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Abstract
Asthma is a chronic inflammatory disease primarily characterized by inflammation and reversible bronchoconstriction. 
It is currently one of the leading causes of morbidity and mortality in the world. Oxidative stress further complicates the 
pathology of the disease. The current treatment strategies for asthma mainly involve the use of anti-inflammatory agents and 
bronchodilators. However, long-term usage of such medications is associated with severe adverse effects and complications. 
Hence, there is an urgent need to develop newer, novel, and safe treatment modalities for the management of asthma. This 
has therefore prompted further investigations and detailed research to identify and develop novel therapeutic interventions 
from potent untapped resources. This review focuses on the significance of oxidative stressors that are primarily derived from 
both mitochondrial and non-mitochondrial sources in initiating the clinical features of asthma. The review also discusses the 
biological scavenging system of the body and factors that may lead to its malfunction which could result in altered states. 
Furthermore, the review provides a detailed insight into the therapeutic role of nutraceuticals as an effective strategy to attenu-
ate the deleterious effects of oxidative stress and may be used in the mitigation of the cardinal features of bronchial asthma.
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Introduction

Asthma is a multifaceted heterogenous chronic respiratory 
disease associated with various phenotypes and endotypes, 
sharing common characteristic features like inflammation 
and reversible airway obstruction (Mehta et al. 2021d; Ray 
et al. 2016). Asthma is a non-communicable chronic inflam-
matory airway disease and is one of the leading causes of 
morbidity and mortality affecting 300–400 million individu-
als worldwide. The disease is responsible for around 461,000 
deaths each year (Anonymous 2020). Asthma is mainly 
driven by the attribution of both environmental allergens 
(including bushfires) and epigenetic changes which result in 
episodic or persistent respiratory symptoms such as cough, 

shortness of breath, wheezing, tightness in chest, and vari-
able degrees of airflow limitation due to bronchoconstric-
tion, airway inflammation, and increased mucus secretion 
(Dharwal et al. 2020; Hinge et al. 2020; Papi et al. 2020).

Asthma is classified into various phenotypes and endo-
types depending on various factors including inflammatory 
status, onset and severity of the disease, and molecular 
mechanisms involved in the disease pathogenesis. Based on 
the inflammation, asthma is classified into type 2 asthma 
and non-type 2 asthma endotypes (Woodruff et al. 2009) 
and eosinophilic, neutrophilic, mixed granulocytic, and 
paucigranulocytic phenotypes. Similarly, based on the 
molecular mechanism of the disease, inflammatory patterns, 
onset and severity of the disease, Kaur and Chupp (2019), 
Kuruvilla et al. (2019), and Pembrey et al. (2018), have 
identified various phenotypes including early-onset allergic 
asthma, early-onset allergic moderate-to-severe remodelled 
asthma, late-onset nonallergic eosinophilic asthma, and late-
onset nonallergic non-eosinophilic asthma further helps in 
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improving the clinician approach for a better characteriza-
tion and treatment.

Although genetic variations is considered one of the main 
factors involved in the asthma progression that can be stud-
ied using various methods like candidate gene approach, 
genome-wide association studies, and gene interaction stud-
ies, other non-genetical factors like environmental triggers 
are also involved in disease pathogenesis. The main trigger 
for the asthma development is exposure to various allergens; 
however, other environmental irritants including exposure 
ambient traffic pollution, polycyclic aromatic hydrocarbons, 
exercise, diet, and industrial and occupational exposures 
are also involved in the disease progression (Blumenthal 
2012). Many studies have depicted the impact on the expo-
sure of both the outdoor and indoor environmental irritants 
in exacerbating and triggering asthma during the early life 
mainly through reprogramming the lung architecture which 
leads to the generation of immature lung that is more suscep-
tible to the asthma risk in the late life (Ho 2010).

The initiation and progression of the asthma disease is 
mainly involved with activation of various inflammatory 
pathways combining with altered airway homeostasis of 
the tissues and cells involved in the lung physiology. The 
progression of the asthma is mainly characterized with two 
phases: an early phase and a late phase. The early phase in 
the presence of environmental allergens is initiated by the 
IgE immunoglobulins that are released by the sensitized 
plasma cells which then bind to various immune resident 
cells including mast cells and basophils (Picado 1992). 
The mast cells in the presence of the immunoglobulins 
further get activated and degranulated to release various 
inflammatory mediators, proteases, and bronchoconstrictor 
agents including IL-6, IL-33, chymase, tryptase, carboxy-
peptidase 3, and histamine to initiate the late phase of the 
disease (Allam et al. 2021; Pejler 2019). The initiation of 
late phase further promotes the T-helper cell differentiation 
and proliferation into Th1, Th2, and Th17 cells (Pradalier 
1993). These polarized Th cells release various chemotac-
tic factors like IL-4, IL-5, IL-13, IL-17, and growth factors 
to promote eosinophil and neutrophil chemotaxis to the 
lung site and attributes various disease-associated factors 
including smooth muscle thickening, airway remodelling, 
airway constriction, fibrosis, and airway hyperresponsive-
ness (Davoine and Lacy 2014; Shastri et al. 2021; Zhu 
et al. 2020).

Current therapy for asthma treatment mainly involved in 
the usage of bronchodilators and both beta 2 (β2) adrener-
gic agonists and anticholinergic agents that relax the airway 
smooth muscle to attenuate the bronchoconstriction, and 
anti-inflammatory drugs including corticosteroids and meth-
ylxanthines to suppress the airway-associated inflammation 
(Barnes 2011; Barnes 2016; Gross and Barnes 2017; Papi 
et al. 2020). However, the usage of the steroids is limited 

especially in treating severe asthma and neutrophilic and 
paucigranulocytic asthmatics who responds poorly to the 
conventional steroid therapy and also leads to corticoster-
oid resistance (Barnes 2017; Paudel et al. 2020a). In addi-
tion, long-term use of steroids and bronchodilators is also 
associated with several side effects including weight gain, 
hyperglycemia, cataract formation, glaucoma, increased 
body weight, and gastrointestinal bleeding, osteoporosis, 
tachycardia, and tremors (Allam et al. 2021). Also, long-
term usage of bronchodilators leads to various adverse 
effects including dry mouth, pupillary dilation, blurred 
vision, acute glaucoma, and cognitive dysfunction (Gupta 
and O’Mahony 2008). Various novel anti-inflammatory 
therapies including methylxanthines, biologics, and kinase 
inhibitors have also been investigated in the treatment of 
asthma. However, factors including narrow therapeutic index 
of the drugs, unwanted adverse effects associated with mul-
tiple kinase inhibition, and high cost of the biologics have 
largely restricted their use clinically. Another issue of using 
the modern anti-asthmatic drugs is limited to their efficacy 
as they are effective only if administered particularly at the 
time when maintaining the chronotherapy, as the onset of 
symptoms and exacerbation varies between the patients 
(Paudel et al. 2021). Therefore, a better understanding of the 
mechanistic pathways (Mehta et al. 2020a, b) and investigat-
ing alternate novel mechanisms involved in the pathogenesis 
of asthma are highly needed to develop alternate therapies 
and new methods of advance drug delivery (example: liquid 
crystalline nanoparticles, decoy oligonucleotide, extracellu-
lar vesicles, and polysaccharides) with minimal side effects 
and enhanced efficacy (Chan et al. 2021a; Manandhar et al. 
2022; Mehta et al. 2021b; Prasher et al. 2021).

Oxidative stress is a widely known scientific term and 
it is relevant to almost all human diseases as generation 
of reactive oxygen species (ROS) affects every organ such 
as lungs and cardiovascular system (Mehta et al. 2021c; 
Nucera et al. 2022; Panth et al. 2016b). The ROS gener-
ated during oxidative stress is a potent trigger of cellular 
senescence whereby it irreversibly limits the cell prolifera-
tion and these senescent cells secretes various senescence-
associated secretory phenotype that further induced the 
senescence of adjacent cells. As the trigger of asthma such 
as allergen and environmental pollutants is already estab-
lished as a stimulant of oxidative stress, the inhalation 
of these noxious agent is closely associated with senes-
cence of airway cells (Wang et al. 2020b). Apart from 
senescence, increased ROS production from immune cells 
such as neutrophil and macrophages in asthma patients 
is also associated with an increase in inflammasome acti-
vation (example NLRP3) that further exacerbates airway 
inflammation (Simpson et al. 2014). Studies have shown 
that inflammasome-mediated IL-1β responses may play a 
role in the pathogenesis of neutrophilic asthma (Kim et al. 
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2015). Research also suggests that the toll-like receptor 
(TLR)-4-associated p38 mitogen-activated protein kinase 
(MAPK) signaling pathway is involved in autophagy and 
oxidative stress (Wang et al. 2020a). The vital trilateral 
linkage between TLR, innate immunity, and lung disease 
is helpful to further understand the asthma pathophysiol-
ogy (Patel et al. 2022). As such, targeting senescence and 
inflammasomes in asthmatic (clinical study) or pre-clinical 
animal model (mice, rats) by advance drug delivery system 
such as nanotherapeutics could be a promising approach 
for the management of asthma (Devkota et  al. 2021b; 
Khursheed et  al. 2022; Paudel et  al. 2022a; Tan et  al. 
2022). To study the pathophysiology of asthma and test 
various drugs in pre-clinical setting, experimental animal 
models of asthma are very useful. This model develops 
characteristic feature of human asthma by exposing ani-
mals such as rats and mice with allergen such as ovalbu-
min (OVA), house dust mite (HDM), cockroach allergen, 
air pollution, and biomass smoke (Gold et al. 2016; Hirota 
et al. 2015; Liu et al. 2017).

As discussed earlier, asthma is a multifaceted disease asso-
ciated with the involvement and activation of various bio-
logical and molecular pathways in the disease progression. 
Despite the activation of the inflammatory pathways, asthma 
pathogenesis is also progressed by the altered homeostasis of 
the various cellular mechanisms which includes autophagy 
dysregulation (Theofani and Xanthou 2021), increased endo-
plasmic stress (Miao et al. 2020), and mitochondrial stress 
(Sachdeva et al. 2019) further causes cellular dysfunction 
and cell death. The altered homeostasis processes also cre-
ates an imbalance between oxidant and antioxidant system 
in the lungs and results in the abnormal rise of the oxidative 
radicals in the lungs and increased oxidative stress (Erzurum 
2016). Increased oxidative stress in the asthma pathogenesis 
is mainly associated with the response of both the exposure 
of external stimulants including the environmental pollutants, 
allergens, and generation of endogenous oxidative radicals due 
to imbalance in the oxidant-antioxidant system (Sahiner et al. 
2018). The increased oxidative stress along with the response 
to the environmental irritants exposure further augments vari-
ous disease characteristics of asthma including initiation and 
progression of inflammation, airway hyperresponsiveness, 
and airway obstruction (Kirkham and Rahman 2006). The 
oxidative stress allied with the increased endogenous ROS 
like superoxide anion  (O2

−), hydrogen peroxide  (H2O2), and 
hydroxyl radicals  (OH−) are mainly generated either due to 
mitochondria dysfunction or by the activation of the various 
enzyme oxidases including NADPH oxidase, P450 mono-oxy-
genase, cyclooxygenase, indolediamine dioxygenase, xanthine 
oxidase, and the Rho kinases (Kirkham and Rahman 2006). A 
lot of studies have examined and reported previously regard-
ing the involvement of the oxidative stress in the initiation 

and progression of asthma (de Groot et al. 2019; Jesenak et al. 
2017; Mishra et al. 2018; Sahiner et al. 2018).

Nutraceuticals are referred to a broad range of nutrient and 
pharmaceuticals. They are known for various health benefits 
due to their pharmacological activity, nutritional values, die-
tary supplements for maintaining body health, and manag-
ing multiple metabolic processes and the regulation of nor-
mal body functions (Chan et al. 2021b; Chanda et al. 2019). 
The relation of food and its role in the treatment of multiple 
ailments has been established almost 25 decades ago by the 
father of modern medicine, Hippocrates, signified by the 
famous quote “Let food be thy medicine and medicine be thy 
food.” Various ancient civilizations such as Roman, Greek, 
and Egyptian have documented the use of herbal products, 
plants, and foods in treating and preventing diseases, which 
are now being evaluated as novel therapeutic agents by modern 
research (Helal et al. 2019). For example, nutraceuticals in the 
form of vitamins, minerals, dietary fibers, and polyunsaturated 
fatty acids, as well as flavonoids that are widely distributed in 
grapefruits, berries, onions, and green vegetables have been 
shown to reduce risks of developing cardiovascular diseases. 
Besides, plants that are rich in isoflavones, lycopene, and 
β-carotene possess antioxidative properties that can contrib-
ute to cancer-protective effect (Nasri et al. 2014). In terms of 
chronic respiratory diseases, curcumin, berberine, naringenin, 
green tea, gallic acid, and caffeine are examples of nutraceuti-
cals that can be utilized to counter overproduction of reactive 
oxygen species as observed in chronic obstructive pulmonary 
disease (COPD) and lung cancer, whereas resveratrol, grape 
seed oil, coenzyme Q10, and lipoic acid exert remarkable anti-
inflammatory activities that can be utilized to target various 
inflammatory pathways underlying the pathogenesis of asthma 
(Devkota et al. 2021a; Hardwick et al. 2021; Helal et al. 2019; 
Paudel et al. 2022b; Wadhwa et al. 2021). Similarly, medici-
nal plant such as Alpinia galanga (Ramanunny et al. 2022) 
and genus Blepharis (Dirar et al. 2021) possess significant 
anti-oxidant and anti-inflammatory activity that favors asthma 
management. Therefore, nutraceuticals have attracted medi-
cal researchers and they are widely regarded as the promising 
approach to existing therapeutic strategy for the effective man-
agement of different disorder, including asthma. The current 
review further elaborates the impact of the oxidative stress 
involved in the pathogenesis of asthma. Moreover, this review 
also focuses on the therapeutic potential of nutraceuticals as 
antioxidants in the asthma management.

Oxygen radicals that mediate oxidative 
stress in asthma

A prominent trigger in the pathophysiological mechanism 
of oxidative stress is the imbalance due to excess genera-
tion of reactive oxygen species (ROS) (metabolized radicals 
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of O2 and non-radical derivatives of  O2 such as  H2O2), 
endogenous nitric oxide (NO), reactive nitrogen species 
of NO (RNS), and protection against these radicals by the 
endogenous biological defense system (Kirkham and Rah-
man 2006). ROS and RNS are endogenously enhanced by 
various metabolic and energetic pathways of various cells 
together with the exposure to the environmental factors 
(e.g., air pollutants, pollen grains, metallic particles, and 
cigarette smoking) (Barnes 2006). These increased radicals 
drive the activation of various inflammatory and cell death 
pathways to initiate the detrimental events of the asthma like 
the epithelial cell damage and cell death, increased mucus 
production, increased release of danger-associated molecu-
lar patterns, eosinophils, and neutrophil infiltration into the 
airway lumen, and increased airway hyperresponsiveness 
and airway remodelling. The order of these reactive poten-
tials of the free radicals and the oxidants are the superox-
ide anion  (O2

−•) which is considered the major precursor 
that is mainly produced by the oxidative phosphorylation 
from the mitochondrial source or from the reduced nicoti-
namide adenine phosphate (NADPH) oxidation catalyzed 
by NADPH oxidases (Nox) (Michaeloudes et al. 2022) 
followed by hydrogen peroxide  (H2O2), hydroxyl radical 
 (HO•), singlet oxygen  (1O2), peroxyl radical  (HO2

•), nitric 
oxide (•NO), peroxynitrite (ONOO-), perhydroxy radical 
 (HO2•), hydroperoxyl radical  (ROOH•), hypochlorous acid 
(HClO), ozone  (O3), and nitric dioxide  (NO2) (Barnes 2006; 
Kirkham and Rahman 2006; Polosa 2002). TO mitigate the 
detrimental effects of these oxidative radicals, the pulmo-
nary system has developed its own defense mechanism 
via activating different enzyme and non-enzyme network 
of antioxidants like superoxide dismutase (SOD), catalase 
(CAT), and glutathione-based enzymes such as glutathione 
peroxidase (GSH-Px), glutathione S transferase (GST), glu-
tathione reductase (GSH), glutathione synthetase, NADPH 
oxidase, and Rho-oxidase (Imaoka et al. 2009).

ROS‑mediated oxidative stress in asthma

Enhanced ROS in the asthma pathogenesis is mainly con-
tributed through the exposure to the environmental triggers 
including noxious gases, ozone, cigarette smoke, and also 
by activation of various inflammatory and phagocytic cells 
including eosinophils, monocytes, macrophages, and neutro-
phils when stimulated by the exogenous irritants (Henricks 
and Nijkamp 2001). The released ROS including superoxide 
ion  (O2

−) and radical hydroxylic ion (OH) due to their high 
instability with the presence of unpaired electrons that have 
the potential to initiate oxidation by several cellular sub-
stances including the lipids, proteins, and DNR to initiate 
the disruption of normal cell functions (Imaoka et al. 2009).

When ROS are produced in close proximity to the cell 
membrane, oxidation of membrane phospholipids occurs, 
resulting in the formation of lipid peroxidation molecules 
(LPOs) and the generation of several lipid hydroperoxidase 
molecules in the cell membrane. LPOs generate reactive alde-
hydrogen formation and other bioactive molecules (Fig. 1) 
(Rahman et al. 2006). This reactive aldehydes like acrolein 
and 4-hydroxy-2-nonnonenal (4-HNE) are highly diffusible 
and cause apoptosis to activate various cellular-mediated 
pathways. They also form adducts with histidine, cystine, 
and lysine residues, such as histodeacetylase (HADC-2) and 
also react with collagen and fibrinonectin. Cumulating all 
these events finally leads to changes in the cellular function 
that lead to progression of the asthma disease (Fig. 2).

RNS‑mediated nitrosative stress in asthma

Nitric oxide (NO) and NO-derived reactive nitrogen spe-
cies (RNS) are another category of the free radicals which 
triggers the initiation of nitrosative stress in modulating the 
airway function in asthma pathogenesis (Zuo et al. 2014). 
The generation of these RNS endogenously is indirectly 
linked with the oxidative stress and the ROS. NO is pro-
duced by respiratory epithelium and inflammatory cells like 
neutrophils, macrophages, airway nerves, and endothelium 
and plays a key role in mediating the vascular tone and 
bronchotome of airway smooth muscle cells (Vasconcelos 
et al. 2021; Zuo et al. 2014). NO is produced by the various 
nitiric oxide synthases (NOS) as a by-product during the 
metabolism of the L-arginine and also during the interac-
tion of L-citrulline with oxygen using NADPH-dependent 
mechanism (Vasconcelos et al. 2021). Nitric oxide synthase 
(NOS) has three isoforms: constitutive neural NOS (nNOS), 
inducible NOS (iNOS), and constitutive endothelial NOS 
(eNOS) (Andrew and Mayer 1999). However, there are 
only two forms of functional NOS in the airways which 
are constitutive NOS (cNOS) and inducible NOS (iNOS) 
(Ricciardolo 2003). The cNOS produces fento or picomo-
lar concentration of NO which is physiologically important 
in involving in various regulatory mechanisms including 
bronchodilation, bronchoprotection, and anti-inflammatory 
action via interactions with guanyl cyclase (production of 
cGMP) and sulfhydryl groups (production of s-nitrothiols)
(Zuo et al. 2014). In contrast, iNOS is induced in the pres-
ence of proinflammatory cytokines (TNF α, IFN-g, IL-1β) 
by the stimulation of several transcription factors. iNOS 
releases nanomolar concentration of proinflammatory NO 
several hours after exposure and continues to sustain for 
hours or days. NO has one unpaired electron and thus read-
ily interacts with oxygen or transition metals to form bio-
active reactive nitrogen species (Fig. 3). The reaction of 
NO and  O2 produces peroxynitrite ions (ONOO-), a highly 
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reactive oxidant species that interacts with tyrosine to pro-
duce the stable product nitro tyrosine (R-SNO), which is 
known as S-nitro(syl)ation.  NO2 is formed from NO, which 
is also reactive upon combining with HOCl (produced by 
MPO as described above) or with HOBr (from EPO) to 
produce nitrosyl chloride  (NO2Cl) or nitrosyl bromide 
 (NO2Br) which degrade into nitrite and  Cl− or  Br− (Fig. 3). 
The increased RNS are highly reactive molecules which 
cause the nitrosative stress and react with various biomol-
ecules of the cells and tissue of the airways and trigger a 
cascade of different mechanisms which causes cell damage, 
DNA damage, and mitochondrial and protein dysfunction 

to induce airway damage and airway hyperresponsiveness 
(Rahman et al. 2006).

Mitochondria‑associated oxidative stress 
in asthma pathogenesis

As previously mentioned, endogenous oxidative stress and 
the formation of various reactive radicals are mainly gen-
erated either due to mitochondrial metabolism dysfunction 
or due to increased levels of the oxidant-mediated enzymes 
that are involved in the oxygen catalyzation. Mitochondria 

Fig. 1  Intracellular and extracellular ROS generating systems. The 
macrophages and eosinophils generate free  O2

−. These  O2
− are con-

verted into water when they interact with superoxide dismutase 
(SOD) (dismutation). When ferric ions act on  O2

−, they get reduced 
to iron (Haber-Weiss chemistry), and they release free OH, which 
is the most reactive and harmful substances of ROS.  H2O2 is also 
formed by the interaction with iron ion (Fenton chemistry)(Polosa 
2002). Another pathway of producing OH is through the oxidation of 
hypochlorous acid (HOCl). HOCl is produced by neutrophils. They 
contain a high concentration of myeloperoxidase (MPO). MPO chlo-
rinates  H2O2 (created by  O2 dismutation) to produce HOCl. HOCl 

is also a powerful oxidant that can cause several harms. Eosinophil 
epoxidase (EPO) is a protein found in both eosinophils and neutro-
phils. EPO brominates  H2O2 to form HOBr, which is also a reactive 
species, in the same way that MPO does. The  H2O2, which is less 
reactive, is converted to water by catalase or by glutathione peroxi-
dase (Fig. 1). Through the electron donation to the biological system, 
ROS (OH, HOCl, HOBr) are highly unstable and interact with a wide 
range of molecules, leading to lipid peroxidation dysfunction (LPO) 
and increased co-inflammatory signaling. All of these cause modifi-
cations in cellular functions of the inflamed lung
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are the cytoplasmic organelles which possess various cel-
lular and biological functions of which bioenergetics is a 
primary function for the production of energy in the form 
of adenosine triphosphate (ATP). Despite the involvement 
in bioenergetics, mitochondria are also involved in main-
taining the various cellular homeostasis functions includ-
ing calcium regulation, alteration of redox potential, and 
release of protein that stimulates the caspase family of 
proteases (Mabalirajan and Ghosh 2013; Reddy 2011). 
Mitochondria can also sense the exogenous upstream 
triggers such as inflammation, tobacco, smoke, infec-
tion, and environmental insults and in turn can respond 
to such stimuli via changed mitochondrial protein expres-
sion and structure. Equally, mitochondrial dysfunction has 
downstream effects on cytosolic and mitochondrial airway 
contractility, proliferation, gene and protein housekeep-
ing, calcium regulation, fibrosis, responses to oxidative 

stress, apoptosis, and metabolism (Chellappan et al. 2021; 
Prakash et al. 2017).

Mitochondria are not only involved in the bioenergetics 
and bio-maintenance of various cellular functions but also 
involved in the modulating the innate immune system via 
controlling the ROS and RNS generation. Damaged and dys-
regulated mitochondria lead to decreased formation of ATP 
and increased endoplasmic reticulum (ER) stress. Mitochon-
drial oxidative stress and ER stress further lead to cell apop-
tosis. Mitochondrial dysfunction plays a crucial role in the 
bioenergetics metabolism and non-energetics pathogenesis 
in several pulmonary diseases and the lack of mitochondrial 
homeostasis leads to cell injury and cell death. ROS acti-
vated by oxidative stress and inflammatory antigens are the 
major factors for increasing mitochondrial DNA (mtDNA) 
damage, dysregulation of the tricarboxylic acid (TCA) cycle, 
and dysregulation of the electron transport chain (Reddy 

Fig. 2  Molecular pathways of ROS and RNS generation. Deg-
radation of arachidonate-based phospholipids produces other 
bioactive molecules such as 1-palmitoyl-2-(5) oxovaleroyl-sn-
glycero-3-phosphorylcholine (POVPC), and 1-polmitoyl-2-epoxyiso-
prostane-sn-glycero-3-phosphorylcholine (PEIPC) and 1-palmitoyl-
2-glutarouyl-sn-glycero-3-phosphorylcholine (PGPC). These are all 
proinflammatory molecules which increases infiltration of mono-

cytes, neutrophils, and its associated cytokines. Several clinical stud-
ies have documented the destructive characteristics of ROS. Exhaled 
 H2O2, high isoprostane levels in urine, bronchoalveolar lavage fluid 
(BALF), increased levels of eosinophils in blood and BALF, and 
increased neutrophil-derived MPO in blood are all increased in asth-
matic patients as a result of ROS generation. The figure was adapted 
from Polosa (2002) and was reproduced
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2011). Furthermore, increased level of interleukin (IL-4) is 
another potential cause of mitochondrial dysfunction in asth-
matic patients. It also induces 12/15-lipoxygenase (12/15-
LOX) which is the key cause of asthma. IL-5, IL-13, and 
ovalbumin (OVA) specific IgE and airway hyperresponsive-
ness (AHR) are also responsible for mitochondrial dysfunc-
tion (Mabalirajan et al. 2009) and thus conclude that Th2-
dominant response enhances mitochondrial oxidative stress 
in airways (Mabalirajan et al. 2008). The molecular mecha-
nisms on how the mitochondrial oxidative stress influenced 
the pathogenesis of asthma is represented in Fig. 4.

Nutraceuticals that target mitochondrial stress 
in asthma

Various nutraceuticals have been identified which have 
shown positive effects against mitochondrial dysfunction 
for the treatment of asthma (Chan et al. 2021b). In one of 

the studies, Mabalirajan et al. reported the effects of vita-
min E against mitochondrial dysfunction for the treatment of 
asthma. In order to evaluate various pathological pathways, 
in vitro studies were conducted in male BALB/c mice. The 
results revealed that vitamin E attenuated the production of 
IL-4, IL-5, IL-13, OVA-specific IgE, and AHR. Vitamin E 
also reduced allergic skin sensitization and airway inflam-
mation (Mabalirajan et al. 2009). Gheware et al. reported the 
effects of Adhatoda vasica extract against hypoxia-induced 
mitochondrial dysfunction in acute allergic asthmatic mice. 
The results indicated that oral administration of Adhatoda 
vasica extract significantly attenuated IL-17A and hypoxia-
inducible factor-1α (HIF-1α). The study showed that Adha-
toda vasica extract produced anti-inflammatory effects and 
acted as an inflammatory marker which is responsible for 
mitochondrial dysfunctions (Gheware et al. 2021). Zheng 
et al. have studied the effects of curcumin against ER stress 
and mitochondrial dysfunction. Curcumin downregulated 

Fig. 3  Components involved in RNS metabolism. Mutliple elements 
are involved in the RNS metabolism of which NO is the major com-
ponent which is increased in the presence of oxidative stress. The 
increased NO reacts with oxygen to produce various nitrogen reac-
tive radicals to induce the nitrosative stress which cause cell damage, 

mitochondrial dysfunction, and increased AHR. (NOS, nitric oxide 
synthase; MPO, myeloperoxidase; EPO, eosinophil peroxidase; SOD, 
superoxide dismutase). The figure was adapted from Rahman et  al. 
(2006)
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the level of NF-κB signaling pathway through its anti-
inflammatory and immunomodulatory properties. It has also 
been observed to attenuate the level of CD4+ T cells and 
further downregulated ER stress and mitochondrial dysfunc-
tions (Zheng et al. 2013). Lee et al. investigated the effects 
of resveratrol and its anti-inflammatory and anti-asthmatic 
activities in experimental mice model. Resveratrol signifi-
cantly attenuated the level of Th2 cytokines such as IL-4 
and IL-5 in plasma and bronchoalveolar lavage fluid and 
also effectively suppressed airway hyperresponsiveness and 
mucus hypersecretion, in the asthmatic mouse model (Lee 
et al. 2009).

Fiorani and co-workers had investigated the effect of 
quercetin against mitochondrial damage in Jurkat cells. 
Quercetin has been reported to prevent ROS such as perox-
ynitrite (ONOO−) or attenuation of extracellular oxidants. 
It has also attenuated the higher level of lipid peroxidation 
induced by ONOO−. Quercetin prevented mitochondrial 
damage and had caused its redistribution to the cytosol by 
stimulation of plasma membrane oxidoreductases (Fiorani 

et al. 2010). Liang et al. have investigated the role of thy-
moquinone against ultraviolet A irradiation–induced dam-
age on skin keratinocytes and accumulation of ROS on 
human keratinocyte cell culture (HaCaT). In this study 
thymoquinone significantly improved ultraviolet A irradia-
tion–induced cytotoxicity in HaCaT cells. It has also shown 
improved mitochondrial function in HaCaT cells which 
attenuated cellular apoptosis. Thymoquinone activated 
NrF2/ARE pathways and inhibition of the COX-2 inflam-
matory mediator (Liang et al. 2021).

Lee et  al. studied the effects of glycyrrhizin against 
3-morpholinosydnonime induced cell death and mitochon-
drial dysfunction in lung epithelial cells. 3-morpholino-
sydnonime causes several cellular dysregulations such as 
nuclear damage, cytosolic accumulation of cytochrome c, 
reduction in the mitochondrial transmembrane potential, 
activation of caspase-3, enhancement in the formation of 
ROS, and depletion of GSH. Glycyrrhizin was observed to 
attenuate the level of 3-morpholinosydnonime and thereby 
overcame the mitochondrial damage, accumulation of ROS, 

Fig. 4  Mitochondrial oxidative stress in asthma. Mitochondria in the 
presence of various environmental stressors alter its energetic process 
to release various mitochondrial-derived danger molecules including 

mitoROS and mitoDNA to cause mitochondrial damage. The associ-
ated mitochondrial damage releases the danger-associated factors into 
the lung environment to induce the local inflammation and AHR
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and GSH depletion caused by 3-morpholinosydnonime in 
lung epithelial cells. Glycyrrhizin further minimized the 
mitochondrial permeability transition in lung epithelial 
cells that led to the activation of caspase-3 and release of 
cytochrome c that caused the depletion of 3-morpholino-
sydnonime (Lee et al. 2007).

Non‑mitochondrial stress–associated 
oxidative stress in asthma

NADPH oxidase

The important non-mitochondrial enzymes which are 
required for the production of superoxide radicals from free 
oxygen are the NADPH oxidases that produce superoxide 
radical, a major ROS involved in the asthma pathogenesis 
(Segal et al. 1981). NADPH oxidases that belong to the NOX 
family are the key ROS producing enzymes that mainly acti-
vate in the phagocytic cells like macrophages and neutro-
philes to create an oxidative burst in the rapid elimination 
of the invading microorganisms (Panday et al. 2015). The 
critical role of NADPH oxidase as a transmembrane pro-
tein involves in transferring electrons from NADPH to FAD 
to reduce the oxygen for the generation of the superoxide 
radical, and the dysfunction of these oxidases leads to excess 
ROS production to activate various cellular and inflammatory 
pathways that are involved in the progression of various dis-
eases (Snezhkina et al. 2019). To date, seven different homo-
logues of the NADPH enzymes have been identified which 
consist of NOX1 to NOX 5 and the two NOX-5 like dual 
oxidases including DOUX1 and DOUX2 (Lambeth 2004).

NADPH oxidase consists of five protein components that 
render its structure complex. Among these two components 
are membrane bound  (P22PHOX and  GP91PHOX and G-protein 
Rap1A), while three components are present in the cytosol in 
a resting phase  (P40PHOX,  P47PHOX, and  P67PHOX). The bond-
ing proteins are also present in cytosol with the other compo-
nents: rac1 or rac2, the two small molecular weight guanine 
nucleotide proteins. When cytosolic parts migrate to the cell 
membrane, NADPH oxidase is activated. The family NOX is 
gp91PHOX homologous and forms p22PHOX heterodimer 
except NOX5 and DOUX. As an additional EF intracellu-
lar Ca2+ binding hand domain, both NOX5 and DOUX1/
DOUX2 are calcium-sensitive, whereas NOX1 to NOX3 are 
not directly calcium-dependent for activation (Han and Lee 
2000). NOX4 requires p22PHOX but requires no other co-
factor such as NOX1 to NOX3. GP91PHOX is one of the five 
components that supports electron transfer through NADPH 
oxidase (NOX2 is also known as GP91PHOX). P67PHOX is 
an auxiliary protein which is required for oxidase activation. 
During stimulation of the cell, they move from cytosol to 
membrane following the heavy phosphorylation of p47PHOX 

(Babior 1999). Simultaneously, P22PHOX and gp91PHOX 
assemble on membranes with Rap1A, p40PHOX, p47PHOX, 
and rac1 or rac2 (Babior et al. 2002). This entire assembly 
activates the oxidase, allowing it to transfer electrons from 
the substrate to oxygen. When neutrophils lack p47PHOX 
and p67PHOX, they are unable to produce superoxide, result-
ing in chronic granulomatous disease, which is a genetic dis-
order (Sheppard et al. 2005).

Role of NADPH oxidase in asthma and generation 
of ROS

The main non-mitocndrial source of ROS generation via 
superoxide is NADPH oxidase (Fig. 5). ROS is a benefi-
cial inflammatory process that encloses harmful bacteria 
and retains the body’s innate immunity (Lee and Yang 
2012). However, over-production of ROS gives rise to 
inflammatory diseases of the respiratory system such as 
acute respiratory distress syndrome, asthma, cystic fibrosis 
(CF), COPD, tissue destruction, and remodelling (Harijith 
et al. 2017). Superoxide anion is the primary product of 
NOX/DOUX dismutation to hydrogen peroxide. However, 
DOUX1/2 and NOX4 generate  H2O2 without the use of a 
superoxide intermediate (Lee et al. 2006). NOX2 is pre-
sent in neutrophils and eosinophils whereas ROS is the 
primary source of allergic inflammation. These myeloid 
cells generate ROS and contribute towards the exacerbation 
of asthma (Fahy 2009). NOX4 has the ability to detect oxy-
gen, cells, apoptosis, fibrosis, and inflammation. They are 
found in epithelial cells, smooth muscle cells, and lower 
airway mesenchymal cells. In pharmacological inhibition 
and genetic approaches of asthma model, increased smooth 
muscle contractility in the airway was repudiated in NOX4 
(Clempus et al. 2007). NOX4 and DOUX1 levels in the 
neutrophilic murine model of asthma are elevated, whereas 
only DOUX2 is elevated in the non-neutrophilic murine 
model of asthma.

Pharmacological NOX4 antagonist was reported to 
improve ciliary function in a neutrophilic asthmatic murine 
model. Among all NOX-proteins, external hydrogen per-
oxide, which promotes oxidative stress and leads to matrix 
metalloprotease (MMP)-1, can be increased in normal 
human nasal epithelial cells (Waghray et al. 2005). MMPs 
are also released by other airway cells such as interstitial 
cells, vascular smooth muscle cells, and infiltrated inflam-
matory cells such as macrophages; thus, MMPs can be a 
crucial target to mitigate chronic respiratory disease (Mehta 
et al. 2021a). The main source of hydrogen peroxide is 
DOUX1/2 in the upper respiratory system. Immuno-histo-
chemical analysis has identified the presence of DOUX1 
at apical surface of tracheobronchial tree and epithelial 
cells of alveoli while DOUX2 was found in salivary and 
submucosal glands (Geiszt et al. 2003). In allergic asthma, 
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activation and expression of epidermal growth factor recep-
tor (EGFR) signaling are signs of mucous metaplasia and 
airway remodelling. It has been discovered that genetically 
inhibiting DOUX1 reduces EGFR and reverses the signs 
and symptoms of asthma in a murine model. In allergic 
asthma, DOUX1 secretes mucous via TNF-alpha-convert-
ing enzymes and increases the levels of several inflamma-
tory mediators such as IL-8 and matrix metalloprotease-9. 
DOUX1’s innate host defense property causes it to secrete 
H+ and increase airway acidification (Tyner et al. 2006). 
DOUX2 is involved in cell motility and wound healing. 
Although the role of NOX1 in asthma is unknown, NOX1 
plays an important role in alveolar cell injury during hyper-
oxia in knockout mice (Carnesecchi et al. 2009).

Rho GTPase

Rho GTPase is a subfamily of the Ras superfamily that binds 
to GTP and performs many cellular functions such as cell 
growth and development, cell regulation, cell motility, tran-
scription regulation, and actin cytoskeleton rearrangement 
(Van Aelst and D’Souza-Schorey 1997). RHO GTPase in 
animals contains approximately 20 proteins. Rho (A, B, 
C), Rac (Barnes 2006; Kirkham and Rahman 2006; Polosa 
2002), Cdc42, TC10, TCL, Chp (Barnes 2006; Kirkham 
and Rahman 2006), RhoG; Rnd (Dozor 2010; Kirkham and 

Rahman 2006), RhoBTB (Abo et al. 1991; Kirkham and 
Rahman 2006; Polosa 2002), RhoD, Rif, and TTF are all 
members of the Rho family (Etienne-Manneville and Hall 
2002). Rho GTPase is activated in the cytosol by guanine 
nucleotide exchange factors (GEFS), which convert Rho 
from GDP to GTP (from inactive to active) (Hanna and El-
Sibai 2013). GTPase activating proteins (GAPs) inactivate 
Rac. RhoGDI keeps Rac inactive in the cytosol, but it has 
also been discovered that Arghap1 and Arghap25 inactivate 
Rac2 in leukocytes (Lőrincz et al. 2014). Researchers have 
identified approximately 30 Rac GEFs in animals, includ-
ing VAV1, VAV2, and Tiam 1, which can stimulate ROS 
production via NADPH (Hanna and El-Sibai 2013).

Role of Rho GTPase in activation of NADPH

Under normal circumstances, NADPH oxidase activates 
Rac. NOX1 and NOX2 are in turn activated by Rac. 
However, the activation of NOX3 is unclear, although 
researchers have identified the Rac binding site in NOX3. 
No binding or activation of Rac has been reported in 
NOX4 (Quinn et al. 1995). RACs are essential for the 
activation of NOX1 and NOX2 in signal transmission for 
growth factors, cytokines, cell-cell proliferation, chemo-
taxis, and phagocytosis (Quinn et al. 1995). The roles of 
NOX1 and NOX2 oxidase activation via Rac1 and Rac2 

Fig. 5  Role of NOX in asthma. NOX2, NOX4, and dual oxidase 1 
(Duox1) play critical roles in asthma through various mechanisms. 
Both Duox1 and Nox4 stimulate mucus secretion and matrix met-
alloprotease (MMP) production in airway epithelial cells. In addi-
tion, Duox1 enhances airway acidification and Nox4 induces cili-
ary dysfunction and airway smooth muscle hypercontractility. Nox2 

expressed in myeloid and non-hematoietic cells plays distinctive roles 
in asthma. Nox2 expressed in myeloid cells is believed to mediate the 
worsened phenotype of asthma, while Nox2 expressed in the lung 
structure cells mediates airway eosinophilia. The figure was adapted 
from Harijith et al. (2017) and was reproduced
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in cells differ; for example, in monocytes, Rac1 is the pri-
mary activator, whereas in neutrophil progenitors, Rac2 
is important. In mice, genetically inhibiting RAC1 in leu-
kocyte cells has been reported to reduce actin assembly 
and chemotactic factor without affecting ROS generation 
(Hordijk 2006).

Rho GTPase is found in the cytosol alongside 
p40PHOX, p47PHOX, and p67PHOX. Activation of 
NOX2 in neutrophils during phagocytosis requires the 
small GTPase for the production of superoxide, which 
generates ROS to engulf the microbes. External stimuli 
activate the cell, and Rho GTPase is activated via GEFs, 
which convert GDP to GTP and RAC GTP binding, which 
is directly attached to P67PHOX in the cytosol. This 
binding interacts with NOX2 via the membrane’s active 
domain (AD) to produce superoxide (Abo et al. 1991). 
NOX1 is the first animal oxidase enzyme found in non-
phagocytic cells, such as colon epithelial cells and smooth 
vascular muscle cells (Knaus et al. 1991). NOX1 activation 
requires soluble proteins such as Nox activator 1 (Noxa1) 
and Nox organizer 1 (Noxo1), as well as the GTP binding 
Rac, which has the ability to directly bind with Noxa 1 
and easily generates superoxide through NOX1. NOX1 is 
capable of producing a large amount of superoxide in the 
absence of any cellular stimuli (Mizuno et al. 1992).

Role of Rho GTPase in asthma

Rho family of GTPases are the fundamental enzymes 
that orchestrate various cellular homeostasis functions 
including cell division, cell cycle progression, and actin 
cytoskeleton assembly (Phuyal and Farhan 2019). Rac, 
Rho A, and Cdc42 are the main Rho family regulators 
required for lamellipodia, filopodia, and actin polymeriza-
tion (Srinivasan et al. 2003). Autocoids activate G-protein-
coupled receptors on smooth muscle, as well as RhoA and 
phospholipase C, which depolarize the plasma membrane 
and induce calcium channels. Rho A is activated by GEFs, 
which binds Rho A to GTP (Shimokawa et  al. 2016). 
RhoA activated Rho-activated kinase (ROCK), which is 
an antagonist of myosin light chain phosphatase (MLCP), 
relaxes the smooth muscle. CPI-17 protein complex acti-
vated via protein kinase C also inhibits MLCP by increas-
ing MLC phosphorylation. IP3 and DAG are stimulated 
by phospholipase C, which aids in the influx of calcium 
ions and the increase of calcium through the sarcoplasmic 
reticulum. Increased calcium levels in the cell activates 
myosin-light-chain-kinase (MLCK) via calmodulin (CaM) 
(Snetkov et al. 2001). The NOX4 isoform of NADPH oxi-
dase increases RhoA activity in the smooth muscle cells 
(McCarty et al. 2021). The role of RhoA in the regulation 
of asthma is summarized in Fig. 6.

Nutraceuticals that target 
non‑mitochondrial stress

In preventing and treating various respiratory disorders, 
nutraceuticals play an important role. Natural substances 
and nutritional supplements are becoming ever more 
widely recognized in preventive health care today. Glob-
ally, the promotion of functional foods, drinks, and herbal 
supplements meets the nutritional and health needs of 
each person. Asthma control may be clinically assistive to 
nutraceutical substances that control lung oxidative stress 
(PhyCB, NAC, LA, or ferulic acid, selenium, and zinc), 
promote NO (citrulline, high dose folates, and  H2S (NAC, 
taurine), and directly cause bronchodilatation via calcium 
modulation (glycines, mg). These micro- and innervated 
enzymes contribute to modulating the immune system and 
reduces the risk of various conditions in humans, includ-
ing respiratory conditions (McCarty et al. 2021; Qu et al. 
2017).

Phytochemicals targeting non‑mitochondrial 
oxidative stress

There are several sources of non-mitochondrial stress 
such as plasma F2-isoprostane, enzymes such as mye-
loperoxidase, eosinophil peroxidase (EPO) (Panth et al. 
2016b), lipid peroxidation product (such as isoprostanes, 
lipid hydroperoxides, oxidized low density lipoprotein) 
(Tarafdar and Pula 2018), and nitric oxide (NO) that are 
produced via inducible nitric oxide synthase pathway 
(Paudel et al. 2016). Immune cells such as eosinophils are 
major source of NO-derived oxidants (such as 3-nirotyros-
ine), and they generate ROS through EPO catalyzed oxi-
dation (MacPherson et al. 2001). Peroxidase and NAPDH 
oxidase can oxidize numerous substrates to produce reac-
tive oxygen species (ROS) and therefore are the potential 
targets of antioxidant molecules (Mathur and Vyas 2013; 
Schaffer and Bronnikova 2012). Several nutraceuticals 
are explored for their promising antioxidant activity both 
in vitro and in vivo (Chan et al. 2021b; Manandhar et al. 
2018; Panth et al. 2016a; Paudel and Panth 2015; Prasher 
et al. 2020). Paudel et al. (2020a) evaluated the antioxi-
dative potential of rutin-loaded liquid crystalline nano-
particles in lipopolysaccharide-induced oxidative stress 
in human bronchial epithelial cells (BEAS-2B) in vitro. 
It was observed that the rutin formulation showed potent 
antioxidant activity by inhibiting the total cellular ROS 
and NO at a dose of 5 μM (Paudel et al. 2020b). The anti-
oxidant activity was further validated by gene expression 
and was found that rutin inhibited specific genes (NADPH 
oxidase (Nox)-4; Nox2B) and upregulated the antioxidant 



 Environmental Science and Pollution Research

1 3

genes NADPH quinine oxidoreductase-1 (NQO1) and 
γ-glutamyl cysteine synthetase catalytic subunit (GCLC) 
(Mehta et al. 2021c; Vyas et al. 2017). Baicalin (a flavo-
noid) and liensinine (an alkaloid) inhibit NO production by 
reducing the protein expression of iNOS and inhibit serum 
lipid peroxidation to show anti-oxidant activity (Jun et al. 
2021; Paudel et al. 2020b). Similarly, in vivo mice model 
of asthma has also shown that nutraceuticals (plant extract 
or single compound) target various non-mitochondrial 
stress. Eriobotrya japonica leaf extract at a dose of 100 
and 200mg/kg body weight was found to inhibit the EPO 
and NO in BALB/c mice sensitized and challenged with 
ovalbumin (Kim et al. 2020). Another mice model revealed 
that a nutraceutical supplement of apocynin, lipoic acid, 
and probiotics has a positive influence on the antioxidant 
enzyme in obese asthmatic mice. The lung tissue of mice 
administered with supplements separately for 12 weeks 
showed an increase in the activity of superoxide dismutase 
(SOD) in apocynin-treated group. Similar increases were 

observed with glutathione reductase activity in the lipoic 
acid–treated group and glutathione peroxidase activity 
in probiotics-treated group (Kleniewska and Pawliczak 
2019). Sakuranetin (a flavonoid) treatment reduced pulmo-
nary oxidative stress by inhibiting the 8-iso-prostaglandin 
F2a in lung tissue of ovalbumin-induced mice model of 
asthma (Sakoda et al. 2016). Astragalin is another flavo-
noid that protects the tissues from LPS-induced epithelial 
cell apoptosis and etoaxin-1 induction by targeting oxida-
tive stress-response mediated through mitogen-activated 
protein kinase (MAPK) signaling. This study was per-
formed in vitro in BEAS-2B cells where astragalin at a 
dose of < 20 mM inhibited intracellular total ROS pro-
duction and protein expression of PLCg1, PKCb2, and 
NADPH oxidase subunits of  p22phox and  p47phox. The 
phosphorylation of MAPK family protein JNK and P38 
was also inhibited by astragalin proving its potent antioxi-
dant activity in asthma in vitro (Cho et al. 2014).

Fig. 6  Role of Rho GTPase in the regulation of asthma. Rho GTPase 
mainly RhoA-kinase activates the Rho-activated kinase (ROCK) to 
induce the airway smooth muscle proliferation to induce AHR. Also, 
RhoA kinase also involved in eosinophil recruitment, mast cell acti-

vation, and altered macrophage polarization which play a key role in 
the pathogenesis of asthma. The figure was adapted from McCarty 
et al. (2021) and was reproduced
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Similar mechanism was also observed with morin 
(a flavonoid from Moraceae plant) treatment to human 
bronchoepithelial cells where morin modulated oxidative 
stress responsive-MAPK pathway. The antioxidant activ-
ity of morin was shown by significant decrease in total 
cellular ROS and decreased phosphorylation of MAPK 
family protein (ERK, JNK, P38) (Ma et al. 2016). Resver-
atrol is a well know polyphenol with antioxidant poten-
tial. A mice model of obesity (induced by high-fat diet 
[HFD])-associated allergic airway inflammation (induced 
by ovalbumin) was established to investigate the potential 
of resveratrol to reverse oxidative damage by measuring 
the total ROS, enzyme, and protein expression. It was 
revealed that resveratrol significantly inhibited p47phox 
and iNOS protein expressions, ROS production, and ele-
vated the SOD levels in lung tissues in mice treated with 
HDF and ovalbumin compared to control mice (André 
et al. 2016). Collectively, these in vitro and in vivo studies 
highlight various promising nutraceuticals with antioxi-
dant potential in the management of asthma. Further in-
depth mechanism–based translational research is essential 
to validate them as therapeutic alternative (Table 1).

Antioxidant scavenging system (Nrf2 
pathway) in asthma

As discussed earlier in this manuscript, oxidative stress 
causes cellular dysfunction and abnormal release of toxic 
substances such as alcohols, aldehydes, peroxides, ketones, 
and cholesterol oxide (Finaud et al. 2006). Various factors 
are responsible for causing oxidative stress and inflamma-
tion in the lung such as ozone, diesel exhaust, and tobacco 
smoke. Oxidative stress is responsible for alteration in 
Th-1 and Th-2 that causes activation of NF-κB, which is 
a potential inducer for pro-inflammatory genes (Dozor 
2010). The excess production of these ROS is controlled 
and co-ordinated by various endogenous antioxidant defense 
mechanisms which come into existence in the presence of 
exogenous irritants. Nrf2 is one such important transcription 
factor and a key regulator production of various cytoprotec-
tive proteins like antioxidants and xenobiotic detoxification 
enzymes to restore the balance between oxidant-antioxi-
dant system (Sussan et al. 2015). Under normal conditions, 
Nrf2 is inactive in the cytoplasm bounds with its inhibitor 
Kelch-like ECH-associated protein (Keap1); however, in the 
presence of various environmental irritants, Nrf2 releases 
from the Keap1 and translocates to nucleus to induce the 
transcription of more than 650 proteins to activate different 

Table 1  Nutraceuticals targeting non-mitochondrial stress in vitro and in vivo

Nutraceuticals Study design Findings Reference

Rutin-LCNs In vitro study on BEAS-2B Inhibit total cellular ROS (Paudel et al. 2020b) (Mehta et al. 
2021c)Inhibits gene expression of Nox, NOX2B 

and upregulate NQO-1 and GCLC
Baicalin In vitro (macrophage) and serum lipid 

peroxidation assay
Inhibits NO via iNOS pathway, inhibits 

serum lipid peroxidation
(Paudel and Kim 2020)

Eriobotrya japonica Ovalbumin induced mice model of 
asthma

Inhibits EPO and NO in BALF of 
BALB/c mice and serum lipid peroxi-
dation

(Kim et al. 2020)

Apocynin Ovalbumin and HFD induced mice 
model of obese asthma

Increase superoxide dismutase, glu-
tathione reductase, and glutathione 
peroxidase activity

(Kleniewska and Pawliczak 2019)
Lipoic acid
Probiotics
Sakuranetin Ovalbumin induced mice model of 

asthma
Inhibits the 8-iso-prostaglandin F2a in 

lung tissue
(Sakoda et al. 2016)

Astragalin In vitro study on BEAS-2B Inhibition of total ROS production and 
protein expression of PLCg1, PKCb2, 
NADPH oxidase subunits of  p22phox, 
and  p47phox

(Cho et al. 2014)

Morin Ovalbumin induced mice model of 
asthma

Inhibition of total ROS production and 
phosphorylation of MAPK family 
protein (ERK, JNK, P38)

(Ma et al. 2016)

Resveratrol Ovalbumin and HFD induced mice 
model of obesity-associated allergic 
pulmonary inflammation

Resveratrol reduced the p47phox and 
iNOS protein expression, ROS produc-
tion, and elevated the SOD levels in 
lung tissues.

(André et al. 2016)



 Environmental Science and Pollution Research

1 3

antioxidant pathways to attenuate the environmental irri-
tant–mediated oxidative stress (Sussan et al. 2015).

Moreover, Nrf2 is also involved in various intracellular 
defense mechanisms to restore the airway epithelial barrier 
by repairing the disrupted epithelial junctions that occurred 
due to the exposure of the airways to various environmental 
triggers (Du et al. 2021). Aldehyde oxidase (AOX)1 acts 
through downregulation of Nrf2 pathways in the formation 
of the airway epithelial barrier. According to earlier data, 
therapeutics targeting the Nrf2/AOX1 pathway can reduce 
asthma by increasing airway epithelial barrier integrity 
(Mizumura et al. 2020). The detailed mechanism involving 
Nrf2 pathways in the pathogenesis of asthma is presented 
in Fig. 7.

Several antioxidants, those of which have shown posi-
tive impact against asthma and produced inhibitory effects 
against Nrf2 pathways, have been identified recently. In one 
of the studies, Wang et al. reported the effects of aloperine 
which suppresses allergic airway inflammation by altering 

the levels NF-κB, MAPK, and Nrf2/HO-1 pathways. Alop-
erine is reported to attenuate the NF-κB translocation factor 
and MAPK pathway in a murine asthma model and has acti-
vated Nrf2/HO-1 signaling pathway in asthmatic mice. It has 
also shown inhibitory effects on pro-inflammatory cytokines 
including IL-4, IL-5, IL-13, and IFN-γ, and IgE. The find-
ings suggested that aloperine has potent anti-inflammatory 
and antioxidant effects that may be employed in the treat-
ment of asthma (Wang et al. 2018). In another study, Mishra 
et al. have reported effects of vitamin E and curcumin in 
the activation of Nrf2 pathways in rat’s heart under altered 
thyroid states. Combination of vitamin E and curcumin regu-
lated the levels of Kelch ECH associating protein (KEAP1) 
as well as Nrf2 and enhanced their antioxidant potential 
(Mishra et al. 2019).

Jung et al. have investigated the anti-inflammatory and 
antioxidant effects of the ethanolic extract of the medicinal 
herb, Scrophularia koraiensis Nakai (SKNEE) in BALB/c 
mice for the treatment of asthma. The study revealed that 

Fig. 7  Mechanism of Nrf 2 in asthma. Nrf2, an antioxidant activa-
tor when combines with Kelch-like ECH-associated protein (Keap)1, 
undergoes phosphorylation. The phosphorylated Nrf2 translocates to 

the nucleus and combines with the ARE to induce transcription of the 
various antioxidative enzymes to restore the antioxidant system that 
was disrupted in the presence of various environmental irritants
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SKNEE attenuated the level of NF-κB and activated Nrf-2, 
HO-1 signaling pathways. The results indicated that SKNEE 
is a potential therapeutic agent for allergic airway inflamma-
tion (Jung et al. 2020). In another study, Chen et al. reported 
anti-asthmatic effects of one of the Chinese herbal plants 
Schisandrin B in a mouse model. The study exposed the 
antioxidant and anti-inflammatory effects of Schisandrin B 
in OVA-induced allergic asthma. Schisandrin B suppressed 
the level of NF-κB and activated the level of Nrf2 signaling 
pathways. Dworski et al. have reported anti-asthmatic effects 
of vitamin E which activated Nrf2 signaling pathways. The 
study revealed that activated levels of Nrf2 signaling path-
ways downregulated the levels of SOD-1 which showed 
higher antioxidant properties (Dworski et al. 2011). Other 
nutraceutical bioactive substances having antioxidant prop-
erties are mentioned in Table 2.

Nutraceuticals under clinical trials 
for asthma treatment

Various nutraceutical-based clinical trials have proven their 
beneficial role in the management of asthma. A randomized 
controlled trail (RCT) with n = 80 subjects was conducted to 
evaluate if saffron supplementation could improve the clini-
cal symptoms of asthma and reduced the severity in patients 
with mild/moderate allergic asthma. Among two groups (saf-
fron and placebo), the subjects receiving two capsule of saf-
fron (100 mg/day) for 8 weeks showed improvement in the 
frequency of clinical symptoms measured in terms of short-
ness of breath during the day and night time (frequency), 
use of standard asthma medicine (salbutamol spray), wak-
ing up at night due to asthma exacerbation, and limitation 
in physical activity (Zilaee et al. 2019). Similarly, another 
RCT investigated if Nigella sativa supplement reduced air-
way inflammation and improved the lung function in partly 
controlled asthma patients. N. sativa was administered in 
two groups as 1 g/day (n = 26 patients) and 2 g/day (n = 
26 patients) for 3 months. The effects were then compared 
with placebo control (n = 24 patients). Interestingly, forced 
expiratory volume (FEV) 25–75% and FEV1 (% predicted) 
was remarkably increased in N. sativa 2 g/day group while 
peak expiratory flow variability was improved in both 1 
and 2 g/day groups as compared to placebo. In addition, 
fractional exhaled nitric oxide and (FENO) and serum IgE 
were reduced, and interferon gamma was increased after 3 
months in both 1 and 2g/day groups. Furthermore, asthma 
control test score was improved drastically at 6 and 12 weeks 
suggesting N. sativa supplementation may improve set lung 
function parameters and airway inflammation in partly con-
trolled asthma (Salem et al. 2017).

Another RCT studied if lycopene-rich supplement modified 
non-eosinophilic airway inflammation in asthma. Asthmatic 

subjects (n = 32) were administered with a low antioxidant diet 
for 10 days before starting the randomized cross over trial (1 
week for each of 3 treatments; placebo, tomato extract (45 mg 
lycopene/day) and tomato juice (45 mg lycopene/day) with 10 
days washout period after each treatment. It was observed that 
low antioxidant diet was associated with worsening of asthma 
control score, reduction in %FEV (1) and %FVC. It also 
caused an increase in percent of sputum neutrophil. In contrast, 
both treatment groups (tomato juice and extract) decreased 
the influx of airway neutrophil. Furthermore, treatment with 
tomato extract also reduced sputum neutrophil elastase activ-
ity thus suggesting that dietary antioxidants such as lycopene 
may be beneficial in asthma management (Wood et al. 2008). 
Clinical trials have also found that dietary intake of the soy 
isoflavone genistein for 4 weeks is associated with reduced 
severity of asthma (Kalhan et al. 2008). Genistein inhibited 
eosinophil leukotriene (LTC)-4 synthesis from human periph-
eral blood eosinophil and inhibited phosphorylation of p38 
mitogen–activated protein kinase (MAPK) and its downstream 
target MAPKAP-2, which in turn reduced the translocation 
of 5-lipoxygenase to the nuclear membrane. In patients with 
asthma, following 4 weeks of dietary soy isoflavone supple-
mentation, ex vivo eosinophil LTC-4 synthesis decreased by 
33% (N = 11, P = 0.02) and FENO decreased by 18% (N = 
13, P = 0.03). This clinical trial highlights that dietary soy 
isoflavone supplementation is beneficial in the management 
of eosinophilic asthma (Kalhan et al. 2008). Ascorbic acid 
(an antioxidant significantly present in citrus fruits) is well-
known for its beneficial activity against a range of lung dis-
eases including asthma (Riccioni et al. 2007). A randomized 
controlled trial conducted in 80 asthmatics found that ascorbic 
acid supplementation at a dose of 1500 mg/day for 2 weeks 
was able to attenuate exercise-induced bronchoconstriction. 
This was evident by significant reduction in the maximum fall 
in post-exercise FEV1 and improvement in asthma symptom 
score by ascorbic acid compared to placebo. Post-exercise 
FENO, LTC4-E4 and 9alpha, and 11beta-prostaglandin F2 
concentrations were significantly decreased on the ascorbic 
acid diet compared to the placebo and usual diet (Tecklen-
burg et al. 2007). Some of the aforementioned nutraceuticals 
are already available commercially while some are involved 
in ongoing clinical trials. These are exploring the antioxidant 
potential of promising nutraceuticals. Taken together, these 
nutraceuticals with “drug-like” potentials and less side effect 
than synthetic compounds need further validation for effi-
cacy and safety before gaining its therapeutic value in clinical 
settings.
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Conclusion and future perspectives

It is clear from this extensive literature that oxidative 
stress and the imbalance between the oxidant and anti-
oxidant systems play a major role in the initation and pro-
gression of the asthma disease. As the imbalance between 
the oxidant and antioxidant systems is not controlled by 
the endogenous antioxidant systems, it is therefore highly 
essential to identify the exogenous antioxidant which can 
restore the balance. Thus, identifying newer pharmacolog-
ical agents that could restore the balance between the oxi-
dant and antioxidant systems will become an alternate to 
the current therapy which are being used with limitations 
due to the poor response and adverse effects. Although 
various studies have reported on using the nutraceuticals 
as the alternative antioxidant therapy, which is quite prom-
ising in various in vitro and in vivo studies. Very few have 
been proven to be clinically effective in attenuating the 
disease due to poor bioavailability. Furthermore, exten-
sive in-depth research is highly required to understand the 
new pathways in mediating the oxidative stress and at the 
same time identifying newer nutraceuticals with improved 
physiochemical properties which is essential in manage-
ment of the asthma.
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