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ABSTRACT

Adversarial Machine Learning on AI Model Attacks

by

Xinghao Yang

Deep Neural Networks (DNNs) have achieved great success in multiple domains,

stretching from Computer Vision (CV) to Natural Language Processing (NLP).

However, recent studies demonstrated that DNNs are extremely vulnerable towards

adversarial examples, which are original input with small perturbations. These

perturbations are usually imperceptible to humans but mislead well-trained DNNs

to erroneous output with high confidence. This phenomenon poses great concern

of DNNs’ robust performance on security-critical applications, such as traffic sign

recognition and sentiment analysis. In this research, we focus on adversarial at-

tacks, which is an effective strategy to understand DNNs behavior and promote

their robust performance. Firstly, we proposed a Targeted Attention Attack (TAA)

strategy to investigate the robustness of the traffic sign recognition system. Our

TAA strategy takes the advantage of a soft attention map to reduce the attack cost

and generates more natural perturbations to fit the real-world situations. Secondly,

we designed the Bigram and Unigram based Semantic Preservation Optimization

(BU-SPO) method to examine the vulnerability of deep models in text classifica-

tion. The BU-SPO attacks text documents not only at the unigram word level

but also at the bigram level to avoid producing meaningless sentences, where the

Semantic Preservation Optimization (SPO) is designed to reduce the modification

cost and improve the semantic consistency. Thirdly, we presented a BERT-based

Simulated Annealing (BESA) algorithm to craft fluent text adversarial examples.

The BESA mechanism employs the BERT Masked Language Model to generate

context-aware word substitutions and adopts the Simulated Annealing to approach

the global optima solution with a reasonable objective function.
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