
ar
X

iv
:1

70
2.

04
42

0v
1

 [
qu

an
t-

ph
]

 1
4

Fe
b

20
17

Quantum Privacy-Preserving Data Analytics

Shenggang Ying1, Mingsheng Ying1,2,3, Yuan Feng1

1 University of Technology Sydney, Australia
2 Institute of Software, Chinese Academy of Sciences, China

3 Tsinghua University, China

Abstract. Data analytics (such as association rule mining and decision
tree mining) can discover useful statistical knowledge from a big data set.
But protecting the privacy of the data provider and the data user in the
process of analytics is a serious issue. Usually, the privacy of both parties
cannot be fully protected simultaneously by a classical algorithm. In this
paper, we present a quantum protocol for data mining that can much
better protect privacy than the known classical algorithms: (1) if both
the data provider and the data user are honest, the data user can know
nothing about the database except the statistical results, and the data
provider can get nearly no information about the results mined by the
data user; (2) if the data user is dishonest and tries to disclose private
information of the other, she/he will be detected with a high probability;
(3) if the data provider tries to disclose the privacy of the data user,
she/he cannot get any useful information since the data user hides his
privacy among noises.

1 Introduction

Privacy-preserving data analytics: Data analytics has become an indis-
pensable technology in the big data era. Mining statistical knowledge from a big
data set is one of the most important tasks of data analytics. A typical example
is association rule mining, which was introduced to find useful links from a large
set of transactions in a supermarket [2]. An association rule is a probabilistic
implication A ⇒ B, which means event A implies event B with a high proba-
bility. Another example is to mine decision trees [17], which are a core model of
classification problems.

Data analytics has numerous applications in the areas like market basket
problem, scientific data analysis, web mining, just name a few [2,13]. In practical
applications, one major issue arises: how to protect the privacy of each individual
in a database while mining the statistical knowledge? For instance, the privacy
of each patient should not be leaked during mining an association rule or a
decision tree for medical diagnosis from a database of patients. To address this
issue, various algorithms for privacy-preserving data mining has been developed
in the last twenty years [6,7,12,18]. In these algorithms, however, the privacy of
the data provider and the data user cannot be protected simultaneously.

Quantum computing and crytopgraphy: Since 1990’s, various quan-
tum algorithms have been discovered and proved to be much faster than the

http://arxiv.org/abs/1702.04420v1

2 Shenggang Ying, Mingsheng Ying, Yuan Feng

known classical algorithms for the same tasks. For example, Grover’s quantum
search algorithm [10] can find the target element in a database in O(

√
N) oracle

calls. Quantum counting algorithm [5] has a quadratic speed-up over classical
algorithms as well. More recently, several quantum machine learning algorithms
[14,15] have been presented based on quantum random access memory [8], and
they can achieve an exponential speed-up over classical algorithms.

Several quantum protocols that can better protect privacy have also been
found; for example, the famous quantum key distribution protocol BB84 [3],
quantum private queries [9], and revocable quantum timed-release encryption
[21].

Contribution of this paper: In this paper, we present a quantum proto-
col for mining statistical knowledge in a database, such as association rules and
decision trees. This protocol can protect the privacy of both the data provider
and data user provided they are honest. Furthermore, the privacy of both data
provider and data user is protected: no useful private information will be dis-
closed.

The basic idea of our protocol can be described as follows. The basic idea
for the data provider is to employ tests to detect attacks. Without any influence
on the computational results, the data provider randomly detects attacks from
the data user. Meanwhile, the basic idea for the data user is to hide his privacy
among noises. The data user introduces noises into her/his private query func-
tions, and these noises in different steps cancel each other if the data provider
follows the protocol strictly. The novelty is that the privacy of both parties is pre-
served by techniques in quantum computing and cryptography, but can hardly
be achieved by classical methods.

Structure of the paper: For convenience of the reader, preliminaries and
notations are introduced in Section 2. We present our quantum protocol in three
steps: we first explain the design idea in Section 3, an outline of the protocol
is then shown in Section 4, and we examine some details in the execution of
the protocol in Section 5. The correctness of the protocol is proven in Section 6.
The privacy analysis is given in Section 7 for the data provider and in Section
8 for the data user. The complexity analysis is given in Section 9. Some further
discussions are presented in Section 10. All the proofs of lemmas and theorems
are given in the Appendix.

2 Preliminaries

2.1 Association Rule Mining

As pointed out above, we are going to develop a quantum algorithm for asso-
ciation rule mining. (The application for decision tree learning is presented in
Section 10.2.) For convenience of the reader, in this subsection, we briefly review
association rule mining; for more details, see [2]. Let S = {1, 2, · · · , k} be a set
of items, where each index i ∈ S stands for an item; for instance, 1 may stand
for “Apple”, 2 for “Orange”. A transaction or itemset tr is a set of items, i.e.,

Quantum Privacy-Preserving Data Analytics 3

tr ⊆ S. Moreover, an m-itemset is an itemset which has exactly m items. For
example, a transaction can be the items a customer buys in one purchase. In
order to store a transaction into a computer or a database, a transaction tr is
represented by a string π = π1π2 · · ·πk ∈ {0, 1}k:

πι =

{

1, ι ∈ tr,

0, ι 6∈ tr.
(1)

In this paper, we always use strings in {0, 1}k to represent transactions or item-
sets based on Eq. (1). Then we can talk about the inclusion relation π ⊆ τ for
two strings π, τ ∈ {0, 1}k since they refer to two sets (transactions or itemssets):
π ⊆ τ ⇔ πι ≤ τι for every ι ∈ S. Moreover, we can define other set-theoretic
operations and relations of π and τ .

A database D of transactions is a set D = 〈d0, d1, · · · , dN−1〉, where dj ∈
{0, 1}k is a transaction and N is the size of D, i.e., the number of transactions
in D. The support supp(d) of an itemset d is defined to be its frequency in
database D:

supp(d) = f (d)(D) =
1

N

N−1
∑

j=0

f (d)(dj), (2)

where

f (d)(dj) =

{

1, d ⊆ dj ,

0, d 6⊆ dj .
(3)

The superscript (d) of f (d)(·) may be omitted if the itemset d is clear from the
context or not explicitly specified.

A rule is a probabilistic implication between two disjoint itemsets in D. The
support and confidence of a rule π ⇒ τ are defined by

supp(π ⇒ τ) = supp(π ∪ τ),

conf(π ⇒ τ) =
supp(π ∪ τ)
supp(π)

,

respectively. Roughly speaking, the support of a rule indicates its importance
(frequency) in a database. The confidence of a rule means its correctness prob-
ability; more precisely, conf(π ⇒ τ) is the probability that if π appears in d
(π ⊆ d), then τ will as well appear in d (τ ⊆ d).

The task of association rule mining is to find all rules with high support and
confidence, namely association rule.

Definition 1 (Association Rule). An association rule π ⇒ τ is a relation
between two itemsets π, τ ⊆ S, which satisfies the following conditions:

– π ∩ τ = ∅,
– supp(π ⇒ τ) > smin,
– conf(π ⇒ τ) > cmin,

4 Shenggang Ying, Mingsheng Ying, Yuan Feng

where smin (resp. cmin) is the preset (constant) threshold for supports (resp. con-
fidences).

The algorithms for association rule mining in the literature [2] are usually divided
into the following two steps:

1. Find all frequent itemsets ξ, which are itemsets with high support/frequency,
i.e., supp(ξ) > smin.

2. For each frequent itemsset ξ, find all association rules π ⇒ τ with π ∪ τ = ξ.

Moreover, only the first step is crucial because once it is done, the second becomes
very easy by the definition of confidence. Note ξ ⊆ d implies τ ⊆ d for any τ ⊆ ξ.
So, the supports of itemsets are non-increasing: τ ⊆ ξ implies supp(τ) ≥ supp(ξ).
Thus, each frequent m-itemset is a superset of some frequent (m − 1)-itemset,
which leads to the level-wise algorithm [2]:

– Initialization. Let F1 = {{i} : i = 1, 2, · · · , k} be the set of all 1-itemsets.
Set Fl = ∅ for all l > 1, and Gj = ∅ for all j ≥ 1.

– Induction on l starting from l = 1. If Fl = ∅, output all itemsets in Gj for all
j, and terminate the algorithm. Otherwise, do the following steps for every
τ ∈ Fl:

1. Compute supp(τ).

2. If supp(τ) > smin, add τ into Gl and all supersets of τ with l + 1 items
into Fl+1.

One can see that in the above algorithm, the key step is to compute the
support of a given itemset. In particular, only this step may cause disclosure
of private data. So, in this paper, we will focus on it. Note that computing the
support of a given itemset can be done by quantum counting algorithm [5]. Our
work is to develop a privacy-preserving extension of quantum counting for this
task on a centralized database.

2.2 Quantum Database

To employ quantum algorithms for mining classical database, we first recall from
[8] how a (classical) database can be stored in a quantum computer.

Definition 2 (Quantum database). Let D = 〈d0, d1, ..., dN−1〉 be a database
where dj ∈ {0, 1}k for all j. For convenience, we always assume that N = 2n.
Then the quantum database corresponding to D is a unitary transformation OD
on n+ k qubits defined as follows:

OD|x〉|τ〉 = |x〉|τ ⊕ dx〉

for every x ∈ {0, 1}n and τ ∈ {0, 1}k. Here we identify x with the integer it
represents (by binary representation).

Quantum Privacy-Preserving Data Analytics 5

In the above definition, x is used to denote the address of a data cell, and
dx is the content stored in data cell x. The quantum database OD can be seen
as a quantum oracle; for instance, if a data user queries it with a basis state
|i〉|0〉, the oracle will return |i〉|di〉. This is equivalent to querying the classical
database D with address i. More interestingly, a data user can also query OD
with a superposition

∑

i αi|i〉|0〉 of addresses, and it will return

OD

(

∑

i

αi|i〉|0〉
)

=
∑

i

αi|i〉|di〉, (4)

a (superposed) state which in principle contains all transactions of the database.
Note also that, however, an attempt to read out a particular transaction (by
performing a quantum measurement) will cause collapse of the state into one
where all information of other transactions is completely destroyed.

It is worth mentioning that in our protocol the quantum database OD will
be permuted to UD(y) (see Eq. (9)) to improve the data provider’s privacy.

2.3 Privacy-preserving Data Analytics

Now let us consider the following problem:

Problem 1 (Privacy-preserving counting). Suppose Alice holds a database D =
〈d0, d1, ..., dN−1〉 where dj ∈ {0, 1}k for all j. For a function f : {0, 1}k → {0, 1},
Bob wants to compute

f(D) =
1

N

N−1
∑

j=0

f(dj), (5)

and after the computation,

1. Privacy preserving for Alice: for each j, Bob will not know dj (even approx-
imatively);

2. Privacy preserving for Bob: Alice will not know the function f .

Obviously, whenever f is taken to be f (d) defined in Eq. (3), then f(D) is
the support of item set d.

The majority of classical algorithms in the literature aim at protecting Alice’s
privacy. The idea is to publish a distorted database D′ so that Bob can compute
f over it. Thus, the problem becomes how to modify D to D′ with a high accu-
racy of statistical properties. The suggested solutions include: (1) modify each
transaction independently; for instance, the occurrence of each item in a transac-
tion is flipped randomly [7]; (2) replace some items by others without changing
the number of items in a transaction [18]; (3) modify transactions within the
entire database; for instance, swap elements between different transactions [6].

It is easy to see that the function in Eq.(2) can be efficiently computed by
quantum counting algorithm [5] with the corresponding quantum database OD.
However, a simple application of quantum counting is unable to achieve the goal
of privacy protection. It has to be extended to fit the new task.

6 Shenggang Ying, Mingsheng Ying, Yuan Feng

3 Basic Ideas of the Protocol

The overall aim of this paper is to develop a quantum protocol solving Problem 1.
In this section, we introduce the basic ideas employed in the design of our proto-
col, which is essentially the quantum counting algorithm [5] with new strategies
for privacy preserving. Quantum counting is a combination of controlled Grover
iterations modified from Grover search algorithm [10] and quantum Fourier trans-
form [16]. As quantum Fourier transform is not applied to the original data set,
privacy preserving in Grover search is the core of our protocol.

To explain the ideas more clearly, we elaborate in the following a quantum
algorithm for privacy-preserving search, a problem which can be regarded as a
special case of Problem 1 where f(D) returns an index (if there is any) j such
that f(dj) = 1.

3.1 Two-Party Grover Search

For privacy preserving, we adapt Grover search algorithm [10] to the two-party
scenario. To simplify the presentation, we omit the detail of communication
between Alice and Bob, and assume implicitly that when Alice (resp. Bob) per-
forms a quantum operation, the corresponding quantum system has been sent
to her (resp. him) by Bob (resp. Alice) or prepared by herself (resp. himself).
The algorithm goes as follows:

– Bob prepares the initial state |+〉⊗nqa |0〉⊗kqa = 1√
N

∑N−1
j=0 |j〉qa |~0〉qd where qa

denotes the (n-qubit) address system while qd the (k-qubit) data system,
N = 2n, and ~0 is the k-length binary representation of 0.

– Repeat the following steps for T = ⌈π4
√
N⌉ times:

1. Alice applies the databaseOD on systems qa and qd. Let |φ0〉 =
∑

j αj |j〉|~0〉
be the initial state of the current iteration. Then now it becomes

|φ1〉 = OD|φ0〉 =
∑

j

αj |j〉|dj〉.

2. Bob applies Uf , obtaining

|φ2〉 = Uf |φ1〉 =
∑

j

(−1)f(dj)αj |j〉|dj〉,

where Uf is the oracle defined by:

Uf : |j〉|τ〉 7→ (−1)f(τ)|j〉|τ〉. (6)

3. Alice applies OD again to disentangle the systems qa and qd, reaching

|φ3〉 = OD|φ2〉 =
∑

j

(−1)f(dj)αj |j〉|~0〉.

Quantum Privacy-Preserving Data Analytics 7

4. Bob performs G on system qa only to update the amplitude, obtaining

|φ′0〉 = G⊗ Iqd |φ3〉 =
∑

j

α′
j |j〉|~0〉,

where G = I − 2|+〉⊗n〈+|⊗n. The state |φ′0〉 will be the initial state of
the next iteration.

– Another iteration of the above loop is executed with Uf in Eq.(6) replaced
by U ′

f , and it is applied on qa, qd and an auxiliary qubit system qg which
has been set to |0〉, where

U ′
f : |j〉qa |τ〉qd |x〉qg 7→ |j〉qa |τ〉qd |x⊕ f(τ)〉qg . (7)

– Bob measures qa and qg, and reports the measurement outcome.

By a similar argument as that given in [10], we can show that the above
algorithm returns an index j with f(dj) = 1 with a high probability, provided
that both Alice and Bob follow the protocol honestly.

3.2 Possible Attacks

Bob’s attack: An obvious Bob’s attack for the above algorithm is to send state
|j〉|~0〉 for a chosen j to Alice before Step 1 in the loop. Then an honest Alice will
send back to him |j〉|dj〉, from which he is able to successfully disclose dj . Note
that in one run of the algorithm, Bob may cheat 2T times. Thus if it is calledM
times as a procedure in, say, association-rule mining protocol, Bob will obtain
complete information of 2TM transactions of the database.

Alice’s attack: Similarly, Alice can cheat by sending some chosen states to
Bob to retrieve information about the query function f . To see this, note that
in both association rule and decision tree mining, f(~1) = 1 for all legal f , where
~1 is the k-length binary representation of 2k − 1. Now suppose Alice would like
to know the value of f(τ) for some τ ∈ {0, 1}k. Then she chooses to send Bob
the state 1√

2
|0〉⊗(n−1)(|0〉|τ〉+ |1〉|~1〉) before Step 2 of the loop. Note that

1√
2
|0〉⊗(n−1)(|0〉|τ〉 + |1〉|~1〉) Uf−−→ 1√

2
|0〉⊗(n−1)[(−1)f(τ)|0〉|τ〉 − |1〉|~1〉].

Now Alice can obtain f(τ) by performing a quantum measurement on systems
qa and qd, since the states |0〉|τ〉 − |1〉|~1〉 and |0〉|τ〉+ |1〉|~1〉 are orthogonal.

3.3 Privacy Preserving in Quantum Search

This subsection is devoted to an intuitive explanation of the techniques we are
going to employ in the protocol presented in Section 4 to protect the privacy of
both Alice and Bob.

8 Shenggang Ying, Mingsheng Ying, Yuan Feng

Alice’s strategy: The idea for protecting Alice’s privacy is to employ tests
to detect Bob’s attacks. Originally it is hard to distinguish Bob’s attacks from
honest actions, since Alice does not know Bob’s function f . Fortunately, if Bob
is honest, two same states will still be the same after Bob’s action Uf . Suppose
Alice randomly generates two different strings µ, ν ∈ {0, 1}k, and f(µ) = f(ν)
(resp. f(µ) 6= f(ν)). Alice sends Bob two same states 1√

2
|0〉⊗n−1(|0〉|µ〉+ |1〉|ν〉)

to Bob. Then she will receive two same states 1√
2
|0〉⊗n−1(|0〉|µ〉 + |1〉|ν〉) (resp.

1√
2
|0〉⊗n−1(|0〉|µ〉− |1〉|ν〉)) from Bob. After disentangling the data qubits, Alice

gets two copies of |0〉⊗n−1|+〉|~0〉 (resp. |0〉⊗n−1|−〉|~0〉). Finally Alice performs
measurements on the last address qubits with basis {|+〉, |−〉}, and gets outcomes
+,+ (resp. −,−).

But if Bob is dishonest and performs measurements on data qubits to read
information, each state that Alice receives will be |0〉⊗n−1|0〉|µ〉 or |0〉⊗n−1|1〉|ν〉
independently. Finally the measurement outcomes on the last address qubits will
be +,− or −,+ with probability 0.5. These outcomes can be distinguished from
those of honest actions.

Bob’s strategy: The idea for protecting Bob’s privacy is to add noises which
cancel each other when Alice follows the protocol honestly. Recall that the net
effect of a single iteration of the loop in the algorithm presented in Section 3.1 is
ḠODUfOD where Ḡ = G⊗ Id. Then in four consecutive iterations, for instance,
if the four calls of oracle Uf at Step 2 are replaced by U , Ia,d, U , Ia,d, respectively,
where U is any unitary operator with U = U † and Ia,d is the identity operator
on qa and qd, then the effect of the four modified iterations becomes

ḠODIa,dODḠODUODḠODIa,dODḠODUOD = Ia,d. (8)

More generally, if Bob needs to use Uf for T times, he can insert T operators
Ia,d and Uf ′ with different f ′ 6= f between the T occurrences of Uf . By Eq.(8),
we see that half of the information Alice gets is noise and not related to f , and
thus she cannot recover f .

4 Protocol

4.1 Main Protocol

We are now ready to present our main protocol in Algorithm 1, which com-
putes f(D) for a given function f by applying procedure GroverIteration. In the
protocol,

– At Step 2, UD(y) is defined as follows:

UD(y) = (Xy ⊗ Id)OD(X
y ⊗ Id). (9)

where Xy = Xy1 ⊗Xy2 ⊗ · · · ⊗Xyn , X0 = I, and X1 = X . Note that

UD(y)|x〉|τ〉 = |x〉|τ ⊕ dx⊕y〉.

Quantum Privacy-Preserving Data Analytics 9

Algorithm 1: Main protocol for privacy-preserving quantum counting on
a centralized database.
Parameters :Number of address qubits n and number of data qubits k

determined by the database D, and number of control qubits t
determined by Bob’s strategy in Section 5.3.

Output : two numbers s1, s2 ∈ [0, 1], which are approximately f(D).
1 begin

2 Alice generates y ∈ {0, 1}n uniformly at random, and constructs a modified
database UD(y) from OD; see Eq. (9);

3 Bob prepares two identical states |+〉⊗t
qc1

|+〉⊗n
qa1

|~0〉qd1 and |+〉⊗t
qc2

|+〉⊗n
qa2

|~0〉qd2 .
Here qci, qai, and qdi denote the control, address, and data qubits,
respectively;

4 For i = 0, . . . , T − 1, where T = 2t, do GroverIteration(i);
5 Alice generates r ∈ (0, 1) uniformly at random;
6 If r ≤ p, Alice employs procedure TestBob2 to test whether Bob is honest.

If dishonesty is detected, she terminates the entire protocol; otherwise, she
sends a message “Repeat” to Bob;

7 Alice applies UD(y) on qc1, qa1, qd1;
8 Bob performs U ′

f in Eq. (7) on qa1, qd1, qg1 where qg1 is an auxiliary qubit
which has been set to |0〉;

9 Alice and Bob repeat Step 7 to Step 8 for qc2, qa2, qd2. The new blank
ancilla qubit is denoted qg2;

10 If p < r ≤ 2p, Alice first sends a message “Repeat” to Bob, and then
employs procedure TestBob2 to test whether Bob is honest. If dishonesty
is detected, Alice terminates the entire protocol;

11 Alice applies UD(y) on qa1, qd1, and qa2, qd2 respectively;
12 Bob performs measurements on qg1 and qg2 to get outcome g1, g2 ∈ {0, 1};
13 Bob performs quantum Fourier transform, followed by measurements on qc1

to get outcome θ ∈ {0, 1, · · · , T − 1};
14 Bob computes si = sin2(θπ/T) if gi = 1, or cos2(θπ/T) if gi = 0, for i = 1, 2.

15 end

10 Shenggang Ying, Mingsheng Ying, Yuan Feng

Procedure GroverIteration(i)

1 begin

2 Alice generates r ∈ (0, 1) uniformly at random;
3 If r ≤ p, Alice employs procedure TestBob1(i) to test whether Bob is honest.

If dishonesty is detected, Alice terminates the entire protocol; otherwise,
she sends a message “Repeat” to Bob;

4 Alice applies UD(y) and then Bob applies controlled Ufi on qc1, qa1, qd1
with qc1 being control qubits;

5 Alice and Bob repeat Step 4 for qc2, qa2, qd2;
6 If p < r ≤ 2p, Alice first sends a message “Repeat” to Bob, and then

employs procedure TestBob1(i) to test whether Bob is honest. If
dishonesty is detected, Alice terminates the entire protocol;

7 Alice applies UD(y) and then Bob applies controlled G on qc1, qa1, qd1 with
qc1 being control qubits, where G is defined in Sec 3.1;

8 Alice and Bob repeat Step 7 for qc2, qa2, qd2;

9 end

This modification of OD permutes the transactions in the database to protect
Alice’s privacy (Compare it with OD in Definition 2).

– In the main protocol, Alice employs the test TestBob2 for Bob’s dishonesty
with probability 2p. Furthermore, the test is conducted either before or after
Steps 7 to 9, with equal probability. Consequently, both Step 6 and Step 10
are executed with probability p. In this paper, we set p = 0.05.

– The message “Repeat” means that a test was or will be used, and Bob should
prepare to repeat what he did for the last two copies of states.

4.2 Grover Iteration

In this subsection, we present the procedure GroverIteration called at Step 4 in
Algorithm 1, which is essentially a controlled Grover iteration. In this procedure,

– the functions f0, f1, . . . , fT−1 are generated by Bob using the strategy pre-
sented in Section 5.3.

– for each i, Ufi is a unitary operator similarly defined as that in Eq.(6).

In the following, we discuss briefly some implementation issues for procedure
GroverIteration.

Controlled Operators. As said before, procedure GroverIteration is a con-
trolled Grover iteration. Two controlled unitary operators, controlled Ufi in
Step 4 and controlled G in Step 7, need to be implemented. Fortunately, both
controlled Ufi and controlled G can be implemented locally by Bob with O(n+k)
CNOT gates and Toffoli gates.

Quantum Privacy-Preserving Data Analytics 11

Control qubit Loop i

None 0
First qubit of qc 1, · · · , 2t−1

Second qubit of qc 2t−1 + 1, · · · , 2t−1 + 2t−2

...
...

Table 1. Control qubit for each loop i.

Control Qubits qc. Note that t = logT qubits qc are used as the control bits
for Ufi and G. Observe that for any unitary operator U ,

1√
T

T−1
∑

c=0

|c〉U c|Ψ0〉 =
1√
T

T−1
∑

c=0

|c〉 ⊗ (U c02
t−1

U c12
t−2 · · ·U ct−1 |Ψ0〉). (10)

We can use the first qubit of qc (corresponding to c0) as the control for 2t−1

times (for loop i = 1, · · · , 2t−1), and the second one for 2t−2 times (for loop
i = 2t−1+1, · · · , 2t−1+2t−2), and so on; see Table 1. Note that one control qubit
is enough to implement the controlled operators for each i. Therefore, controlled
Ufi or G is activated if and only if the state of the corresponding control qubit
is |1〉. For instance, if 0 < i ≤ 2t−1, we have

|c〉
∑

j

αj |j〉|u〉
Controlled Ufi−−−−−−−−−−→ |c〉U c0fi (

∑

j

αj |j〉|u〉).

State Evolution. We now examine the state evolution in GroverIteration. Sup-
pose the initial state of qc1, qa1 and qd1 is

|ϕ〉 = 1√
T

∑

c

∑

j

αc,j|j〉|~0〉.

Then its evolution can be summarised in Table 2, in which we only illustrate
the part on qa1 and qd1. It is worth noting that Step 3 and Step 6 will never
change the state of qc1, qa1, qd1 and qc2, qa2, qd2. This is because during the tests,
all these qubits are preserved and only new constructed test states are sent to
Bob. Therefore, the controlled Grover iteration is actually realized in procedure
GroverIteration. Moreover, if Bob uses a trivial strategy in which all fi = f ,
Eq.(10) is implemented. For nontrivial strategies, see Section 5.3.

4.3 Alice’s Tests

Finally, we present the two test procedures called in Algorithm 1 and procedure
GroverIteration to complete the picture of our protocol. Since they are similar, we
only show procedure TestBob1 in this subsection. The differences between it and
TestBob2 are briefly shown in Figure 1. The detailed descriptions of TestBob2
are given Appendix A. Some details of procedure TestBob1 are described as
follows:

12 Shenggang Ying, Mingsheng Ying, Yuan Feng

Step
State

Operators activated Operators not activated

Step 1 |c〉∑
j
αj |j〉|~0〉 |c〉∑

j
αj |j〉|~0〉

Step 4 Alice UD(y) |c〉∑
j
αj |j〉|dj⊕y〉 |c〉∑

j
αj |j〉|dj⊕y〉

Step 4 Bob Uf |c〉∑
j
(−1)f(dj⊕y)αj |j〉|dj⊕y〉 |c〉∑

j
αj |j〉|dj⊕y〉

Step 7 Alice UD(y) |c〉∑
j
(−1)f(dj⊕y)αj |j〉|~0〉 |c〉∑

j
αj |j〉|~0〉

Step 7 Bob G |c〉∑
j
(−1)f(dj⊕y)αj(G|j〉)|~0〉 |c〉∑

j
αj |j〉|~0〉

Table 2. State evolution for |c〉∑
j
αj |j〉|~0〉 in procedure GroverIteration. Here “Oper-

ators activated” means |c〉 and i activate controlled operators.

Procedure TestBob1(i)

Output : “Dishonesty detected”, if Bob’s dishonesty is detected.
1 begin

2 Alice generates µ < ν ∈ {0, 1}k, c ∈ {0, 1}t, m ∈ {0, 1, · · · , n− 1},
x ∈ {0, 1}n, and b ∈ {0, 1} uniformly at random;

3 Alice prepares |Φ〉 = |c〉qc ⊗ Ut(m,x, b)|0〉⊗(n+k)
qa,qd on new control qubits qc,

address qubits qa, and data qubits qd;
4 Bob applies Ufi on qa and qd;

5 Alice applies Ut(m,x, b)
† on qa and qd, obtaining the state

|Φ1〉 = |c〉qc ⊗ Ut(m,x, b)
†UfiUt(m,x, b)|0〉⊗(n+k);

6 Alice and Bob repeat Step 3 to Step 5 to get |Φ2〉;
7 Alice measures all address and data qubits of |Φ1〉, and |Φ2〉, according to

the basis {|0〉, |1〉}. Let the outcomes be v and w, respectively, both in
{0, 1}n+k;

8 If v0 6= w0, or vj = 1, or wj = 1 for any j > 0, return “Dishonesty

detected”;

9 end

– µ < ν means the binary number represented by µ is smaller than that
represented by ν.

– In this test, the state |c〉 on control qubits is not checked. It is introduced
here, only because originally the states on control qubits are involved during
the computation.

– Ut(m,x, b) = USWAP(0,m)Z(x)X
b
0V (µ, ν)(W ⊗ Id), where W = H⊗n and H

is the Hadamard gate.
– V (µ, ν) writes µ and ν into |+〉⊗nqa |0〉⊗kqd . It consists of at most k CNOT gates,

where the control qubits are the first address qubit, and the target qubits
range over all data qubits, where the first address qubit serves as the control,
and all data qubits are the target. To be specific,

V (µ, ν)|0〉|ξ〉|τ〉 = |0〉|ξ〉|τ ⊕ µ〉,

V (µ, ν)|1〉|ξ〉|τ〉 = |1〉|ξ〉|τ ⊕ ν〉,

Quantum Privacy-Preserving Data Analytics 13

– Ancilla qubits qg1 and qg2 are involved.
– A controlled swap test is employed to test whether |Φ1〉 and |Φ2〉 are same.
– Step 8: The condition is a bit different.

Fig. 1. The difference of TestBob2 to TestBob1. See Appendix A for details.

Honest Actions Measurements on qd Measurements on qa and qd
Alice → Bob |ψ0,0,0(µ, ν)〉 |ψ0,0,0(µ, ν)〉 |ψ0,0,0(µ, ν)〉
Bob → Alice |ψ0,0,0(µ, ν)〉 |0〉|+〉⊗n−1|µ〉 |0〉|γ〉|µ〉
V (µ, ν) |+〉⊗n|0〉⊗k |0〉|+〉⊗n+k−1 |0〉|γ〉|0〉⊗k

W ⊗ Id |0〉⊗n+k |+〉|0〉⊗n+k−1 |+〉|ω〉|0〉⊗k

Table 3. One possible situation of state evolution in Procedure TestBob1, where γ ∈
{0, 1}n−1, and ω ∈ {+,−}n−1. Moreover it is assumed that f(µ) = f(ν) and the test
state is |ψ0,0,0(µ, ν)〉. The control qubits are omitted. Unitary operators USWAP(0 ,0),
X0

0 , Z(0) are omitted as well, as they are all identity operators here.

for any ξ ∈ {0, 1}n−1 and τ ∈ {0, 1}k. For simplicity, V (µ, ν) will be abbre-
viated to V at some places.

– USWAP(0,m) swaps the states of address qubits number 0 and number m.
– Z(x) consists of a sequence of Pauli Z gates which act on address qubit j if

and only if xj = 1.
– X0 denotes Pauli X gate acting on the first address qubit.
– Since all the component operators in Ut(m,x, b) are self-adjoint, so is Ut(m,x, b);

that is, Ut(m,x, b)
† = Ut(m,x, b).

5 Execution of the Protocol

5.1 Test Rounds

To better understand our protocol, let us show in this section how it is executed.
We first see how dishonest Bob cannot pass tests with a high probability.

Definition 3. 1. One execution of procedure TestBob1 or TestBob2 is called a
test round.

2. Correspondingly, one execution from Step 4 to Step 5 in procedure GroverIteration
or one execution from Step 7 to Step 9 in Algorithm 1 is called a computa-
tional round.

One possible state evolution in procedure TestBob1 is given in Table 3, where
the post-measurement state is assumed to be |0〉|+〉⊗n−1|µ〉 or |0〉|γ〉|µ〉 for some
γ ∈ {0, 1}n−1. We can see that if Bob is honest, he can always passes TestBob1.
On the other hand, we present two examples to illustrate how Bob’s attack can
be detected (A detailed analysis is postponed to Section 7.6). First, we assume
that Bob performs measurements only on the data qubits.

14 Shenggang Ying, Mingsheng Ying, Yuan Feng

Example 1. Suppose in a test round of procedure TestBob1, Alice first sends a
test state |ψ0,0,0(µ, ν)〉 to Bob, where f(µ) = f(ν). Bob performs measurements
on the data qubits, gets post-measurement state |0〉|+〉⊗n−1|µ〉, and then sends
it back to Alice. Secondly, Alice sends the same test state |ψ0,0,0(µ, ν)〉 to Bob.
Then, as illustrated in Table 4,

1. if Bob does not perform measurements on the second test state, it will be
detected by the condition v0 6= w0 at Step 8 with probability 0.5.

2. if Bob performs measurements on the data qubits, then with probability 0.5,
the post-measurement state is |0〉|+〉⊗n−1|µ〉, and with the same probability,
it is |1〉|+〉⊗n−1|ν〉. For each case, it will be detected by the condition v0 6= w0

at Step 8 with probability 0.5.

States after Bob’s actions Probability at Step 8
State #1 State #2

|0〉|+〉⊗n−1|µ〉
|ψ0,0,0(µ, ν)〉 0.5
|0〉|+〉⊗n−1|µ〉 0.5
|1〉|+〉⊗n−1|ν〉 0.5

Table 4. Probabilities to detect Bob’s attacks in Example 1. “State #1” (resp. “State
#2”) stands for the first (resp. second) test state.

One situation not mentioned in the above example is that Bob first performs
honestly, and then attacks on the second test state. But it is essential the same
as the above example.

Another attack that Bob may take is to perform measurements on both the
address and data qubits.

Example 2. Similarly to Example 1, Bob measures the address and data qubits
for the first test state, gets post-measurement state |0〉|γ〉|µ〉, and then sends it
back to Alice. Then for the second test state, no matter what Bob does, it can
be detected by one or both of the two conditions at Step 8 with probability ≈ 1.

In the above two examples, we assumed that the test state is |ψ0,0,0(µ, ν)〉 for
simplicity. Other test states are similar. Furthermore, it was assumed that Bob
directly sends the post-measurement state to Alice. Indeed, he can construct a
new state and send it to Alice. This case can be detected as well; see Section
7.3.

5.2 Testing or Computing

The design idea of tests is to guarantee that Bob cannot know whether he is
dealing with a test state or a computational state. In Algorithm 1 and procedure
GroverIteration, the order of test and computational rounds are decided by the
random number r. So it is clear that Bob does not know what states he is

Quantum Privacy-Preserving Data Analytics 15

dealing with. Every time he receives a quantum state, it may be a test state
(with probability at least p). Figure 2 shows a flowchart that illustrates Bob’s
view for the T calls of controlled Grover iterations in Algorithm 1.

Fig. 2. Bob’s view for the T calls of controlled Grover iterations in Algorithm 1. Indeed,
in Alice’s view, the first (resp. second) appearance of Steps 4 and 5 may be a test at
Step 3 (resp. Step 6) when Alice employs a test in GroverIteration according to r ≤ p
(resp. p < r ≤ 2p).

5.3 Bob’s Strategy

As said in Subsection 3.3, Bob’s strategy is to add noises to f (thus applying fi
instead) in procedure GroverIteration, which cancel each other if Alice follows
the protocol honestly. A detailed analysis will be given in Section 8. Here we
observe:

ḠUDUfUD ḠUDIa,dUD ḠUDUfUD = Ḡ, (11)

where UD is short for UD(y). This equation indeed represents the unitary oper-
ators after three iterations with fi = f , fi+1 = h, and fi+2 = f , where h is the
function corresponding to Ia,d and h(µ) = 0 for all µ ∈ {0, 1}k. So, a sequence
of f , h, f , h or h, f , h, f leads to the identity operator, meaning that Bob does
nothing. One step further from Eq. (11), we have:

j
∏

i=1

(ḠUDUfiUD) ḠUDIa,dUD

j
∏

i=1

(ḠUDUfj+1−i
UD) = Ḡ, (12)

for all j and all functions f1, · · · , fj on D. Another useful observation is

ḠUDIa,dUD ḠUDIa,dUD = Ia,d. (13)

16 Shenggang Ying, Mingsheng Ying, Yuan Feng

This means two repetitions of h do nothing.
We can construct strategies for privacy preserving based on Eqs. (11), (12)

and (13). Let us first see a simple example.

Example 3. Suppose Bob wants to run Algorithm 1 with T0 = 8 loops. He adds
one control qubit to make T = 16. Then there are four control qubits, denoted
by C0, C1, C2, C3. Bob chooses C1 as a confusing qubit, and add noise to the
functions corresponding to C0. In detail,

– C0: h, h, f , f , h, h, f , f ,
– C1: f

′, h, f ′, h,
– C2: f , f ,
– C3: f ,

where f ′ are functions different from f . At last the Fourier transformation is
performed only on C0, C2, C3.

We now formally define the notion of Bob’s strategy.

Definition 4. Suppose in Algorithm 1 there are t = logT control qubits C0, · · · ,
Ct−1. We say a sequence of function f0, · · · , fT−1 is a strategy S for computing
f(D), if

– it is trivial, i.e. all fi = f ,
– or the following conditions are satisfied:

• One control qubit Cu with u < t− 1 is chosen to be the confusing qubit.
• Based on Eq. (11), Eq. (12) and Eq. (13), noises are added between the
functions corresponding to C0, · · · , Cu.

• For Cw with w < u, the effect of its corresponding functions is equivalent
to that of 2t−w−1 repetitions of f .

• For Cu, the effect of its corresponding functions is the identity.

In conclusion, a strategy realizes Eq. (10) or

1√
T

∑

c

|c〉Gc′ |Ψ0〉 =

1√
T

∑

c

|c〉 ⊗ (Gc02
t−2+c12

t−3+···+cu−12
t−u−1+cu+12

t−u−2+···+ct−1 |Ψ0〉), (14)

where c =
∑

cj2
t−j−1, and c′ = c02

t−2+c12
t−3+· · ·+cu−12

t−u−1+cu+12
t−u−2+

· · ·+ ct−1. If a confusing qubit is added, the final measurement is performed on
the control qubits except Cu to get θ.

6 Correctness for Honest Parties

Now we start to prove the correctness of Algorithm 1. In this section, we consider
the simplest case where Alice and Bob are both honest.

Quantum Privacy-Preserving Data Analytics 17

The discussion in Sections 4.2 and 5.3 showed that in Algorithm 1, the T
calls of procedure GroverIteration realize controlled Grover iterations Eq.(10)
or Eq.(14), depending on which strategy (see Definition 4) Bob employs. So
Algorithm 1 executes the quantum counting algorithm [5] twice, independently
on qc1, qa1, qd1, qg1, and qc2, qa2, qd2, qg2. Then for Problem 1, we directly have
the following result.

Theorem 1. ([5, Theorem 5, Theorem 6]) In Algorithm 1, if Alice and Bob are
both honest and Bob employs a trivial strategy, then for i ∈ {1, 2},

|si − s| < 2π

T

√
s+

π2

T 2
, ∀i ∈ {1, 2}, (15)

holds with probability at least 8
π2 > 0.8, where s = f(D) = 1

N

∑

j f(dj) is the
correct answer.

Therefore, by setting T > 100/
√
smin for a trivial strategy or T > 200/

√
smin

for a nontrivial strategy, we immediately obtain:

Corollary 1. In Algorithm 1, if Alice and Bob are both honest, then for i ∈
{1, 2},

{

| si
s
− 1| < 2π

100

√

smin

s
+ π2

104
smin

s
< 0.07, s ≥ smin,

|si−s|
smin

< 2π
100

√

s
smin

+ π2

104 < 0.07, s < smin,

holds with probability at least 8
π2 > 0.8, where s = f(D) = 1

N

∑

j f(dj) is the
correct answer, and smin is the preset threshold of supports.

This corollary gives the relative error and success probability for Bob. Since
usually smin is set to be a constant, say 0.2, 0.1 or 0.01, the number T of iterations
does not depend on the size of the database.

7 Protecting Alice’s Privacy

In this section, we continue to prove correctness of the protocol and show how
it can protect Alice’s privacy. Only procedure TestBob1 is considered, and the
results for procedure TestBob2 are similar and thus omitted.

Dishonest Bob may employ attacks to read information from qc1, qa1, qd1, qg1,
and/or qc2, qa2, qd2, qg2. His attacks can be classified according to the number
of rounds/iterations that these attacks cost.

7.1 One-round Attacks

Definition 5 (One-round attack). A one-round attack consists of one or
more successive steps of the following:

1. Bob sends some qubits to Alice,
2. Alice applies UD, and sends these qubits to Bob,

18 Shenggang Ying, Mingsheng Ying, Yuan Feng

3. Bob’s actions,
4. Bob sends some qubits to Alice.

For instance, a one-round attack may consist of Steps 1-2, Steps 2-4, or Steps
1-4. In this subsection, we list some one-round attacks which leak information.

The following are several typical one-round attacks:

Example 4 (Attack1). Bob sets qa to be a single address |i〉 and qd to be blank
|~0〉. Then he sends qc, qa, qd to Alice. After Alice applies UD, Bob receives |i〉|di〉.
Finally, he can measure qd to get di.

Example 5 (Attack2). After Bob receives 1√
T

∑

c

∑

j αc,j |j ⊕ y〉|dj⊕y〉, he per-

forms measurements (1) on qd to get some d ∈ D, or (2) on qa and qd to get
dj⊕y .

Besides directly reading data from qa and qd by measurements, Bob may use
some unitary gates (e.g. CNOT) to copy data on additional blank qubits, say qe.
Then he can read information from qe later.

Example 6 (Attack3). After Bob receives 1√
T

∑

c

∑

j αc,j |j ⊕ y〉|dj⊕y〉, he add

ancilla qubits and performs unitary operators to store data, i.e.

1√
T

∑

c

∑

j

αc,j |j ⊕ y〉|dj⊕y〉|ej⊕y〉.

7.2 Detection of One-round Attacks

We first show that TestBob1 can detect Bob’s one-round attacks. The main
assumption here is:

– Whenever Bob tries to attack, he believes that he cannot distinguish the
following two situations from each other:

1. He is dealing with a test state.
2. He is dealing with a computational state.

This assumption is reasonable because no one will cheat if he knows that he is
dealing with a test state, which carries no useful information about database D.

Example Attacks Now let us see what happens if Bob cheats in a test. As the
starting point, we focus on the attacks in Examples 4, 5 and 6, since they are
simplest and typical ones.

Lemma 1 (Attack1). Suppose, in a test, it is Bob’s turn to send back com-
putational qubits to Alice. Bob prepares |ϕ〉|a〉|d〉 in Procedure TestBob1, where
|ϕ〉 ∈ Hc, a ∈ {0, 1}n and d ∈ {0, 1}k, and sends this state to Alice. Then it can
be detected with probability at least 1− 1

N
.

Quantum Privacy-Preserving Data Analytics 19

Lemma 2 (Attack1). Suppose Bob successfully sends |ϕ〉|a〉|d〉 to Alice. If this
communication is followed by a test (Procedure TestBob1) and he performs mea-
surements on qa and qd (resp. only a measurement on qd) [in order to get private
information], then it will be detected with probability at least 1− 1

N
(resp. 1

2).

Lemma 3 (Attack2). Suppose Bob performs measurements on qa and qd (resp.
only a measurement on qd) in Procedure TestBob1. Then it will be detected with
probability at least 1− 1

N
(resp. 1

2).

Lemma 3 is essentially the same as Lemma 2, since in both of them the same
measurements are performed on a test state. But the analysis of Attack3 is
much more complicated.

Lemma 4 (Attack3). Suppose in Procedure TestBob1, Bob adds qg to qa and
qd and uses a unitary operator E to entangle qg to qa and qd:

E|i〉|d〉|0〉 = |i〉|d〉|λi,d〉, (16)

where |λi,d〉 is a pure state of qg. In order to read information, |λi,d〉 should vary
for i, d. Then it will be detected with a positive probability PDET depending on
E. In particular,

1. if E|i〉|d〉|0〉 = |i〉|d〉|i〉|d〉, then PDET ≥ 1− 1
N
.

2. if E|i〉|d〉|0〉 = |i〉|d〉|d〉, then PDET = 0.5.

General Attacks Now let us consider general attacks. The following theorem
identifies all of Bob’s actions that enable him to pass Alice’s tests.

Theorem 2. Suppose Bob applies a super-operator E =
∑

j Ej ◦ E
†
j on qa, qd

and blank qg in a round of TestBob1. If it always passes the test, Ecan be written
as

E = U ◦ U † ⊗ Eg,

where U is a unitary operator on qa and qd, and Eg is a super-operator on qg.

Its implication to privacy is the following:

Corollary 2. If Bob wants to always pass the tests, he cannot read any infor-
mation from qa and qd by one-round attacks.

Note that in procedure GroverIteration, we only add tests around Step 4. One
question directly arises: what happens if Bob attacks at Step 7? The following
lemma answers this question.

Lemma 5. At Step 7, if Bob performs measurements to read information or
sends a special state for future attacks at Step 4, then it can be detected by
procedure TestBob1.

20 Shenggang Ying, Mingsheng Ying, Yuan Feng

7.3 Impossibility of Recovery

In this subsection, we further show that Bob cannot distinguish the test states.
Therefore, he cannot recover his measurement even if he finds that he is dealing
with a test state.

The impossibility of distinguishability is based on the following observation:

Lemma 6. The test set {|ψm,x,b(µ, ν)〉} can be decomposed into the union of
n(2k − 1) disjoint bases:

{|ψm,x,b(µ, ν)〉} = B1 ∪ · · · ∪Bn(2k−1),

where Bi ∩ Bj = ∅, and Bi is a orthogonal basis of the Hilbert space of qa and
qd, for all i 6= j.

The above lemma then implies that Bob cannot distinguish all of the test
states.

Lemma 7. Suppose Bob tries to use measurement {Mv} on qa and qd to find
which specific test state Alice sends. Then the correct probability is

Pr(m,x, b, µ, ν|Mv) ≤
1

n(2k − 1)
. (17)

In other words, if the measurement outcome is v, then the probability that the
state is |ψm,x,b(µ, ν)〉 is at most 1

n(2k−1)
. More generally,

Pr(B|Mv) =
∑

|ψm,x,b(µ,ν)〉∈B
Pr(m,x, b, µ, ν|Mv) ≤

1

n(2k − 1)
, (18)

where B is an orthogonal basis as in Lemma 6.

Now we can present the main theorem in this subsection.

Theorem 3. Suppose Bob uses a measurement {Mv} to read information in a
test round, and sends a new state |ψm′,x′,b′(µ

′, ν′)〉 (based on the measurement
results) back to Alice instead. Then, the expected success probability that he passes
the test is at most 1

4 + 3
4n(2k−1)

.

The above theorem ensures that Bob cannot recover the test states after
attacks. Recall from Theorem 2 that if Bob directly sends states back to Alice
after his attacks, it will be detected. So, these two theorems together warrant
that once Bob wants to read private information from Alice through one-round
attacks, it will be detected.

Quantum Privacy-Preserving Data Analytics 21

7.4 Multi-round Attacks

We have discussed one-round attacks in the last subsection. In this subsection,
we further consider multi-round attacks. A multi-round attack will finish in more
than one calls of procedure GroverIteration. More precisely, we have:

Definition 6. A multi-round attack consists of the following steps:

1. Bob sends some qubits to Alice,
2. Several calls of Procedure GroverIteration are executed,
3. Bob performs measurements to read information after receiving qubits from

Alice.

We will see in Sections 7.4 and 7.6 that multi-round attacks can actually be
ignored, since (1) they can hardly leak information, and (2) they are very hard
to be detected. But here let us see two typical multi-round attacks:

Example 7. Bob employs function f(x) = δ(x, d) as the target function, where
δ(x, d) = 1 if and only if x = d. Then Bob runs the protocol honestly to find
whether d ∈ D.

This function discloses the information whether d ∈ D and can be treated
as an attack, since we only allow target functions to be maps indicating the
inclusion relation ⊆. For this kind of attacks, Alice can construct tests to detect
it with a certain probability, although this probability is extremely low (see
Appendix D.1).

Fortunately, we can ignore this attack because (1) if supp(d) is high, then
the information d ∈ D is no longer private information when mining association
rules or decision trees, and (2) if supp(d) is low, the result can be hardly derived
from Algorithm 1 (see Section 7.6 for more details).

Another attack focuses on more specific information.

Example 8. Bob employs Oracle

Uf |j〉|dj〉 = (−1)δ(j,i)g(dj)|j〉|dj〉,

as the target function in Algorithm 1, where g(x) = 1 if and only if x ⊆ d. One
alternative attack is g(x) = δ(x, d).

As shown in the next lemma, this kind of attacks is very hard to detect.

Lemma 8. Suppose Bob acts as in Example 8, and Alice only employs tests
based on state comparison in a single round (the tests are not restricted to
those in this paper). It can be detected in a single round with probability at
most O(1

N
) = O(1

2n). Furthermore, Bob can passes all tests in one execution
of Algorithm 1 with probability approximately 1.

Fortunately, since the database OD is modified to be UD(y), Example 8 is
reduced to Example 7 finally. Indeed, Bob wants finally to get the exact form
of dj by employing attacks in Example 8. But since dj is changed to be dj⊕y
and Bob does not know y, Bob only gets information d ∈ D for some d. This is
exactly the case of Example 7.

22 Shenggang Ying, Mingsheng Ying, Yuan Feng

7.5 Attacks on qc and qg

In the previous subsections, we only consider attacks on qa or on qd. In this
subsection, we analyse attacks on the two parts jointly.

First, by the following observations, we can see that qc will not introduce
further information leakage:

– There is no information about D on qc.
– Bob cannot verify whether the current round is a test round by measurements

on qc. This is because no matter Bob performs measurements on qc in a test
round or an original round, the outcome distributions are the same, i.e.,

Pr(c = i|test round) = 1

T
= Pr(c = i|original round). (19)

Second, for qg, since qg is entangled to qd, attacks on qg are the same as the
attacks on qd, which we have already analysed.

7.6 Privacy Analysis

Now, we are able to analyse the privacy level of the entire protocol. Let us first
examine information disclosed by one-round attacks, and then give the privacy
analysis for multi-round attacks.

The Entire Database In this subsection, we analyse the privacy of the entire
database; that is, how much of D will be disclosed if Bob is dishonest? Consider
the following:

Example 9. Suppose Alice is a data provider, who sells data, and Bob is a cos-
tumer, who wants to buy some access to the data from Alice. Alice wants to
keep her data private, as she wants to sell it to other costumers. Bob wants to
keep his research private, as his research outcome may bring outcomes. So he
will not send the function f to Alice.

In this example, Alice tries to preserve the entire database. Then how many
transactions will be disclosed in our protocol:

Case 1. Bob is honest: He exactly follows the protocol. Before measurements
in Algorithm 1, due to the quantum counting algorithm [5], he holds the state

∑

c

∑

j

αc,j|c〉|j〉|~0〉|gj〉 =
1√
T

∑

c

|c〉(βc,0|ϕ0〉|~0〉|0〉+ βc,1|ϕ1〉|~0〉|1〉),

where gj = f(dj⊕y), and αc,j, βc,0, βc,1 are amplitudes. Since honest Bob only
performs measurements on the control qubits qc and ancilla qubit qg of this state,
he only gets the information of f(D). As he knows nothing else, no transactions
in D is disclosed.

Case 2. Bob is semi-honest: He may do further computation on the state
|θ〉|ϕj〉|~0〉|j〉 with j = 0 or j = 1, which he holds after the final computation.

Quantum Privacy-Preserving Data Analytics 23

From this state, the information, which Bob can further get by measurements
on the address qubits qa, is whether gj = f(dj⊕y) is 1 or 0 for some j ∈ {0, 1}n.
Totally he can get this information gj1 and gj2 for two address j1 and j2 randomly
generated from measurements in one run of Algorithm 1, as there are two copies
of states in one run. But unfortunately Bob does not know y, and Alice changes
y in every run of Algorithm 1. This means the information he gets is useless. In
detail, note that gj = f(dj⊕y) is a random variable dependent on y. Since y is
chosen uniformly at random, we have:

Pr(gj = 1) = f(D), ∀j.

So what Bob can get from gj is f(D), which he already known from the honest
computation. Therefore, Bob disclose no detailed transaction in D.

Case 3. Bob is dishonest: He may perform measurements on the state re-
ceived from Alice at any time. In previous subsections, we already observed that
once Bob tries to get information in a test round through measurements, he
may have a probability at least 0.5 to be detected. As a consequence, Alice will
stop the whole computation. Then the expected number Ec of rounds that Bob
can cheat before being detected, may be computed as follows. If Bob’s attack
happens in the first (resp. second) round of a loop i, it will be a test round
with probability p (resp. 0.5). So each time Bob tries to get information through
one-round attacks, it will be detected with probability at least 0.5p. Thus, the
expected numbers of one-round attacks before being detected is

Ec ≤
∑

i≥1

i ∗ 0.5p ∗ (1− 0.5p)i =
2

p
− 1 = O(1/p).

Therefore, dishonest Bob can get at most a constant number of transactions
from D.

To conclude this section, let us see the advantage of our quantum protocol
over a classical method. Usually, a classical data provider will provide a modified
database D′, generated from D by adding noise into it, to Bob. So, if the quan-
tum protocol is run on D, it is not appropriate to compare it with a classical
protocol. But the quantum protocol can also run on D′, by combining it with a
classical one together (see Section 10.1). A comparison of the quantum protocol
(combined with a classical one) with a classical protocol is shown in Table 5. In
this table, O(TM) is the number of transactions disclosed without protection in
the protocol.

Multi-round Attack In Section 7.4, we already mentioned that multi-round
attacks can be ignored in our quantum protocols. Now we are ready to give a
detailed explanation.

Suppose that Bob employs function f(x) = δ(x, d) in order to learn whether
d ∈ D. He uses this function to run Algorithm 1 several times and get an
approximate result s ≈ |{j : d = dj}|/N . Then there are the following three
situations:

24 Shenggang Ying, Mingsheng Ying, Yuan Feng

Honest Bob Semi-honest Bob Dishonest Bob

Quantum Protocol 0 ≈ 0 O(1
p
)

Quantum Protocol
0 ≈ 0 O(TM)

without tests
Classical Method N N N

Table 5. Number of transactions disclosed in D or D′. p ∈ (0, 1) is a constant, N is
the size of database, T is the number of iterations in one run of Algorithm 1, and M
is the total number of runs of Algorithm 1.

– s > smin, where constant smin is the threshold of support. Then this result
is not treated to be private, as it cannot be distinguished from that of a
frequent itemset and thus can be mined by Bob legally. For instance, since
supp(d) = |{j : d ⊆ dj}|/N ≥ |{j : d = dj}|/N ≈ s, Bob can first get
supp(d) legally. Then he computes supp(d′) for possible supersets d′) d to
approximate s.

– s < smin, but s is not far from smin. In this case, since parameter T is
determined by smin, the results may be not far to smin. For instance, if T is
set to be T > 100/

√
smin, then by Corollary 1 we see that Bob may get result

0.07smin with probability greater than 0.8. So this still cannot be treated to
be private, because this result may be probably mined by Bob legally on a
candidate itemset.

– s ≪ smin. In this case, Bob has to enlarge T to get s without intolerable
errors, for instance, T > 100/

√
s. Since Bob does not know s before compu-

tation, he has to adjust T again and again [5] or directly sets a very large T .
The comparison of costs for this case is given in Table 6.

s NR C-cost Q-cost

s≪ smin
1 O(Nk) O((CD + k)/

√
s)

L O(Nk) O(L(CD + k)/
√
s)

Table 6. Comparison of cost to check whether d ∈ D. In this table, s is the frequency
of transactions dj , satisfying dj = d. NR is the number of different rules d ∈ D, which
Bob wants to check. “C-cost” is the cost on classical database D or D′, and “Q-cost”
is the cost of multi-round attacks on quantum database UD or UD′ . CD is the cost to
call UD/UD′ once. See Section 10.1 for UD′ .

In Table 6, we notice that usually it is cheaper to cheat in a quantum database
UD if L is small, since it is a search problem to check whether d ∈ D. So
one method to overcome this weakness is to combine a classical protocol and a
quantum one together: roughly speaking, Alice first modifies D to another D′,
and then runs the protocol on UD′ (see Section 10.1 for more discussions about
this point). After combining the classical and quantum protocols together, it is
still faster for Bob to cheat on quantum database UD′ . But the information he

Quantum Privacy-Preserving Data Analytics 25

gets on UD′ is the same as that on D′. Then our quantum protocol is at least as
good as a classical one for this function.

Before concluding this section, let us briefly consider Alice’s strategy for
multi-round attacks. In order to read small s, Bob requires large T . So Alice can
set an upper bound for T . Then for a rule d ∈ D with a low frequency, it can
hardly be mined correctly with small T .

8 Protecting Bob’s Privacy

In Section 7.6, we showed from the Alice’s side how our quantum protocol can
protect privacy. In this section, we analyse Bob’s privacy in terms of his functions
f . For this purpose, it is certainly appropriate to assume that Bob itself is honest.
Otherwise, if Bob is dishonest, he can protect his privacy by never sending f .

We first consider semi-honest Alice, and the analysis for honest Alice is simi-
lar. Semi-honest Alice follows the protocol, but she will do further computation
based on measurement outcomes on the test states. In each test round, Alice may
get the information about whether fi(µ) = fi(ν) for some randomly generated
µ, ν. Now we see how many pairs (µ, ν) are required for this task. For associa-
tion rule mining, there are totally at most 2k functions (itemsets). For each pair,
Alice compares fi(µ) and fi(ν), and gets one-bit information of fi(µ)? = fi(ν).
So, she has to build a k-level binary decision tree to include all possible 2k leaves.
Consequently, in general the number of test rounds is at least k/2 to recover one
f as there are two copies in each round. Since (1) there is at most only one test
round in each loop i, and (2) the test round appears randomly, Alice can hardly
get enough information to recover f . Moreover, as Bob adds noises into f (see
Section 5.3), the information Alice gets may be wrong and thus useless. It is
worth noting that some privacy leakage might happen in the last loop i = T − 1.
In Definition 4, no noise is added for i = T − 1, which means fT−1 = f . So, if a
test round appears, then Alice may know f(µ)? = f(ν) for some randomly gener-
ated (µ, ν). This leakage is not serious, since there are 2k−1 functions (itemsets)
satisfying this one-bit property.

For dishonest Alice, the situation is different. Dishonest Alice may set a test at
each loop and construct a special policy to choose test states to read information
about f . The simple strategy in Definition 4 is not sufficient to protect Bob’s
privacy. Fortunately Bob can protect his privacy from Alice’s attacks by simply
adding a second confusing qubit in Definition 4. Together with other methods,
Bob can further improve his privacy level; see Appendix C for details.

Remark 1. The privacy analysis for the case that Bob does not add noise and
tests is postponed to Appendix D.2.

9 Complexity Analysis

The aim of this section is to analyse the complexity of our protocol. Actually, the
cost of Algorithm 1 is easy to settle. Let us only consider association rule mining

26 Shenggang Ying, Mingsheng Ying, Yuan Feng

as an example. Suppose that the threshold of support is smin, and Bob totally run
M times of Algorithm 1 (since he wants to compute the supports of different
itemsets or achieve a high accuracy by repetitions). Then the computational
complexity is simply

O(MT (CD + k + n+ t)) = O(M(CD + k + n+ t)/
√
smin),

where CD is the cost of one call of Alice’s database. So, if a quantum database is
available (e.g. as a quantum random access memory [8]), then CD = O(nk), and
the total computational is O(M(nk+ t)/

√
smin). Since t = logT , and T ≤ π

4

√
N

(meaning that the accuracy level is 1
N
), we have t = O(n). So, the total compu-

tational complexity is O(Mnk/
√
smin). On the other hand, if the data is stored

in a classical database, then Alice has to use certain quantum gates to con-
struct OD, which costs O(N(n+ k)), and the total computational complexity is
O(MN(n+k)/

√
smin). The communication complexity can be analysed similarly,

and is O(MT (t+ n+ k)) = O(M(n + k)/
√
smin). The results are illustrated in

Table 7. Note that in many applications the communication cost may not be
important and necessary. For a centralized database, Alice and Bob are at the
same location, and we can imagine Alice as a preset database with an access
to Bob. In this case, during communicating the problem of privacy including
channel noise is not serious or even does not happen at all.

T-cost C-cost

Quantum database O(Mnk/
√
smin) O(M(n+ k)/

√
smin)

Classical database O(MN(n+ k)/
√
smin) O(M(n+ k)/

√
smin)

Table 7. Cost of the entire quantum protocol, with data stored in a quantum database
or a classical database. “T-cost” means computational complexity, and “C-cost” means
communication complexity.

Now let us compare the complexity of our quantum protocol with that of a
classical algorithm. Many different classical algorithms for the same task have
been developed in the literature, and each of them has a different cost and accu-
racy level. For those classical algorithms that require to input the whole database
D or D′ to achieve a better result, the computational and communication costs
are both O(Nk). Note that usually in practice M ≪ N ; for instance, N = 106,
and Bob might only care the most important hundreds of association rules with
M < 103. Then the costs of quantum protocol except the lower left entry of
Table 7 are better than those of classical algorithms, as Nk > M(n+ k)/

√
smin.

10 Discussions

In this section, we point out several possibilities for further improvements of the
protocol.

Quantum Privacy-Preserving Data Analytics 27

10.1 Combining Classical and Quantum Protocols

As mentioned before, combining our quantum protocol with a classical one is a
way to further improve the privacy for Alice. In this strategy, there are totally
two steps. The first step is to apply a classical approach on D to get D′. Most of
the classical approaches in the literature are suitable for this step; for example,
randomly flipping elements in each transaction [18], replacing elements partly [7],
swapping elements among different transactions [6]. The second step is to store
D′ into a quantum database OD′ . Then our quantum protocol can be executed
on OD′ .

The benefit of this method is obvious. Suppose that a classical approach
changes D to D′. Then in the classical case, Bob knows the entire D′. In the
quantum case, however, Bob only knows a small part ofD′, even if he is dishonest
(see Section 7.6). So, this combination protects Alice’s privacy much better than
solely using a classical approach.

The disadvantage is that additional error may be introduced. A combination
of our quantum protocol and a classical one has two places to generate errors: one
is from randomization in the classical protocol, the other is from the quantum
counting. Thus, the total error may be larger than that of the classical algorithm.

10.2 Decision Tree Learning

Our protocol was presented mainly for association rule mining, but Algorithm
1 can be directly used to mine decision trees. Consider the basic algorithm for
decision tree mining proposed in [17]. Here, we show how it can be combined
with Algorithm 1 so that privacy can be protected.

Example 10. Suppose that Alice holds a database

D = 〈(d0, g0), (d1, g1), · · · , (dN−1, gN−1)〉,

where dj ∈ {0, 1}k, gj = f(dj) ∈ {0, 1} for a function f . Suppose that K is the
set of all first k attributes. Bob wants to build a decision tree, with one attribute
in K at each node, to decide f(d) for any input d, based on the database D. The
algorithm is shown below:

1. Set L = 0, and the root r is set to be an empty node.
2. For each empty node on level L, computes its corresponding attribute:

– Suppose F is the set of attributes corresponding to the ancestors of this
node.

– Denote A = {y : y ∈ F}. Bob computes the support s0 of (A, 0) and
s1 of (A, 1) by Algorithm 1. If H(A) = −∑i si log si is smaller than a
preset threshold Hmin, the node is set to be value 0 (if s0 > s1) or 1 (if
s0 < s1) for f . No child is generated. Return.

– For each attribute x ∈ K \ F , denote Ax = {x} ∪ {y : y ∈ F}. Alice
computes the support s0(x) of (Ax, 0) and s1(x) of (Ax, 1) by Algorithm
1. Then she computes the entropy H(x) = −∑i si(x) log si(x).

28 Shenggang Ying, Mingsheng Ying, Yuan Feng

– Bob chooses the attribute y which maximizes H(y) = maxH(x). The
corresponding attribute of this node is set to be y, and two children are
generated. Each is for value 0 or 1 of y.

3. If no child is generated in this level L, terminates. Otherwise, L := L + 1
and goes to Step 2.

The privacy and complexity analyses for the above example are similar to
what we did for association rule mining in the previous sections.

10.3 Dishonesties of Both Alice and Bob

In this paper, we presented a method for Alice to deal with dishonest Bob, and
also a method for Bob to deal with dishonest Alice. In particular, we showed:

– If Alice and Bob are both honest, our protocol computes the final results
and preserves privacy for both parties.

– If Alice is honest and Bob is dishonest, our protocol can (1) compute the final
results, (2) detect Bob’s attack to protect Alice’s privacy, and (3) preserve
Bob’s privacy.

– If Alice is dishonest and Bob is honest, our protocol can (1) compute the
final results, and (2) preserve privacy for both Alice and Bob (by adding a
second confusing qubit).

Then a question naturally arises: what happens when both Alice and Bob are
dishonest? In this case, there is no definite conclusion. It depends on what actions
are taken. For example, suppose:

– Alice acts honestly if i is odd. If i is even, she stores the computational state
aside for the next loop, and tries to read f(µ) by sending Bob a state like
1√
2
|c〉|0〉⊗n−1(|0〉|µ〉+ |1〉|~1〉).

– Bob acts honestly if i is even. If i is odd, he performs measurements to read
dj , and sends to the post-measurement state back to Alice.

Then in each loop i, either Alice or Bob cheats, and the computation cannot be
accomplished. But if Bob’s actions are switched, then both Alice and Bob act
honestly when i is odd. Furthermore, if Alice stores the computational states
properly when i is even, then the computation can be accomplished (but with a
larger error).

10.4 Compatibility with Other Quantum Algorithms

Note that in the protocol, Alice’s part is compatible with other quantum algo-
rithms in the sense that if Bob wants to run a quantum algorithm on Alice’s
database other than quantum counting, he only needs to modify his part of pro-
tocol. For example, suppose Bob wants to find whether a given transaction d is
in the database by running a quantum walk on a hyper cube [20], where each
node corresponds to an address j and a transaction dj (or dj⊕y). In a quantum
walk-based search, the operator G is replaced by some other operators. What
we need to do are the following modifications on Bob’s part:

Quantum Privacy-Preserving Data Analytics 29

– Change the initial state of the control qubits. In Algorithm 1, Alice does not
check the initial state on control qubits. So for the searching problem, Bob
can simply set all control qubits to be |1〉.

– Remove Step 14 in Algorithm 1 and change his actions at Step 7 in procedure
GroverIteration.

It is easy to see that privacy of both parties is preserved in the same way as our
original protocol.

10.5 Parameter p in Algorithm 1

The parameter p in Algorithm 1 indicates how frequently tests are employed.
Obviously, for different models, the best choice of p varies. Note that p only
matters in (1) detecting Bob’s one-round attacks (dishonest actions), and (2)
disclosing Bob’s privacy f by comparing f(µ) and f(ν). So, p = 0 or p → 0
is preferred for honest or semi-honest Bob. If Bob is dishonest, the situation
becomes quite different:

– Honest Alice: A big p is preferred, as it protects Alice’s privacy better than
small p.

– Semi-honest Alice: Either a big or small p is not the best choice, since one
party’s privacy is likely to be disclosed in both cases. So, a medium p is the
most suitable choice.

– Dishonest Alice: No best choice exists, because the protocol may not work
if Alice always cheats.

The preferred choices of p are summarised in Table 8. However, Alice and/or

Alice
Bob

Honest Semi-honest Dishonest

Honest p→ 0 p→ 0 Big p
Semi-honest p→ 0 p→ 0 Medium p
Dishonest p→ 0 p→ 0 –

Table 8. Preferred choice of p in Algorithm 1 for different models.

Bob cannot know which situation they are facing. So, Table 8 is helpless in
practice. Generally speaking, Alice prefers a big p. But if p is too big, Bob’s
privacy will be disclosed when Alice is not honest. In Section 7.6, it was shown
that if N is big enough, the ratio of information (transactions) disclosed is nearly
0 for any p ∈ (0, 1). So, in practice, p = 0.05 may work well. Indeed, the most
important implication of parameter p ∈ (0, 1) is not to detect Bob’s privacy but
to tell Bob that once he cheats, he may be caught. This fact may force Bob to
be honest.

30 Shenggang Ying, Mingsheng Ying, Yuan Feng

References

1. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private
databases. In Proceedings of the 2003 ACM SIGMOD international conference
on Management of data, pp. 86-97. ACM, New York (2003)

2. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of
Items in Large Databases. In: Proceedings of the 1993 ACM SIGMOD international
conference on Management of data, pp. 207-216. ACM, New York (1993)

3. Bennett, C. H., Brassard, G.: Quantum cryptography: Public key distribution and
coin tossing. Theoretical computer science 560, 7-11 (2014)

4. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortsch. Phys. 46 , 493-506 (1998)

5. Brassard, G., Høyer, P., Tapp, A.: Quantum counting. In: ICALP 1998, LNCS, vol.
1443, pp. 820-831. Springer, Heidelberg (1998)

6. Estivill-Castro, V., Brankovic, L.: Data Swapping: Balancing Privacy against Pre-
cision in Mining for Logic Rules. In: DaWaK 1999. LNCS, vol. 1676, pp 389-398.
Springer, Heidelberg (1999)

7. Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining of
association rules. Information Systems, 29(4), 343-364 (2004)

8. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum Random Access Memory. Phys.
Rev. Lett. 100, 160501 (2008).

9. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum Private Queries. Phys. Rev. Lett.
100, 230502 (2008).

10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC
1996, pp. 212-219, ACM, New York (1996)

11. Kobayashi, H., Matsumoto, K., Yamakami, T.: Quantum certificate verification:
Single versus multiple quantum certificates. arXiv:quant-ph/0110006, (2001)

12. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving
properties of random data perturbation techniques. In: Third IEEE International
Conference on Data Mining, pp. 99-106. IEEE (2003)

13. Kotsiantis, S., Kanellopoulos, D.: Association Rules Mining: A Recent Overview.
International Transactions on Computer Science and Engineering, 32 (1), 71-82
(2006)

14. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and
unsupervised machine learning. arXiv:1307.0411.

15. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis.
Nature Physics 10, 631 (2014).

16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

17. Quinlan, J.R.: Induction of Decision Trees. Machine learning, 1(1), 81-106 (1998)
18. Rizvi, S.J., Haritsa, J.R.: Maintaining data privacy in association rule mining. In:

Proceedings of the 28th International Conference on Very Large Data Bases, pp.
682-693, VLDB Endowment (2002)

19. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical
Journal, 27(3), 379-423 (1948)

20. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm.
Physical Review A, 67(5), 052307 (2003)

21. Unruh, D.: Revocable quantum timed-release encryption. Journal of the ACM,
62(6), article no. 49 (2015)

http://arxiv.org/abs/quant-ph/0110006
http://arxiv.org/abs/1307.0411

Quantum Privacy-Preserving Data Analytics 31

A Procedure TestBob2

In this Appendix, we present the detailed description of procedure TestBob2
that was only very briefly discussed in Section 4.

Procedure TestBob2
output : “Dishonesty detected”, if Bob’s dishonesty is detected.

1 begin

2 Alice generates µ < ν ∈ {0, 1}k, c ∈ {0, 1}t, m ∈ {0, 1, · · · , n− 1},
x ∈ {0, 1}n, and b ∈ {0, 1} uniformly at random;

3 Alice prepares |Φ〉 = |c〉qc ⊗ Ut(m,x, b)|0〉⊗(n+k)
qa,qd on new control qubits qc,

address qubits qa, and data qubits qd;
4 Bob adds a qubit qg initialized to be |0〉 to the end of these qubits, and Bob

applies U ′
f on qa, qd, and qg ;

5 Alice applies Ut(m,x, b)
† on qa and qd, obtaining the state

|Φ1〉 = |c〉qc ⊗ Ut(m,x, b)
† ⊗ Ig(U

′
f (Ut(m,x, b)|0〉⊗(n+k) ⊗ |0〉));

6 Alice and Bob repeat Step 3 to Step 5 to get |Φ2〉;
7 Alice employs a quantum controlled swap test to test whether |Φ1〉 and |Φ2〉

are the same. If not, Alice terminates the entire protocol;
8 Alice measures all address and data qubits except the first address qubit of

|Φ1〉, and |Φ2〉, according to the basis {|0〉, |1〉}. Let the outcomes be v and
w, respectively, both in {0, 1}n+k−1;

9 If vj = 1, or wj = 1 for any j, return “Dishonesty detected”;

10 end

A.1 Controlled Swap Test

Controlled swap tests are employed at Step 7 in procedure TestBob2 to check
whether Bob performs measurements on qg or qd. In this subsection, we briefly
describe these tests. For details, we refer to [11].

A quantum swap gate consists of three CNOT gates, and swaps the states of
two qubits:

SWAP :
∑

i,j∈{0,1}
αi,j |i〉|j〉 →

∑

i,j

αi,j |i〉|j ⊕ i〉 →
∑

i,j

αi,j |j〉|j ⊕ i〉 →
∑

i,j

αi,j |j〉|i〉.

Then a controlled swap test on two n-qubit states |ψ〉 and |φ〉 works as follows:

1. Add an ancilla qubit in state |+〉 before |ψ〉 and |φ〉, and get

|Ψ1〉 = |+〉|ψ〉|φ〉.

32 Shenggang Ying, Mingsheng Ying, Yuan Feng

2. Apply a controlled swap operator UCS on |Ψ1〉, where the first qubit is the
control qubit, and the other qubits are the target:

|Ψ2〉 = UCS |Ψ1〉 =
1√
2
(|0〉|ψ〉|φ〉+ |1〉|φ〉|ψ〉),

where |ψ〉 and |φ〉 are swapped if the control qubit is in state |1〉.
3. Apply a Hadamard gate on the control qubit, and get

|Ψ3〉 =
1√
2
(|+〉|ψ〉|φ〉+ |−〉|φ〉|ψ〉)

=
1

2
(|0〉(|ψ〉|φ〉 + |φ〉|ψ〉) + |1〉(|ψ〉|φ〉 − |φ〉|ψ〉)).

If |ψ〉 = |φ〉, we have |Ψ3〉 = |0〉|ψ〉|φ〉.
4. Measure the control qubit in basis {|0〉, |1〉}. If outcome is 1, |ψ〉 6= |φ〉 is

detected.

At Step 4, the probability to get outcome 1 is

Pr(1) =
1

4
‖|ψ〉|φ〉 − |φ〉|ψ〉‖2 =

1

4
(2− 2〈φ|ψ〉〈ψ|φ〉) = 1− |〈φ|ψ〉|2

2
.

Omitting the control qubit, the post-measurement states are
{

|ϕ0〉 = 1
2 (|ψ〉|φ〉 + |φ〉|ψ〉) if outcome is 0

|ϕ1〉 = 1
2 (|ψ〉|φ〉 − |φ〉|ψ〉) if outcome is 1.

In conclusion, if |ψ〉 = |φ〉, the outcome is always 0, and the state |ψ〉|φ〉 remains

unchanged. Otherwise, there is a probability 1−|〈φ|ψ〉|2
2 to have outcome 1.

B Proofs of Lemmas and Theorems

In this Appendix, we provide the proofs of the lemmas and theorems presented
in the main text.

B.1 Proof of Lemma 1

We first specify the situation:

1. Alice sends |c〉|ψm,x,b(µ, ν)〉 to Bob.
2. After Bob’s actions, he sends a state to Alice; see Table 9.
3. Alice checks the test state.

Now we prove that it can be detected by the final measurement (Step 8).
Case 1 d = µ: Let |ψ′〉 denote the state that Bob sends back to Alice. Then

|ψ′〉 = |ϕ〉|a〉|µ〉. Alice will transfer it to

|φ′〉 = V (µ, ν)Xb
0Z(x)USWAP (0,m)|ψ′〉,

Quantum Privacy-Preserving Data Analytics 33

Test State if honest State in this attack

TestBob1 |c〉|ψm,x′ ,b(µ, ν)〉 |ϕ〉|i〉|d〉
Table 9. The state Bob sends to Alice. In this table x′ depends on whether f(µ) = f(ν).

and then
|Φ1〉 = Ic ⊗W ⊗ Id|φ′〉.

Now we see what |Φ1〉 is. The initial state is |ψ′〉 = |ϕ〉|a〉|µ〉. Then
1. USWAP (0,m) maps a to a′ ∈ {0, 1}n;
2. Z(x) only possibly adds a global phase −1;
3. Xb

0 maps a′ to a′′;
4. V (µ, ν) only works on the data qubits, and then |φ′〉 can be |a′′〉|~0〉 or |a′′〉|µ⊕
ν〉, after omitting the global phase.

Consequently, |φ1〉 may be |w〉|∗〉, where w ∈ {+,−}n. On each address qubit,
the measurement outcome will be 0 with probability 1

2 . Therefore, this attack
passes the final measurement (Step 8) with probability at most 1

2n−1 = 2
N
.

Since the test consists of two copies, the attack can be further detected.
Suppose that Bob sends |ϕ〉|a〉|µ〉 in the first round. By the above discussion,
this means that v0 has a fifty-fifty chance to be 0 or 1. For the other round, we
assume that w0 comes out as 0 with probability p, and 1 with probability 1− p.
Then Bob has probability 1

2 (1− p) + 1
2p =

1
2 to fail. Thus, the total probability

to pass the test is at most 1
N
.

Case 2. d = ν: Similar.
Case 3. d 6= µ and d 6= ν: The probability to pass the final measurement

may be lower. This is because there must be at least one |1〉 occurring in the
data qubits of |Φ1〉 at last. So, it will be detected with probability 1.

B.2 Proof of Lemma 2

In the scenario of this lemma, Bob thinks that he receives |ϕ〉|a〉|da⊕y〉 from Alice.
But indeed, he receives |c〉|ψm,x,b(µ, ν)〉. Then the measurements are taken on
|c〉|ψm,x,b(µ, ν)〉.

If the measurements are performed jointly on qa and qd, then the post-
measurement state is |c〉|j〉|µ〉 or |c〉|j〉|ν〉, and it can be reduced to Lemma
1 as Bob will send this state back to Alice. So, it remains to analyse the case
when measurements are on only qd.

Since measurements are only performed on qd, all the measurement operators
are local operators on qd and have the formM = I⊗n⊗|w〉〈w|, where w ∈ {0, 1}k.
Thus, each M commutes with X0, Z(x) and USWAP (0,m), as the latter three
operators are local operators on qa. Therefore, the post-measurement state of
|c〉|ψm,x,b〉 can be written as

|ψ′〉 =
{

|c〉USWAP (0,m)Z(x)X
b
0 |0〉|+〉⊗n−1|µ〉, the outcome is µ

|c〉USWAP (0,m)Z(x)X
b
0 |1〉|+〉⊗n−1|ν〉, the outcomes is ν

.

34 Shenggang Ying, Mingsheng Ying, Yuan Feng

Bob sends it back to Alice, and then Alice has

|φ′〉 =
{

|c〉V (µ, ν)|0〉|+〉⊗n−1|µ〉 = |0〉|+〉⊗n−1|~0〉, the case µ

|c〉V (µ, ν)|1〉|+〉⊗n−1|ν〉 = |1〉|+〉⊗n−1|~0〉, the case ν
,

Furthermore, it holds that

|Φ1〉 =
{

|c〉|+〉|0〉⊗n+k−1, the case µ

|c〉|−〉|0〉⊗n+k−1, the case ν
.

In both cases, the first element v0 of the final outcome result v has a fifty-fifty
probability to become 0 or 1. This means that this attack can be detected by
TestBob1 with probability 1

2 by the condition v0 6= w0.

B.3 Proof of Lemma 4

In this proof, we omit |c〉, since it indeed does not change through the test.
Moreover, we use |Ψ ′〉, |Φ′〉 and |Φ′

1〉 on qa, qd, qg to replace |ψ′〉, |φ′〉 and |Φ1〉,
respectively.

(1) The general case. By the assumption of this lemma, there exist some
i, i′ ∈ {0, 1}n, and d, d′{0, 1}k such that |λi,d〉 6= |λi′,d′〉. We can further assume
i 6= i′ and d 6= d′. (Otherwise, if i = i′ or d = d′, we choose i′′ 6∈ {i, i′} and
d′′ 6∈ {d, d′′}, and then |λi′′,d′′〉 must be different to one of the original two.)

Suppose d < d′. By the construction of test states, we find µ = d, and ν = d′

with probability 2
2k(2k−1)

. As i 6= i′, there exists m such that im 6= i′m. Then

for b = im and any x, we can find both item |i〉|d〉 and |i′〉|d′〉 in |ψm,x,im(µ, ν)〉.
The total probability to generate this state is

2

2k(2k − 1)

1

n

1

2
=

1

n2k(2k − 1)
.

Now |ψm,x,im(µ, ν)〉 is entangled to be |Ψm,x,im(µ, ν)〉. Alice transforms it to

|Φ′
1(µ, ν)〉 = (V (µ, ν)X im

0 Z(x)USWAP (0,m))⊗ Ig|Ψ ′
m,x,im

(µ, ν)〉.

Since these operators are unitary and only on the address and data qubits, the
address and data qubits are still entangled to qg. Then no matter whether mea-
surement operatorMv = |v〉〈v| or Mv′ = |v′〉〈v′| is used with |v〉 = |0〉|0〉⊗n+k−1

and |v′〉 = |1〉|0〉⊗n+k−1, it holds

{

p0 = ‖Mv ⊗ Ig|Φ′
1(µ, ν)〉‖2 < 1,

p1 = ‖Mv′ ⊗ Ig|Φ′
1(µ, ν)〉‖2 < 1.

Thus, if p0 + p1 < 1, it will be detected by vj = 1 with j > 0. Otherwise it will
be still detected by the condition v0 6= w0 with a positive probability as p0 < 1
and p1 < 1.

Quantum Privacy-Preserving Data Analytics 35

(2) The case E|i〉|d〉|0〉 = |i〉|d〉|i〉|d〉. We have:

|Φ′(µ, ν)〉 =(V (µ, ν)X im
0 Z(x)USWAP (0,m))⊗ Iq

1√
N

∑

i

βi|i〉|τi〉|i〉|τi〉

=
1√
N

∑

i

βi(V (µ, ν)X im
0 Z(x)USWAP (0,m)|i〉|τi〉)|i〉|τi〉

=
1√
N

∑

i

βi|i′〉|τ ′i 〉|i〉|τi〉,

where βi ∈ {1,−1}, τi ∈ {µ, ν}, V (µ, ν)X im
0 Z(x)USWAP (0,m) is a bijection map-

ping i to i′, and τ ′i ∈ {0, µ⊕ ν}. Then

|Φ′
1(µ, ν)〉 =

1√
N

∑

i

βi(W |i′〉)|τ ′i〉|i〉|τi〉.

Since each item has a |i〉 which belongs to qg and is orthogonal to each other,
probabilities p0 and p1 can be calculated:

p0 =‖Mv ⊗ Ig|Φ′
1(µ, ν)〉‖2

=‖ 1√
N

∑

i

βi(〈00 · · · 000|W |i′〉)〈00 · · · 00|τ ′i〉|i〉|τi〉‖2

=
1

N

∑

i

‖(〈00 · · · 000|W |i′〉)〈00 · · · 00|τ ′i〉‖2

=
1

N2

∑

i

‖〈00 · · · 00|τ ′i〉‖2 ≤ 1

N
,

Similarly, we obtain:

p1 =
1

N

∑

i

‖(〈10 · · ·000|W |i′〉)〈00 · · · 00|τ ′i〉‖2

=
1

N2

∑

i

‖〈00 · · ·00|τ ′i〉‖2 ≤ 1

N
.

Therefore the probability to fail is

Pr(deteceted) =1− p0 − p1 + (p0 + p1) Pr(v0 6= w0) ≥ 1− 1

N
.

(3) For the case E|i〉|d〉|0〉 = |i〉|d〉|d〉, as in the proof of Lemma 2, we have

|Φ′
1(µ, ν)〉 =

1√
2
(|0〉|0〉⊗n+k−1|µ〉+ |1〉|0〉⊗n+k−1|ν〉).

Then we have p0 = p1 = 1
2 . It will be detected by v0 6= w0 with probability 1

2 .

36 Shenggang Ying, Mingsheng Ying, Yuan Feng

B.4 Proof of Theorem 2

We check what will happen, if the state is entangled to qg. Assume the test states
are |ψm,x,b(µ, ν)〉. For simplicity, we denote it by |ψ〉. Suppose Bob employ E1
and E2 on the two test states with new ancilla qubits (initialed to be |θ1〉 and
|θ2〉 respectively). Then we have

{

E1(ψ ⊗ θ1) = ρ =
∑

u λu|ϕu〉〈ϕu|,
E2(ψ ⊗ θ2) = σ =

∑

v χv|ωv〉〈ωv|,

where λu, χv ∈ [0, 1], and {|ϕu〉}, {|ωv〉} are orthonormal bases. Since density
operators can be seen as probabilistic distributions over pure states, the following
two facts are equivalent:

– ρ and σ pass the test with probability 1.
– For any u, v, |ϕu〉 and |ωv〉 pass the test with probability 1.

Suppose |ϕ〉 stands for any |ϕu〉 and |ω〉 stands for any |ωv〉, and
{

|ϕ〉 =∑j αj |ξj〉|j〉,
|ω〉 =∑j βj |γj〉|j〉,

where {|j〉} is an orthonormal basis of the Hilbert space Hg on qg, and |ξj〉, |γj〉
are normalized states (

∑

j |αj |2 =
∑

j |βj |2 = 1). Suppose the same recovery
operator for these two states in the test is R. Then after recovery, the states
become

{

|ϕ̄〉 =∑j αj(R|ξj〉)|j〉,
|ω̄〉 =∑j βj(R|γj〉)|j〉.

Note that Bob holds the second part of |ϕ′〉 and |ω′〉, Alice performs measure-
ments only on the first part. Then in order to pass Step 8, the measurement
outcomes are always fixed, and the above states must be

{

|ϕ̄〉 = |τ〉|0〉⊗n+k−1|ϕ′〉,
|ω̄〉 = |τ〉|0〉⊗n+k−1|ω′〉,

where τ ∈ {0, 1}, and |ϕ′〉, |ω′〉 are states of qg. Since R is a unitary operator,
we have

{

|ϕ〉 = R† ⊗ Ig|ϕ̄〉 = |ξ〉 ⊗ |ϕ′〉,
|ω〉 = R† ⊗ Ig|ω̄〉 = |ξ〉 ⊗ |ω′〉.

Moreover, since |ϕ〉 stands for any |ϕu〉 and |ω〉 stands for any |ωv〉, |ξ〉 is inde-
pendent of u, v. Then we have

{

E1(ψ ⊗ θ1) = ρ = |ξ〉〈ξ| ⊗ ρ′,

E2(ψ ⊗ θ2) = σ = |ξ〉〈ξ| ⊗ σ′.

Quantum Privacy-Preserving Data Analytics 37

Since all possible test states |ψ〉 can be used to construct several orthonormal
bases (see Lemma 6), E1 can be written as

E1 = U ◦ U † ⊗ Eg,

where U is a unitary operator on qa and qd, and |ξ〉 = U |ψ〉. The conclusion
about E2 can be proved similarly.

Now we prove that ρ′ (σ′) is independent on ξ. By the above explicit form
of E1, it seems obvious intuitively. But here we give a strict proof. Suppose |ψ1〉
and |ψ2〉 are two test states for short. Suppose E(ψi ⊗ θ) = U |ψi〉〈ψi|U † ⊗ ρ′i.
Since the fidelity ̥(ψi ⊗ θ, ψi ⊗ θ) will increase after super-operator E , we have

̥(ψ1 ⊗ θ, ψ2 ⊗ θ) ≤ ̥(E(ψ1 ⊗ θ), E(ψ2 ⊗ θ))

= ̥(U |ψ1〉〈ψ1|U † ⊗ ρ′1, U |ψ2〉〈ψ2|U † ⊗ ρ′2)

= ̥(U |ψ1〉〈ψ1|U †, U |ψ2〉〈ψ2|U †)̥(ρ′1, ρ
′
2)

≤ ̥(U |ψ1〉〈ψ1|U †, U |ψ2〉〈ψ2|U †)

= ̥(|ψ1〉〈ψ1|, |ψ2〉〈ψ2|).

On the other hand,

̥(ψ1 ⊗ θ, ψ2 ⊗ θ) = ̥(ψ1, ψ2)̥(θ, θ) = ̥(ψ1, ψ2).

Therefore, ̥(ρ′1, ρ
′
2) = 1, i.e., ρ′1 = ρ′2. This means ρ′ is independent on |ψ〉.

B.5 Proof of Corollary 2

Suppose Bob employs certain operators and measurements in one test round.
Then all of Bob’s actions are equal to the measurement with measurement op-
erators Ej . Note these measurement operators form the super-operator E =
∑

Ej ◦ E†
j (performing a measurement without reading the outcomes is equiva-

lent to performing a super-operator). By Theorem 2, each measurement operator
Ej has the form Ej = U⊗Mj. So, on qa and qd, no measurements are performed,
which means that Bob cannot read any information from qa and qd.

B.6 Proof of Lemma 5

In order to read information about specific d from D, Bob needs to perform mea-
surements on a state like

∑

c,j αc,j|c〉|j〉|dj⊕y〉, instead of a state like
∑

c,j αc,j|c〉|j〉|~0〉.
But if Bob is honest or he does not construct a new state to send to Alice at
some step, the state he gets at Step 7 is always the latter. So Bob has to first
send a state to Alice at some step, and then perform measurements.

There are three different ways to attacks at Step 7 of Algorithm 1 here. The
first two ways correspond to direct attacks (reading information) at Step 7. Bob
can first send a cheating state (for instance, |c〉|j〉|~0〉) back to Alice at Step 4
or Step 7, and then perform measurements on the received state (for instance,

38 Shenggang Ying, Mingsheng Ying, Yuan Feng

|c〉|j〉|dj⊕y〉) at Step 7. The last way is to do some preparation at Step 7 for
a future attack. In this way, Bob sends a cheating state back to Alice at Step
7, and then performs measurements on the received state at Step 4 (Note that
sending a cheating state and performing measurements both at Step 4 is not
related to the attacks at Step 7.) Obviously, each of the above attacks can be
divided into two parts: (1) sending state; and (2) performing measurements. All
of the possible cases are listed in Table 10. We analyse these cases one by one.

Sending a cheating state Performing measurements

1 Step 4 Step 7
2 Step 7 Step 7
3 Step 7 Step 4

Table 10. Three different ways related to one-round attacks at Step 7.

Case 1. Bob’s measurements at Step 7 will not be detected. But the part
of sending a cheating state at Step 4 will be detected. For instance, if Bob
sends state |c〉|j〉|~0〉 at Step 4, it will be detected by procedure TestBob1 with
probability at least 0.5 (See Lemma 1). If Bob sends any other state, it can be
also detected by the results in Section 7.6.

Case 2. This case cannot be detected, if there is no test corresponding to Step
7. But Bob cannot read any information about some specific d ∈ D from this kind
of attacks. Indeed, from procedure GroverIteration, one sees that there are an
even number of calls of database UD(y) on the cheating state from sending it to
receiving it. So, if the cheating state is

∑

βc,j |c〉|j〉|~0〉, it becomes
∑

β′
c,j |c〉|j〉|~0〉

when Bob receives it again. There is still no information about specific d ∈ D
on the data qubits. Therefore, this attack does not work.

Case 3. Similar to Case 1, this attack will be detected at Step 4 after mea-
surements.

B.7 Proof of Lemma 6

We first prove the following technical lemma.

Lemma 9. Suppose Bm(µ, ν) = {|ψm,x,b(µ, ν)〉 : ∀x, b}. Then Bm is an orthog-
onal basis of Hilbert space spanned by {|i〉|µ〉, |i〉|ν〉 : i ∈ {0, 1}n}.

Proof. It is sufficient to prove that Bn−1(µ, ν) is an orthogonal basis. Observe
that any |ψn−1,x,b(µ, ν)〉 can be rewritten as

|ψn−1,x,b(µ, ν)〉 = |φx1,··· ,xn−1
〉 ⊗ |βx0,b〉,

where |φx1,··· ,xn−1
〉 = Zxn−1 ⊗ Zx1 ⊗ Zx2 ⊗ · · ·Zxn−2 |++ · · ·+〉, and

|βx0,b〉 = Zx0Xb 1√
2
(|0〉|µ〉+ |1〉|ν〉).

Quantum Privacy-Preserving Data Analytics 39

Since Z|+〉 = |−〉, all |φx1,··· ,xn−1
〉 form an orthogonal basis of the first n − 1

qubits. Meanwhile, four different states of |βx0,b〉 form an orthogonal basis of the
other part. Thus, Bn−1(µ, ν) is an orthogonal basis of Hilbert space spanned by
{|i〉|µ〉, |i〉|ν〉 : i ∈ {0, 1}n}.

Now we can prove Lemma 6. Put

Ψ(m, k) = {|ψm,x,b(µ, ν)〉 : ∀µ < ν ∈ {0, 1}k, ∀x ∈ {0, 1}n, ∀b ∈ {0, 1}}.

Obviously, for m 6= m′, the two sets Ψ(m, k) and Ψ(m′, k) are disjoint to each
other, i.e., Ψ(m, k)∩Ψ(m′, k) = ∅. So it is sufficient to prove that Ψ(0, k) can be
decomposed into the union of disjoint orthogonal bases:

Ψ(0, k) = C1(0, k) ∪ · · · ∪ C2k−1(0, k). (20)

Before continuing the proof, we define two concepts:

– a set P = {λ = {µ, ν} : µ < ν ∈ {0, 1}k} is called a partition of the set
Λ(k) = {0, 1}k if if for any λ, λ′ ∈ P , λ ∩ λ′ = ∅ and

⋃

λ∈P λ = Λ(k).
– the set generated by a couple λ = {µ, ν} ∈ P is

B(λ) = B0(µ, ν) = {|ψ0,x,b(µ, ν)〉 : ∀x ∈ {0, 1}n, ∀b ∈ {0, 1}}.

Since Λ(k) has 2k elements, there are always such partitions.
We first prove that each partition corresponds to an orthogonal basis. By

Lemma 9, C(µ, ν) is a orthogonal basis of the subspace spanned by {|α〉|µ〉, |α〉|ν〉 :
∀|α〉 ∈ Ha}. This implies that the set

B(P) =
⋃

λ∈P
B(λ)

is an orthogonal basis for any partition P .
Observe that Ψ(0, k) =

⋃

λ∈Q(k) B(λ), where Q(k) = {{µ, ν} : ∀µ < ν ∈
{0, 1}k}. Therefore, Eq. (20) can be derived by

Q(k) = P1 ∪ · · · ∪ P2k−1, (21)

where Pi ∩ Pj = ∅ for any i 6= j. Thus, we prove Eq. (21) by induction on k.
(1) For k = 1, it is obvious, as Q(1) = {{0, 1}}, i.e., it only contains one

couple/set {0, 1}.
(2) Suppose Eq. (21) holds for k = l, i.e., Q(l) = P1 ∪ · · · ∪ P2l−1. Then for

k = l+ 1, we construct P ′
i in the following three cases:

1. P ′
1, · · · , P ′

u, where u = 2l. In this case, P ′
i can be constructed as follows:

P ′
i = {{µ · 0, ν · 0}, {µ · 1, ν · 1} : ∀{µ, ν} ∈ Pi}, (22)

where “·” is the concatenation operator. For instance, if µ = 01001 ∈ {0, 1}5,
then µ · 0 = 010010 ∈ {0, 1}6.

40 Shenggang Ying, Mingsheng Ying, Yuan Feng

2. P ′
u+1, · · · , P ′

2u can be constructed as follows:

P ′
i = {{µ · 0, ν · 1}, {µ · 1, ν · 0} : ∀{µ, ν} ∈ Pi}. (23)

3. P ′
v with v = 2l+1 is

P ′
v = {{µ · 0, µ · 1} : ∀µ ∈ {0, 1}l}. (24)

After constructing such P ′
i ’s, it remains to prove that they satisfies Eq. (21).

First, we show that each P ′
i is a partition.

– Case 1. i ≤ u: Suppose λ1 = {µ′
1 = µ1 · a1, ν′1 = ν1 · a1} 6= λ2 = {µ′

2 =
µ2 · a2, ν′2 = ν2 · a2} ∈ P ′

i , where µ1, ν1, µ2, ν2 ∈ {0, 1}l, a1, a2 ∈ {0, 1}, and
λ1 ∩ λ2 6= ∅. Since the join of λ1 and λ2 is nonempty, we have a1 = a2. As a
consequence, it holds that {µ1, ν1}∩{µ2, ν2} 6= ∅. But this is not true because
Pi is a partition. A contradiction! So for any λ1 6= λ2 ∈ P ′

i , λ1 ∩ λ2 = ∅.
Furthermore, as |P ′

i | = 2|Pi| and Pi is a partition of Λ(l), we see that P ′
i is

a partition of Λ(l + 1).
– Case 2. u < i ≤ 2u: Similar to Case 1.
– Case 3. i = v: Obvious, as P ′

v can be written as {{0, 1}, {2, 3}, · · · , {2l+1 −
2, 2l+1 − 1}}.

Secondly, we prove that each couple {µ′ = µ ·a, ν′ = ν · b} belongs to one and
only one P ′

i , where µ
′ < ν′, µ, ν ∈ {0, 1}l and a, b ∈ {0, 1}. In fact, the existence

of index i = Index(µ′, ν′) for such set P ′
i can be verified as follows:

1. If a = b, then µ < ν, and Index(µ′, ν′) ≤ u. By Eq. (22), we have Index(µ′, ν′) =
Index(µ, ν).

2. If a 6= b and µ 6= ν, then µ < ν, and u < Index(µ′, ν′) ≤ 2u. By Eq. (23), we
have Index(µ′, ν′) = Index(µ, ν) + u.

3. If a 6= b and µ = ν, then a = 0, b = 1 and Index(µ′, ν′) = 2u+ 1 = v.

The above two facts indicates that Eq. (21) holds for k = l+1. Consequently,
by induction we complete the proof.

B.8 Proof of Lemma 7

By Bayes’ theorem, we obtain:

Pr(m,x, b, µ, ν|Mv) =
Pr(Mv|m,x, b, µ, ν) Pr(m,x, b, µ, ν)

Pr(Mv)

=
q Pr(Mv|m,x, b, µ, ν)

Pr(Mv)
,

where we denote:

q = Pr(m,x, b, µ, ν) =
1

n2n+12k(2k − 1)
.

Quantum Privacy-Preserving Data Analytics 41

Now we only need to compute Pr(Mv) and Pr(Mv|m,x, b). By Lemma 6, we
have

Pr(Mv) =
∑

l,y,a,µ,ν

Pr(Mv|l, y, a, µ, ν) Pr(l, y, a, µ, ν) =
∑

q Pr(Mv|l, y, a, µ, ν)

=
∑

q‖Mv|ψl,y,a(µ, ν)〉‖2 =
∑

qtr(M †
vMv|ψl,y,a(µ, ν)〉〈ψl,y,a(µ, ν)|)

=
∑

B

qtr(M †
vMv) = n(2k − 1)qtr(M †

vMv),

where B ranges over all possible bases in Lemma 6. Therefore,

∑

|ψl,y,a(µ′,ν′)〉∈B0

Pr(l, y, a, µ, ν|Mv) =
∑ q Pr(Mv|l, y, a, µ, ν)

Pr(Mv)

=
qtr(M †

vMv)

Pr(Mv)
=

1

n(2k − 1)
,

where B0 is the basis in Lemma 6 that contains |ψm,x,b(µ, ν)〉. Especially,

Pr(m,x, b, µ, ν|Mv) ≤
∑

|ψl,y,a(µ′,ν′)〉∈B0

Pr(l, y, a, µ, ν|Mv) =
1

n(2k − 1)
.

B.9 Proof of Theorem 3

We first decompose |ψm,x,b(µ, ν)〉 into some other test states.

Lemma 10. For any m 6= l ∈ {0, · · · , n − 1}, x ∈ {0, 1}n, b ∈ {0, 1}, and
µ < ν ∈ {0, 1}k, we have:

|ψm,x,b(µ, ν)〉 = (−1)bxm
1

2
(|ψl,x′,0(µ, ν)〉 + (−1)xm |ψl,x′,1(µ, ν)〉

+ (−1)b|ψl,x′′,0(µ, ν)〉 − (−1)b+xm |ψl,x′′,1(µ, ν)〉), (25)

where x′ = x0x1x2 · · ·xm−1x
′
mxm+1xm+2 · · ·xl−1x

′
lxl+1xl+2 · · ·xn−1 with x′m =

xm⊕xl, x′l = 0, and x′′ = x0x1x2 · · ·xm−1x
′′
mxm+1xm+2 · · ·xl−1x

′′
l xl+1xl+2 · · ·xn−1

with x′′m = xm ⊕ xl ⊕ 1, x′′l = 1.

Proof. First, we observe:
{

|0〉|+〉 = 1
2 (|+〉|0〉+ |+〉|1〉+ |−〉|0〉+ |−〉|1〉)

|1〉|+〉 = 1
2 (|+〉|0〉+ |+〉|1〉 − |−〉|0〉 − |−〉|1〉) . (26)

For any x, we can rewrite |ψ0,x,0(µ, ν)〉 as

|ψ0,x,0(µ, ν)〉 =
1√
2
Z(x)(|0〉|+〉⊗n−1|~0〉+ |1〉|+〉⊗n−1|~1〉) (27)

=
1√
2
Zx1

1 (|0〉|+〉|ϕ〉|~0〉+ (−1)x0|1〉|+〉|ϕ〉|~1〉), (28)

42 Shenggang Ying, Mingsheng Ying, Yuan Feng

where |ϕ〉 = ⊗n−1
j=2 (Z

xj |+〉), and Zj represents Pauli Z gate on j-th address
qubit. By Eq. (26), it can be further decomposed into

|ψ0,x,0(µ, ν)〉 = Zx1

1 (
1

2
√
2
(|+〉|0〉+ |+〉|1〉+ |−〉|0〉+ |−〉|1〉)|ϕ〉|~0〉

+ (−1)x0
1

2
√
2
(|+〉|0〉+ |+〉|1〉 − |−〉|0〉 − |−〉|1〉)|ϕ〉|~1〉).

We permmute it and get

|ψ0,x,0(µ, ν)〉 =
1

2
√
2
Zx1

1 (|+〉|0〉|ϕ〉|~0〉+ (−1)x0|+〉|1〉|ϕ〉|~1〉)

+
1

2
√
2
Zx1

1 (|+〉|1〉|ϕ〉|~0〉+ (−1)x0 |+〉|0〉|ϕ〉|~1〉)

+
1

2
√
2
Zx1

1 (|−〉|0〉|ϕ〉|~0〉 − (−1)x0 |−〉|1〉|ϕ〉|~1〉)

+
1

2
√
2
Zx1

1 (|−〉|1〉|ϕ〉|~0〉 − (−1)x0 |−〉|0〉|ϕ〉|~1〉). (29)

Then apply Zx0

1 and get

|ψ0,x,0(µ, ν)〉 =
1

2
√
2
(|+〉|0〉|ϕ〉|~0〉+ (−1)x0+x1 |+〉|1〉|ϕ〉|~1〉)

+
1

2
√
2
(−1)x0((−1)x0+x1 |+〉|1〉|ϕ〉|~0〉+ |+〉|0〉|ϕ〉|~1〉)

+
1

2
√
2
(|−〉|0〉|ϕ〉|~0〉 − (−1)x0+x1 |−〉|1〉|ϕ〉|~1〉)

− 1

2
√
2
(−1)x0(−(−1)x0+x1 |−〉|1〉|ϕ〉|~0〉+ |−〉|0〉|ϕ〉|~1〉). (30)

Extracting USWAP (0,1), we have:

|ψ0,x,0(µ, ν)〉 =
1

2
USWAP (0,1)(

1√
2
(|0〉|+〉|ϕ〉|~0〉+ (−1)x0+x1 |1〉|+〉|ϕ〉|~1〉)

+
1√
2
(−1)x0((−1)x0+x1 |1〉|+〉|ϕ〉|~0〉+ |0〉|+〉|ϕ〉|~1〉)

+
1√
2
(|0〉|−〉|ϕ〉|~0〉 − (−1)x0+x1 |1〉|−〉|ϕ〉|~1〉)

− 1√
2
(−1)x0(−(−1)x0+x1 |1〉|−〉|ϕ〉|~0〉+ |0〉|−〉|ϕ〉|~1〉)). (31)

By using

|ψ0,x,1(µ, ν)〉 =
1√
2
Zx1

1 ((−1)x0 |1〉|+〉|ϕ〉|~0〉+ |0〉|+〉|ϕ〉|~1〉), (32)

Quantum Privacy-Preserving Data Analytics 43

together with Eq. (28), we obtain:

|ψ0,x,0(µ, ν)〉 =
1

2
USWAP (0,1)(|ψ0,x′,0(µ, ν)〉 + (−1)x0 |ψ0,x′,1(µ, ν)〉

+ |ψ0,x′′,0(µ, ν)〉 − (−1)x0|ψ0,x′′,1(µ, ν)〉)

=
1

2
(|ψ1,x′,0(µ, ν)〉 + (−1)x0|ψ1,x′,1(µ, ν)〉

+ |ψ1,x′′,0(µ, ν)〉 − (−1)x0|ψ1,x′′,1(µ, ν)〉), (33)

where x′ = x′0x
′
1x2x3 · · ·xn−1 with x

′
0 = x0⊕x1, x′1 = 0, and x′′ = x′′0x

′′
1x2x3 · · ·xn−1

with x′′0 = x0 ⊕ x1 ⊕ 1, x′′1 = 1. Since |ψ0,x,b〉 = (−1)bx0Xb
0|ψ0,x,0〉, we have:

|ψ0,x,b(µ, ν)〉 = (−1)bx0Xb
0

1

2
USWAP (0,1)(|ψ0,x′,0(µ, ν)〉

+ (−1)x0|ψ0,x′,1(µ, ν)〉 + |ψ0,x′′,0(µ, ν)〉 − (−1)x0 |ψ0,x′′,1(µ, ν)〉)

= (−1)bx0
1

2
USWAP (0,1)X

b
1(|ψ0,x′,0(µ, ν)〉+ (−1)x0 |ψ0,x′,1(µ, ν)〉

+ |ψ0,x′′,0(µ, ν)〉 − (−1)x0 |ψ0,x′′,1(µ, ν)〉)

= (−1)bx0
1

2
USWAP (0,1)((−1)bx

′
1 |ψ0,x′,0(µ, ν)〉 + (−1)bx

′
1(−1)x0|ψ0,x′,1(µ, ν)〉

+ (−1)bx
′′
1 |ψ0,x′′,0(µ, ν)〉 − (−1)bx

′′
1 (−1)x0 |ψ0,x′′,1(µ, ν)〉)

= (−1)bx0
1

2
USWAP (0,1)(|ψ0,x′,0(µ, ν)〉 + (−1)x0|ψ0,x′,1(µ, ν)〉

+ (−1)b|ψ0,x′′,0(µ, ν)〉 − (−1)b+x0 |ψ0,x′′,1(µ, ν)〉)

= (−1)bx0
1

2
(|ψ1,x′,0(µ, ν)〉+ (−1)x0 |ψ1,x′,1(µ, ν)〉

+ (−1)b|ψ1,x′′,0(µ, ν)〉 − (−1)b+x0 |ψ1,x′′,1(µ, ν)〉) (34)

Now we briefly consider the general case where |ψl,x,b(µ, ν)〉 are used to
decompose |ψm,x,b(µ, ν)〉. The only thing that we need to do is to replace the
1-st (resp. 0-th) qubit by the l-th (resp. m-th) qubit in the above proof.

A different decomposition can be done when m does not change.

Lemma 11. For any m ∈ {0, · · · , n− 1}, x ∈ {0, 1}n, b ∈ {0, 1}, and µ < ν ∈
{0, 1}k, ω ∈ {0, 1}k \ {µ, ν}, we have:

|ψm,x,b(µ, ν)〉 =
1

2
(|ψm,x,b′(µ, ω)〉+ (−1)b|ψm,x′,b′(µ, ω)〉

+ |ψm,x,b′′(ω, ν)〉 − (−1)b|ψm,x′,b′′(ω, ν)〉), (35)

where

– x′ = x′0x1x2 · · ·xn−1 with x′0 = x0 ⊕ 1,
– b′ = b⊕ b1 with b1 = 0 if µ < ω, and b1 = 1 if µ > ω,
– b′′ = b⊕ b2 with b2 = 0 if ω < ν, and b2 = 1 if ω > ν,

44 Shenggang Ying, Mingsheng Ying, Yuan Feng

– we denote |ψm,x,b′(µ, ω)〉 = |ψm,x,b′(ω, µ)〉 if µ > ω. The same for ν and ω.

Proof. First, we observe:

|0〉|µ〉+ |1〉|ν〉√
2

=
1

2
(
|0〉|µ〉+ |1〉|ω〉√

2
+

|0〉|µ〉 − |1〉|ω〉√
2

+
|0〉|ω〉+ |1〉|ν〉√

2
− |0〉|ω〉 − |1〉|ν〉√

2
).

This directly leads to

V (µ, ν)|+〉⊗n|~0〉 =1

2
(Xb1

0 V (µ, ω) + Z0X
b1
0 V (µ, ω)

+Xb2
0 V (ω, ν)− Z0X

b2
0 V (ω, ν))|+〉⊗n|~0〉,

where b1 = 0 if µ < ω, b1 = 1 if µ > ω, and b2 = 0 if ω < ν, b2 = 1 if ω > ν.
Therefore,

Z(x)Xb
0V (µ, ν)|+〉⊗n|~0〉

=
1

2
(Z(x)Xb⊕b1

0 V (µ, ω)|+〉⊗n|~0〉+ Z(x)Xb
0Z0X

b1
0 V (µ, ω)|+〉⊗n|~0〉

+ Z(x)Xb⊕b2
0 V (ω, ν)|+〉⊗n|~0〉 − Z(x)Xb

0Z0X
b2
0 V (ω, ν)|+〉⊗n|~0〉)

=
1

2
(Z(x)Xb⊕b1

0 V (µ, ω)|+〉⊗n|~0〉+ (−1)bZ(x)Z0X
b⊕b1
0 V (µ, ω)|+〉⊗n|~0〉

+ Z(x)Xb⊕b2
0 V (ω, ν)|+〉⊗n|~0〉 − (−1)bZ(x)Z0X

b⊕b2
0 V (ω, ν)|+〉⊗n|~0〉)

and we complete the proof.

Now we are ready to prove Theorem 3. The control qibits |c〉 here can be
ignored, since Bob can read c by measurements without changing it. Suppose: (i)
the correct test state is |ψm,x,b(µ, ν)〉; (ii) measurement operatorMv is observed;
and (iii) Bob sends the state |ψm′,x′,b′(µ

′, ν′)〉 to Alice. Write Pr(|ψm′,x′,b′(µ
′, ν′)〉 passes |Mv)

for the probability that Bob success to pass the test in this case. First, we have:

Pr(|ψm′,x′,b′(µ
′, ν′)〉 passes |Mv)

=
∑

m,x,b,µ,ν

Pr(|ψm′,x′,b′(µ
′, ν′)〉 passes |m,x, b, µ, ν,Mv) Pr(m,x, b, µ, ν|Mv)

=
∑

m,x,b,µ,ν

Pr(|ψm′,x′,b′(µ
′, ν′)〉 passes |m,x, b, µ, ν) Pr(m,x, b, µ, ν|Mv),

where the last equality is because of the following fact:

– once the original test state |ψm,x,b(µ, ν)〉 is fixed, Bob’s success probability is
independent of the measurement results and only dependent on what state
he sends.

Quantum Privacy-Preserving Data Analytics 45

Nowwe compute the probability Pr(|ψm′,x′,b′(µ
′, ν′)〉 passes |m,x, b, µ, ν) that

the correct test state is |ψm,x,b(µ, ν)〉, and Bob sends the state |ψm′,x′,b′(µ
′, ν′)〉

to Alice:
Case 1. |ψm′,x′,b′(µ

′, ν′)〉 and |ψm,x,b(µ, ν)〉 are in the same basis of Lemma
6. Then Pr(|ψm′,x′,b′(µ

′, ν′)〉 passes |m,x, b, µ, ν) ≤ 1.
Case 2. |ψm′,x′,b′(µ

′, ν′)〉 and |ψm,x,b(µ, ν)〉 are in different bases of Lemma
6, and m = m′. There are two subcases:

Subcase 2.1. Bob sends |ψm′,x′,b′(µ
′, ν′)〉 for both two test states. Then the

best situation for Bob is x′ = x, b = b′, and µ = µ′ without any loss of generality.
(Another best situation is x′ = x, b = b′, and ν = ν′.) Then after USWAP (0,m),

Z(x), Xb
0 , V (µ, ν) and W , the state |ψm′,x′,b′(µ

′, ν′)〉 becomes

1√
2
(|+〉|0〉⊗n+k−1 + |−〉|0〉⊗n−1|ν ⊕ ν′〉).

Since ν 6= ν′ (Otherwise, it becomes Case 1), we have four different measurement
outcomes:

1. 00 · · · 0 on address and data qubits.
2. 100 · · ·0 on address and data qubits.
3. 00 · · · 0 on address qubits, and ν ⊕ ν′ 6= 0 · · · 0 on data qubits.
4. 10 · · · 0 on address qubits, and ν ⊕ ν′ 6= 0 · · · 0 on data qubits.

Each of the four have probability 0.25. Then the situation that the two states
pass the test only happens when both of the outcomes in Case 1 are observed,
or both of the outcomes in Case 2 are observed. The corresponding probability
is 1

8 .
Case 2.2. Bob sends |ψm′,x′,b′(µ

′, ν′)〉 for only one test state. Then at Step
8, no matter what test state Bob sends for the other one, the probability is at
most 0.25 by the analysis of Case 2.1.

Case 3. |ψm′,x′,b′(µ
′, ν′)〉 and |ψm,x,b(µ, ν)〉 are in different bases of Lemma 6,

and m 6= m′. Then there are also two subcases. The analysis is similar to Case
2, and the probability is at most 0.25.

Now by Lemma 6 and Lemma 7, we have:

Pr(|ψm′,x′,b′(µ
′, ν′)〉 passes |Mv)

=
∑

m,x,b,µ,ν

Pr(|ψm′,x′,b′(µ
′, ν′)〉 passes |m,x, b, µ, ν,Mv) Pr(m,x, b, µ, ν|Mv)

=
∑

m,x,b,µ,ν

Pr(|ψm′,x′,b′(µ
′, ν′)〉 passes |m,x, b, µ, ν) Pr(m,x, b, µ, ν|Mv)

=
∑

B:|ψ′〉∈B
Pr(|ψm′,x′,b′(µ

′, ν′)〉 passes |m,x, b, µ, ν) Pr(m,x, b, µ, ν|Mv)

+
∑

B:|ψ′〉6∈B
Pr(|ψm′,x′,b′(µ

′, ν′)〉 passes |m,x, b, µ, ν) Pr(m,x, b, µ, ν|Mv)

≤1× 1

K
+

1

4
× K − 1

K
=

1

4
+

3

4n(2k − 1)
,

46 Shenggang Ying, Mingsheng Ying, Yuan Feng

where K = n(2k−1) is the number of bases in Lemma 6, B : |ψ′〉 ∈ B represents
Case 1, and B : |ψ′〉 6∈ B represents Cases 2 and 3.

B.10 Proof of Lemma 8

Suppose Alice send a test state |ψ〉 = 1√
N

∑ |i〉|µi〉 to Bob, and after Bob’s

action, Alice receives |ψ′〉. If µi 6⊆ d, then the states are the same, and Alice can
not detect it. If µi ⊆ d, then

|〈ψ′|ψ〉|2 = (1− 2

N
)2 = 1−O(

1

N
)

and it can be detected with probability at most O(1
N
).

Even if in one run of the inner protocol, Alice employs such tests many
times, she still cannot detect it with a considerable probability. Suppose Bob’s
success probability is at least 1− a

N
, and Alice employs tests totally b

√
N times,

where a, b are constants. Since there are at most π
4

√
N iterations in an entire

protocol, Bob successes to cheat in a run of the whole protocol with probability

(1 − a
N
)b

√
N ≈ e

− ab√
N ≈ 1.

C Further Methods to Protect Bob’s Privacy

Due to the limit of space, protection of Bob’s privacy was only very briefly dis-
cussed in Section 8. Here, we continue to consider this issue. If Alice is dishonest,
one simple way for her to recover f is as follows:

1. For each loop i, Alice always employs two test rounds. Among them, one
replaces the original computational round.

2. Alice always chooses ν = ~1. Then fi(µ) = 1 if and only if fi(µ) = fi(ν).

3. For the loops corresponding to the same control qubit, Alice chooses one
fixed µ, and gets fi(µ) for all i. Then she can determine f(µ) by choosing
the majority among these fi(µ).

This simple method can recover f but with possible errors because a confusing
qubit is added (see Definition 4). Alice can use some other methods to recover f
without errors. For instance, she can first get f(µ) for the same µ from the loops
corresponding to three different control qubits. Since there is only one confusing
qubit, two of these three values of f(µ) must be correct. So, she can get the
correct value f(µ) for some µ. Once she find some ξ with f(ξ) = 0, Alice may
distinguish h from f as h(ξ) = 1 6= 0 = f(ξ), and then recover the entire f .

In remainder of this subsection, we present some further methods to preserve
Bob’s privacy.

Quantum Privacy-Preserving Data Analytics 47

C.1 Adding a Second Confusing Qubit

If Bob adds a second confusing qubit in his strategy (Definition 4), possibly only
one quarter of functions fi corresponding to some control qubit may be f . Thus,
Alice cannot get correct f(µ) by choosing the majority. The following are some
sequences of the 16 functions corresponding to a control qubit:

f, f, a, h, a, h, f, f, g, g, b, h, b, g, g, h

g, g, a, h, a, g, g, h, f, f, b, h, b, h, f, f

f, h, g, a, h, a, g, f, g, b, h, b, g, h, f, f

h, h, f, f, a, a, h, a, a, h, f, f, h, b, h, b

h, h, f, f, g, g, h, g, g, h, f, f, h, f, h, f

...

In these sequences,

– there are no fixed locations for f , and f can be anywhere;
– f can be either the minority or the majority;
– Moreover, it is impossible for Alice to get f(µ) by counting the number of

ones or zeros for the value of fi(µ), if we set g = 1− f . This is because the
number of ones or zeros can be any value from 4 to 12 when g = 1−f . Since
the distribution is symmetric, Alice cannot recover f(µ) by voting.

Therefore, by updating his strategy and carefully choosing the noises, Bob can
prevent Alice from disclosing f(µ) through voting.

C.2 Preventing Alice from Cheating in Computational Rounds

Consider the case where there is only one control qubit, and the state is |+〉∑j αj |j〉|0〉.
THen there is only one function f to be applied.

– If f = h, which corresponds to the identity operator Ia,d, then after the
iteration UD(y), controlled Ia,d, UD(y) and controlled Ḡ, the state becomes

(|0〉〈0| ⊗ Ia,d + |1〉〈1| ⊗ Ḡ)|+〉
∑

j

αj |j〉|0〉.

– If f = h̄ = 1− h, which corresponds to the identity operator −Ia,d, then the
state becomes

|+〉
∑

j

αj |j〉|0〉 → |+〉
∑

j

αj |j〉|dj⊕y〉

→ 1√
2
(|0〉 ⊗ (Ia,d

∑

j

αj |j〉|dj⊕y〉) + |1〉 ⊗ (−Ia,d
∑

j

αj |j〉|dj⊕y〉))

= |−〉
∑

j

αj |j〉|dj⊕y〉 → |−〉
∑

j

αj |j〉|0〉

→ (|0〉〈0| ⊗ Ia,d + |1〉〈1| ⊗ Ḡ)|−〉
∑

j

αj |j〉|0〉.

48 Shenggang Ying, Mingsheng Ying, Yuan Feng

This fact means that Bob can control the final result by choosing his functions.

Example 11. Suppose Bob wants to run Algorithm 1 with T = 8 loops. Then
there are three control qubits, denoted by C0, C1, C2. Suppose Bob chooses his
function as follows:

– C0: f
′, h, f ′, h,

– C1: h̄, h,
– C2: h̄,

where f ′ is an arbitrary function. After 8 iterations at Step 12, the state becomes

|+〉|−〉 ⊗ ((|0〉〈0| ⊗ Ia,d + |1〉〈1| ⊗ Ḡ)|−〉
∑

j

αj |j〉|0〉|f(dj⊕y)〉).

Thus, if Bob undoes the operator Ḡ controlled by C2, the control qubits becomes
separable from the other part and the control state is |+〉|−〉|−〉.

In the above example, if Alice cheats in any computational round, the result
becomes different. For instance, if Alice cheats on the computational round cor-
responding to C2, then Bob’s function h̄ is applied on the cheating state but not
the computational state. Thus, Alice has to guess what is the correct function
to recover her cheating. Consequently, even if Alice knows that Bob randomly
chooses h (corresponding to result |+〉) or h̄ (corresponding to result |−〉) in this
step, it has probability 0.5 to be detected. Therefore, Bob can use this method
to detect Alice ’s attacks with a high success probability.

C.3 Restricting the Number of Alice’s Tests

After preventing Alice from cheating in the computational rounds, Bob can fur-
ther reduce the chances that Alice can cheat. Note that there is at most one test
round in each loop i, and this test round appears randomly with probability 2p.
Then by Chebyshev’s inequality, we have:

Pr(|nt − 2pT | ≥ 6pT) ≤ 2p(1− 2p)T

(6pT)2
=

1− 2p

18pT
,

where nt is the number of test rounds. In this paper, we usually set p = 0.05, and
T should be 400/

√
smin as a second confusing qubit is added. So, if smin = 0.2, T

should be 1024. By the above inequality, the probability that there are at least
0.4T test rounds in one run of Algorithm 1 is no more than 0.9

0.95∗1024 < 0.001.
Thus, Bob can count the number of test rounds in one run of Algorithm 1. If
it exceeds 0.4T ≈ 410, he may terminates the current run. The false positive
probability is less than 0.001. This probability is tolerable, if Algorithm 1 is
executed once. If the algorithm is executed M times, this probability will be
enlarged. For instance, if M = 100, the total false positive probability may be
approximately 0.095. Fortunately, it is still easy to deal with this false positive.

Quantum Privacy-Preserving Data Analytics 49

– M is small, say 100. For the first time the number of test rounds exceeds 0.4T ,
Bob simply terminates the current run and start a new run. He announces
that Alice is cheating by setting more test rounds when this situation hap-
pens twice. Then the total false positive probability is smaller than 0.005.

– M is big, say M > 1000. Bob can announce Alice’s dishonesty when this
excess happens 0.02M . Then the total false positive probability is smaller
than 0.0025.

An Alternative Method Another way is to restrict the number of Alice’s test
rounds in a row. For instance, if test rounds are employed in six sequential loops,
Bob terminates the algorithm. The false positive probability here is less than
1− (1− 0.16)1024 < 0.0011.

C.4 Summary

Thus Bob can considerably reduce his privacy leakage

– by adding a second confusing qubit and carefully choosing noise functions
(In this way, Bob can make it impossible for Alice to recover any f(µ) by
voting).

– by adding tests and counting the number of Alice’s test rounds (In this way,
Bob can further reduce the amount of information that Alice can get).

Remark 2. It is worth noting that the above methods were not included in Al-
gorithm 1. If Bob directly use these methods, he might be treated as a dishonest
data user. So, in order to make these methods work, Algorithm 1 should be
modified.

D More Discussions

D.1 Alice’s Strategy to Detect Attack in Example 7

An question was left open in Example 7: how Alice can detect an attack? Since
the attack there is not very serious, here we only give an example rather than a
formal protocol to deal with it.

If in one test, Alice employs |ψm,x,b(µ, d)〉 (suppose µ < d) as the test state
with probability O(1

2k
), then she will find f(d) 6= f(µ) after receiving the re-

turned test state. Thus, she can flip one 0 to 1 in d and obtain d′. She further
employs |ψm,x,b(µ, d′)〉 as another test state. Since f(x) = δ(x, d), the second
test state leads to f(d′) = f(µ), which is not a result of any function indicating
an inclusion relation ⊆. So, the attack is detected. But such a detection does
not really work in practice since its probability is O(1

2k
) and extremely low, as

d should be chosen randomly. This detection strategy was not included in the
original protocol, since Alice changes d for the second test state.

50 Shenggang Ying, Mingsheng Ying, Yuan Feng

D.2 Bob’s Privacy without Noise and Tests

Bob’s privacy was considered in Section 8 with the assumption that he can adds
noise and employs tests to protect himself. Here, we further analyse Bob’s privacy
in the case where he is not allowed to add noise or to use any test.

Case 1. Alice is honest: All the information she gets about Bob’s function f is
whether f(µ) = f(ν) in the test rounds. Since she is honest, she will not use this
information to compute the detailed form of f . So, Bob’s privacy is preserved.

Case 2. Alice is semi-honest: She will employ all the legally derived informa-
tion of f(µ)? = f(ν) to compute f . We have showed in Section 8 that in the
best case for Alice, k couples of (µ, ν) are sufficient to recover f . On the other
hand, in Algorithm 1, the expected number of test states is 4(T +1)p. So, if the
following condition is satisfied:

4(T + 1)p < k, (36)

then Alice cannot determine f with certainty. Note that inequality (36) is true for
a big database. In fact, in a big database, since N and k may be very large, smin

must not be too small. This is because small smin may result in too many rules
mined by Bob, and these rules have a low support and thus are not important in
practice [2]. This problem is serious for a big database. So, Eq. (36) is satisfied
very likely. For example, if k = 80, smin = 0.2 and p = 0.05, we have that
T = 256 (> 100/

√
smin) and then 4(T + 1)p = 51.4 < 80 = k.

One thing worth to mention is that the above analysis is just ideal. The pair
(µ, ν) is generated randomly. So, such random k pairs may provide repetitive
information, and the right side of Eq. (36) is then much larger in practice.

Case 3. Alice is dishonest: She may generate (µ, ν) by her strategy without
randomness. Even further, she can make each round as a test round. Therefore,
Alice can get explicitly f more likely, as k rounds are sufficient.

	Quantum Privacy-Preserving Data Analytics

