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We demonstrate experimentally Bloch oscillations, which occur above a certain
threshold value of the effective potential gradient in lattices with specially mod-
ulated coupling between the neighboring sites. We formulate the general con-
ditions for this phenomenon, arising due to the competition between the tilt-
ing and broadening of the transmission band, and explain why no threshold
was present in any previous observations. Our experiments are performed in
inhomogeneous photonic lattices, which represent the process of quantum two-
mode squeezing in Fock space, underpinning a fundamental quantum-classical
correspondence. © 2017 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/) [http://dx.doi.org/10.1063/1.4982879]

In 1971, Leo Esaki suggested a phenomenon that is today known as “Bloch oscillations” (BOs):
the periodic motion of electrons in an atomic lattice under the action of an external electric field.1,2

In other words, the electron in a periodic lattice undergoes an oscillatory motion instead of uniform
spreading when a voltage is applied. Strikingly, this transition occurs for any voltage, as small
as it may be. Being a wave phenomenon, BOs are found in any lattice system that is based on
wave physics and where a linear transverse potential gradient can be applied, such as electrons in
semiconductor lattices,3 ultracold atoms,4,5 Bose-Einstein condensates,6 and photonic waveguide
arrays.7–9 In all implementations of BO, no threshold in the required potential gradient was observed.
Recent studies provide a paradigm shift by formulating general conditions for the existence of Bloch
oscillations in inhomogeneous lattices, identifying a regime of BO with a threshold.10–12 With our
work, we provide an experimental proof of this new kind of BO by utilizing photonic lattices as a
platform.

The very nature of BO is identical in all lattice systems, and mathematically the key dynamical
features can be captured by a set of discrete coupled mode equations,

i
dan

dz
=Cn,n+1an+1 + Cn,n−1an−1 + 2βnan . (1)

To be specific, we discuss BO implementation in photonic lattices in the form of optical waveguide
arrays, since we use this platform for the experimental demonstration of our general theoretical
results. Then, an(z) is the complex optical mode amplitude in the nth waveguide, z is the evolution
coordinate, Cn,n−1 ≡Cn−1,n is the coupling or hopping rate between the waveguides n and (n � 1).
The value of β determines the local propagation constant shift between the successive waveguides,
which acts as the external linear potential gradient.13 A characteristic lattice structure is shown in
Fig. 1(a), top.

In homogeneous lattices (Cn,n�1 = const), BOs occur for any potential ramp β , 0,14 and the
oscillation frequency is proportional to the gradient. In our work, we generalize the understand-
ing of BO for inhomogeneous lattices with variable coupling (Cn,n−1 , const). Our theory explains
the absence of a threshold in any experimental manifestations of BO to date, including recent
studies of several inhomogeneous lattice types where also BOs occur without any evidence of a
threshold.15–17 Importantly, our general analysis exactly predicts in which cases BO can occur at all
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FIG. 1. Bloch oscillations and threshold effects in inhomogeneous lattices: (a) Top—design of a photonic lattice of N waveg-
uides with a linear gradient of propagation constants, β, representing an effective applied potential. Bottom—characteristic
polynomial dependencies of the coupling coefficient on the lattice position with the exponent α. (b) Centre—diagram indi-
cating two regimes of bound eigenmodes or extended states depending on the coupling exponent α and the effective force β.
Top—characteristic eigenmode spectra with discrete Wannier-Stark ladder of bound modes in a homogeneous lattice (α= 0)
and continuum spectrum of extended states for α= 2. Bottom—eigenmode spectra for a linear coupling modulation (α= 1)
showing transition from continuous to discrete spectrum above the threshold effective force β > βcr.

and pinpoints a regime when BO exhibits a threshold, providing a unifying view on several theoretical
predictions.10–12

The appearance of BO is associated with the periodic revivals of any input state.7–9 This is intrin-
sically connected to a particular structure of the eigenmode spectrum, where eigenmodes are found as
solutions an(z)=An exp(iqz) with the propagation constants q defining the effective energy levels. In
the BO regime, the eigenlevels q form an equidistant Wannier-Stark ladder18 and each eigenmode is
bounded. In contrast, continuum spectrum of extended modes corresponds to wavepacket broadening
and absence of revivals. Then, we first perform a qualitative analysis to identify the type of spectra in
lattices with different shapes of coupling modulations. Let us assume that coupling Cn,n�1 gradually
varies along the lattice, although conclusions will generally apply even when this condition is not
strictly satisfied. Then we consider an average coupling from site n to its left and right neighbours as
Cn = (Cn+1,n + Cn,n−1)/2 and approximately determine transmission band around lattice site n using
expressions for a locally homogeneous lattice13 as

q−(n)< q < q+(n), q± ≈±2Cn − 2βn. (2)

If the value of q falls inside the band around lattice site n, then the wave can propagate further through
the lattice, whereas outside the band it will exhibit reflection.

We now consider a broad class of inhomogeneous coupling modulations of a polynomial type,
Cn,n−1 =C1 ·nα, as shown in Fig. 1(a), bottom. Here α ≥ 0 is a characteristic constant. We then calcu-
late the band boundaries with Eq. (2) and plot these for different values of α in Fig. 1(b). We observe
that for α < 1 and β , 0, the spectrum is bounded since waves with any q will exhibit back-reflection at
large n. It happens because the linear potential (2βn) overcomes the sub-linear coupling modulation.
This includes the traditional case of a homogeneous lattice (α = 0) as well as recently considered inho-
mogeneous lattices where modulation shape corresponds to α = 1/2.15–17 On the other hand, forα > 1,
the super-linear growth in coupling exceeds the linear potential increase, and as a result, waves with
any q can propagate away to arbitrarily large n, meaning that the spectrum is continuous and BO cannot
happen.
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Remarkably, in the intermediate case of α = 1, a system can exhibit BO with a threshold, in
agreement with previous theoretical studies.10–12 Specifically, for β < βcr , the spectrum is continuous
and wave packets can propagate through the entire lattice. However, for β > βcr , the modes become
localized according to the band-gap structure, and accordingly the spectrum forms a discrete ladder.
Here the critical value is found from the asymptotics of Eq. (2) at large n,

βcr =C1. (3)

Such a spectral change from extended to localized states is a kind of metal-insulator phase transition,
and it can occur precisely at the BO threshold.

Formation of the discrete spectrum is a necessary, but not sufficient condition for BO. It is also
essential that the spectrum forms an equidistant Wannier-Stark ladder. To achieve this, all the lattice
couplings need to be properly designed. To determine a class of such lattice configurations, we draw
on a quantum-classical analogy to the process of two-mode squeezing in quadratically nonlinear
media.11,12 It was shown that Eq. (1) can represent the evolution of a squeezed state in number
(Fock) basis, such that the wavefunction amplitudes are mapped by the respective waveguides as
ψns,ni = an, where ns = n and ni = n +∆ are the photon numbers of the signal and idler modes, respec-
tively. Here ∆= 0, 1, 2, . . . is a free parameter, defining the difference between the idler and signal
photon numbers. Such quantum-classical correspondence holds when the lattice has an inter-site
hopping rate of

Cn,n−1 =C1

√
n(n + ∆), (4)

and effective force β represents the phase mismatch. We note that the coupling asymptotically
approaches linear dependence at large n, Cn,n−1 ∼C1n, and it is in this regime with α = 1 that our
general analysis predicts a possibility of BO with a threshold.

Remarkably, it was indeed found theoretically that squeezed light Bloch oscillations occur above
a threshold,11,12 precisely as defined by Eq. (3). Any input state will then evolve in an oscillating
manner with the period,

zP =
π

b
=

π√
β2 − β2

cr

. (5)

For example, consider an input state with a fixed number of signal and idler photons, n(0)
s = n(0)

i − ∆.
Then the average photon number evolves according to11

〈ns(z)〉= n(0)
s +

β2
cr

|b|2
|sin(bz)|2[1 + ∆ + 2n(0)

s ]. (6)

This solution is also valid for the effective force below the BO threshold, β < βcr. In the latter case,
b becomes imaginary and the photon number defined by Eq. (6) grows exponentially.

For our experimental studies to observe the BO with a threshold, we fabricated various waveguide
lattices with different β’s, but identical C1 ≈ 0.022 mm−1. For details concerning the fabrication and
characterisation of the waveguide lattices, we refer to the methods section. First, we characterize a
lattice with zero effective force (β = 0 mm−1) and∆= 0. In terms of squeezing analogy, this represents
the vacuum state when the input light is launched into the first waveguide n = 0,

a0(0)= 1 , an>0(0)= 0 . (7)

The resulting light intensity propagation is shown in Fig. 2(a). After entering the lattice, the light
gradually couples to the neighbouring waveguides with a rate that is exponentially growing with z,
simulating the rapid increase of the average photon number. To illustrate this, we plot the extracted
average center of mass of the intensity distribution as a white line, which corresponds to the experi-
mental implementation of the average photon number. In Fig. 2(b), we plot the theoretical intensity
distribution, which is obtained by numerically integrating Eq. (1), together with the average pho-
ton number 〈ns(z)〉 given by Eq. (6). Indeed, in this case, the photon number quickly increases, as
predicted.
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FIG. 2. Light evolution without external force: (a) the experimental observation and (b) numerical simulations. The lattice
simulates the signal/idler photon number distribution in squeezed vacuum states in Fock space. The white lines show the center
of mass of the intensity, corresponding to the average photon number 〈ns〉= 〈ni〉.

In the second part of our experiments, we gradually increase the external force in order to observe
transition from the exponential growth to Bloch oscillations. The results are summarized in Fig. 3.
For small values of β, the light spreads with essentially the same rate as without a potential ramp
(see Figs. 3(a) and 3(e) for the experimental and theoretical results, respectively). Even when the
effective force reaches the critical value (β = βcr ≈ 0.022 mm−1), the experimental and numerical
data indicate a monotonous light spreading with a quadratic dependence on distance, as shown in
Figs. 3(b) and 3(f). However, above the critical value (β > 0.022 mm−1), the light field reaches a max-
imum width [Figs. 3(c) and 3(g)] and eventually returns to the initial waveguide [Figs. 3(d) and 3(h)].
The latter situation is realized by implementing a detuning of β = 0.047 mm−1, resulting in a Bloch

FIG. 3. Light evolution with linear gradient: Upper row: Experimental results: (a) β = 0.011 mm−1, (b) β = 0.022 mm−1,
(c) β = 0.032 mm−1, (d) β = 0.047 mm−1. Middle row: Numerical integration of Eq. (1) with coupling constants corresponding
to the experiments. The white lines represent the average signal photon number 〈ns〉 from Eq. (6). Bottom row: The Fourier
transform of the calculated complex field along the propagation direction. The dashed lines indicate the edges of the transmission
band according to Eq. (2). A transition from continuous spectra to discrete ones with equidistant states when passing the critical
gradient is clearly visible. In all cases, we have ∆= 0.
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FIG. 4. Synchronous Bloch oscillations for various n(0)
s : Light evolution for different input conditions. (a) n(0)

s = 0, (b) n(0)
s = 1,

and (c) n(0)
s = 2 in a lattice with specially modulated coupling and a detuning of β = 0.072 mm−1 and ∆= 0. Although the

individual light distribution strongly depends on the input waveguide, the Bloch period is constant zP = 45 mm (see the dashed
line).

oscillation period of zP = 75 mm. Note that such threshold dynamics significantly differs from
conventional Bloch oscillations with zero threshold in homogeneous lattices.7–9 To emphasize the
phase transition from extended states to Bloch oscillations, in the bottom row of Fig. 3, we show
numerical plots of the Fourier transform of the field as a function of z. The dashed lines in the Fourier
plot indicate the edges of transmission band, calculated according to Eq. (2). It is evident that for
β < βcr , we have a continuous spectrum in the band, and no localization. However, above the threshold
the spectrum becomes discrete and equidistant (forming a Wannier-Stark ladder), as required for Bloch
oscillations.

Remarkably, the period of Bloch oscillations is independent of the initial conditions. In order
to experimentally verify this prediction, we implement a waveguide lattice with a strong detuning
of β = 0.072 mm−1, to ensure the appearance of the Bloch oscillations. Launching the light in the
first, the second, or third waveguides corresponds to the situation of having either zero (n(0)

s = 0), one
(n(0)

s = 1), or two signal photons (n(0)
s = 2) as the initial state. The measured intensity distribution in

the lattice is shown in Figs. 4(a)–4(c). It is clearly seen that, although the individual evolution of the
photon number depends on the initial condition, the period of the Bloch oscillations is in all cases
identical, i.e., zP = 45 mm.

FIG. 5. Synchronous Bloch oscillations for ∆= 1: For vanishing detuning ((a) experiment, (c) theory), the photon number
grows rapidly and slightly faster than for the case ∆= 0 (Fig. 2(a)). For a detuning of β = 0.047 mm−1 ((b) experiment, (d)
theory), the average photon number shows squeezed light Bloch oscillations with exactly the same period of zp = 75 mm as in

the case ∆= 0 (Fig. 3(d)). The white lines represent the average signal photon number 〈ns〉. In all cases, we have n(0)
s = 0.
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Importantly, the Bloch oscillations are also synchronous for different values of ∆. Hence, we
have fabricated two waveguide lattices with a hopping distributions corresponding to ∆= 1: one
with no detuning (β = 0) and one with strong detuning β = 0.047 mm−1. The experimental results
are shown in Figs. 5(a) and 5(b). For comparison, numerically solutions of Eq. (1) are shown in
Figs. 5(c) and 5(d). For vanishing phase-mismatch, the photon number growth is in principle similar
to the case ∆= 0 [cf. Fig. 2(a)], only somewhat faster. For the detuned regime above the threshold, we
observe the Bloch oscillations with exactly the same period of zP = 75 mm as in the case with ∆= 0
[cf. Fig. 2(d)].

In summary, we have demonstrated a new regime of Bloch oscillations in inhomogeneous lattices,
characterized by a phase transition from extended states to localized modes when increasing the
effective force and exceeding a critical value. In analogy to the dynamics of two-mode squeezed
states in Fock space, this new regime is called squeezed light Bloch oscillations, where the average
photon number periodically returns to its initial state if the phase-mismatch between signal and idler
exceeds some critical value. Our results imply various further directions of research: What would
be the impact of nonlinearity? How true quantum states (such as N00N states) would evolve in our
lattice? What happens in slightly disordered lattices, where only the average hopping follows a trend?
These and other intriguing questions are now in reach.

See supplementary material for a detailed description of our methods and parameters.
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