
Springer Nature 2021 LATEX template

Attentional Gated Res2Net for Multivariate

Time Series Classification

Chao Yang1*, Xianzhi Wang1, Lina Yao2, Guodong
Long3, Jing Jiang3 and Guandong Xu4

1*School of Computer Science, University of Technology Sydney,
Sydney, NSW 2007, Australia.

2School of Computer Science and Engineering, University of New
South Wales, Sydney, NSW 2052, Australia.

3Australian Artificial Intelligence Institute, University of
Technology Sydney, Sydney, NSW 2007, Australia.

4Data Science Institute, University of Technology Sydney,
Sydney, 2007, NSW, Australia.

*Corresponding author(s). E-mail(s):
chao.yang@student.uts.edu.au;

Contributing authors: xianzhi.wang@uts.edu.au;
lina.yao@unsw.edu.au; guodong.long@uts.edu.au;
jing.jiang@uts.edu.au; guandong.xu@uts.edu.au;

Abstract

Multivariate time series classification is a critical problem in data mining
with broad applications. It requires harnessing the inter-relationship of
multiple variables and various ranges of temporal dependencies to assign
the correct classification label of the time series. Multivariate time series
may come from a wide range of sources and be used in various scenarios,
bringing the classifier challenge of temporal representation learning. We
propose a novel convolutional neural network architecture called Atten-
tional Gated Res2Net for multivariate time series classification. Our
model uses hierarchical residual-like connections to achieve multi-scale
receptive fields and capture multi-granular temporal information. The
gating mechanism enables the model to consider the relations between
the feature maps extracted by receptive fields of multiple sizes for infor-
mation fusion. Further, we propose two types of attention modules,
channel-wise attention and block-wise attention, to better leverage the

1

Springer Nature 2021 LATEX template

2 Article Title

multi-granular temporal patterns. Our experimental results on 14 bench-
mark multivariate time-series datasets show that our model outperforms
several baselines and state-of-the-art methods by a large margin. Our
model outperforms the SOTA by a large margin, the classification accu-
racy of our model is 10.16% better than the SOTA model. Besides, we
demonstrate that our model improves the performance of existing models
when used as a plugin. Further, based on our experiments and analysis,
we provide practical advice on applying our model to a new problem.

Keywords: multivariate time series classification, convolutional neural
network, attention module, gating mechanism

1 Introduction

Time series data grant a great potential for various prediction tasks [1], and
time series classification is one of the most challenging tasks in data mining [2].
A typical time series classification task involves multiple variables, represented
by multiple data streams each corresponding to a variable. This is known as
multivariate time series classification (MTSC)—given a group of time-aligned
segments of these data streams, the task is to assign the correct classification
label to it. MTSC has demonstrated significance in various applications, such
as activity recognition [3], disease diagnosis [4], and automatic device clas-
sification [5], etc. Multivariate time series contain the temporal information
from different sources, hence, measuring the interaction of sources and learn-
ing the temporal representations are the keys to realizing accurate MTSC [6].
Different tasks have different requirements for the classifier, making build-
ing a generalized used classifier a challenge. For example, EEG signal based
MTSC can be focused on many different goals such as the recognition of emo-
tion [7, 8], decoding cognitive skills [9], recognition, investigation of sustained
attention, detection of sleep disorder, decoding of cognitive tasks in brain-
computer-interface, etc. In EEG classification, the performance is sensitive to
many parameters together such as the number of recording channels, i.e., fea-
ture dimension, recording time length, i.e., the number of features, number
of the individuals in each group, feature extraction method and, classifier’s
architecture.

Traditional methods for time series classification include distance-based
models (e.g., k-nearest neighbors) and feature-based models (e.g., random
forest [10] and support vector machine [11]). These models highly rely on
manually-defined features, which are heuristic and task-dependent [12]. Also,
it takes the expertise and considerable time of domain experts to design such
features. Furthermore, conventional machine learning (ML) techniques have
limitations in processing high-dimension data and representing complicated
functions efficiently [13].

Springer Nature 2021 LATEX template

Article Title 3

Recently, deep learning (DL) has gained popularity in computer vision,
natural language processing, and data mining, thanks to its advantages in cap-
turing complicated, nonlinear relations from massive data [14]. Deep neural
networks usually stack multiple neural layers for automatic feature extrac-
tion and representation learning [15]. Many neural network architectures,
such as Recurrent Neural Networks (RNN), Convolutional Neural Networks
(CNN), Transformer [16], Long Short-Term Memory (LSTM) [17], and Gated
Recurrent Unit (GRU) [18], have been applied for time series analysis. In
particular, RNN sends the prior output to the next input layer to facilitate
temporal feature extraction; therefore, it takes a long training time and can-
not support parallel computation. CNN can extract temporal feature and
be parallelized during training to fully exploit the power of Graphics Pro-
cessing Units (GPUs); however, it faces challenges in capturing long-range
temporal dependencies and is, therefore, less used for time series classification.
Transformer [16] has recently emerged as promising solution to multivariate
time series classification. While transformer supports both parallel comput-
ing and efficient temporal feature extraction, it requires massive parameters
for the multiple fully connected layers, making the training extremely time-
consuming. Furthermore, transformer suffers overfitting on small datasets
[19], and faces challenges in capturing short-range temporal information [20].
Besides, existing solutions to MTSC commonly require careful adjustments of
architectures and parameters to deal with time series of various lengths. This
is a critical yet little studied issue in existing time series classification research.

To summarize, ML methods are expertise-dependent and difficult for rep-
resenting complicated non-linear functions. Among the DL methods, CNN
is efficient for training and inferencing but challenging for capturing long
dependencies; RNN can effectively learn the temporal representations of long
temporal features, but is computationally expensive; transformer contains too
many parameters, making it easy to prone to overfitting on small size datasets.
We aim for accurate MTSC that can adapt to time series of various lengths
to address the above deficiencies of existing studies. To this end, we propose
a novel CNN architecture called Attentional Gated Res2Net (AGRes2Net) for
MTSC. Our model can overcome the shortcoming of the standard CNN archi-
tecture by enabling the extraction of both global and local temporal features.
It also has the capability to leverage multi-granular feature maps through
channel-wise and block-wise attention mechanisms. In a nutshell, we make the
following contributions in this paper:

• We propose a novel AGRes2Net architecture for accurate MTSC. Our model
can capture dependencies over various ranges and exploit the inter-variable
relations to achieve high performance on time series of various lengths,
making it feasible for various tasks.

• We propose two attention mechanisms, namely channel-wise attention and
block-wise attention, to leverage multi-granular temporal information for
tasks with different data characteristics. The former has advantages on

Springer Nature 2021 LATEX template

4 Article Title

datasets with many variables, while the latter can effectively prevent
overfitting on datasets with very few variables.

• We conducted extensive experiments on 14 benchmark datasets to eval-
uate the model. A comparison with several baselines and state-of-the-art
methods shows the superior performance of our model. Besides, plug-
ging our model into MLSTM-FCN, a state-of-the-art CNN-RNN parallel
model, demonstrates the model’s capability to improve existing models’
performance.

The remainder of the paper is organized as follows. Section 2 overviews the
related work; Section 3 presents the proposed model and attention mechanisms;
Section 4 reports our experiments and results; and finally, Section 5 gives the
concluding remarks.

2 Related Work

2.1 Multivariate Time Series Classification

MTSC has been a longstanding problem and solved by traditional statistic
and ML methods [21–23]. A representative example is k-Nearest Neighbors
(KNN), which is proven outstanding in MTSC [24]. Its combination with
Dynamic Time Warping (DTW) can achieve even better performance [25, 26].
DL methods are increasingly applied to MTSC, given their capability in auto-
matic feature extraction and learning complex relations from massive amounts
of data [27–29]. Commonly used DL architectures include Recurrent Neural
Networks (RNNs), Gated Recurrent Unit (GRU) [18], Convolutional Neural
Networks (CNNs), Long Short-Term Memory (LSTM) [17], and Transformer
[16]. And recent studies heavily rely on CNNs to overcome the efficiency and
scalability issues with recurrent models (e.g., RNN, LSTM, and GRU) [30–32].

Traditionally, CNNs are used for computer vision tasks, such as image
recognition [33], object detection [34–36], and semantic segmentation [37].
Recent studies [38–42] show 1D-CNN is promising for temporal feature
extraction—the convolution computation can capture potential temporal
patterns while the information fusion across channels can cope with the
inter-relations among variables. Further, Inception [43] uses multiple paral-
lel convolutional kernels of different sizes to address the challenged faced by
CNNs in capturing long-range temporal dependencies [44, 45]. However, Incep-
tion’s receptive field has a restricted width, which limits its ability to capture
long-range dependencies.

The combination of CNN and RNN represents an effort to exploit the
advantages of both [46]. Hybrid CNN-RNN architectures generally follow
a parallel or cascade style to facilitate temporal feature extraction in vari-
ous ranges. For example, LSTM-FCN [47] uses CNN and RNN in parallel
and achieves state-of-the-art performance on several benchmark datasets.
Since LSTM-FCN employs RNN as a component, it cannot fully leverage

Springer Nature 2021 LATEX template

Article Title 5

the power of GPUs, leading to extended training time. In comparison, trans-
former [16] learns both temporal dependencies and inter-variable relations
based on positional embedding and attention mechanism. It achieves state-of-
the-art performance on several time-series datasets [48, 49] but suffers extended
training time and overfitting on small datasets [19] due to its massive train-
able parameters. It also finds difficulty in capturing short-range temporal
information when compared with RNN.

2.2 Attention Mechanism

Attention mechanism was first used in the seq2seq model for machine transla-
tion [18]. A vanilla seq2seq model first feeds the input sequence to an encoder
(which consists of multiple recurrent layers) [18] to generate hidden states and
outputs. It then collects the hidden states of all the steps to represent the
information of the input. An attention mechanism forces the model to learn
the weights of hidden states in the decoder part during this process. Thus,
the model can focus on a specific region of the input sequence, leading to a
significant performance improvement.

Recent studies have designed different attention modules and applied
them to various domains [50, 51]. Among them, Squeeze-and-Excitation Block
(SE) [52] is widely used for various tasks thanks to its easiness of implementa-
tion. SE works in two steps. First, it uses global average pooling to obtain an
information vector of feature maps from different channels. Then, it employs
fully connected layers to capture the inter-relations between feature maps to
learn the weights of feature maps and highlight the critical information.

3 Our Approach

We propose Attentional Gated Res2Net for accurate classification of multi-
variate time series of various lengths. In particular, we incorporate gating and
attention mechanisms on top of Res2Net [53], where gates control the informa-
tion flow across the groups of convolutional filters, and the attention module
harnesses the feature maps at different levels of granularity.

The overall architecture of AGRes2Net (shown in Figure 1) consists of
two stages: Convolution and Attention. We illustrate these two stages in the
following subsections, respectively.

3.1 Convolution stage

We design the convolution stage based on Res2Net [53], a CNN backbone
specially designed to achieve multi-scale receptive fields based on group con-
volution. Group convolution first appeared in AlexNet [54] and significantly
reduced the number of the parameters in that model. It has since been adopted
in many lightweight networks [55, 56] to generate a large number of feature
maps with a small number of parameters.

Springer Nature 2021 LATEX template

6 Article Title

Fig. 1 The structure of Attentional Gated Res2Net. It consists of two stages: convolution
and attention. The convolution stage feeds the input to a convolutional layer for channel
expansion and then groups the output along the channel. Each group (except the first)
conducts convolution based on its input and its precedent group’s output (passed through
gates). The attention stage forces the model to consider the temporal information at different
levels of granularity. Finally, the network uses a convolutional layer for channel compression
and information fusion.

Unlike conventional CNNs, which use a single set of filters to work on
all channels, Res2Net includes multiple groups of filters and uses a separate
group to handle each subset of channels. These filter groups are connected in a
hierarchical, residual-like style, and they work as follows. First, a convolutional
layer takes the input data and outputs a feature map for channel expansion.
Then, the feature map is split into groups along the channel, generating groups
of feature maps, i.e., input feature maps. Finally, for each input feature map,
a separate group of filters extracts features and generates the corresponding
output, i.e., an output feature map. In particular, when extracting features
from an input feature map, the filter group also takes into account the output
of the filter group that comes immediately before it. The whole process repeats
until all input feature maps are processed.

Suppose X is the feature map obtained from channel expansion, and X is
evenly divided into s groups, {xi}si=1, where xi denotes the ith group. Each
group contains an input feature map that has the same temporal size but
contains only 1/s of the channels in X. Let Ki be the convolution operation.
Then, given an input feature map xi, the convolution output, yi, is calculated

Springer Nature 2021 LATEX template

Article Title 7

as follows:

yi =

 xi i = 1
Ki (xi) i = 2
Ki (xi + yi−1) 2 < i ⩽ s.

(1)

By feeding the concatenation of all the outputs to a convolutional layer,
Res2Net achieves multi-scale receptive fields to facilitate multivariate time
series classification. However, it has difficulty in controlling the informa-
tion flow between the feature-map groups—at each step, yi is always fully
sent to the next group regardless of whether it avails or harms the model’s
performance.

Addressing this limitation is important as it enables to model to control
how to weigh the precedent output feature map against the current input fea-
ture map in an input-dependent manner. This, in turn, mitigates the problem
of vanishing gradients without having to take long delays. To this end, we
introduce the gating mechanism [31] into Res2Net at the convolutional stage
to enhance feature extraction. Specifically, in our model (shown in Figure 1),
all groups of feature maps (except the first) are sent to convolutional layers for
feature extraction, and a gating unit lies between each pair of adjacent feature-
map groups to control how much information flows from the precedent to the
current group. Given a feature-map group (or more specifically, input feature
map), xi, the value of the corresponding gate, gi, is calculated as follows:

gi = tanh (a (concat (a(yi−1), a (xi)))) . (2)

where a can be either fully-connected or 1-D convolutional layers, concat is the
concatenation operation, and tanh is the activation function commonly used
for gates.

Note that, we only use the precedent output feature map yi−1 and the
current input feature map xi to calculate the gate—this is different from the
gating mechanism in [31]. More specifically, we omit the undivided feature map
X as it contains redundant information and does not significantly improve the
performance. Eventually, after the convolution stage, we obtain yi as follows:

yi =

 xi i = 1
Ki (xi) i = 2
Ki (xi + gi · yi−1) 2 < i ⩽ s.

(3)

3.2 Attention stage

The convolution stage only considers the information flow between adjacent
feature-map groups. As such, it limits the model’s ability to capture the depen-
dencies between groups that have long distances in-between. In this regard,
we design an attention stage to attend to a certain part when processing out-
put feature maps. In particular, we propose two types of attention modules,
namely channel-wise attention module and block-wise attention module, to
harness multi-granular temporal patterns effectively.

Springer Nature 2021 LATEX template

8 Article Title

3.2.1 Channel-wise attention

Channel-wise attention captures the relations between channels of the convo-
lution stage’s output, i.e., output feature maps, {yi}si=1, where s is the number
of feature-map groups in the convolution stage.

Suppose every yi contains the same number of channels, say J channels—
this is reasonable as we divide the original feature map X evenly along the
channel. Let hi,j be the feature map for the jth channel of yi. We use three
fully-connected layers to learn the query, key, and value of hi,j (denoted by qi,j ,
ki,j , and vi,j , respectively). Similarly, we denote by qm,n, km,n, and vm,n the
query, key, and value of hm,n, and the feature map for the nth channel of ym.
Given two different feature maps, hi,j and hm,n, we calculate the channel-wise
attention as follows:

attention (qi,j ,km,n) =
qi,jk

T
m,n√
J

(4)

Once computed, we can update the feature map of every channel according
to its relations with all the other feature maps. As the feature maps contain
temporal information within various ranges, channel-wise attention can cap-
ture temporal dependencies at multiple levels of granularity. Based on the
above, the updated feature map h̃i,j can be calculated as follows:

h̃i,j =
∑
s

∑
J

Softmax

(
attention (qi,j ,km,n)∑

s

∑
J attention (qi,j ,km,n)

)
vm,n (5)

Given s output feature maps each having J channels with k dimensions,
the total number of feature maps for channel-wise attention is s× J , resulting
in the computational complexity of O

(
(s× J)2k

)
.

3.2.2 Block-wise attention

Block-wise attention regards each yi as an individual block that contains
temporal information at a certain granularity. Instead of calculating atten-
tion values along the channel, block-wise attention directly feeds yi to the
fully-connected layers to calculate the corresponding query, key, and value.
Block-wise attention has advantages in mitigating overfitting as it considers
sparse relations when computing the attention.

Suppose yi and ym are two output feature maps. We denote by qi, ki and
vi the query, key and value of yi; similarly, we denote by qm, km and vm the
query, key and value of ym. Then, we calculate the block-wise attention as
follows:

attention (qi,km) =
qik

T
m√
s

(6)

Once computed, we can update the feature map of every block according
to their relations with all the other feature maps. And the updated feature

Springer Nature 2021 LATEX template

Article Title 9

Table 1 A list of our experimental datasets.

Dataset Task #Classes #Variables Length Train-test ratio SOTA
Action 3D [57] Action Recognition 20 570 100 48:52 MALSTM-FCN [47]

Ozone1 Weather Forecasting 2 72 291 50:50 MLSTM-FCN[47]
AREM1 Activity Recognition 7 7 480 50:50 MALSTM-FCN [47]

LP51 Failure Detection 5 6 15 39:61 MUSE [58]
EEG1 EEG Classification 2 13 117 50:50 MLSTM-FCN [47]

Gesture Phase1 Gesture Recognition 5 18 214 50:50 MLSTM-FCN [47]
ECG2 ECG Classification 2 2 147 50:50 MUSE [58]

FingerMovements3 [59] Movement Classification 2 28 50 76:24 InceptionTime [60]
DuckDuckGeese3 [59] Audio Classification 5 1345 270 50:50 InceptionTime [60]

HeartBeat3 [59] Audio Classification 2 61 405 49:51 Canonical Interval Forest [61]
LSST3 [59] Signal Classification 14 36 6 50:50 MUSE [58]

MotorImagery3 [59] EEG Classification 2 3000 64 74:26 Time Series Forest [21]
SelfRegulationSCP23 [59] EEG Classification 2 1152 7 53:47 DTW [62]

StandWalkJump3 [59] Activity Recognition 3 2500 4 45:55 ROCKET [63]

map for each block, ỹi, can be calculated as follows:

ỹi =
∑
s

Softmax

(
attention (qi,kj)∑
s attention (qi,kj)

)
vj (7)

Given s feature maps, each having J channels with k dimensions, the
computational complexity of block-wise attention is O

(
s2Jk

)
.

4 Experiments

This section reports our extensive experiments to evaluate our proposed
approach, including comparisons against baselines, ablation studies, and
parameter studies on several public time-series datasets. We demonstrate that
our approach can be used as a plugin to improve the performance of state-of-
the-art methods and provide practical advice on how to adapt our approach
to a specific problem.

4.1 Datasets

We conducted experiments on 14 public multivariate time series datasets
(summarized in Table 1). These datasets cover various tasks from different
application domains, such as activity recognition, EEG classification, and
weather forecasting. They contain time series of various lengths with differ-
ent numbers of variables. We have carefully selected these datasets to reflect
applications in various domains and ensure that they are diverse enough in the
length and variable number of time series to reflect different difficulty levels in
real-world multivariate time-series classification problems.

4.2 Baseline Methods

We selected several competitive baselines and state-of-the-art (SOTA) methods
to compare with our approach.

1https://archive.ics.uci.edu/ml/index.php
2http://www.cs.cmu.edu/∼bobski
3https://www.cs.ucr.edu/∼eamonn/time series data 2018

Springer Nature 2021 LATEX template

10 Article Title

• Res2Net [53]: this is a CNN backbone that uses group convolution and
hierarchical residual-like connections between convolutional filter groups to
achieve multi-scale receptive fields.

• GRes2Net [31]: this work incorporates gates in Res2Net, where the gates’
values are calculated based on a different method from ours—it additionally
takes into account the original feature map before it is divided into groups
when calculating gates’ values.

• Res2Net+SE: this work combines Res2Net with a Squeeze-and-Excitation
Block (SE) [52] to leverage the effectiveness of attention modules.

• GRes2Net+SE: this work combines GRes2Net with SE to leverage the
effectiveness of attention modules.

We briefly introduce the SOTA methods for the experimental datasets
below. A full list of SOTA methods is given in Table 1.

• MLSTM-FCN [47]: a multivariate LSTM fully convolutional network that
concatenates the outputs of two parallel blocks: a fully convolutional block
(embedded with SEs) and an LSTM block. It is a variant of LSTM-FCN.

• MALSTM-FCN [47]: a multivariate attention LSTM fully convolutional
network, which resembles MLSTM-FCN but replaces LSTM cells with
attention LSTM cells.

• MUSE [58]: a model that extracts and filters multivariate features by
encoding context information into each feature.

• InceptionTime [60]: a CNN-based model transferred from computer vision
to time series classification, which stacks multiple parallel convolutional
filters for temporal feature extraction.

• Time Series Forest [21]: an ensemble tree-based method that employs
a combination of entropy gain and a distance measure to evaluate the
differences between time-series sequences.

• Canonical Interval Forest [61]: a model that refines Time Series Forest
by upgrading the interval-based component.

• Dynamic Time Warping (DTW)[62]: a traditional distance-based
machine learning method for time series analysis.

• Random Convolutional Kernel Transform (ROCKET) [63]: a
CNN-based model that uses random convolutional kernels to extract multi-
granular temporal features.

4.3 Model Configuration and Evaluation Metric

We followed the methods as illustrated in the SOTA methods to preprocess
the datasets. In particular, we normalized each dataset to zero mean and unit
standard deviation. We also applied zero paddings to cope with sequences
with various lengths in the same training set. The experimental results of each
method were obtained under the optimal or suggested settings as provided in
the original paper.

Springer Nature 2021 LATEX template

Article Title 11

Table 2 Experiment configuration settings

Dataset Number of Layers Number of Groups Dropout Rate
FingerMovements 4 4 0.2
DuckDuckGeese 4 64 0.3

HeartBeat 2 64 0.2
LSST 2 8 0.25

MotorImagery 6 64 0.2
SelfRegulationSCP2 4 8 0.5
StandWalkJump 4 64 0.2

Action 3D 4 8 0.3
Ozone 4 8 0.25
AREM 6 64 0.25
LP5 4 2 0.4
EEG 4 4 0.5

Gesture Phase 5 8 0.4
ECG 4 8 0.5

To ensure a fair comparison, we set all the models based on Res2Net,
GRes2Net, and our approach contained the same number of feature-map
groups and used identical filters for each group.

We used our model as the backbone for feature extraction and trained our
model for 500 training epochs using Adam [64] optimizer. The learning rate was
set to 0.001 and adjusted to 1/10 of itself after every 100 epochs. The dropout
rate was set to 0.4 to avoid possible overfitting. We repeated the training and
test processes five times and took the average of multiple runs as the final
results; this mitigates the impact of randomized parameter initialization. The
details including the number of layers, the number of convolutional groups,
and the dropout rate settings can be found in Table 2.

We used accuracy, which is currently used by all the SOTA methods on
the experimental datasets, as the metric for evaluating the methods. However,
accuracy is not comprehensive enough to measuring the performance of the
classifier. Although the vast majority of the related work uses accuracy as the
only evaluation metric, we additionally use precision, recall, and F-score in our
parameter and ablation studies to gain further insights into how our model
performs.

4.4 Comparison of Different Methods

Table 3 shows a performance comparison of all the methods on the experi-
mental datasets. Our proposed model, using either channel-wise or block-wise
attention, consistently outperformed all the other compared methods on all
the 14 datasets, demonstrating our model’s superiority in solving MTSC in
diverse contexts regardless of the lengths of time-series sequences.

Channel-wise attention favors longer time-series sequences, as it beats
block-wise attention on all the top-8 datasets with the longest sequences. The
results conform to our intuition that channel-wise attention may have an edge
on capturing multi-granular temporal information.

Block-wise attention tends to excel on datasets that contain fewer vari-
ables. Among the top-4 datasets with the least variables, it beats channel-wise

Springer Nature 2021 LATEX template

12 Article Title

Table 3 Accuracy of different models on 14 benchmark datasets. AGRes2Net+CA and
AGRes2Net+BA represent our Attentional Gated Res2Net model incorporated with
channel-wise attention and block-wise attention, respectively. The improvement is the the
comparison between SOTA and the proposed model.

Dataset Res2Net Res2Net+SE GRes2Net GRes2Net+SE SOTA AGRes2Net+BA AGRes2Net+CA Improvement (%)
FingerMovements 0.5240 0.5280 0.5340 0.5480 0.5613 0.6240 0.5820 11.17
DuckDuckGeese 0.6360 0.6680 0.6560 0.6800 0.6347 0.6880 0.7080 11.55

HeartBeat 0.6463 0.7415 0.7512 0.7561 0.7652 0.7853 0.8663 13.21
LSST 0.5268 0.5447 0.5341 0.5799 0.6362 0.5843 0.6671 4.86

MotorImagery 0.5220 0.5340 0.5380 0.5740 0.5380 0.6240 0.6280 16.73
SelfRegulationSCP2 0.5367 0.5522 0.5444 0.5555 0.5369 0.5711 0.6210 15.66

StandWalkJump 0.3333 0.4000 0.3333 0.3333 0.4556 0.4667 0.3333 2.44
Action 3D 0.7457 0.7182 0.7301 0.8037 0.7542 0.8350 0.8617 14.25

Ozone 0.7989 0.8264 0.8034 0.8390 0.8150 0.8494 0.8620 5.77
AREM 0.7692 0.8462 0.8205 0.8717 0.8462 0.9231 0.8974 9.09

LP5 0.5642 0.5799 0.684 0.6328 0.7100 0.7396 0.7326 4.17
EEG 0.5781 0.5469 0.6094 0.6406 0.6563 0.6719 0.6719 2.38

Gesture Phase 0.5859 0.5898 0.6601 0.6641 0.5353 0.6445 0.6953 29.89
ECG 0.7200 0.8000 0.8400 0.8300 0.9300 0.8500 0.9400 1.08

Fig. 2 Critical difference diagram of the arithmetic means of the ranks on all datasets.

attention on 3 of them (AREM, LP5, and EEG); this is also consistent with
our intuition that block-wise attention may have advantages in preventing
overfitting thanks to the sparse relations considered in its attention calculation.

An exception occurs on the ECG dataset, which has as few as two variables;
this reason lies in that this dataset contains abundant sequences that allow for
the channel-wise attention to fully exploit the training data without causing
overfitting.

Figure 2 shows the result of the Wilcoxon signed-rank test on the base-
line methods’ performance. It shows that, overall, our model achieves similar
classification performance when using channel-wise attention and block-wise
attention. Either way, our model performs significantly better than the
baselines. This result demonstrates the effectiveness of harnessing inter-
dependencies between variables and multi-granular feature maps (as our model
does use gates, attention, and group convolution) in improving classification
performance on sequences of various lengths.

4.5 Impact of Depth and Width of Model

In this experiment, we study how the depth and width of our model impact
the classification performance. Generally, a deeper and wider model has a
stronger capability to capture complex relations from data. Our model becomes
more complex as we increase its depth (by stacking more layers), width (by
expanding the number of feature-map groups), or both.

Springer Nature 2021 LATEX template

Article Title 13

Table 4 Training and test results under varying widths and depths.

Dataset
Configuration Train Test

Width Depth Accuracy Recall Precision F-score Accuracy Recall Precision F-score

HeartBeat
8 8 0.9482 0.8933 0.9108 0.9019 0.7622 0.6848 0.6953 0.6901
16 4 0.9712 0.9221 0.9423 0.9321 0.8443 0.6859 0.6879 0.6869
32 2 0.9742 0.9298 0.9491 0.9394 0.8570 0.8602 0.8551 0.8576

Action 3D
8 8 0.8525 0.8225 0.8213 0.8219 0.7490 0.7767 0.7458 0.7609
16 4 0.9003 0.8864 0.8848 0.8856 0.8434 0.8171 0.8091 0.8130
32 2 0.9068 0.8908 0.8908 0.8908 0.8515 0.8701 0.8462 0.8579

We trained our model under different width and depth settings and applied
different types of attention for the experiment. Considering the many exper-
imental datasets, we only show the results on two representative datasets,
Action 3D and Heartbeat. The former has medium-length sequences and a
large number of variables; in contrast, the latter has long sequences but a
medium number of variables, making them ideal for exemplifying the experi-
mental results. In particular, we show the results of our model after applying
channel-wise attention and block-wise attention on Heartbeat and Action 3D
datasets, respectively.

Our results (Table 4) show that wider models beat deeper models in both
the training and test phases. While stacking multiple layers leads to large
receptive fields that can capture dependencies in a larger range, a wider model
can achieve receptive fields with multiple sizes and fuse the feature maps from
different convolution filters to learn multi-granular temporal patterns. In com-
parison, a wider model leverages the temporal features of time-series sequences
more effectively, making it generally a better choice. Several studies [65, 66] in
the computer vision field draw similar conclusions.

’

4.6 Impact of Group Number

In this experiment, we further explore the impact of the hyperparameter s,
which determines the number of feature-map groups (as well as the number of
filter groups) in our model. Intuitively, a larger s gives a wider model that can
fuse more temporal features extracted by convolutional filters with multiple
sizes of receptive fields, thus facilitating capturing long-range dependencies.

We kept all other settings (e.g., number of layers, epochs, learning rate,
dropout rate) unchanged while varying the value of s to explore its influence
on classification results. Similar to the precedent experiment, we show the
experimental results on four datasets that have significantly different lengths of
sequences (namely LP5, AREM, Ozone, and Action 3D) to avoid information
overload. We used block-wise attention on the first two datasets and channel-
wise attention on the last two.

Our results (Table 5) show our model consistently achieved better per-
formance during training as s increased. And we can easily tune our model
towards capturing a broader range of temporal information by allowing for
more groups with a greater s. However, greater values of s bring the risk of
overfitting, demonstrated by decreased performance in the test phase, e.g., in

Springer Nature 2021 LATEX template

14 Article Title

Table 5 Training and test results under different s. We set greater s values for the AREM
dataset as it has much longer sequences than the others do. We set 6 layers for Ozone, 6
layers for AREM, 4 layers for Action 3D, and 4 layers for LP5.

Dataset s
Train Test

Accuracy Recall Precision F-score Accuracy Recall Precision F-score

Ozone
2 0.9425 0.9434 0.9437 0.9436 0.8436 0.8299 0.8281 0.8289
4 0.9529 0.9501 0.9428 0.9464 0.8563 0.8609 0.8598 0.8603
8 0.9635 0.9699 0.9640 0.9669 0.8570 0.8602 0.8551 0.8576
16 0.9792 0.9771 0.9774 0.9772 0.8257 0.8346 0.8243 0.8294
32 0.9844 0.9827 0.9830 0.9829 0.8257 0.8302 0.8372 0.8337

AREM
4 0.7907 0.7798 0.7534 0.7664 0.7949 0.7007 00.7171 0.7088
8 0.8139 0.8452 0.8250 0.8350 0.7435 0.6871 0.8268 0.7505
16 0.8605 0.8870 0.8397 0.8627 0.8205 0.7756 0.8648 0.8178
32 0.8837 0.9048 0.8939 0.0.8993 0.8718 0.8163 0.9056 0.8586
64 0.9767 0.9821 0.9841 0.9831 0.8692 0.9619 0.8452 0.8998

Action 3D
2 0.8138 0.7968 0.8426 0.8191 0.7088 0.7212 0.7352 0.7281
4 0.8219 0.8149 0.8595 0.8366 0.7207 0.7255 0.7391 0.7322
8 0.8232 0.8109 0.8592 0.8344 0.8617 0.8764 0.8711 0.8737
16 0.8263 0.8201 0.8638 0.8414 0.8318 0.8359 0.8131 0.8243
32 0.8350 0.8296 0.8681 0.8484 0.8252 0.8329 0.7991 0.8156

LP5
2 0.7813 0.7964 0.8125 0.8043 0.7396 0.7818 0.7214 0.7504
4 0.8125 0.8511 0.8398 0.8313 0.7309 0.7014 0.7568 0.7158
8 0.8594 0.8750 0.8593 0.8671 0.7014 0.7052 0.7665 0.7033
16 0.8906 0.9142 0.8809 0.9022 0.6771 0.7022 0.7237 0.6894
32 0.9531 0.9714 0.9418 0.9622 0.6215 0.6187 0.6454 0.6201

the case of the Qzone and Action 3D datasets. The results suggest the neces-
sity of tuning this hyperparameter s given a specific dataset to gain the best
performance.

Beyond the above results, we may consider our model as recurrent because
each group’s output feature map is sent to the subsequent group. Following
this idea, we may regard group number s as the number of steps that the
model takes during its recurrent computation. While traditional convolutional
neural networks obtain larger receptive fields by stacking multiple layers or
employing dilation convolution layers, they are not as flexible or effective as
our model in capturing multi-granular temporal information.

4.7 Impact of Attention Modules

The superiority of our attention modules over SE is indicated by our model
outperforming those baselines that incorporate SE [52] (see Table 3). Specif-
ically, the SE module uses global average pooling, which generates a scalar
to represent the feature map of each channel. In comparison, our attention
mechanisms (channel-wise and block-wise attention) avoid using global average
pooling, thus preventing the information loss caused by the pooling operation.

Table 6 further shows our model’s performance when using the two atten-
tion modules during training and test. We choose to show the results on three
datasets, which cover a large range of variable numbers (7 for AREM, 72 for
Ozone, and 570 for Action 3D). The results (Table 6) are consistent with our
findings in Section 4.4 that channel-wise attention generally beats block-wise
attention except for small datasets with very few variables.

Springer Nature 2021 LATEX template

Article Title 15

Table 6 Training and test results of our model with different attention modules.

Dataset Attention
Train Test

Accuracy Recall Precision F-score Accuracy Recall Precision F-score

Ozone
Block-wise 0.7088 0.7212 0.7352 0.7281 0.6793 0.6644 0.6685 0.6664
Channel-wise 0.8232 0.8109 0.8592 0.8344 0.8604 0.8669 0.8437 0.8551

AREM
Block-wise 0.8837 0.9048 0.8939 0.8993 0.8718 0.8163 0.9056 0.8586
Channel-wise 0.9767 0.9821 0.9841 0.9831 0.8205 0.7483 0.8772 0.8076

Action 3D
Block-wise 0.9091 0.8908 0.9091 0.8996 0.8181 0.8306 0.8150 0.8227
Channel-wise 0.9635 0.9699 0.9640 0.9669 0.8570 0.8602 0.8551 0.8576

Table 7 Ablation test for our model.

Dataset Model Accuracy Recall Precision F-score

EEG

Res2Net 0.5781 0.5713 0.5882 0.5796
Res2Net + Gates 0.5938 0.5943 0.5943 0.5943
Res2Net + channel-wise attention 0.6094 0.6105 0.6417 0.6257
Res2Net + Gates + channel-wise attention 0.6719 0.6750 0.6833 0.6791

AREM

Res2Net 0.7692 0.7469 0.7639 0.7530
Res2Net + Gates 0.8205 0.7551 0.8762 0.8112
Res2Net + block-wise attention 0.8718 0.8163 0.8929 0.8529
Res2Net + Gates + block-wise attention 0.9231 0.8762 0.9571 0.9149

As for this experiment, both Ozone and Action 3D datasets contain many
variables (72 and 570) and sufficient sequences during training for channel-wise
attention to perform well. In contrast, AREM contains only 43 sequences that
cover as many as seven classes. The number of sequences is extremely limited
for each class, making channel-wise attention easily lead to overfitting.

4.8 Ablation Study

We conducted ablation studies to explore the effectiveness of gates and our
attention modules. The model without gates and attention module is the
same as vanilla Res2Net. We separately incorporate gates, attention, and both
attention and gates in Res2Net and compare the results.

Again, we only present the results on EEG and AREM datasets to avoid
information overload. For each dataset, we tested the attention mechanism
that led to inferior performance to the other, i.e., channel-wise attention on
the EEG dataset and block-wise attention on the AREM dataset, to make the
comparisons more evident.

Our results (Table 7) show the attention modules contribute slights more
than gates on improving the performance of Res2Net, but every component
contributes significantly to the improved performance.

4.9 Time Consumption of Attention Modules

We conducted experiments to analyze the extra time consumption of the atten-
tion modules. We select two datasets, MotorImagery and DuckDuckGeese,
because their length and variable number are significantly large. We trained
the models on i7-8700K CPU instead of GPU because GPUs are too power-
ful that can alleviate the impact. We stacked 4 layers and used 64 groups of
convolutional filters at each layer. We trained the model with channel-wise

Springer Nature 2021 LATEX template

16 Article Title

Table 8 Time consumption comparison with attention modules and without attention
modules on DuckDuckGeese, CA means channel-wise attention and BA means block-wise
attention. The data in the brackets is the standard deviation.

Without Attention With CA With BA
Training time consumption (s) 1.3991 (0.1627) 3.0911 (0.2772) 2.8689 (0.2391)
Test time consumption (s) 0.7675 (0.0977) 1.1226 (0.0737) 0.980 (0.0860)

Table 9 Time consumption comparison with attention modules and without attention
modules on MotorImagery, CA means channel-wise attention and BA means block-wise
attention. The data in the brackets is the standard deviation.

Without Attention With CA With BA
Training time consumption (s) 37.7661 (1.7530) 186.5941 (9.0698) 75.9330 (2.808)
Test time consumption (s) 7.1772 (0.3879) 22.1444 (3.5978) 8.0369 (0.4131)

attention, with block-wise attention, and without attention module 300 epochs
separately, and recorded the training time and test time per epoch. We calcu-
late and give the average time consumption and the standard deviation. The
results are shown in Table 8 and Table 9.

According to the results, we can see that the time consumption significantly
increases when using the attention module. Among the two attention modules,
channel-wise attention is more computationally expensive. Compared with the
model without any attention module, the time consumption of channel-wise
attention for training is about 2.2 times on DuckDuckGeese and is 4.9 times on
MotorImagery. While the time consumption of block-wise attention for training
is 2.1 times on DuckDuckGeese and is 2 times on MotorImagery. Although
attention modules improve the performance (shown in section 4.8), they also
make the model less efficient, which brings challenges for employing the model
on devices with limited computing resources.

4.10 Impact of Feature Dimension Reduction

As discussed in section 4.9, we find that our model is less efficient when
the time series contains too many variables. So we conducted experiments to
explore the impact of combining feature dimension reduction algorithms with
the AGRes2Net. We select SelfRegulationSCP2 dataset as it contains 1152
variables. We used Principal Component Analysis (PCA) to reduce the number
of variables from 1152 to 28. we stacked 4 layers, and each layer has 8 groups
of convoltuional filters. We use the same dropout rate and experiment settings
that are described in the section 4.3. We trained the model on i7-8700K CPU.
We recorded the performance including accuracy, precision, recall, F1score,
and time consumption of both training phase and test phase. The results are
given in Table 10.

According to the results, all the performances go poorer, but the time con-
sumption is significantly reduced. Specifically, the accuracy after using PCA
decreases 9.59%, but the test speed of the model is about 33 times faster. So
dimension reduction algorithms (such as PCA) are practicable for dropping

Springer Nature 2021 LATEX template

Article Title 17

Table 10 Performance Comparison between the data with PCA and without PCA on
SelfRegulationSCP2. The data in the brackets is the standard deviation.

Training Test
Accuracy Precision Recall F1Score Time per epoch Accuracy Precision Recall F1Score Time per epoch (s)

Without PCA 0.9386 0.9300 0.9297 0.9298 18.3621 (1.0645) 0.6210 0.6167 0.6132 0.6149 6.0603 (0.2679)
With PCA 0.8958 0.8799 0.8788 0.8793 0.6664 (0.8050) 0.5667 0.5611 0.5556 0.5583 0.1981 (0.0235)

Fig. 3 Accuracy comparison between the vanilla MLSTM-FCN (blue bar) and the MLSTM-
FCN where our model replaces the convolutional modules (orange bar). Block-wise attention
and channel-wise attention are applied to the AREM dataset and the Gesture Phase dataset,
respectively.

some features if we want to make the model more efficient in facing the time
series that contain too many variables.

4.11 Effectiveness of Our Model as a Plugin

We use MLSTM-FCN, the SOTA architecture on most datasets (as shown
in Table 1), to demonstrate the effectiveness of our model as a plugin. The
original MLSTM-FCN follows a CNN-LSTM parallel architecture. The input
goes through multiple LSTMs and CNNs, and the outputs are concatenated
and go through a fully connected layer for information fusion. We conducted
this experiment by replacing the original convolutional modules of MLSTM-
FCN with our model while preserving the architecture and all the other parts
in MLSTM-FCN.

We show the comparison results on two datasets, AREM and Gesture
Phase, to demonstrate the impact of our model on the overall performance
of MLSTM-FCN. Specifically, we adopted block-wise attention on the AREM
dataset and channel-wise attention on the Gesture Phase dataset without par-
ticular reasons. We omit to show the results on other datasets as they draw
similar conclusions.

The results (Figure 3) show a significant improvement in the classification
accuracy of MLSTM-FCN on both datasets after the replacement, demonstrat-
ing the positive effect of our model on the performance of existing multivariate
time series classification models when used as a plugin.

Springer Nature 2021 LATEX template

18 Article Title

Table 11 Performance comparison based on the different variable numbers on LSST

Block-wise Attention Channel-wise Attention
Variable Number Accuracy Precision Recall F1Score Accuracy Precision Recall F1Score

3 0.2173 0.1328 0.1221 0.1272 0.1473 0.1316 0.1154 0.1229
4 0.5799 0.5795 0.5722 0.5758 0.6553 0.6375 0.6358 0.6367

Table 12 Performance comparison based on the different variable numbers on HeartBeat

Block-wise Attention Channel-wise Attention
Variable Number Accuracy Precision Recall F1Score Accuracy Precision Recall F1Score

2 0.7456 0.6207 0.6321 0.6264 0.6451 0.5560 0.5496 0.5528
3 0.6369 0.5970 0.5975 0.5972 0.7130 0.6072 0.6156 0.6114

4.12 Exploring the Threshold for Choosing Channel-wise
Attention and Block-wise Attention

As discussed in the previous section, channel-wise attention performs better
and vice versa. This section further explores whether a standard threshold
exists for choosing the proper attention module. We select two datasets, LSST
and HeartBeat, for experiments, because they contain many variables and
channel-wise attention performs better than block-wise attention, and we can
use dimension reduction methods to tune the variable numbers to find when
the block-wise attention performs better. We use PCA to gradually control
the variable numbers. The results can be seen in Table 11 and Table 12.

According to the results, we can see the thresholds of the two datasets are
different (3 for LSST and 2 for HeartBeat). Besides, when we reduce the vari-
able number to 3 on LSST, the performance significantly decreases, making
the results less convincing. According to the results, we can see the thresholds
of the two datasets are different (3 for LSST and 2 for HeartBeat). Besides,
when reducing the variable number to 3 on LSST, the performance of both
attention modules is significantly decreased, making the results less convincing.
Besides, from the results given in Table 3, we can see on the FingerMovements
dataset, the block-wise attention performs better, while on the ECG dataset,
the channel-wise attention outperforms block-wise attention. However, Fin-
gerMovements contains 28 variables, while ECG contains only 2 variables. To
summarize, the threshold is case-by-case, and the standard threshold does not
exist. Although we can follow a rule that using channel-wise attention is prefer-
able in facing a dataset that has lots of variables (such as SelfRegulationSCP2,
Action 3D, DuckDuckGeese, etc.), we still need to do empirical studies on each
dataset to choose the proper attention module.

4.13 Practical Advice

We offer several suggestions on applying our model to broader scenarios based
on the above experimental results and our analysis:

• Avoid very deep models: a wider model is generally more capable than a
deeper model of addressing a general multivariate time series classification.

Springer Nature 2021 LATEX template

Article Title 19

We should prioritize constructing wider models rather than stacking more
layers when faced with a new problem.

• Focus on tuning the hyperparameter s: setting a larger s increases the num-
ber of convolutional-filter groups, leading to multiple receptive fields that
capture temporal patterns in various ranges. Tuning the hyperparameter s is
especially important for long time-series sequences to achieve the best possi-
ble performance. It is generally worthwhile to tune s ahead of investigating
the optimal settings of other parameters.

• Choose attention module based on variable number : the number of variables
is, by far, the most useful single criterion for deciding which attention module
to choose for our model, based on our experiments. As discussed, block-wise
attention is preferred for sequences with a small number of variables, and
channel-wise attention is more suitable for sequences with massive variables.
More criteria include the number of sequences available for training, the
number of classes, and the length of sequences, which must be figured out
case by case.

5 Conclusion and Future Work

In this paper, we propose a novel deep learning architecture called Attentional
Gated Res2Net for accurate multivariate time series classification. Our model
comprehensively incorporates gates and two types of attention modules to cap-
ture multi-granular temporal information. We evaluate the model on diverse
datasets that contain sequences of various lengths with a wide range of vari-
able numbers. Our experiments show the model outperforms several baselines
and state-of-the-art methods by a large margin. We thoroughly investigate
the effect of different components and settings on the model’s performance
and provide hands-on advice on applying our model to a new problem. Our
test on plugging the model into a state-of-the-art architecture, MLSTM-FCN,
demonstrates the potential for using our model as a plugin to improve the
performance of existing models.

However, our attention modules increase the training, and inference is
time-consuming facing the time series with many variables. Although some
dimension reduction algorithms can alleviate the time consumption, it neg-
atively influences classification accuracy. In the future, we aim to explore a
pluggable feature selection module to select essential variables hence accelerat-
ing the training and inference process. Besides, our model still rely on manual
fine-tuning for various datasets. We wish to make our model dynamic instead
of static to ensure automatic adaptability based on the certain dataset.

6 Funding

This work was supported by the Australian Research Council (Grant numbers
DE180100251, DP220103717 and LP180100654).

Springer Nature 2021 LATEX template

20 Article Title

7 Conflict of Interest

The authors have no conflict of interest to declare that are relevant to the
content of this article.

8 Data Availability Statement

The datasets generated and/or analysed during the current study are available
from the corresponding author on reasonable request.

References

[1] Spiegel, S., Gaebler, J., Lommatzsch, A., De Luca, E., Albayrak, S.:
Pattern recognition and classification for multivariate time series. In: Pro-
ceedings of the Fifth International Workshop on Knowledge Discovery
from Sensor Data, pp. 34–42 (2011)

[2] Esling, P., Agon, C.: Time-series data mining. ACM Computing Surveys
(CSUR) 45(1), 1–34 (2012)

[3] Yu, Z., Lee, M.: Real-time human action classification using a dynamic
neural model. Neural Networks 69, 29–43 (2015)

[4] Chitra, R., Seenivasagam, V.: Heart disease prediction system using
supervised learning classifier. Bonfring International Journal of Software
Engineering and Soft Computing 3(1), 01–07 (2013)

[5] Bai, L., Yao, L., Kanhere, S.S., Wang, X., Yang, Z.: Automatic device clas-
sification from network traffic streams of internet of things. In: 2018 IEEE
43rd Conference on Local Computer Networks (LCN), pp. 1–9 (2018).
IEEE

[6] Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review
and new perspectives. IEEE transactions on pattern analysis and machine
intelligence 35(8), 1798–1828 (2013)

[7] Aydın, S.: Deep learning classification of neuro-emotional phase domain
complexity levels induced by affective video film clips. IEEE Journal of
Biomedical and Health Informatics 24(6), 1695–1702 (2019)

[8] Kılıç, B., Aydın, S.: Classification of contrasting discrete emotional states
indicated by eeg based graph theoretical network measures. Neuroinfor-
matics, 1–15 (2022)

[9] Aydın, S.: Cross-validated adaboost classification of emotion regulation
strategies identified by spectral coherence in resting-state. Neuroinformat-
ics, 1–13 (2021)

Springer Nature 2021 LATEX template

Article Title 21

[10] Baydogan, M.G., Runger, G., Tuv, E.: A bag-of-features framework to
classify time series. IEEE transactions on pattern analysis and machine
intelligence 35(11), 2796–2802 (2013)

[11] Kampouraki, A., Manis, G., Nikou, C.: Heartbeat time series classifica-
tion with support vector machines. IEEE Transactions on Information
Technology in Biomedicine 13(4), 512–518 (2008)

[12] Bai, L., Yao, L., Wang, X., Kanhere, S.S., Xiao, Y.: Prototype simi-
larity learning for activity recognition. In: Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pp. 649–661 (2020). Springer

[13] Bengio, Y., LeCun, Y., et al.: Scaling learning algorithms towards ai.
Large-scale kernel machines 34(5), 1–41 (2007)

[14] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–
444 (2015)

[15] Hornik, K.: Approximation capabilities of multilayer feedforward net-
works. Neural networks 4(2), 251–257 (1991)

[16] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances
in Neural Information Processing Systems, pp. 5998–6008 (2017)

[17] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural com-
putation 9(8), 1735–1780 (1997)

[18] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares,
F., Schwenk, H., Bengio, Y.: Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078 (2014)

[19] Xu, P., Kumar, D., Yang, W., Zi, W., Tang, K., Huang, C., Cheung,
J.C.K., Prince, S.J., Cao, Y.: Optimizing deeper transformers on small
datasets. In: ACL/IJCNLP (1) (2021)

[20] Di Gangi, M.A., Negri, M., Cattoni, R., Dessi, R., Turchi, M.: Enhancing
transformer for end-to-end speech-to-text translation. In: Proceedings of
Machine Translation Summit XVII: Research Track, pp. 21–31 (2019)

[21] Deng, H., Runger, G., Tuv, E., Vladimir, M.: A time series forest for
classification and feature extraction. Information Sciences 239, 142–153
(2013)

[22] Jović, A., Brkić, K., Bogunović, N.: Decision tree ensembles in biomed-
ical time-series classification. In: Joint DAGM (German Association

Springer Nature 2021 LATEX template

22 Article Title

for Pattern Recognition) and OAGM Symposium, pp. 408–417 (2012).
Springer

[23] Zhang, D., Zuo, W., Zhang, D., Zhang, H.: Time series classification using
support vector machine with gaussian elastic metric kernel. In: 2010 20th
International Conference on Pattern Recognition, pp. 29–32 (2010). IEEE

[24] Lee, Y.-H., Wei, C.-P., Cheng, T.-H., Yang, C.-T.: Nearest-neighbor-based
approach to time-series classification. Decision Support Systems 53(1),
207–217 (2012)

[25] Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great
time series classification bake off: a review and experimental evaluation
of recent algorithmic advances. Data Mining and Knowledge Discovery
31(3), 606–660 (2017)

[26] Seto, S., Zhang, W., Zhou, Y.: Multivariate time series classification using
dynamic time warping template selection for human activity recogni-
tion. In: 2015 IEEE Symposium Series on Computational Intelligence, pp.
1399–1406 (2015). IEEE

[27] Tang, Y., Xu, J., Matsumoto, K., Ono, C.: Sequence-to-sequence model
with attention for time series classification. In: 2016 IEEE 16th Inter-
national Conference on Data Mining Workshops (ICDMW), pp. 503–510
(2016). IEEE

[28] Tan, H.X., Aung, N.N., Tian, J., Chua, M.C.H., Yang, Y.O.: Time series
classification using a modified lstm approach from accelerometer-based
data: A comparative study for gait cycle detection. Gait & posture 74,
128–134 (2019)

[29] Elsayed, N., Maida, A.S., Bayoumi, M.: Deep gated recurrent and con-
volutional network hybrid model for univariate time series classification.
arXiv preprint arXiv:1812.07683 (2018)

[30] Zhao, B., Lu, H., Chen, S., Liu, J., Wu, D.: Convolutional neural net-
works for time series classification. Journal of Systems Engineering and
Electronics 28(1), 162–169 (2017)

[31] Yang, C., Jiang, M., Guo, Z., Liu, Y.: Gated res2net for multivariate
time series analysis. In: 2020 International Joint Conference on Neural
Networks (IJCNN), pp. 1–7 (2020). IEEE

[32] Tang, W., Long, G., Liu, L., Zhou, T., Jiang, J., Blumenstein, M.:
Rethinking 1d-cnn for time series classification: A stronger baseline. arXiv
preprint arXiv:2002.10061 (2020)

Springer Nature 2021 LATEX template

Article Title 23

[33] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-
scale image recognition. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings (2015)

[34] Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 1440–1448 (2015)

[35] Sun, X., Wu, P., Hoi, S.C.: Face detection using deep learning: An
improved faster rcnn approach. Neurocomputing 299, 42–50 (2018)

[36] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg,
A.C.: Ssd: Single shot multibox detector. In: European Conference on
Computer Vision, pp. 21–37 (2016). Springer

[37] He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings
of the IEEE International Conference on Computer Vision, pp. 2961–2969
(2017)

[38] Han, Z., Zhao, J., Leung, H., Ma, K.F., Wang, W.: A review of deep
learning models for time series prediction. IEEE Sensors Journal (2019)

[39] Borovykh, A., Bohte, S., Oosterlee, C.W.: Conditional time series forecast-
ing with convolutional neural networks. arXiv preprint arXiv:1703.04691
(2017)

[40] Hoermann, S., Bach, M., Dietmayer, K.: Dynamic occupancy grid predic-
tion for urban autonomous driving: A deep learning approach with fully
automatic labeling. In: 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 2056–2063 (2018). IEEE

[41] Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven
stock prediction. In: Twenty-fourth International Joint Conference on
Artificial Intelligence (2015)

[42] Wallach, I., Dzamba, M., Heifets, A.: Atomnet: a deep convolutional neu-
ral network for bioactivity prediction in structure-based drug discovery.
arXiv preprint arXiv:1510.02855 (2015)

[43] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan,
D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–9 (2015)

[44] Liu, C.-L., Hsaio, W.-H., Tu, Y.-C.: Time series classification with mul-
tivariate convolutional neural network. IEEE Transactions on Industrial
Electronics 66(6), 4788–4797 (2018)

Springer Nature 2021 LATEX template

24 Article Title

[45] Cui, Z., Chen, W., Chen, Y.: Multi-scale convolutional neural networks
for time series classification. arXiv preprint arXiv:1603.06995 (2016)

[46] Yang, C., Jiang, W., Guo, Z.: Time series data classification based on dual
path cnn-rnn cascade network. IEEE Access 7, 155304–155312 (2019)

[47] Karim, F., Majumdar, S., Darabi, H., Harford, S.: Multivariate lstm-fcns
for time series classification. Neural Networks 116, 237–245 (2019)

[48] Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., Zhang,
W.: Informer: Beyond efficient transformer for long sequence time-series
forecasting. In: Proceedings of AAAI (2021)

[49] Rußwurm, M., Körner, M.: Self-attention for raw optical satellite time
series classification. ISPRS Journal of Photogrammetry and Remote
Sensing 169, 421–435 (2020)

[50] Hu, J., Zheng, W.: A deep learning model to effectively capture muta-
tion information in multivariate time series prediction. Knowledge-Based
Systems 203, 106139 (2020)

[51] Woo, S., Park, J., Lee, J.-Y., So Kweon, I.: Cbam: Convolutional
block attention module. In: Proceedings of the European Conference on
Computer Vision (ECCV), pp. 3–19 (2018)

[52] Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7132–7141 (2018)

[53] Gao, S., Cheng, M.-M., Zhao, K., Zhang, X.-Y., Yang, M.-H., Torr, P.H.:
Res2net: A new multi-scale backbone architecture. IEEE transactions on
pattern analysis and machine intelligence (2019)

[54] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with
deep convolutional neural networks. Advances in neural information
processing systems 25, 1097–1105 (2012)

[55] Chollet, F.: Xception: Deep learning with depthwise separable convolu-
tions. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1251–1258 (2017)

[56] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand,
T., Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861
(2017)

[57] Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3d points.

Springer Nature 2021 LATEX template

Article Title 25

In: 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition-Workshops, pp. 9–14 (2010). IEEE

[58] Schäfer, P., Leser, U.: Multivariate time series classification with weasel+
muse. arXiv preprint arXiv:1711.11343 (2017)

[59] Dau, H.A., Keogh, E., Kamgar, K., Yeh, C.-C.M., Zhu, Y., Gharghabi, S.,
Ratanamahatana: The UCR Time Series Classification Archive (2018)

[60] Fawaz, H.I., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D.F., Weber,
J., Webb, G.I., Idoumghar, L., Muller, P.-A., Petitjean, F.: Inceptiontime:
Finding alexnet for time series classification. Data Mining and Knowledge
Discovery 34(6), 1936–1962 (2020)

[61] Middlehurst, M., Large, J., Bagnall, A.: The canonical interval forest
(cif) classifier for time series classification. In: 2020 IEEE International
Conference on Big Data (Big Data), pp. 188–195 (2020). IEEE

[62] Müller, M.: Dynamic time warping. Information retrieval for music and
motion, 69–84 (2007)

[63] Dempster, A., Petitjean, F., Webb, G.I.: Rocket: exceptionally fast and
accurate time series classification using random convolutional kernels.
Data Mining and Knowledge Discovery 34(5), 1454–1495 (2020)

[64] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014)

[65] Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual
transformations for deep neural networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

[66] Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T.,
Mueller, J., Manmatha, R., Li, M., Smola, A.: ResNeSt: Split-Attention
Networks (2020)

	Introduction
	Related Work
	Multivariate Time Series Classification
	Attention Mechanism

	Our Approach
	Convolution stage
	Attention stage
	Channel-wise attention
	Block-wise attention

	Experiments
	Datasets
	Baseline Methods
	Model Configuration and Evaluation Metric
	Comparison of Different Methods
	Impact of Depth and Width of Model
	Impact of Group Number
	Impact of Attention Modules
	Ablation Study
	Time Consumption of Attention Modules
	Impact of Feature Dimension Reduction
	Effectiveness of Our Model as a Plugin
	Exploring the Threshold for Choosing Channel-wise Attention and Block-wise Attention
	Practical Advice

	Conclusion and Future Work
	Funding
	Conflict of Interest
	Data Availability Statement

