Technical user System level:

backend, frontend,

Discipline level: full-

stack, mobile

development, data

science

2284 developers Stack

exchange

data

explorer

(SEDE)

Random forest and

naïve Bayes

Mining the technical

roles of GitHub users.

2020. [79]

2 Role Long-term

contributor

Project level:

Activity level:

917 projects, 75,046

contributors

GitHub

GH

Torrent

Naïve Bayes, SVM,

decision tree, KNN,

random forest

A large-scale study of

long-time contributor

prediction for GitHub

projects. 2021. [80]

3 Role Long-term

contributor

Long-term or non-

long-term

contributors

70,899

observations, 888

repositories, 56766

developers

GitHub Naïve Bayes, KNN,

logistic regression,

decision tree, random

forest

Predicting long-time

contributors for

GitHub projects using

machine learning.

2021. [81]

62

No. Group OSS Non-fork

Variable

Classification Reported Size Dataset Machine Learning

Technique

Paper

4 Role Promoter Promotion account:

1) hidden GitHub

functionality;

2) small businesses

exploit GitHub

promotion services

63,872 suspicious

promotion accounts

(2015–2019)

GitHub

archive

SVM classifier Understanding

promotion as a service

on GitHub. 2020. [82]

5 Role Newcomer Mixed factors:

project age, star

number, program-

ming language, text

files to help

contributors.

450 repositories GitHub KSC clustering

algorithm

What attracts

newcomers to onboard

on OSS projects?

TL;DR: Popularity.

2019. [83]

6 Issues GitHub issues Classify issue by

topic title and

description into bug

report, feature

request or question

30,000 issues GitHub Ticket tagger, text

Mining

Predicting issue types

on GitHub. 2021. [84]

7 Source code Source code Bug reports by 14,950 bug reports GitHub LSVM, SVM, NSVM Estimating

63

No. Group OSS Non-fork

Variable

Classification Reported Size Dataset Machine Learning

Technique

Paper

defects programming

language (C, C++,

Java, and Python)

with radial, sigmoid

and poly kernels

(based on libSVM,

Gaussian process,

KNN and) Classifier

random forest and

multi-layer perceptron

classifiers

defectiveness of source

code: A predictive

model using GitHub

content. 2018. [85]

8 Source Code Malware source

code

Malware IoT,

Window, Linux

phone

97,000 repositories,

7504 malware

source codes

GitHub Natural language

processing

SourceFinder: Finding

malware source code

from publicly available

repositories in GitHub.

2020. [86]

9 To predict

GitHub

repository

evolution and

different ways

Multitask

architecture

Current model could

be simplified to

remove multitask

output and be

trained to predict

 GitHub Deep neural network,

graphical

representation

learning

GitEvolve: Predicting

the evolution of

GitHub repositories.

2020. [87]

64

No. Group OSS Non-fork

Variable

Classification Reported Size Dataset Machine Learning

Technique

Paper

users interact

with them

single specific

popularity aspects,

e.g., number of fork

or watch events

10 OSS popularity Classify GitHub

Python projects

into Popular and

non-popular

1000 projects More users, more

statement

GitHub Random forest

classifier

What makes an open

source code popular on

GitHub? 2014. [88]

65

3.8 Machine Learning: A K Nearest Neighbour Method

Silverman and Jones [89] describe how Fix and Hodges were the first group to

introduce the K Nearest Neighbour – KNN – method in 1951. In 1967, Cover and

Hart [90] then reviewed and refined the method. However, Cunningham and

Delany [91] called KNN ‘lazy’ because the entire dataset does not require

learning; there is no training time and the training data does not train itself.

Instead, the training dataset memorised by itself.

The popularity of the non-parametric algorithm, KNN, increased because of its

simplicity; it is easy to implement, easy to understand, effective and more accurate

than many other classification algorithms [92-99]. It is one of the algorithms used

in machine learning for a variety of applications required to solve a range of

business problems, including unclassified and unpredictable. It has an ability to

provide high accuracy, based on the fact that the prediction precision varies on the

distance measured to determine similar features between observations. Unlike

Cunningham and Delany [91], Jiang et al. [95] and McCord et al. [96] claimed

that KNN is, in fact, a very successful and useful algorithm, especially as the

calculation time is quick, data easy to interpret, and the algorithm has regression

and classification versatility and high accuracy. Furthermore, there is no need to

make any assumptions about data or build a model. In fact, it is far better than

some other supervised learning algorithms, for instance, decision trees and the

naïve Bayes classifier.

One of the critical success factors of KNN is that it uses mathematical calculations

of distance metric from the similarity measure of features to determine the

66

“nearest neighbour”. It also chooses the best parameter – K – which is found

through cross-validation techniques. where K is dependent upon the data value.

3.8.1 Euclidean distance metric

There are nine distance metrics in KNN, with four of them widely adopted:

Euclidean, Manhattan, Minkowski and Hamming distance [91] (Table 3. 4). All

distance metrics calculate the distance dimension in a different way and, as a

result, the output values differ.

Table 3. 4: Four widely adopted KNN distance metrics

Type Concept Distance Dimension

Euclidean It is a straight-line

distance between 2 real-

valued vectors.

It calculates the shortest distance

between two points

Manhattan It calculates the distance

between two data points

in a grid-like path.

It calculates the sum of absolute

differences between points across all the

dimensions.

Minkowski It is a generalized

distance metric.

It calculates the sum of distance between

two points in any two vector spaces (N

dimensional real space).

Hamming It is for comparing two

binary data strings.

It calculates the string similarity

between two strings of the same length.

3.8.2 Adopting Euclidean distance: characteristics identification and

rationale

We chose to use the Euclidean distance metric after determining that its

characteristics align best with our research study. We aimed to compare and

determine fork visibility performance dissimilarity.

67

3.8.3 Identifying Euclidean distance characteristics

We identified four relevant characteristics:

• Default metric: often mentioned as the “default” distance used for measuring

the similarity between observation and effective for identifying classification

and K means clustering for finding the K nearest points of a specific point.

• Dimension: good at handling low dimensional data.

• Real, successful applications: Amazon and Netflix use this to recommend

books and programs to watch based on previous customer behaviour.

• Standardised variables: This is necessary for variables in different

measurement scales to balance the computation of distance effect. The

Euclidean distance computed on standardised variables is called the

standardised Euclidean distance

3.8.4 Our research dataset characteristics

The monthly fork data in the dataset can be large, difficult to analyse and interpret

easily or correctly as they are quantitative count. Meaning to say, Monthly fork

count ranging can be quite wide ranging from 100 to 10,000 per month. To

calculate high fork visibility distance between repositories classification,

Euclidean distance is strongly recommended.

We defined five characteristics of our dataset that would need to use Euclidean

distance:

1. 108 related fork features were identified and used to predict healthy fork file

repositories in response to developer motivation and behaviour.

68

2. A six-year period was chosen for the dataset (2015–2020), containing a large

fluctuation in monthly fork count, ranging from tens to thousands. The

variables were mostly binary.

3. We normalised fork count range from tens to thousands.

4. To calculate how close a distance point would be based on a similar feature of

OS infrastructure compliance to predict healthy fork performance that can

increase developer forking motivation and behaviour.

5. To calculate how far the distance point would be based on a different feature

of OS infrastructure compliance to predict healthy fork performance that can

increase developer forking motivation behaviour.

In the next chapter, we present the two models used in this study. One of them is

a roadmap to summarise the literature review methods to investigate the two

topics in Chapters 2 and 3. Chapters 5 and 6 provide detailed explanations of

how we applied Euclidean distance to test our dataset.

69

Chapter 4: Models

4.1 Overview

This chapter introduces the two models used in this study. The first is a literature

survey road map, showing the processes used to conduct the literature survey in

Chapters 2 and Chapter 3 to cover both breadth and depth of literature and address

the research problem.

The second model presented is the ‘Chua and Zhang Predicting OSS Forking

Pattern Model’, which incorporates the KNN algorithm to predict high forking

visibility. The model proposes detecting OSS patterns and predicting high fork

visibility from repository classifications to interpret developer forking motivation

and behaviour.

4.2 Literature Survey Road Map Model

The model shown in Figure 4. 1 outlines the two processes used in Chapters 2 and

3 to summarise the literature on OS variables and research methodologies. The

first process aimed to identify OS forking variables to better understand OS

developer forking motivation and behaviour; the second aimed to collate, compare

and contrast existing research methodologies that were applicable to our research

questions to inform our study design.

While reviewing the OSS forking literature, we realised that it is important to first

understand and study the GitHub hosting platform and its features. By analysing

GitHub features we can examine the way developers communicate between

themselves and with project owners, fix bugs, enhance features, fork and star file

repositories, and submit code.

70

Figure 4. 1: Literature survey mapping model

4.3 Chua and Zhang Open Source Software Forking Pattern

Prediction Model

Our Chua and Zhang OSS Forking Pattern Prediction Model is shown in Figure

4. 2. We created it during this PhD study to identify and predict OSS forking

patterns after analysing monthly fork data performance. It shows three types of

developer forking behaviour patterns: 1) fork once only; 2) fork intermittently;

and 3) fork steadily. Developer interest and learning experience can be detected

from the three forking patterns. The difference between the patterns is that some

developers forked once only and never intended to contribute; some forked source

codes occasionally that were relevant and of interest to them to fix or provide

feedback to project owners for a short period of time; and some developers forked

71

steadily as they are actively involved in the project throughout or frequently

follow projects. To conduct the prediction, we tested our model by mining

repositories from a GitHub dataset, analysed the related forking features, then

applied the KNN algorithm using the Euclidean distance metric.

Figure 4. 2: The Chua and Zhang OSS forking pattern prediction model

72

Chapter 5: A Pilot Study

5.1 Overview

In this chapter, we introduce Euclidean distance to solve the problem of OSS

forking performance for programming language repository longevity. This work

has been accepted by OpenSym’19 [100].

5.2 Motivation

The motivation of writing the paper for this chapter was to identify forking

patterns and predict the distance between repositors longevity and forking data

using an Euclidean distance metric to determine fork performance optimisation,

based on programming language file repository compliance classifiers, which we

analysed for a year-old dataset from GitHub of 47,000 forking instances in 1000

projects.

Despite a vast of literature on programming language popularity and

successability, there are very few studies on repositories’ programming language

survivability in response to forking conditions. As far as we are aware a high

number of repository programming languages is not sufficient to ensure good

forking performance. To address this issue and assist project owners in adopting

the right programming language, it is necessary to predict programming language

survivability from forking in repositories. This chapter therefore addresses two

related questions:

• are there statistically meaningful patterns within repository data, and, if so,

• can these patterns be used to predict programming language survival?

73

To answer these questions, we analysed 47,000 forking instances in 1000 GitHub

projects. The anecdotal evidence showed long-lived programming languages have

a positive impact of extending file repositories and fork longevity whereas short-

lived programming languages are less able to drive the file repositories and fork

continuity.

5.3 Background

Programming language survivability can be predicted in different ways, with

different evaluative methods generating different predictive results. Forking is

sometimes ignored when predicting repositories’ programming language

survivability in GitHub, as the GitHub forking function is an essential mechanism

to assist OS developers to quickly code software with support from the internal

and external community.

Whether a programming language can survive (perform) or not is highly

dependent on forking performance. Each repository file is tied to a programming

language that provides developers the freedom to copy and fork the file. Forking

features include speed, size and type. Speed refers to the forking period in days,

weeks or months; size refers to the number of developers who fork the file; and

type refers to source code file characteristics, such as programming language,

licence compliance, etc.

However, forking has some challenges; for example, forking performance could

be a “high demand but low supply”, “low demand and supply” or “low demand

but high supply” situation. For example, “high demand but low supply” may

reflect using a popular programming language but the repository is not forked by

many developers. Conversely, “low demand and supply” may be a niche

74

programming language, developers and market, e.g., using R language for

statistics and data analytics. “Low demand but high supply” may be a new and

popular programming language – Swift, Objective C – that developers would be

more likely to adopt because of language migration.

It is unclear what causes uncertainty in low or high forking count, affecting

programming language survivability. Our research therefore focuses on

programming language survivability. This research is critical as an increasing

number of repository files are adopted to sustain programming languages, but

creators may not be able to find the right developers to fork their language.

Further, there is a recent decline in forking as correct programming languages are

not being adopted onto repository files. To tackle these issues, our goal in this

paper is to report evidence of the effect of forking in programming language

repository files.

We are the first researchers to analyse a large forking dataset for developer forking

behaviour based on repository file characteristics to predict sustainable

programming language survivability. We are also the first to adopt a machine

learning method – K Nearest Neighbour (KNN) – to predict sustainable

programming language survivability and introduce a robust method to evaluate

OS file forking success ability.

5.4 Forking Patterns

Regardless of forking type, there are three forking patterns that can be identified

in GitHub: single, or once only; intermittent; and steady. A single fork pattern

refers to developers who fork programming language repository files once a

month and then not at all in consecutive months. Intermittent refers to forking over

75

some months, then not in others, then again in later months. A steady fork pattern

refers forking files consistently for a defined period, such as every month for 12

months (Error! Reference source not found.).

Table 5. 1: Fork patterns

Repository Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fork

Pattern

Rick/

dotfiles

1 0 0 0 0 0 0 0 0 0 0 0 Single

Droogans/

unmaint-

ainable

code

4 0 4 2 4 0 2 69 3 3 2 2 Interm-

ittent

Electron/

electron

287 260 266 198 229 225 191 190 164 223 183 175 Steady

5.5 Software Survival and Programming Language Survival

Importance

Many critical factors have been discussed in the literature on success of closed

source language development [101] but a focus on programming language

assessment must continue in the new OSS development culture. Not only can we

expect voluminous source codes to be contributed by developers but also an

increase of new OS programming languages added, driving competition for

programming language survival.

The survival of a programming language is critical to a repository and a project

owner, as a language without forking is equivalent to no new source code,

implying no development, potentially as the chosen programming language failed

76

to produce source code that was ready in time to develop and deliver a software

product. In other words, it is difficult to develop a programming language used in

a repository file quickly and submit it to a production environment. The longer a

repository file remains in GitHub without developer interest, the greater the

likelihood of termination once the public repository file expires. It is therefore a

waste of development time and effort to create that repository file.

A surviving programming language is one that is more open to interoperability

and integration to build ecosystems and emerging technology agility and mobility.

A surviving programming language can also reduce the risk of replacing another

programming language and developing other components.

Ranking of popular or sustainable programming languages is one way to assure

developers a language is reliable to adopt. Unfortunately, however, programming

language popularity, sustainability and successability assessments vary across

companies, projects, platforms and communities [7, 16], making comparing

results difficult.

There is no one method to assess programming language popularity and rank

importance regardless of how the language is used and adopted. There is limited

literature on assessing programming language popularity, success and

sustainability by measuring fork performance as, to date, forking has not been

instrumental as a viable process for time to production on repository files.

Since forking forms an integral part of OSS development, ranking importance of

programming languages is relevant. A programming language forking rank result

could be of benefit when considering and selecting the right programming

language to adopt, use and fork in a platform, and obtain the right community

support. However, ranking programming language forking success or popularity

77

is a challenging task, coupled with several factors to consider, including the target

platform, elasticity of a programming language, topic of interest, time to

production, programming language fork performance, and community support.

Most importantly, both forking and programming language are time-independent

and assessing them can be daunting as forking fluctuates inconsistently.

5.6 Survivability Prediction on the K Nearest Neighbour Method

The K Nearest Neighbour (KNN) method is often used in the field of data mining

and statistics [97-99] because of its implementation simplicity and significant

classification performance that produces more accurate results than many other

algorithms.

The success of the KNN method lies in its simplicity, ease of use and accuracy

[90, 92, 94, 97-99]. In fact, the method is widely used in the field of statistics and

data mining due to its implementation simplicity and the fact that its classification

performance produces more accurate results than many other algorithms [92-94].

In this paper, the KNN method can handle mixed Euclidean distance.

The KNN method includes the following steps:

1. Load the training data and test dataset.

2. Find K-Nearest Neighbours and assign a value to K.

3. Apply Euclidean distance formula to calculate the distance between the query-

instance and all the training samples.

4. Sort and determine the distance nearest neighbours based on the Kth minimum

distance.

5. End.

78

We aimed to predict the lifespan of a programming language through forking

using KNN, given forks range from a few months to several months. The

algorithm calculates Euclidean distance from the 12 months of the forking period

based on the forking pattern categories to evaluate which types of programming

language repository file are short-lived or long-lived by the minimum distance.

We chose a 12-month period rather than days or weeks as we did not find a

significant number of forked changes on repositories over the shorter timeframe.

We used the three patterns defined above: single, intermittent, and steady.

According to the Euclidean distance formula [93], the distance between two points

in a plane with coordinates (x,y) and (a,b) is given by

𝑑𝑖𝑠𝑡((𝑥, 𝑦), (𝑎, 𝑏)) = √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2

and the a, b, c and d variables must be numeric. As such, we converted non-

numeric variables from a forking dataset downloaded from GitHub (January–

December 2017) into numeric variables (Error! Reference source not found.).

We adopted one of the queries from [102] into the Google Big Query using the

Select Statement and highlighted the condition to retrieve only created forked

repositories:

SELECT events.repo.name AS events_repo_name, COUNT(DISTINCT events.actor.id) AS

events_actor_count

FROM (SELECT * FROM TABLE_DATE_RANGE

([githubarchive:day.],TIMESTAMP('2017-01- 01'),TIMESTAMP('2017-12-31'))) AS

events

WHERE events.type = 'ForkEvent'

79

We downloaded 1000 repository files from GitHub and randomly categorised

them alphabetically.

To satisfy environment compliance around product, programming language and

licence, we referenced Open Source Technology’s list of top products developers

are interested in [21], the top officially recognised OS licences [20], and IEEE’s

top programming languages and licences adopted in OS repository files [19],

namely Python, C, Java, C, C#, PHP, R, JavaScript, Go and Assembly.

Table 5. 2: Variables defined for programming language survivability

Name Description Source Variable Typea Binary

Events_repo_

name

A repository file name GitHub x1 C N/A

Repo_type Own creation (from the description of

the source code link)

NA x2 C N/A

Prog Lang

Name

Programming language: 1. Python, 2.

C++,

3. Java, 4. C, 5. C#, 6. PHP, 7. R, 8.

JavaScript,

9. Go, 10. Assembly

[19] x3..x13 C 1 Yes,

0 No

OS recognised

licence

BSD 3-Clause ‘new’ or ‘revised’ licence,

BSD 2-Clause ‘simplified’ or ‘FreeBSD’

licence, GNU general public licence

(GPL), GNU library or ‘lesser’ general

public licence (LGPL), MIT licence,

Mozilla, Common development and

distribution licence (CCDL), Public

licence 2.0, Eclipse public licence

[20] x14..x21 C 1 Yes,

0 No

OS

technology

OpenStack, Progressive Web Apps,

Rust, R, cognitive cloud, artificial

intelligence, Internet of Things

[21] x22..x32 C 1 Yes,

0 No

Fork 12 Fork detected every month from Jan to NA x33 B 1 Yes,

80

Name Description Source Variable Typea Binary

surviving

months

Dec 0 No

Environment

compliance

Satisfy environment compliance:

sustainable top 10 programming

language, recognised licence, OS

technology

NA x34 B 1 Yes,

0 No

Forking

month

January to December NA x35..x47 N N/A

a binary, B; character, C; numeric, N.

A repository file name is a name given to uniquely identify a piece of source code

stored in GitHub. Due to some filenames being non-interpretable, the conversion

from characters into binary is difficult, e.g., a repository file name labelled

“1ppm/1ppmLog”. For all variables except the repository file name, attributes

with text characters were converted into binary numbers (1=yes, 0=no); e.g.,

programming language names, repository file and licence. For instance, for the

programming language JavaScript, 1 indicated JavaScript was used and 0

indicated it was not JavaScript.

In total, there were 47 attributes, with two added to determine duration of

programming language repository file survival (in months) and how many

repository files complied with the criteria published in [20, 21].

Our definition of a long-lived programming language repository file was based on

detecting a consecutive 12- month forking performance; short-lived was no fork

counts detected in the 12-month period. For example, a JavaScript social media

repository file was predicted to have a short-lived outcome as there was no fork

81

in the 12-month period versus a Python machine learning repository file was

predicted to be long-lived, having visible monthly forking.

In total, 47,000 forking data over the 12-month period were evaluated for

Euclidean distance, using the three patterns, to determine which programming

language repository files were short- or long-lived by the minimum distance.

5.7 Programming Language Repository File Categorisation and Fork

Pattern Classifiers

Categorising the forking dataset into single, intermittent or steady patterns

revealed nine types of programming language repository files based on

environment compliance and fork performance (Error! Reference source not

found.).

Table 5. 3: Forking patterns

Forking

Pattern

Programming Language Repository Files

Single Specific repository file (SPF)

Intermittent Specific repository file met official licence compliance and adopted a

modern sustainable programming language (SRFMSPL)

Specific repository file met official licence compliance (SRFOL)

Specific repository file met official licence adopted a traditional

sustainable programming language (SRFOLTSPL)

Specific repository file adopted a traditional sustainable programming

language (SRFTSPL)

Steady Specific repository file that did not meet the full environment licence

but has healthy fork (SRFHF)

Specific repository file met official licence compliance that has healthy

fork (SRFOLHF)

Specific repository file met official licence compliance and adopted a

82

Forking

Pattern

Programming Language Repository Files

modern sustainable programming language that has healthy fork

(SRFOLMSPLHF)

Specific repository file adopted a traditional sustainable programming

language that has healthy fork (SRFTSPLHF)

5.8 Classifier Results

The results of using Euclidian distance to categorise the programming language

repository file forks are shown in Error! Reference source not found. and

Error! Reference source not found.. A high number were short-lived (79.4%)

and only a small number were long-lived (20.6%).

Table 5. 4: Categorising programming language repository files forks as short- or

long-lived

Long-lived Short-lived

Abbreviation # Abbreviation #

SPF 138 SRFOLHF 32

SRFOL 104 SRFHF 20

SRFTSPL 172 SRFTSPLHF 42

83

Figure 5. 1: Categorising programming language repository file forks as short-

or long-lived.

Our results identified that some non-sustainable programming languages that

lacked environment compliance survived as long as sustainable programming

languages that met environment compliance: 94/206 repository files did not

completely meet environment compliance but survived well, e.g., CSS, Kotlin,

Emacs Lisp and Jupiter Notebook. Long fork survival could be due to a developer

community supporting an OS technology trend, e.g., machine learning, web

applications or android operating systems.

We found the majority of sustainable programming languages were short-lived

because of low or no licence compliance. The data revealed many developers

chose a low compliance licence – development mountain copyright, CC-NC-SA,

Creative Commons Attribution 4.1, WTFPL, or Educational Content Licence –

however, as these licences are less popular and/or have low compliance some

developers are hesitant to contribute [20]. In contrast, long-lived programming

language repository files aligned with the top 10 sustainable programming

languages [19]. Nevertheless, some repository files that adopted programming

84

languages not in the top 10 – such as Python, PHP, Swift, Shell and Ruby – also

survived well.

5.9 K Nearest Neighbour Results

The coordinates value (of forking data) is defined as how the X-axis refers to the

environment compliance and the Y-axis refers to the forking period. The threshold

for classification is based on averaging monthly forking data. The ground truth for

testing the classification result is to confirm if it is true that high visible fork data

can only be only detected on repositories that fully satisfy environmental

compliance.

We applied Euclidean distance to calculate each file repository environment

compliance distance by comparing the distance of the first repository with the

distance of the last repository. We then ranked them according to distance length,

with the shortest distance being the lowest the rank is and the longest the being

the highest the rank. For instance, under the file classifications, SRFTSPLHF has

a Euclidean distance of 1, and a rank of 109.

The results of the KNN method are summarised in Error! Reference source not

found., which shows the classification of programming language repository files

by KNN/ Euclidean distance. These are illustrated with four case studies below.

Table 5.5: Categorising programming language repository files sorted by

Euclidean distance

Classification File Count Euclidean Distance Rank

SRFOTLSPLHF/SRFOLMSPLHF 113 0 1

SRFTSPLHF 41 1 109

SRFOLHF/SRFOTLSPLHF 33 1 113

85

Classification File Count Euclidean Distance Rank

SRFOLSPL/SRFOLMSPL 374 1.4 187

SRFHF 20 2 562

SRF 1 3.2 566

SRFSPL/SRFOL 281 2.2 582

SRF 137 3.2 863

5.9.1 Case One

A programming language repository file is found to associate with the following

properties: one of the top ten OS technologies [21], met legitimate licence

compliance [20], adopted a sustainable programming language [19], and

displayed monthly forking over the last 12 months. This file is predicted to be a

long-lived surviving programming language file with healthy forking. Our results

predict SRFOTLSPLHF or SRFMTLSPLHF would fall under this category.

5.9.2 Case Two

A programming language repository file is found not to associate with one of the

following properties: one of the top ten OS technologies [21], met legitimate

licence compliance [20], adopted a sustainable programming language [19], and

displayed monthly forking over the last 12 months. This file is predicted to be a

long-lived surviving programming language file with healthy forking. Our results

predict SRFHF would fall under this category.

5.9.3 Case Three

A programming language repository file is found not to associate with more than

one of the following properties: one of the top ten OS technologies [21], met

86

legitimate licence compliance [20], adopted a sustainable programming language

[19], and did not display monthly forking over the last 12 months. This file is

predicted to be a lower surviving programming language. Our results predict SRF

would fall under this category.

5.9.4 Case Four

A programming language repository file is found not to associate with more than

one of the following properties: one of the top ten OS technologies [21], met

legitimate licence compliance [20], adopted a sustainable programming language

[19], but displayed monthly forking over the last 12 months. This file is predicted

to be a lower surviving programming language. Our results predict SRFOL would

fall under this category.

5.10 Evaluation

In this paper, we proposed evaluating sensitivity and specificity to describe test

performance, as these parameters remain true regardless of the population of

programming language repository files to which the test is applied.

Definitions of environment compliance parameters are presented in Error!

Reference source not found., where: true positive (TP) is defined as the number

of programming language repository files that met environment compliance and

were classified as long-lived; false positive (FP) is defines as the number that met

environment compliance and were mistakenly classified as short-lived; true

negative (TN) is defined as the number that did not meet environment compliance

and were classified as long-lived; and false negative (FN) is defined as the number

87

that did not meet environment compliance and were mistakenly classified as short-

lived.

Table 5. 6: Environment compliance

Full Compliance Long-lived Short-lived Total

Yes 111 (TP) 94 (FP) 205

No 0 (FN) 795 (TN) 795

 111 889 1000

For this study, we classified the data into training (80%) and testing (20%)

samples. We used the KNN method to classify the class of the repository files then

calculated the Euclidean distance between the forking period and forking pattern.

After determining the parameter k and running the KNN algorithm, accuracy was

calculated using precision, sensitivity and specificity. The formulas of the four

measures [93] are outlined below.

Accuracy refers to the proportion of true results from the number of programming

language repository files that met environment compliance and the true negative

results from the number that did not meet environment compliance and were

classified as long-lived

Accuracy = TP+TN/(TP+TN+FP+FN)

For this study, accuracy is 111+795/(111+795+94+0)= 0.906 (90.6%).

Precision refers the ratio of correctly predicted all programming repository files

that appeared to survive, how many have actually survived? High precision

therefore relates to a low false positive rate.

Precision = TP/TP+FP

88

For this study, precision is 111/111+94=0.542 (54.2%). Error! Reference source

not found. summarises all four metrics.

Sensitivity refers the proportion of long-lived programming language repository

files that meet full environment compliance, and specificity refers the proportion

of short-lived programming language repository files that meet full environment

compliance. Hence, the formula is

 Sensitivity = TP/TP+FN Specificity = TN/TN+FP

For this study, sensitivity is 111/111+0=1 (1%) and specificity is

795/795+94=0.894 (89.4%).

Figure 5. 2: Evaluative results comparison of the dataset

5.11 Conclusions and Future Work

Error! Reference source not found. highlights that there are less long-lived

programming language repository files than short-lived. For a programming

language repository file to survive it must satisfy environment compliance

properties; the data reveal most do not comply and are therefore short-lived. In

89

other words, many project developers or owners who created repository files may

have ignored, or failed to pay attention to, environment compliance factors, such

as technology trends and licensing.

Error! Reference source not found.6 is a statistical overview of programming

language repository file lifespan and Error! Reference source not found. is an

overview of the test result accuracy showing a breakdown of accuracy, precision,

sensitivity and specificity. Our findings reveal that it is necessary for developers

to pay attention to environment compliance before developing a repository file if

they want to ensure healthy forking and file survivability.

The predictive results help us to better categorise developers’ motivations for

forking. The existing literature identified seven categories of forking: OS, project,

software, social, code, programming language and repository. Our data show

long-lived forked programming language repositories that satisfy environment

compliance are potentially related to social, programming language and repository

forking. In contrast, short-lived forked programming languages that are

environment compliant are related to code, OS and project forking.

Our future work in this area will focus on introducing new environment

compliance variables to fast-growing project code that is forked from very large-

scale programming languages with boundary conditions. In addition, we will

evaluate which machine learning method can accurately and reliably predict fork

patterns for short-lived and long-lived programming languages.

90

Chapter 6: A Longitudinal Study

6.1 Overview

This chapter presents a paper that extends the work in Chapter 5. The same

research method was used except this time we studied and analysed the dataset

over a six-year timeframe instead of one year. The research paper is under review.

The importance of this study is the evidence gathered on recognising the role of

repository compliance as an attribute in forking sustainability. A complete

compliance programming language repository can attract developers to fork and

maintain fork sustainability, whereas programming language repositories with

partial or no compliance are less likely to maintain their fork sustainability.

This chapter also introduces data normalisation, which was applied due to the

large fluctuation in monthly fork count – from tens to thousands – which made it

difficult to predict distance.

6. 2 Motivation

The motivation of this chapter was to conduct a longitudinal study that used

longitudinal forking data over a six-year period validated under the same KNN

Euclidian distance method. The study objective was to observe and collect project

data on a number of variables without trying to interrupt or influence variables. In

addition, we wanted to examine the same repository to detect any changes of

forking data that might occur over a longer period of time.

91

6.3 Background

According to Jiang et al. [7], there are three main reasons why developers want to

fork. 1) They want to modify and improve source codes by fixing bugs, adding

new features and making copies in GitHub. 2) They want to learn a programming

language, so choose files to fork in their preferred language. Or, 3) The

repositories are attractive. Other less common motivations may be to create a new

project or repository in response to team conflicts or to find a job as a coder.

Chua et al. [27] recently conducted a Systematic Literature Review (SLR) that

identified reasons for, and challenges associated with, OS forking [26]. They

identified twenty-three factors across three categories. Firstly, forking motivation,

which includes coding for: revising requirements [40], job seeking [42], licensing

compliance [7, 36, 42] or software compliance [1, 9, 16, 46]; coding to extend the

duration of an original project development [16, 46, 47] or community social

coding development [36]; coding to address ownership implications [8, 44, 46,

47] or business strategy risks [36], or risks associated with team coding skill

inequality [3], divergent specialisation [3, 46, 47], misaligned objectives [3, 46,

47], poor leadership [5, 46, 47] or cultural differences [3, 5, 46]; coding for

community socialisation [5, 34, 36] or by socialising [34, 95], or for software

activity [16, 47] or the ecosystem [16, 47].

The second category is forking sustainability with the primary factor of

community activity [7, 40, 44]. The third category is forking lessons learnt with

factors including presence of a formal process [43], legal implications [15, 18],

transfership [6], product expertise shortage [45] and upgrading a developer role to

92

a product role [6, 15, 45]. All these factors are reasons to justify why developers

want to fork.

There is limited research on how forking motivation aligns with aspects of OS

infrastructure support, such as combined OS licence compliance, programming

language sustainability and OS technology. Our study focused on deepening

understanding of developers’ forking motivation as our philosophical view on

healthy fork performance is based on the alignment of developer forking

motivation and OS infrastructure support. A large dataset of monthly forking from

2015 to 2020 with 2–4-digit fork counts was downloaded from our previous study

[48] for analysis, classification and prediction.

We are the first group of researchers to conduct a comprehensive analysis of

healthy file fork repository (HFFR) to normalise data before applying the KNN

machine learning method to predict HFFR classifications.

6.4 Fork Pattern Identification and Data Collection

In our previous work [100], 47,000 forking instances in 1000 GitHub projects

were downloaded and analysed. We identified three forking patterns: 1) single

(once only), 2) intermittent, and 3) steady. A single fork pattern refers to

developers who fork programming language repository files once a month and

then not at all in consecutive months. Intermittent refers to forking over some

months, then not in others, then again in later months. A steady fork pattern refers

to forking files consistently for a defined period, such as every month for 12

months (Error! Reference source not found.).

93

Table 6. 1: Examples of file repository monthly forking

Repository Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fork

Pattern

adam-p/

markdown-

here

1 0 0 0 0 0 0 0 0 0 0 0 Single

Airbnb/

JavaScript

4 0 4 2 4 0 2 69 3 3 2 2 Interm-

ittent

Alamofire/

Alamofire

287 260 266 198 229 225 193 190 164 223 183 175 Steady

In this paper, our aim was to investigate HFFR performance. This study extended

our previous work [100]; we adopted one of the queries from [100] into a Google

Big Query using a select statement that highlighted the condition to retrieve only

created forked repositories (Error! Reference source not found.).

Table 6. 2: Big query statement

Select statement for Google Big Query

SELECT events.repo.name AS events_repo_name,

COUNT(DISTINCT events.actor.id) AS events_actor_count

FROM (SELECT * FROM TABLE_DATE_RANGE ([githubarchive:day.],

TIMESTAMP('2017-01- 01'),TIMESTAMP('2017-12-31'))) AS events

WHERE events.type = 'ForkEvent'

Of the 1000 file repositories from [100] retrieved over a period of 6 years (72

months), 62 met the study criterion of being a healthy fork repository, defined as

94

having been forked by developers every month from Jan 2015 to Dec 2020

(Error! Reference source not found.).

Table 6. 3: Forking data of selected file repositories, 2015–2020

Repository

Name

Year Fork

Status J F M A M J J A S O N D

2015

numpy/

numpy
53 57 95 56 45 52 55 48 51 63 73 86 Steady

Airbnb/

JavaScript
135 132 346 490 199 221 514 265 261 240 248 274 Steady

nightscout/

cgm-

remote-

monitor

408 278 839 208 199 155 168 205 251 198 169 224 Steady

2016

numpy/

numpy
57 69 69 55 59 58 61 60 61 75 56 53 Steady

Airbnb/

JavaScript
319 312 425 375 326 325 341 384 338 357 361 323 Steady

nightscout/

cgm-

remote-

monitor

296 259 323 296 364 374 366 330 432 509 442 426 Steady

2017

numpy/

numpy
69 80 78 71 80 77 66 73 72 91 104 91 Steady

Airbnb/

JavaScript
355 410 447 345 371 378 432 384 348 331 440 328 Steady

nightscout/

cgm-

remote-

monitor

446 440 392 420 444
505

6
412 430 578 580 545 663 Steady

2018

numpy/

numpy
99 87 75 81 70 80 91 75 85 85 94 79 Steady

Airbnb/

JavaScript
362 289 346 306 305 267 303 297 248 285 270 221 Steady

nightscout/

cgm-

remote-

monitor

788 828 823 696 739 719 698 823 863 788 868 884 Steady

95

Repository

Name

Year Fork

Status J F M A M J J A S O N D

2019

numpy/

numpy
97 90 116 121 110 99 125 106 106 130 113 100 Steady

Airbnb/

JavaScript
259 306 294 308 293 263 284 238 238 260 229 208 Steady

nightscout/

cgm-

remote-

monitor

1028 1086 1172 1184 1260 1154 1373 1177 1177 1287 1327 1378 Steady

2020

numpy/

numpy
134 111 120 135 161 130 141 93 132 116 116 116 Steady

Airbnb/

JavaScript
192 283 260 275 332 296 259 225 226 279 214 293 Steady

nightscout/

cgm-

remote-

monitor

1528 1246 931 712 912 954 1086 1298 1800 4015 4015 1730 Steady

6.5 Normalisation and Euclidean Distance

For this study, we divided the data into training (80%) and testing (20%) samples.

The 108 variables used to define a HFFR are shown in Error! Reference source

not found..

96

Table 6. 4: Variables defined for a healthy fork file repository

Name Description Source Variable Type Binary

Event_repo_

name
Repository file name GitHub x1 C N/A

Repo_type
Own creation (from source code

link description)
NA x2 C N/A

Programming

language

name

1, Python; 2, C++; 3, Java; 4, C;

5, C#; 6, PHP; 7, R; 8, JavaScript;

9, Go; 10, Assembly

[100] x3..x13 C 1 Yes, 0 No

OS licence

BSD 3-Clause ‘new’ or ‘revised’

licence; BSD 2-Clause

‘simplified’ or ‘FreeBSD’ licence;

GNU general public licence

(GPL); GNU library or ‘lesser’

general public licence (LGPL);

MIT licence; Mozilla; Common

development and distribution

licence (CCDL); Public licence

2.0; Eclipse public licence

[20] x14..x21 C 1 Yes, 0 No

OS

technology

OpenStack; Progressive web apps;

Rust; R; cognitive cloud; artificial

intelligence (AI); Internet of

Things

[21] x22..x32 C 1 Yes, 0 No

Fork 72

surviving

months

Fork detected every month from

Jan 2015 to Dec 2020
N/A x33 B 1 Yes, 0 No

Environment

compliance

Satisfy environment compliance:

Sustainable top 10 programming

language, recognised licence, OS

technology

N/A x34 B 1 Yes, 0 No

Forking

month
January 2015 to December 2020 N/A x35..x107 N NA

HFFR type
Each repository file contains a

fork count across the 72 months
N/A x108 C

SRFHF,

SRFOLHF,

SRFOLMSPLHF,

SRFTSPLHF,

SRFOLTSPLHF

*Binary, B; Character, C; Numeric, N. N/A=Not applicable.

97

The large fluctuation in monthly fork count – from tens to thousands – makes it

difficult to predict distance so the fork count values first needed to be normalised

to reduce this range. For instance, one variable may be binary while another may

be a number with two, three or four digits. Normalising enables comparisons and

meaningful correlations, and can be done using the following method [103]:

𝑍 = (𝑥 + 𝜇)/𝜎

Z = normalisation result

x = mean of the sample

 = mean of the population

 = standard deviation of the population

Error! Reference source not found. presents the same forking data after

normalisation.

Table 6. 5: Forking in 5 years (2015-2020) after normalisation

Repository

Name

Year Fork

J F M A M J J A S O N D Status

2015

numpy/

numpy
-0.76 -0.74 -0.16 -0.07 -0.61 -0.57 -0.04 -0.42 -0.44 -0.42 -0.38 -0.29 Steady

Airbnb/

JavaScript
-0.90 -0.88 -0.76 -0.88 -0.90 -0.89 -0.88 -0.88 -0.88 -0.84 -0.81 -0.77 Steady

nightscout/

cgm-

remote-

monitor

-0.29 -0.47 1.02 -0.60 -0.61 -0.70 -0.68 -0.55 -0.46 -0.52 -0.58 -0.42 Steady

2016

numpy/

numpy
-0.27 -0.21 0.02 -0.01 -0.16 -0.09 -0.07 0.06 -0.07 -0.08 0.04 0.03 Steady

Airbnb/

JavaScript
-0.86 -0.82 -0.83 -0.85 -0.84 -0.83 -0.83 -0.83 -0.82 -0.80 -0.83 -0.82 Steady

nightscout/

cgm-
-0.32 -0.34 -0.23 -0.22 -0.07 0.05 0.00 -0.09 0.19 0.31 0.27 0.35 Steady

98

Repository

Name

Year Fork

J F M A M J J A S O N D Status

remote-

monitor

2017

numpy/

numpy
0.03 0.18 0.07 -0.07 0.00 -0.13 0.14 0.00 -0.27 -0.15 0.15 -0.12 Steady

Airbnb/

JavaScript
-0.79 -0.76 -0.81 -0.80 -0.78 -0.81 -0.82 -0.80 -0.84 -0.76 -0.72 -0.75 Steady

nightscout/

cgm-

remote-

monitor

0.29 0.26 -0.06 0.13 0.20 10.53 0.09 0.12 0.20 0.48 0.43 0.78 Steady

2018

numpy/

numpy
-0.13 -0.16 -0.80 -0.17 -0.21 -0.17 -0.06 -0.09 -0.36 -0.15 -0.13 -0.22 Steady

Airbnb/

JavaScript
-0.76 -0.74 -0.95 -0.78 -0.81 -0.75 -0.71 -0.77 -0.78 -0.74 -0.69 -0.72 Steady

nightscout/

cgm-

remote-

monitor

0.88 1.38 -0.55 0.87 0.90 1.24 1.16 1.50 1.21 1.35 1.77 2.12 Steady

2019

numpy/

numpy
-0.44 -0.06 -0.26 -0.37 -0.25 -0.25 -0.25 -0.32 -0.32 -0.29 -0.32 -0.36 Steady

Airbnb/

JavaScript
-0.79 -0.72 -0.71 -0.75 -0.71 -0.71 -0.67 -0.69 -0.69 -0.64 -0.66 -0.69 Steady

nightscout/

cgm-

remote-

monitor

1.19 2.31 1.91 1.40 2.22 2.28 2.59 2.34 2.34 2.49 2.88 3.17 Steady

2020

numpy/

numpy
-0.42 -0.14 -0.32 -0.41 -0.34 -0.36 -0.44 -0.43 -0.45 -0.31 -0.46 -0.17 Steady

Airbnb/

JavaScript
-0.60 -0.66 -0.68 -0.71 -0.68 -0.71 -0.69 -0.76 -0.67 -0.71 -0.70 -0.67 Steady

nightscout/

cgm-

remote-

monitor

3.55 2.76 1.42 0.52 0.79 1.06 1.34 2.22 3.34 8.86 8.97 3.85 Steady

99

After normalisation, we then applied Euclidean distance [90] to calculate the

distance between HFFR types and the OS infrastructure support.

The equation [90] is as follows:

𝑑(𝑝, 𝑞) = √(∑(𝑞𝑖 − 𝑝𝑖)

𝑛

𝑖=1

)

2

p, q = two points in Euclidean n-space

qi, pi = Euclidean vectors, starting from the origin of the space (initial point)

n = n-space

The algorithm calculates Euclidean distance over the 72 months of the forking

period based on pattern categories to evaluate the classifier HFFR accuracy. We

chose a 72-month period to identify long-lived HFFRs. Error! Reference source

not found. outlines the total counts for the five HFFRs.

Table 6. 6: Healthy fork file repository types and counts

No.

OS Infra-

structure

Compliance

Cluster

Healthy Fork File Repository Type

Total

count Description Abbreviation

1 None
Did not meet environment

licence
SRFHF 6

2 Partial Met official licence compliance SRFOLHF 13

3 Partial
Adopted traditional sustainable

programming language
SRFTSPLHF 3

4 Full
Met official licence compliance

Adopted modern sustainable
SRFOLMSPLHF 2

100

No.

OS Infra-

structure

Compliance

Cluster

Healthy Fork File Repository Type

Total

count Description Abbreviation

programming language

5 Full

Met official licence compliance

Adopted traditional sustainable

programming language

SRFOLTSPLHF 38

6.6 Results

We used the KNN method to classify HFFRs then calculated the Euclidean

distance between the forking period and forking pattern. Error! Reference

source not found. shows the clusters with full compliance – SRFOLTSPLHF and

SRFOLMSPLHF – have Euclidean distances of 4 and 4.6. For the cluster groups

with partial compliance, SRFOLHF had non-sustainable programming languages

whereas SRFTSPLHF did not comply, using Creative Commons Attribution Non-

Commercial ShareAlike (CC-NC-SA) or undeclared licences. The Euclidian

distances were 9.1 for SRFOLHF and 8.5 for SRFTSPLHF, with a difference of

0.6.

Table 6. 7: Healthy fork file repository types ranked by Euclidean distance

OS

Infrastructure

Compliance

Cluster

Classification Rank
Euclidean

Distance

Full SRFOLTSPLHF 1 4

Full SRFOLMSPLHF 13 4.6

Partial SRFOLHF 18 8.5

Partial SRFTSPLHF 19 9.1

101

None SRFHF 33 17.5

The remaining cluster group was SRFHF, which was non-compliant with an

Euclidean distance of 17.5, the furthest away from the other two clusters. These

distances draw our perspective on a deeper understanding of developer forking

motivation, by showing that compliance is positively associated with motivation,

from multiple environments in multiple disciplines. For example, moodle/moodle

is an HFFR forked by developers who want to know how to build e-learning

platforms. These developers do not work individually but are in software

development companies or e-learning environments. For example, the

“rdpeng/ExData_Plotting1” file repository is forked heavily by students,

researchers, and statisticians for data analytics.

Logically, a HFFR is a repository that should have the most compliance. However,

our findings show that some HFFRs have partial or no compliance. We therefore

tested K based on 1, 3, 5, 10, 13, 14, 15, 18, 19, 20, 30, 40, 50 and 60 (Error!

Reference source not found.; Error! Reference source not found.). Error!

Reference source not found. shows the results for K = 1, 3, 5, 10, 15, 20 using

SRFOLTSPLHF as the predictive file. In this dataset, the majority of the file

repositories comply to with OS infrastructure licences and adopt a sustainable

programming language. There is a small percentage of partial and non-compliance

HFFRs detected in the dataset – SRFOLHF, SFTSPLHF and SRFHF – when K is

ranked 18, 19, 50 and 60.

Table 6. 8: Healthy fork file repository types ranked by Euclidean distance

K HFFR K HFFR

1 SRFOLTSPLHF 18 SRFOLHF

102

3 SRFOLTSPLHF 19 SRFTSPLHF

5 SRFOLTSPLHF 20 SRFOLTSPLHF

10 SRFOLTSPLHF 30 SRFOLTSPLHF

13 SRFOLMSPLHF 40 SRFOLTSPLHF

14 SRFOLMSPLHF 50 SRFHF

15 SRFOLTSPLHF 60 SRFHF

Figure 6. 1: Euclidean distance ranking

6.7 Evaluative Test Results

To evaluate test performance, we evaluated accuracy, precision, sensitivity, and

specificity, as these parameters remain true regardless of the population of HFFRs

to which the test is applied. Definitions of OS compliance parameters are

presented in Error! Reference source not found. in relation to identifying fork

in a population through a diagnostic test. In this study, true positive (TP) refers to

the number of HFFRs that met environment compliance and were classified as

healthy forking; a false positive (FP) refers to the number of HFFRs that did not

4

25

12

3

15

33

29

17

2

29

24

41

25

33

17

14

29

1718

35

31

21

7

30

17

33

9

3

11

7

2526

30

18

2

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40

H
FF

R

103

meet environment compliance but were mistakenly classified as healthy forking;

true negative (TN) refers the number of HFFRS that did not meet environment

compliance and were classified as healthy forking; and false negative (FN) refers

to the number of HFFRS that did not meet environment compliance but were

mistakenly classified as healthy forking.

Accuracy refers to the proportion of true results of HRRFS among the total

number of positive and negative cases examined. Precision refers to the ratio of

correctly predicted positive observations of HFFRS to the total predicted positive

observations; that is, of all HFFRs that appeared to survive, how many survived?

High precision therefore relates to a low false positive rate. Sensitivity is the

proportion of HFFRs that meet full environment compliance, and specificity is the

proportion of HFFRs that do not meet full environment compliance [93].

Table 6. 9: Definition and formula for accuracy, precision, sensitivity and

specificity

Algorithm Example Formula

Accuracy

Proximity of

measurement

results to true

value

(True Positive + True Negative)/(True Positive
+ False Positive + True Negative
+ False Negative)

Precision

Repeatability and

reproducibility of

measurement

(True Positive)/(True Positive + False Positive)

Sensitivity

Proportion of

disease correctly

identified

(True Positive)/(True Positive + False Negative)

Specificity

Proportion of

healthy patients in

who disease

(True Negative)/(True Positive + False Negative)

104

correctly excluded

The four metrics [94] for this study are therefore as follows (also shown in Error!

Reference source not found.):

Figure 6. 2: Evaluative results

6.8 Discussion

Our results indicate the majority of healthy forking longevity in OS projects

comply with OS licences, which means a well-protected digitally forking

environment can make developers realise and trust that particular HFFR is safe to

fork. However, this does not equate to being invulnerable to risk of legal copyright

0

20

40

60

80

100

Accuracy Precision Sensitivity Specificity
Percentage 72 75 93 32

H
FF

R

105

implications. A study of most popular programming languages by country ranked

Java second after the world’s most popular programming language, C [104]. Fifty-

three countries favoured five programming languages – Java, C++, Python, SQL,

and Ruby – with Java and C++ most popular [104]. In other words, HFFRs written

in any of these five programming languages are more likely to be forked and

downloaded. We validated our findings again these studies and confirmed the

categories of SRFOLTSPLHF and SRFOLMSPLHF HFFRs have at least one of

these top five programming languages. Additionally, SRFOLMSPLHF HFFRs

have at least one ancillary programming language, e.g., Swift plus Ruby or Go

plus C.

Our results also show a small number of surviving HFFRs do not comply with OS

licences and programming language adoption. These HFFRs are not seeking

developers to innovate the source code; rather they are forked by developers for

downloading purposes, to use for a specific reason, not related to developing a

system or an application. That is, forking by users, not developers.

A limitation of our study is that while our test performs well in terms of sensitivity,

correctly classifying 93% of HFFRs, it had lower specificity, i.e., correctly

excluding only 32% of unhealthy file fork repositories. The test was moderately

accurate, with 72% true results, and precise, with 75% of identified HFFRs being

40 healthy.

In conclusion, we predict three types of HFFR clusters and have proven the

importance of OS licence compliance and that adopting a suitable and sustainable

programming language can motivate developers to fork. We suspect the third

group of HFFRs, SRFHF, is highly vulnerable to an OS security threat [105], such

as openness and the lack of compliance.

106

Our future work includes applying a deep learning technique to analyse grouping

of HFFRs based on clusters by specific OS licence compliance or adoption of a

specific sustainable programming language for its significance to further develop

our understanding of developers’ forking trust and motivation.

107

Chapter 7: Conclusion

7.1 Overview

This chapter summarises our conclusions and contributions from the study. We

outline salient recommendations from these conclusions and suggest further work

that will build on this PhD.

The excitement surrounding forking research has grown in recent years, with an

increase in studies of the variables involved in OS forking, including role,

activities, type and performance. Particularly, within OS communities, users or

developers would like to determine how best to optimise fork performance and

project owners want to boost their coding confidence by understanding which

methods are most viable and sustainable, or that can be used to predict or monitor

their repository fork status – no, low or high forking. Programming language

developers are also interested in forking, to learn a new skill, receive an incentive,

or find a job or get a promotion.

OSS environment compliance and compatibility is also important in making OSS

communities feel safe, secure, and accurate while forking a repository. It can

promote forking and help reduce fork code waste. It also offers developers flexible

opportunities to download and fork healthier and faster, with no concerns over

intellectual property or copyright infringement issues on OS licences. Sustainable

programming languages, on the other hand, provide greater coding opportunities

for developers to fork and increase the forking chances on other file repositories

that are coded in similar programming languages. As such, it translates directly to

better forking performance, which in turn increases project performance. Forking

108

repositories in relation to a new or emerging technology motivates developers

likely to fork and increases fork visibility

The research aimed to identify a reliable forking prediction method to solve

forking scarcity problem. The results presented in Chapter 5 using Euclidean

distance showed that a year-old dataset of programming language file repositories

that satisfied OS infrastructure compliance can predict high fork visibility. We

applied the same research method to a longitudinal dataset (six years) and also

predicted high fork visibility. The empirical data from these studies was discussed

in Chapter 6.

Based on our quantitative and qualitative analysis of forking patterns in response

to OS development environment compliance we concluded that full environment

compliance of a file repository – that is, a sustainable programming language, a

legitimate OS licence and a new or emerging technology – can strengthen

developers positive forking motivation behaviour, irrespective of time period (one

year versus six years).

7.2 Contributions

Our research contributions were as follows:

1. Interpretation clarity: We addressed the forking interpretation issue by

clarifying forking from a new perspective based on developer forking

motivation behaviour. Previous research had focused on identifying reasons for

forking, such as personal, project, communities, social network, bugs fixed,

etc., In contrast, we focused on an OS infrastructure environmental compliance

perspective from a large fork population and concluded the strengthening effect

on developer forking motivation.

109

2. Forking scarcity: We addressed the forking scarcity issue by predicting high

forking visibility from five file repository classifiers and determined

repositories that are less compliant with programming languages, OS licence

and technology trends will not generate high fork visibility.

3. Highly desirable OS variables analysis: The existing literature, reviewed in

Chapters 2 and 3, examined one desirable environment OS variable with

respect to developers’ forking popularity and successability. We instead

reviewed three highly desirable environmental variables: programming

languages, OS licence and technology trends to predict low to high forking

visibility.

4. OS forking pattern: Previous analyses of forking features covered forking

size, type and volume. Our analysis was more comprehensive. We analysed

monthly forking data and predicted three types of develop fork patterns: single

(once only), intermittent (some months with fork counts and some months

without) and steady (fork every month).

5. Euclidean distance, KNN: Our research method – the Euclidean distance of

KNN – showed high accuracy based on the two empirical works evaluated. The

prediction accuracy of the model is more precise than other techniques like data

mining, regression analysis or descriptive statistics.

7.3 Recommendations

While previous forking prediction methods limited generalisability of results, our

approach provides new insight into forking survivability performance. This

research clearly illustrates forking prediction method accuracy but it also raised a

question on fork survivability analysis. Our dataset does not include other OSS

110

variables concerned with forking. For instance, activities on fixed bug, feature

enhancements, star ranking of a repository, developer demographics, or fork

practices, for instance, the intent of forking and multiple fork times as duplicated

copies.

Tracking these kinds of activities is time intensive. Moreover, the monthly fork

counts we downloaded from GitHub are no longer original once modified or

massaged during the Euclidian distance KNN method. The interpretation of these

results can therefore be misleading. Our recommendation is to download forking

data from the hosting platform directly as data and information are real-time and

objective.

7.4 Future Work

Our results are based on predicting high fork visibility from a single machine

learning method, Euclidean distance KNN. Further research could validate the

impact, and compare accuracy, of other predictive machine learning methods,

such as Linear Regression, Decision Tree, Random Forest, Naïve Bayes and

Support Vector Machine. The popularity of forking will continue to increase. As

such, there is a continued need to explore and extend repository classifications,

for example, to classify a homogeneous technology group, a programming

language or OS licence clusters for deep learning.

111

Bibliography

[1] L. A. Meyerovich and A. Rabkin, "Empirical analysis of programming
language adoption," presented at the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages &
Applications, Indianapolis, USA, 2013.

[2] "Github." https://Github.com (accessed 5 October 2020).
[3] L. Nyman and T. Mikkonen, "To fork or not to fork: fork motivations in

SourceForge projects," International Journal of Open Source Software &
Processes, vol. 3, no. 3, pp. 1–9, 2011.

[4] J. Freeman. (2015) Bitbucket vs. GitHub: Which project host has the most?
JavaWorld.

[5] G. Robles and M. Gonzalez-Barahona, "A comprehensive study of
software forks: dates, reasons and outcomes," presented at the IFIP
International Conference on Open Source Systems, Hammamet, Tunisia,
2012.

[6] F. Ikuine and H. Fujita, "How to avoid fork: The guardians of Denshin 8
Go, Japan," Annals of Business Administrative Science, vol. 13, no. 5, pp.
283–298, 2014.

[7] J. Jiang, D. Lo, J. H. He, X. Xia, P. S. Kochlar, and L. Zhang, "Why and
how developers fork what from whom in GitHub," Journal of Empirical
Software Engineering Volume, vol. 22, no. 1, pp. 547–578, 2017.

[8] J. Gamalielesson and B. Lundell, "Sustainability of open source software
communities beyond a fork: How and why has the LibreOffice project
evolved?," Journal of Systems and Software, vol. 89, pp. 128–145, 2013.

[9] G. von Krogh, S. Haefliger, S. Spaeth, and M. W. Wallin, "Carrots and
rainbows: Motivation and social practice in open source software
development," Journal of MIS Quarterly, vol. 36, no. 2, pp. 649–676,
2012, doi: 10.2307/41703471.

[10] G. Hertel, S. Niedner, and S. Herrmann, "Motivation of software
developers in Open Source projects: An Internet-based survey of
contributors to the Linux kernel," Journal of Research Policy, vol. 32, no.
7, pp. 1159–1177, 2003.

[11] S. Balali, I. Steinmacher, U. Annamalai, A. Sarma, and M. Gerosa,
"Newcomers' barriers – is that all? An analysis of mentors' and newcomers'
barriers in OSS projects," Computer Supported Cooperative Work, vol. 27,
no. 3, pp. 679–714, 2018.

[12] C. M. Schweik, "Sustainability in open source software commons:
Lessons learned from an empirical study of SourceForge projects,"
Technology Innovation Management Review, pp. 13-19, 2013.

[13] A. E. Azarbakht and C. Jensen, "Longitudinal analysis of the run-up to a
decision to break-up (fork) in a community," presented at the IFIP
International Conference on Open Source Systems: Towards Robust
Practices (OSS 2017), 2017.

[14] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, "A systematic mapping
study of software development with GitHub," IEEE Access, vol. 5, pp.
7173–7192, 2017, doi: 10.1109/ACCESS.2017.2682323.

[15] R. L. Glass, "A sociopolitical look at open source," Journal of
Communications of the ACM, vol. 46, no. 11, pp. 21–23, 2003.

https://github.com/

112

[16] F. Tegawendé, T. Bissyandé, F. Thung, D. Lo, L. X. Jiang, and L.
Réveillère, "Popularity, interoperability and impact of programming
languages in 100,000 open source projects," presented at the IEEE 37th
Annual Conference Computer Software and Applications Conference
(COMPSAC), Kyoto, Japan, 2013.

[17] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, "A large scale study of
programming languages and code quality in GitHub," in 22nd ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, Hong Kong, China, 2014.

[18] R. Moen, "Fear of Forking," no. 22 November 2016. [Online]. Available:
http://linuxmafia.com/faq/Licensing_and_Law/forking.html

[19] IEEE Spectrum. "The Top Programming Languages 2018." IEEE
Spectrum. https://spectrum.ieee.org/the-2018-top-programming-
languages (accessed 5 January 2018).

[20] Open Source Initiative. "Licenses & Standards."
https://opensource.org/licenses (accessed 30 July 2021).

[21] Open Source Technology. "Open Source Technology Trends."
https://opensource.com/article/17/11/10-open-source-%20technology-
trends-2018.%20 (accessed 5 January 2018).

[22] T. B. Do, H. N. H. Nguyen, B. L. L. Mai, and V. Nguyen, "Mining and
creating a software repositories dataset," presented at the 7th NAFOSTED
Conference on Information and Computer Science (NICS), 2020.

[23] B. Kitchenham and P. Brereton, "A systematic review of systematic
review process research in software engineering," Journal of Information
and Software Technology, vol. 55, no. 12, pp. 2049–2075, 2013.

[24] B. Kitchenham, "Procedures for performing systematic reviews,"
Department of Computer Science, Keele University, Keele, UK, 2004.

[25] S. Cavanagh, "Content analysis: concepts methods and applications,"
Journal of Nurse Researcher, vol. 4, no. 3, pp. 5–16, 1997.

[26] B. B. Chua, "A survey paper on open source forking motivation reasons
and challenges," presented at the Pacific Asia Conference of Information
Systems (PACIS), Langkawi, Malaysia, 2017.

[27] B. B. Chua and Y. Zhang, "Applying a systematic literature review and
content analysis method to analyse open source developers' forking
motivation interpretation, categories and consequences," Journal of
Australasian Information Systems, vol. 24, no. 1, pp. 1–19, 2020.

[28] J. Biolchini, P. Mian, A. Natali, and G. Travassos, "Systematic review in
software engineering," Rio de Janeiro, Brazil, 2005.

[29] C. Okoli and K. Schabram, "A Guide to Conducting a Systematic
Literature Review of Information Systems Research," doi:
10.2139/ssrn.1954824.

[30] L. H. Salazar, T. C. Lacerda, J. V. Nunes, and C. G. von Wangenhelm,
"Systematic literature review on usability heuristics for mobile phones,"
International Journal of Mobile Human Computer Interaction,, vol. 5, no.
2, pp. 50–61, 2015.

[31] B. Kitchenham and S. Charters, "Guidelines for performing systematic
literature reviews in software engineering," Keele University and Durham
University, 2007.

[32] G. Gousios, B. Vasilescu, S. Bogdan, A. Serebrenik, and A. Zaidman,
"Lean GHTorrent: GitHub data on demand," presented at the 11th

http://linuxmafia.com/faq/Licensing_and_Law/forking.html
https://spectrum.ieee.org/the-2018-top-programming-languages
https://spectrum.ieee.org/the-2018-top-programming-languages
https://opensource.org/licenses
https://opensource.com/article/17/11/10-open-source-%20technology-trends-2018.
https://opensource.com/article/17/11/10-open-source-%20technology-trends-2018.

113

Working Conference on Mining Software Repositories (MSR 2014), The
Netherlands, 2014.

[33] "Alexa." www.alexa.com/siteinfo. 2017 (accessed 1 October 2017).
[34] K. H. Fung, A. Aurum, and D. Tang, "Social forking in open source

software: an empirical study," CAiSE Forum, pp. 50–57, 2012.
[35] H. Hsiu-Fang and S. E. Shannon, "Three approaches to qualitative content

analysis," Journal of Qualitative Health Research, vol. 15, no. 9, pp.
1277–1288, 2005, doi: 10.1177/1049732305276687.

[36] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, "Social coding in GitHub:
transparency and collaboration in an open software repository," presented
at the ACM 2012 Conference on Computer Supported Cooperative Work,
Washington, USA, 2012.

[37] A. Murgia, P. Tourani, B. Adams, and M. Ortu, "Do developers feel
emotions? An exploratory analysis of emotions in software artifacts,"
presented at the 11th Working Conference on Mining Software
Repositories (MSR 2014), 2014.

[38] Wikipedia. "MariaDB." https://en.wikipedia.org/wiki/MariaDB (accessed
17 February 2017).

[39] "Merriam-Webster." https://www.merriam-webster.com/ (accessed 1
October 2017).

[40] N. A. Ernst, S. Easterbrook, and J. Mylopoulos, "Code forking in open-
source software: A requirements perspective," arXiv, vol. 1004.2889, pp.
1–15, 2010.

[41] K. E. Rosengren, "Advances in Scandinavia content analysis: An
introduction," in Advances in Content Analysis, K. E. Rosengren Ed.
Beverly Hills, CA: SAGE, 1981, pp. 9-19.

[42] M. Biazzini and B. Baudry, "May the fork be with you : novel metrics to
analyze collaboration on GitHub," presented at the 5th International
Workshop on Emerging Trends in Software Metrics, Hyderabad, India,
2014.

[43] H. Fujita and F. Ikuine, "Open source, a phenomenon of generation
changes in software development: the case of Denshin 8 Go," Annals of
Business Administrative Science, vol. 13, no. 1, pp. 1–15, 2014.

[44] L. Nyman, T. Mikkonen, J. Lindman, and M. Fougère, "Perspectives on
code forking and sustainability in open source software," presented at the
IFIP International Conference on Open Source Systems: Long-Term
Sustainability, Buenos Aires, Argentina, 2012.

[45] G. V. Neville-Neil, "Kode vicious: Think before you fork," Journal of
Communications of the ACM, vol. 54, no. 6, pp. 34–35, 2011, doi:
10.1145/ 1953122.1953137.

[46] L. Nyman, "Hackers on forking," presented at the International
Symposium on Open Collaboration, New York, USA, 2014.

[47] B. Ray and M. Kim, "A case study of cross-system porting in forked
projects," presented at the 20th ACM SIGSOFT International Symposium
on the Foundation of Software Engineering, New York, USA, 2012.

[48] B. B. Chua, "Detecting sustainable programming languages through
forking on open source projects for survivability," presented at the IEEE
International Symposium on Software Reliability Engineering (ISSRE) in
conjunction with a WOSAR workshop, Gaithersburg, USA, 2015.

file:///C:/Users/shiop/Downloads/www.alexa.com/siteinfo
https://en.wikipedia.org/wiki/MariaDB
https://www.merriam-webster.com/

114

[49] S. O. Hars, "Working for free? Motivations for participating in open
source projects," International Journal of Electronic Commerce, vol. 6,
no. 3, pp. 25–39, 2002.

[50] K. J. Stewart and S. Gosain, "The impact of ideology on effectiveness in
open source software development teams," Journal of MIS Quarterly, vol.
30, no. 2, pp. 291–314, 2006.

[51] J. Lerner and J. Tirole, "Some simple economics of open source," Journal
of Industrial Economics, vol. 50, no. 2, pp. 197–234, 2002.

[52] S. K. Shah, "Motivation, governance and the viability of hybrid forms in
open source software development," Journal of Management Science, vol.
52, no. 7, pp. 1000–1014, 2006.

[53] E. von Hippel and G. von Krogh, "Open source software and the 'private
collective' innovation model: Issues for organization science," Journal of
Economics, Computer Science, vol. 14, pp. 209–223, 2003.

[54] S. Goode, "Something for nothing: Management rejection of open source
software in Australia's top firms," Journal of Information and
Management, vol. 42, no. 5, pp. 669–681, 2005.

[55] S. Goode, "Exploring organizational information sharing in adopters and
non-adopters of open source software: Evidence from six case studies,"
Journal of Knowledge and Process Management, vol. 21, no. 1, pp. 78–
89, 2014.

[56] V. N. Subramanian, I. Rehman, M. Nagappan, and R. G. Kula, "Analyzing
first contributions on GitHub: What do newcomers do?," IEEE Software,
2020, doi: 10.1109/MS.2020.3041241.

[57] The Apache Foundation. "The Apache Foundation."
https://www.apache.org (accessed.

[58] M. Gerosa et al., "The shifting sands of motivation: revisiting What drives
contributors in open source," presented at the IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), 2021.

[59] Wikipedia. "GItHub." https://en.wikipedia.org/wiki/GitHub (accessed 29
January 2019).

[60] D. Celinska, "Coding together in a social network: Collaboration among
GitHub users," presented at the 9th International Conference on Social
Media and Society (SMSociety '18), 2018.

[61] H. Borges, A. Hora, and M. T. Valente, "Predicting the popularity of
GitHub repositories," presented at the 12th International Conference on
Predictive Models and Data Analytics in Software Engineering
(PROMISE), 2016.

[62] T. Siddiqui and A. Ahmad, "Data mining tools and techniques for mining
software repositories: A systematic review," presented at the Big Data
Analytics Conference, 2018.

[63] Y. X. Teng, "A survey of mining software repositories in social network,"
Journal of Software, vol. 15, no. 2, pp. 62–67, 2020.

[64] W. Q. Zhang, L. M. Nie, J. He, Z. Y. Chen, and J. Liu, "Developer social
networks in software engineering: construction analysis and applications,"
Journal of Information Science, vol. 57, no. 12, pp. 1–23, 2014.

[65] C. Hora and M. T. Valente, "Understanding the factors that impact the
popularity of GitHub repositories," presented at the IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2016.

https://www.apache.org/
https://en.wikipedia.org/wiki/GitHub

115

[66] R. Li, P. Pandurangan, H. Frluckaj, and L. Dabbish, "Code of conduct
conversations in open source software projects on Github," ACM Human
Computer Interaction, vol. 5, no. 1, pp. 1–31, 2021, doi: 10.1145/3449093.

[67] C. Vendome, M. Linares-Vasquez, G. Bavota, and M. D. Penta, "License
usage and changes: A large-scale study of Java projects on GitHub,"
presented at the 2015 IEEE 23rd International Conference on Program
Comprehension, 2015.

[68] T. S. Heinze, V. Stefanko, and W. Amme, "Mining BPMN processes on
GitHub for tool validation and development," in Enterprise, Business-
Process and Information Systems Modeling. Cham: Springer, 2020, pp.
193–208.

[69] A. Ying, G. Murphy, R. T. Ng, and M. Chu-Caroll, "Predicting source
code changes by mining revision history," IEEE Transactions on Software
Engineering, vol. 30, no. 9, pp. 574–586, 2003.

[70] R. Agrawal, T. Imielinski, and A. N. Swami, "Mining association rules
between sets of items in large databases," presented at the International
Conference on the Management of Data, 1993.

[71] R. Agrawal and R. Srikant, "Fast algorithms for mining association rules,"
presented at the International Conference on Very Large Data Bases, 1994.

[72] M. Saini and K. K. Chahal, "Change profile analysis of open-source
software systems to understand their evolutionary behaviour," Journal of
Frontiers of Computer Science, vol. 12, no. 6, pp. 1105–1124, 2017.

[73] W. La Cholter, M. Elder, and A. Stalick, "Windows malware binaries in
C/C++ GitHub repositories: Prevalence and lessons learned," presented at
the 7th International Conference on Information Systems Security and
Privacy (ICISSP 2021), 2021.

[74] M. Altherwi and A. Gravell, "Assessing programming language impact on
software development productivity based on mining OSS repositories,"
Journal of ACM SIGSOFT Software Engineering Notes, vol. 44, no. 1, pp.
1–3, 2019.

[75] F. Del Bonifro, M. Gabbrielli, A. Lategano, and S. Zacchiroli, "Image-
based many-language programming language identification," Peer
Journal of Computer Science, vol. 7, p. e361, 2021, doi: 10.7717/peerj-
cs.631.

[76] S. L. Ramírez-Mora, H. Oktaba, H. G. Adorno, and G. Sierra, "Exploring
the communication functions of comments during bug fixing in Open
Source Software projects," Journal of Information and Software
Technology, vol. 136, no. 106584, 2021.

[77] S. Brisson, E. Noei, and K. Lyons, "We are family: Analyzing
communication in GitHub software repositories and their forks," presented
at the IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2020.

[78] A. Pietri, G. Rousseau, and S. Zacchiroli, "Forking without clicking: On
how to identify software repository forks," presented at the 17th
International Conference on Mining Software Repositories (MRS '20),
2020.

[79] J. E. Montandon, M. T. Valente, and L. L. Silva, "Mining the technical
roles of GitHub users," Journal of Information and Software Technology,
vol. 131, no. 1064851–12, 2021.

116

[80] L. Bao, X. Xia, D. Lo, and G. Murphy, "A large scale study of long-time
contributor prediction for GitHub projects," Journal of IEEE Transactions
on Software Engineering, vol. 47, no. 6, pp. 1277–1298, 2021.

[81] V. K. Eluri, T. A. Mazzuchi, and S. Sarkani, "Predicting long-time
contributors for GitHub projects using machine learning," Journal of
Information and Software Technology, vol. 138, no. 106616, 2021.

[82] K. Du et al., "Understanding promotion-as-a-service on GitHub,"
presented at the Annual Computer Security Applications Conference
(ACSAC '20), New York, USA, 2020.

[83] F. Fronchetti, I. Wiese, G. Pinto, and I. Steinmacher, "What attracts
newcomers to onboard on OSS projects? TL;DR: Popularity," presented
at the 15th IFIP International Conference on Open Source Systems (OSS),
Montreal QC, Canada, 2019.

[84] R. Kallis, A. D. Sorbo, G. Canfora, and S. Panichella, "Predicting issue
types on GitHub," Journal of Science of Computer Programming, vol.
205, no. 3, 2020, doi: 10.1016/j.scico.2020.102598.

[85] R. Kapur and B. Sodhi, "Estimating defectiveness of source code: A
predictive model using Github content," arXiv, vol. 1803.07764, 2018.

[86] M. O. F. Rokon, R. Islam, A. Darki, E. E. Papalexakis, and M. Faloutsos,
"Sourcefinder: Finding malware source-code from publicly available
repositories," presented at the 23rd International Symposium on Research
in Attacks Intrusions and Defenses, 2020.

[87] H. L. Zhou et al., "GitEvolve: Predicting the evolution of GitHub
repositories," arXiv, vol. abs/2010.04366, 2020.

[88] S. Weber and J. Luo, "What makes an open source code popular on
GitHub?," presented at the IEEE International Conference on Data Mining
Workshop, 2014.

[89] B. W. Silverman and M. C. Jones, "E. Fix and J.L. Hodges (1951): An
important contribution to nonparametric discriminant analysis and density
estimation: Commentary on Fix and Hodges (1951)," International
Statistical, vol. 57, no. 3, pp. 233–238, 1989, doi: 10.2307/1403796.

[90] T. Cover and P. Hart, "Nearest neighbour pattern classification," IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967, doi:
10.1109/TIT.1967.1053964.

[91] P. Cunningham and S. J. Delany, "K-Nearest Neighbour Classifiers,"
Multiple Classifier Systems, vol. 34, no. 8, pp. 1–17, 2007.

[92] J. Gou, L. Du, Y. Zhang, and T. Xiong, "A new distance weighted k-
nearest neighbor classifier," Journal of Information and Computational
Science, vol. 9, no. 6, pp. 1429–1436, 2011.

[93] J. W. Han, M. Kamber, and J. Pei, "Data mining: Concepts and
techniques," in "Data Management Systems," 2000.

[94] D. J. Hand, H. Mannila, and P. Smyth, Principles of Data Mining.
Cambridge: MIT Press, 2001.

[95] S. Y. Jiang, G. S. Pang, M. L. Wu, and L. M. Kuang, "An improved K-
nearest-neighbor algorithm for text categorization," Journal of Expert
Systems with Applications, vol. 39, no. 1, pp. 1503–1509, 2012.

[96] M. McCord and M. Chuah, "Spam detection on Twitter using traditional
classifiers," presented at the International Conference on Autonomic and
Trusted Computing, 2011.

117

[97] K. Odajima and A. P. Pawlovsky, "A detailed description of the use of the
kNN method for breast cancer diagnosis," presented at the 7th
International Conference on Biomedical Engineering and Informatics
(BMEI), 2014.

[98] H. Wang, "Nearest neighbours without K: A classification formalism
based on probability," Faculty of Informatics, University of Ulster,
Northern Ireland, UK, 2002.

[99] X. Wu et al., "Top 10 algorithms in data mining," Knowledge and
Information Systems, vol. 14, no. 1, pp. 1–37, 2008, doi: 10.1007/s10115-
007-0114-2.

[100] B. B. Chua and Y. Zhang, "Predicting open-source programming language
repository file survivability from forking data," presented at the 15th
International Symposium on Open Collaboration (OpenSym'19), Skövde,
Sweden, 2019.

[101] K. R. Linberg, "Software developer perceptions about software project
failure: A case study," Journal of Systems and Software, vol. 49, no. 2, pp.
177–192, 1999.

[102] "Octoverse." https://octoverse.github.com/ (accessed 16 February 2019).
[103] M. Montague and J. Aslam, "Relevance score normalization for

metasearch," presented at the 10th international conference on Information
and knowledge management (CIKM), New York, USA, 2001.

[104] "Fossbytes." https://fossbytes.com/what-programming-language-does-
your-country-like (accessed 16 August 2021).

[105] "Security Today." https://securitytoday.com/articles/2019/08/19/the-
dangers-of-opensource-vulnerabilities-and-what-you-can-do-about-
it.aspx (accessed 16 August 2021).

https://octoverse.github.com/
https://fossbytes.com/what-programming-language-does-your-country-like
https://fossbytes.com/what-programming-language-does-your-country-like
https://securitytoday.com/articles/2019/08/19/the-dangers-of-opensource-vulnerabilities-and-what-you-can-do-about-it.aspx
https://securitytoday.com/articles/2019/08/19/the-dangers-of-opensource-vulnerabilities-and-what-you-can-do-about-it.aspx
https://securitytoday.com/articles/2019/08/19/the-dangers-of-opensource-vulnerabilities-and-what-you-can-do-about-it.aspx

	Title Page
	Certificate of Original Authorship
	Acknowledgements
	List of Publications
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Abstract
	Chapter 1
	1.0 Introduction
	1.1 Background
	1.2 Research Motivation
	1.3 Research Contributions

	Chapter 2: Forking Literature Survey
	2.1 Overview
	2.2 Motivation
	2.3 Approaches
	2.4 Introduction
	2.5 Research Study Motivation and Research Questions
	2.5.1 Research study motivation
	2.5.2 Research questions

	2.6 Methodology: Systematic Literature Review and Content Analysis Method
	2.6.1 Systematic literature review search criteria
	2.6.2 Search strategy
	2.6.3 Methodological framework
	2.6.4 Content analysis method

	2.7 Forking Motivation Interpretations
	2.7.1 How do researchers interpret developer forking and categorise forking motivational behaviour?
	2.7.2 What were the most popular methodologies used by forking researchers from 1990 to 2017?
	2.7.3 What aspects of open source forking have been researched and reported?
	2.7.4 Newcomers or new developers forking motivation from2020 to 2021
	2.7.5 Shifting motivation through time and journey
	2.7.6 Shifting forking motivation

	2.8 Summary from the literature survey

	Chapter 3: Literature Survey Research Methodology
	3.1 Overview
	3.2 Motivation
	3.3 Introduction
	3.4 Literature Survey Selection Criteria and Categorisation
	3.5 Category I: Survey-based Research Methodology
	3.6 Category II: Data Mining Algorithm-based Research Methodology
	3.7 Category III: Machine Learning Algorithm-based Research Methodology
	3.8 Machine Learning: A K Nearest Neighbour Method
	3.8.1 Euclidean distance metric
	3.8.2 Adopting Euclidean distance: characteristics identification and rationale
	3.8.3 Identifying Euclidean distance characteristics
	3.8.4 Our research dataset characteristics

	Chapter 4: Models
	4.1 Overview
	4.2 Literature Survey Road Map Model
	4.3 Chua and Zhang Open Source Software Forking Pattern Prediction Model

	Chapter 5: A Pilot Study
	5.1 Overview
	5.2 Motivation
	5.3 Background
	5.4 Forking Patterns
	5.5 Software Survival and Programming Language Survival Importance
	5.6 Survivability Prediction on the K Nearest Neighbour Method
	5.7 Programming Language Repository File Categorisation and Fork Pattern Classifiers
	5.8 Classifier Results
	5.9 K Nearest Neighbour Results
	5.9.1 Case One
	5.9.2 Case Two
	5.9.3 Case Three
	5.9.4 Case Four

	5.10 Evaluation
	5.11 Conclusions and Future Work

	Chapter 6: A Longitudinal Study
	6.1 Overview
	6. 2 Motivation
	6.3 Background
	6.4 Fork Pattern Identification and Data Collection
	6.5 Normalisation and Euclidean Distance
	6.6 Results
	6.7 Evaluative Test Results
	6.8 Discussion

	Chapter 7: Conclusion
	7.1 Overview
	7.2 Contributions
	7.3 Recommendations
	7.4 Future Work

	Bibliography

