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ABSTRACT
OBJECT DETECTION AND LOCALIZATION IN 2D
& 3D ENVIRONMENT

Computer vision is a science that studies how to make machines "see." It refers to
utilizing vision sensors and computers to identify, locate, and track objects. Under
this topic, this thesis proposed three frameworks to improve 2D and 3D object
detection and localization performance. In the first 3D object detection framework,
we investigated the bilateral convolution layers’ feasibility to alternate the widely
used point cloud voxelization process. The second framework explored the voxel-
wise and point-wise proposal fusions method to improve 3D object detection
performance. For the 2D instance segmentation, the framework formed an NMS-free

and anchor-free detector designed explicitly for the eye-to-hand robotic system.

In existing works, most of the state-of-the-art 3D object detection approaches are
based on the point clouds’ voxelization method to sample the point cloud into a
subdivide voxel space. Although it provides an efficient way to process point cloud
data, its lack of feature relationship on voxel-level limits the model’s detection
accuracy. Furthermore, the voxel sizes hyperparameters tuning increased the model
complexity, resulting in a fluctuated model performance. To this end, we aim to
simplify the process by re-projecting the point cloud data onto a lattice hyper-plane
that saves point cloud processing time while maintaining the model accuracy. The
proposed framework Bilateral Lattice Point Network (BLPNet) is provided in

chapter three.



In the second framework, Point and Voxel Fusion Net (PVF-Net) is proposed to
further push the 3D object detection performance forward. In two-stage approaches,
increasing the first stage proposals recall rate positively influences the model final
prediction performance. Therefore, in the PVF-Net, we proposed a twofold proposal
fusion architecture to extract and fuse the voxel-level and point-level features of the
point clouds. The model details are in chapter four, mainly consisting of two novel
modules: the Twofold Proposal Fusion (TPF) module and the ROI Deep Fusion
(RDF) module.

Lastly, it is well-known that 3D and 2D sensors jointly depict the real world. In
chapter five, 2D object detection will become the next goal for improvement. So far,
the existing 2D instance segmentation algorithms developed significantly and
reached a saturated performance. However, there is no solid solution for heavy
occluded or diagonally arranged objects, especially in the vision-guided robot
picking system. To solve the problem above, we proposed a real-time occlusion and
oblique friendly instance segmentation framework, terms as Keypoint-Mask,

assisting the robotic system to handle the complicated detection scenario.
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