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Abstract

Compared with the traditional railway infrastructure maintenance process,

which relies on manual inspection by professional maintenance engineers,

inspection through automatic video analytics will significantly improve the

working efficiency and eliminate the potential safety concern by reducing

physical contact between maintenance engineers and infrastructure facilities.

However, the defect does not always have a stable appearance and involves

many uncertainties exposed in the clutter environments. On the other hand,

various brands of the same devices are used widely on the railway, which

shows diverse physical models. Therefore, it creates many challenges to the

existing computer vision algorithms for defect detection. In this thesis, two

key challenges are abstracted with regard to video/image analytics using com-

puter vision techniques for railway infrastructure defect detection, resulting

from the fine-grained defect recognition and the limited labeled learning (few-

shot learning). This thesis summarizes the works that have been conducted

on utilizing different methods to solve the two challenges.

The first challenge is fine-grained defect recognition. For railway infras-

tructure defect inspection, damaged or worn equipment defects are usually

found in some small parts compared to the whole object. That is, the dif-

ferences between the defective ones and standard ones are fine-grained. How

to find these subtle defects is a fine-grained recognition problem. This the-

sis proposes a bilinear CNNs model to tackle the defect detection problem,

which effectively captures the invariant representation of the dataset and

learns high-order discriminative features for fine-grained defect recognition.

xv



ABSTRACT

Another challenge is the limited labeled data (few-shot learning). In many

scenarios, obtaining abundant labeled samples is laborious. For example, in

industrial defect detection, most defects exist only in a few common cate-

gories, while most other categories only contain a small portion of defects.

Moreover, annotating a large-scale dataset of railway infrastructure defects is

labor-intensive, which requires high expertise in railway maintenance. Thus,

how to obtain an effective model with sparse labeled samples remains an

open problem. To address this issue, this thesis proposes a framework to

simultaneously reduce the intra-class variance and enlarge the inter-class dis-

crimination for both fine-grained defect recognition and general fine-grained

recognition under the few-shot setting. Three models are designed according

to this framework, and comprehensive experimental analyses are provided

to validate the effectiveness of the models. This thesis further studies the

few-shot learning problem by mining the unlabeled information to boost the

few-shot learner for defect/general object recognition and proposes a Poisson

Transfer Model to maximize the value of the extra unlabeled data through

robust classifier construction and self-supervised representation learning.

xvi
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