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Abstract

Compared with the traditional railway infrastructure maintenance process,

which relies on manual inspection by professional maintenance engineers,

inspection through automatic video analytics will significantly improve the

working efficiency and eliminate the potential safety concern by reducing

physical contact between maintenance engineers and infrastructure facilities.

However, the defect does not always have a stable appearance and involves

many uncertainties exposed in the clutter environments. On the other hand,

various brands of the same devices are used widely on the railway, which

shows diverse physical models. Therefore, it creates many challenges to the

existing computer vision algorithms for defect detection. In this thesis, two

key challenges are abstracted with regard to video/image analytics using com-

puter vision techniques for railway infrastructure defect detection, resulting

from the fine-grained defect recognition and the limited labeled learning (few-

shot learning). This thesis summarizes the works that have been conducted

on utilizing different methods to solve the two challenges.

The first challenge is fine-grained defect recognition. For railway infras-

tructure defect inspection, damaged or worn equipment defects are usually

found in some small parts compared to the whole object. That is, the dif-

ferences between the defective ones and standard ones are fine-grained. How

to find these subtle defects is a fine-grained recognition problem. This the-

sis proposes a bilinear CNNs model to tackle the defect detection problem,

which effectively captures the invariant representation of the dataset and

learns high-order discriminative features for fine-grained defect recognition.

xv



ABSTRACT

Another challenge is the limited labeled data (few-shot learning). In many

scenarios, obtaining abundant labeled samples is laborious. For example, in

industrial defect detection, most defects exist only in a few common cate-

gories, while most other categories only contain a small portion of defects.

Moreover, annotating a large-scale dataset of railway infrastructure defects is

labor-intensive, which requires high expertise in railway maintenance. Thus,

how to obtain an effective model with sparse labeled samples remains an

open problem. To address this issue, this thesis proposes a framework to

simultaneously reduce the intra-class variance and enlarge the inter-class dis-

crimination for both fine-grained defect recognition and general fine-grained

recognition under the few-shot setting. Three models are designed according

to this framework, and comprehensive experimental analyses are provided

to validate the effectiveness of the models. This thesis further studies the

few-shot learning problem by mining the unlabeled information to boost the

few-shot learner for defect/general object recognition and proposes a Poisson

Transfer Model to maximize the value of the extra unlabeled data through

robust classifier construction and self-supervised representation learning.

xvi



Chapter 1

Introduction

1.1 Background

Railway power supply infrastructure is one of the essential components in a

rail transportation system. Therefore, Railway-Power-Supply-Infrastructure

(RPSI) defects detection plays a vital role in railway maintenance and railway

safety. Figure 1.1 illustrates an example of the RPSI, which is captured by an

infrared camera equipped on a maintenance vehicle in Sydney Trains. There

are multiple types of equipment in the image with different sizes and complex

backgrounds. Traditional RPSI defects detection task is performed by rail-

way maintenance engineers or related experts manually. Reviewers will check

every frame of the infrastructure surveillance videos to find possible flaws in

different pieces of power supply equipment. Firstly, they need to locate the

specific objects and then focus on these objects to determine whether they

are defective. This detection process is low-efficiency, time-consuming, and

high-labor costing. More importantly, strong domain knowledge of railway

infrastructure is needed while assessing the defects of a device. It is also

difficult to obtain a large-scale well-labeled RPSI defect dataset through this

labeling process.

The advances in digital video technology, the increasing availability of

computing resources and high-resolution cameras, and the growing need for

1
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Figure 1.1: An example of Railway Power Supply Infrastructure. We labeled

two pieces of Dropper equipment with red and green boxes. The green one

presents a standard Dropper equipment where the red one contains a de-

fect Dropper equipment that is disconnected at the end of line 5 (L5). L1

(L2/3/4/5) indicates the power supply cable.

automatic video analytics have sparked great interest in visual recognition

and object detection algorithms in computer vision and multimedia. How-

ever, developing automated video/image analytics methods in many real-

world scenarios is still challenging due to the noise in videos, cluttered back-

ground, complex target movement, incomplete or complete occlusions, illu-

mination variances, real-time computing requirements, etc. For example,

in railway infrastructure defect detection, the changing weather, the train’s

motion, and the aging of the equipment generate problems when develop-

ing robustness and high-performance video analytics technology to reinforce

artificial intelligence based decision support for railway infrastructure main-

tenance.

In automatic industrial defect inspection, there mainly exist three types

2
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of methods: naive-vision-based detection (Otsu 1979, Ng 2006, Chan & Pang

2000, Lowe, Alleyne & Cawley 1998, Kumar & Pang 2002), hand-craft fea-

tures with machine-learning-based inspection frameworks (Marani, Palumbo,

Galietti, Stella & D’Orazio 2016, Jia, Murphey, Shi & Chang 2004, Huang,

Hu, Wang, Zhang, Li & Guo 2017) and deep-learning-based detect meth-

ods (Jia, Lei, Lin, Zhou & Lu 2016, Lu, Wang, Qin & Ma 2017, Faghih-

Roohi, Hajizadeh, Núñez, Babuska & De Schutter 2016). Naive-vision-based

industrial inspection methods use traditional image features such as color,

gray value , and so on to conduct defects detection. This type of meth-

ods (Otsu 1979, Ng 2006, Chan & Pang 2000, Lowe et al. 1998, Kumar &

Pang 2002) are fast and efficient in some common industrial processing tasks.

But it works lousily when the images are cluttered as well as with complex

backgrounds, as Figure 1.1 indicates. Some researchers have attempted to

solve these problems from the viewpoint of machine learning with hand-craft

features (Marani et al. 2016, Jia et al. 2004, Huang et al. 2017). Nevertheless,

with the advent of the Big Data era, massive amounts of data need to be

processed in a more precise and robust way which is difficult for traditional

machine learning methods.

Nowadays, deep neural networks are widely applied to computer vision

and other areas due to their powerful data processing capacity and excellent

performance in different applications like AlexNet (Krizhevsky 2014), VG-

GNet (Simonyan & Zisserman 2014), and ResNet (He, Zhang, Ren & Sun

2016) for image classification, Faster-RCNN (Ren, He, Girshick & Sun 2015)

and YOLO (Redmon, Divvala, Girshick & Farhadi 2016) for object detec-

tion. There are some works that build deep networks to deal with industrial

defects inspection such as (Jia et al. 2016, Lu et al. 2017, Faghih-Roohi

et al. 2016, Jia et al. 2016, Lu et al. 2017). However, the adopted datasets

are relatively simple, and the deep architectures are comparatively shallow.

Motivated by the above observations, this thesis chooses RPSI for our case

studies and explores the feasibility of detecting their defects with different

deep neural network models.

3



CHAPTER 1. INTRODUCTION

1.2 Research Challenges

Instead of directly performing RPSI defect detection in the full resolution

images (video frames), we break the defect detection into two steps: gen-

eral object (no matter it is defective or not) detection and defective ob-

ject classification on given cropped objects. The general object detection is

well-studied in current deep learning object detection approaches, such as

Mask R-CNN (He, Gkioxari, Dollár & Girshick 2017), Faster R-CNN (Ren

et al. 2015), and YOLO (Redmon et al. 2016). Therefore, this thesis focuses

on the second part. We aim to solve two research challenges regarding defect

recognition for RPSI, resulting from the fine-grained defect recognition and

the limited labeled learning (few-shot learning).

1.2.1 Fine-grained Defect Recognition

For RPSI, the appearance of component defects and symptomatic conditions

will be different, although they have the same functions. Moreover, flaws of

damaged or worn equipment are usually found in some small parts. That

is, the differences between the defective equipment and the standard one are

subtle, while the variations in each type of defects are large. For instance,

a typical RPSI equipment named Splice is used to connect two different

electric wires that can extend the whole power line, and the most common

defect of this equipment is worn at the joints, as seen in Figure 1.2. The green

and the red bounding boxes illustrate the standard joints and worn joints,

respectively. Distinguishing the subtle differences between standard Splice

and defective Splice is imperative while challenging for naive-vision-based

detectors and traditional machine-learning-based detectors.

On the other side, even though deep models have made significant progress

in defects detection and recognition, considering that RPSI defects recogni-

tion is a fine-grained problem, it should be better to use a specific fine-grained

model to tackle it. For example, in animal species classification, vehicle

type discrimination, and food recognition, where classes in these datasets
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(a) Defect (b) Defect (c) Standard (d) Standard (e) Detail

Figure 1.2: An example of Splice defect. (a) and (b) show V-wear defects in

connection of wire and splice labeled by red boxes, (c) and (d) show standard

Splices. (e) is the magnification of the first four images details. The first row

of (e) shows the defect part of (a) which is a V-wear, the second row shows

the defect part of (b) and the remaining rows are samples of standard parts

of Splice (c)’ bottom part and (d) (both top and bottom parts) which we

draw with green lines.

have small inter-class variance yet large intra-class gaps. It is reported that

fine-grained methods achieve better performance than classical deep neural

networks in dealing with these types of tasks (Zhang, Donahue, Girshick &

Darrell 2014, Lin, Shen, Lu & Jia 2015a, Peng, He & Zhao 2018a, Lin, Roy-

Chowdhury & Maji 2015b, Jaderberg, Simonyan, Zisserman et al. 2015, Cui,

Zhou, Wang, Liu, Lin & Belongie 2017a, Chen, Wang, Qi, Li & Sun 2017).

Based on the above analysis, in this thesis, we claim that the RPSI defect

identification is a typical fine-grained recognition task and try to solve it

using fine-grained deep neural networks.
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1.2.2 Few-shot Learning for Defect Recognition

Deep neural network models have advanced abilities on various computer vi-

sion tasks (Krizhevsky 2014, Simonyan & Zisserman 2014, He et al. 2016, Ren

et al. 2015, Redmon et al. 2016), which depends on large-scale training data

with well-annotated ground truth. However, it is unrealistic always to obtain

such annotation in real-world applications, such as industrial defect detec-

tion (Lu et al. 2017) and rare species identification (Wah, Branson, Welinder,

Perona & Belongie 2011). Recently, Few-shot learning (FS), as an attempt

to address the shortage of training samples, has made significant progress

in generic classification tasks (Vinyals, Blundell, Lillicrap, Kavukcuoglu &

Wierstra 2016, Snell, Swersky & Zemel 2017, Sung, Yang, Zhang, Xiang, Torr

& Hospedales 2018b, Liu, Lee, Park, Kim, Yang, Hwang & Yang 2019a, Li,

Xu, Huo, Wang, Gao & Luo 2019, Li, Wang, Xu, Huo, Gao & Luo 2019).

Nonetheless, it is still challenging for current FS models to distinguish the

subtle differences for industrial defect categories given limited training data.

In RPSI defect recognition, the labeled image/video data is limited for a

specified device due to the high labor-costing and strong domain knowledge

requirements in the manual labeling process. For example, according to the

Sydney Trains Maintenance Centre, there mainly exist 39 defect types in

RPSI maintenance. However, the data distribution of defects is highly im-

balanced. The most labeled defect type contains 138 images, while around

20 types of defects only has 1 to 5 images per type. It is not easy to de-

vise or train a decent individual recognition model for each defect with such

sparsely labeled data. How to design a model that can effectively handle

limited labeled data and identify the unlabeled incoming defect equipment is

challenging but necessary for realistic RPSI maintenance. To such a degree,

this thesis investigates the feasibility of solving the FS problem for RPSI

defect recognition. More specifically, we study the FS RPSI defect recogni-

tion from two aspects, fine-grained few-shot learning, and semi-supervised

few-shot learning.

As discussed in Section 1.2.1, RPSI defect recognition is a typical fine-
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grained classification problem. Therefore, the first research issue of FS RPSI

defect recognition is the Fine-Grained Few-Shot image recognition (FGFS).

In the general FGFS task, Wei et al. (Wei, Wang, Liu, Shen & Wu 2019a)

proposed the first FGFS model by employing two sub-networks to tackle the

problem jointly. The first component is a self-bilinear encoder, which adopts

the matrix outer product operation on convolved features to capture subtle

image features, while the second one is a mapping network that learns the

decision boundaries of the input data. Li et al. (Li, Xu, Huo, Wang, Gao

& Luo 2019) further replaced the naive self-bilinear pooing as the covariance

pooling. Moreover, they designed a covariance metric to generate relation

scores. However, self-bilinear pooling (Wei et al. 2019a, Li, Xu, Huo, Wang,

Gao & Luo 2019) cannot extract comparative features between pairs of im-

ages, and the dimension of pooled features is usually large. How to design a

better feature extraction framework of FGFS is still an open problem. More-

over, none of the current FGFS models (Wei et al. 2019a, Li, Xu, Huo, Wang,

Gao & Luo 2019, Zhang & Koniusz 2019) explicitly solve the RPSI defect

recognition.

Another research issue of FS RPSI defect recognition is the Semi-Supervised

Few-Shot Learning (SSFSL). Compared with collecting labeled defect data, it

is much easier to obtain abundant unlabeled data. Therefore, SSFSL (Ren,

Triantafillou, Ravi, Snell, Swersky, Tenenbaum, Larochelle & Zemel 2018,

Liu, Lee, Park, Kim, Yang, Hwang & Yang 2018, Li, Sun, Liu, Zhou, Zheng,

Chua & Schiele 2019, Yu, Chen, Cheng & Luo 2020) is proposed to mine the

ancillary knowledge from both labeled and extra unlabeled data to boost few-

shot learners. The core challenge in SSFSL is how to explore the auxiliary

information from these unlabeled thoroughly. Previous SSFSL works indicate

that graph-based models (Liu et al. 2018, Ziko, Dolz, Granger & Ayed 2020)

can learn a better classifier than inductive ones (Ren et al. 2018, Li, Sun,

Liu, Zhou, Zheng, Chua & Schiele 2019, Yu et al. 2020) since these methods

directly model the relationship between the labeled and unlabeled samples

during the inference. However, current graph-based models adopt Laplace
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learning (Zhu, Ghahramani & Lafferty 2003) as the classifier, and recent re-

search (Calder, Cook, Thorpe & Slepcev 2020) indicates that these classifiers

suffer from the underdeveloped message-passing capacity for the labels. On

the other hand, most SSFSL methods adapt the pre-trained feature embed-

ding on the training set as the testing embedding. This may lead to the

embedding degeneration problem.

1.2.3 Summary

In short, there exist three research issues in this thesis: 1) How to design fine-

grained deep neural networks for RPSI defect identification, 2) How to design

a fine-grained few-shot framework that can generate more robust feature

representation for few-shot PRSI defect recognition, 3) How to design a model

to mine the value as much as possible from the abundant unlabeled data to

boost the few-shot learners for few-shot RPSI defect recognition. The last

two issues belong to the limited labeled learning for RPSI defect recognition,

and the first issue belongs to the fine-grained RPSI defect recognition.

1.3 Research Contributions

After analyzing the above challenges and issues, the corresponding solutions

are developed in this thesis. The main contributions are summarized as

follows:

• To solve the fine-grained defects recognition problem, this thesis is the

first to apply the deep fine-grained model to rail infrastructure defects

detection. We define the defect recognition task as a two-class fine-

grained problem:“defect” or “not-defect.” Moreover, cooperated with

Sydney Trains, we constructed a Railway Power Supply Infrastructure

(RPSI) defects dataset; (Chapter 3)

• This thesis proposes a new bilinear convolutional neural network named

Spatial Transformer And Bilinear Low-Rank (STABLR) model. To
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solve the high variation within the class, we adopt the Spatial Trans-

former Network. To achieve more effective performance, we present a

Low-Rank Bilinear model. Through experiments, the proposed meth-

ods achieve the best performance on the RPSI dataset compared with

hand-craft machine learning based methods and classical deep frame-

works. (Chapter 3)

• To solve the Fine-Grained Few-Shot (FGFS) defects recognition prob-

lem, a two-stage meta-learning-based framework is proposed, which

contains a feature alignment module and a high-order pairwise relation

extraction module. Three models are instantiated under this frame-

work. In the first FGFS model, we propose a new pairwise bilinear

pooling operation to capture the subtle differences between the base

and query images. In order to acquire the accurate pairwise bilinear

features, we adopt the alignment losses to regularize the embedding

features; (Chapter 4)

• In the second FGFS model, a more advanced pairwise pooling operation

with a low-rank constraint is proposed. We propose to learn multiple

transformations for fusing the input image features. By applying these

transformations, the proposed model generates more compact and dis-

criminative features than previous ones. Moreover, a novel alignment

mechanism is introduced to encourage the input feature pairs of the bi-

linear operation to be matched. Instead of solely relying on the align-

ment losses, we incorporate a feature position re-arrangement layer

with the alignment loss to boost the matching performance. (Chapter

4)

• In the third FGFS model, we propose a Target-Oriented Matching

Mechanism (TOMM) to learn explicit feature transformations to reduce

the biases caused by the intra-class variance. By adopting a cross-

correction attention mechanism, the target-oriented matching trans-

fers the support image features to align with the query ones spatially.
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Moreover, we propose to aggregate the regional representations into

pairwise bilinear pooling through the convolutional channel grouping

(GPBP), which devises the second-order features from both global and

local views. To our best knowledge, this is the first attempt to adopt

group bilinear pooling in FGFS. Comprehensive experiments on four

fine-grained benchmark datasets and the RPSI dataset are conducted

to investigate the effectiveness of the proposed model, and our model

achieves the state-of-the-art performance. (Chapter 4)

• To solve the Semi-Supervised Few-Shot Learning (SSFSL) for the RPSI

defects recognition problem, we propose a Poisson Transfer Network

(PTN) to improve the capacity of mining the relations between the

labeled and unlabeled data for graph-based SSFSL. Moreover, we pro-

pose to adapt contrastive learning in the representation learning with

extra unlabeled data to improve the generalization of the pre-trained

base-class embedding for novel-class recognition. We conduct extensive

experiments on two widely-used datasets and the RPSI dataset to in-

vestigate the effectiveness of PTN, and PTN achieves state-of-the-art

performance. (Chapter 5)

·

1.4 Thesis Structure

The rest of the thesis is structured as follow:

In Chapter 2, the related works for automatic industrial defect detection

and recognition are reviewed first. Then we introduce the fine-grained image

classification, general few-shot learning, fine-grained few-shot learning, and

semi-supervised few-shot learning related to the research issues.

In Chapter 3, the proposed bilinear CNNs model for RPSI defect-recognition

and the construction of the RPSI dataset are introduced. Experimental re-

sults are presented in this chapter.
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In Chapter 4, the two-stage meta-learning framework for Few-Shot Fine-

Grained (FGFS) learning is firstly introduced. Then we introduce three

instantiated FGFS models. The first FGFS model contains a novel pairwise

bilinear pooling and two simple but effective feature alignment losses. The

second FGFS model is introduced with a low-rank feature representation

and novel alignment module. In the last, we develop the third FGFS model:

TOAN. TOAN achieves the state-of-the-art performance on the RPSI dataset

and several generic fine-grained datasets with a better feature alignment

mechanism and powerful high-order relation extraction.

In Chapter 5, we present the solution of the semi-supervised few-shot

learning for both RPSI and general image recognition. We conduct experi-

ments on RPSI and two general datasets to validate the proposed model.

In Chapter 6, we conclude the thesis and outline the possible future di-

rections and some potential solutions.
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Chapter 2

Literature Review

This chapter reviews some studies related to automatic defect detection

through computer vision and machine learning methods. As discussed in

Section 1.2, this thesis mainly focuses on two issues: fine-grained defect

recognition and few-shot learning for defect recognition. Therefore, we in-

troduce the existing automatic industrial defect-recognition methods first.

Then, we review the general fine-grained image classification methods. These

two sections are related to the fine-grained defect-recognition issue. For few-

shot learning methods, we investigate the mainstream methods from three

aspects: general few-shot learning, fine-grained few-shot learning, and semi-

supervised few-shot learning.

2.1 Automatic Industrial Defect Recognition

As we study the automatic defect recognition methods for RPSI data, we re-

view the existing automatic industrial defect detection and recognition first.

According to the pre-processing of feature extraction and post-processing of

decision making, there mainly exist three types of methods: naive-vision-

based methods (Otsu 1979, Ng 2006, Chan & Pang 2000, Lowe et al. 1998,

Kumar & Pang 2002), traditional machine-learning-based frameworks (Marani

et al. 2016, Jia et al. 2004, Huang et al. 2017, Liu & Li 2021), and deep-
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learning-based methods (Jia et al. 2016, Lu et al. 2017, Faghih-Roohi et al.

2016, Li, Zhang, Liang & Wei 2019).

Naive-vision-based industrial inspection methods use the raw informa-

tion from images as the feature, such as color, gray value, etc. For example,

Otsu et al. (Otsu 1979) proposed a threshold defects detection method that

uses a gray level histogram of bi-modal distribution to inspect candidate im-

ages. Ng et al. (Ng 2006) improved the performance of Otsu’s algorithms by

picking up optimal thresholds for both bi-modal and uni-modal distribution

of gray histogram from images. Besides these gray value features, Chan et

al. (Chan & Pang 2000) developed a fabric defects detection method based

on the Fourier transform. Lowe et al. (Lowe et al. 1998) designed a pipe flaw

detection framework using Guided waves. Moreover, Kumar et al. (Kumar

& Pang 2002) applied Gabor filters to inspect the defects in textile products.

Naive-vision-based inspection methods are fast and efficient for some com-

mon industrial processing tasks. However, it works lousily when the images

are cluttered as well as with complex backgrounds.

To improve the naive-vision-based defect inspection methods, some re-

searchers have attempted to solve the defect detection problems from the

viewpoint of machine learning with hand-craft features. For instance, Marani

et al. (Marani et al. 2016) used clustering techniques, such as K-Means, K-

Medoids, and hierarchical clustering, to automatically detect subsurface flaws

in composite materials. They adopted thermography images as the input fea-

tures. Jia et al. (Jia et al. 2004) proposed an inspection system using Sup-

port Vector Machine (SVM) (Vapnik 2013). Moreover, Huang et al. (Huang

et al. 2017) designed a real-time mobile phone work-piece surface detects de-

tection framework by using Naive Bayesian (Norvig & Intelligence 2002) and

SVM (Vapnik 2013) with Histogram Of Gradient (HOG) (McConnell 1986)

and Local Binary Pattern (LBP) (Wang & He 1990) features. Most re-

cently, Liu et al. (Liu & Li 2021) proposed a low-rank decomposition model

with structural constraints for fabric defect detection. By fusing the origi-

nal image and an energy image as the input feature, it is reported that the
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proposed low-rank model achieves excellent performance on a fabric defect

dataset. Nevertheless, with the advent of the Big Data era, large amounts of

data need to be processed more precisely and robustly, which is difficult for

traditional machine learning methods.

Currently, deep learning models are widely applied to computer vision and

other areas due to their strong feature extraction and excellent performance

in different applications (Huang, Wu, Xu, Zhong & Zhang 2021), such as

AlexNet (Krizhevsky 2014), VGGNet (Simonyan & Zisserman 2014), and

ResNet (He et al. 2016) for image classification, Mask R-CNN (He et al. 2017)

and YOLO (Redmon et al. 2016) for object detection. There exist some works

that design deep neural networks to deal with industrial defects inspection

such as (Jia et al. 2016, Lu et al. 2017, Faghih-Roohi et al. 2016, Li, Zhang,

Liang & Wei 2019). For example, in (Jia et al. 2016, Lu et al. 2017), the

authors used deep models to deal with rolling element bearings and planetary

gearboxes data which are text logs about the equipment. However, these data

are relatively simple compared to images and videos. Faghih et al. (Faghih-

Roohi et al. 2016) proposed a deep convolutional neural network (DCNN)

for rail surface defects detection, which consists of three convolutional layers

and three fully-connected layers. The proposed DCNN model achieves good

performance on the rail tracks dataset. However, this deep architecture is

comparatively shallow, which cannot capture complex higher-level semantic

features of images like fine-grained defect features in cluttered backgrounds.

As discussed in Section 1.2.1, for RPSI defects recognition, damaged or

worn equipment defects are usually found in some small parts compared to

the whole equipment. Even though deep learning models have achieved sig-

nificant progress in defects recognition, considering that RPSI defects recog-

nition is a fine-grained problem, it should be better to use a specific fine-

grained model to deal with it. Therefore, different from the above deep

learning models, in this thesis, we develop deeper neural networks with fine-

grained models to capture the complex, subtle features and inference the

defectiveness for an input image.
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2.2 Fine-grained Image Classification

We claim that RPSI defect recognition is a fine-grained image classification

problem. Therefore, fine-grained image classification is closely related to the

research of RPSI defect recognition, and we review the fine-grained image

classification in this section.

Fine-grained image classification has been a trending topic in computer

vision for years, and most traditional fine-grained approaches adopt hand-

crafted features as image representations (Xie, Tian, Wang & Zhang 2014,

Gao, Tsang & Ma 2014, Zhang, Xiong, Zhou & Tian 2016). However, due

to the limited representative capacity of hand-crafted features, the perfor-

mance of this type of method is moderate. In recent years, deep neural net-

works have developed advanced abilities in the feature extraction and func-

tion approximation (Xu, Jagadeesh & Manjunath 2014, He et al. 2016, Gal

& Ghahramani 2016, Yao, Shen, Zhang, Liu, Tang & Shao 2019, Zhang, Wu,

Shen, Zhang & Lu 2018b, Qiao, Liu, Shen & Yuille 2018, Zhang, Wu, Shen,

Zhang & Lu 2018a, Zhang, Wang, Wang, Jiang, Xu & Zhao 2021, Li, Liu,

Yang, Peng & Zhou 2021), bringing significant progress in fine-grained im-

age classification task (Huang, Li, Xie, Wu & Luo 2016, Xu, Tao, Huang &

Zhang 2017, Zhang, Wei, Wu, Cai, Lu, Nguyen & Do 2016, Zhao, Wu, Feng,

Peng & Yan 2017, Huang, Li, Xie, Wu & Luo 2016, Yao, Zhang, Zhang, Li

& Tian 2016, Peng, He & Zhao 2018b, Zhang, Yang, Wang, Hong, Nie &

Li 2016, Iscen, Tolias, Gosselin & Jégou 2015, Zhang et al. 2014, Fu, Zheng

& Mei 2017, Lin, RoyChowdhury & Maji 2015a, Gao, Beijbom, Zhang &

Darrell 2016, Kong & Fowlkes 2017, Cui, Zhou, Wang, Liu, Lin & Belongie

2017b, Li, Xie, Wang & Gao 2018, Lin, RoyChowdhury & Maji 2018, Suh,

Wang, Tang, Mei & Mu Lee 2018, Yu, Zhao, Zheng, Zhang & You 2018, Tan,

Yuan, Yu, Wang & Gu 2022).

Deep fine-grained classification approaches can be roughly divided into

two groups: regional feature-based methods (Huang, Li, Xie, Wu & Luo

2016, Xu et al. 2017, Zhang, Wei, Wu, Cai, Lu, Nguyen & Do 2016, Zhao

et al. 2017, Huang, Li, Xie, Wu & Luo 2016, Yao et al. 2016, Peng et al.
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2018b, Zhang, Yang, Wang, Hong, Nie & Li 2016, Iscen et al. 2015, Zhang

et al. 2014, Fu et al. 2017) and global feature-based methods (Lin, Roy-

Chowdhury & Maji 2015a, Gao et al. 2016, Kong & Fowlkes 2017, Cui

et al. 2017b, Li et al. 2018, Lin et al. 2018, Suh et al. 2018, Yu et al. 2018). In

fine-grained image classification, the most informative information generally

lies in the discriminate parts of an object. Therefore, regional feature-based

approaches tend to detect such parts first and then fuse them to form a robust

representation of the object. For instance, Zhang et al. (Zhang, Wei, Wu,

Cai, Lu, Nguyen & Do 2016) firstly combined the R-CNN (Girshick, Don-

ahue, Darrell & Malik 2014) into the fine-grained classifier with a geometric

prior, in which the modified R-CNN generates thousands of proposals. The

most discriminate ones are then selected for object classification. In (Peng

et al. 2018b), Peng et al. adopted two attention modules to localize ob-

jects and choose the discriminate parts simultaneously. A spectral clustering

method is then employed to align the parts with the same semantic meaning

for the prediction. However, the classification performance of these models

relies heavily on the parts localization step. Getting a well-trained part de-

tector needs the input of a large amount of subtle annotated samples, which

is infeasible to obtain. Moreover, the sophisticated regional feature fusion

mechanism leads to the increasing complexity of the fine-grained classifier.

On the contrary, global feature-based fine-grained methods (Lin, Roy-

Chowdhury & Maji 2015a, Gao et al. 2016, Kong & Fowlkes 2017, Cui

et al. 2017b, Li et al. 2018, Lin et al. 2018, Suh et al. 2018, Yu et al. 2018)

extract the feature of an entire image without explicitly localizing the object

parts. Bilinear CNN model (BCNN) (Lin, RoyChowdhury & Maji 2015a)

is the first work that adopts matrix outer product operation on the original

embedded features to generate a second-order representation for fine-grained

classification. Li et al. (Li et al. 2018) (iSQRT-COV) further improved the

naive bilinear model by using covariance matrices over the last convolutional

features as fine-grained features. iSQRT-COV obtained the state-of-the-art

performance on both generic and fine-grained datasets.
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However, the feature dimensions of the second-order models are the square

fold of the naive ones. To reduce the computation complexity, Gao et al.

(Gao et al. 2016) proposed a compact bilinear pooling operation, which ap-

plies Tensor Sketch (Pham & Pagh 2013) to reduce the dimensions. Kong

et al. (Kong & Fowlkes 2017) introduced a low-rank co-decomposition of

the covariance matrix that fatherly decreases the complexity, while Kim

et al. (Kim, On, Lim, Kim, Ha & Zhang 2017a) adopted the Hadamard

product to redefine the bilinear matrix outer product and proposes a factor-

ized low-rank bilinear pooling for multimodal learning. Furthermore, Gao

et al. (Yu et al. 2018) devised a hierarchical approach for fine-grained clas-

sification using a cross-layer factorized bilinear pooling operation. Inspired

by the flexibility and effectiveness of the Hadamard product for extracting

the second-order features between visual features and textual features in

VQA tasks (Kim et al. 2017a), in this thesis, we propose to adopt differ-

ent second-order extraction methods for both fine-grained and fine-grained

few-shot RPSI defect recognition, including matrix-outer-product-based bi-

linear pooling and Hadmard-product-based factorized bilinear pooling. We

further design a new bilinear pooling operation with semantic grouping for

fine-grained few-shot recognition.

2.3 Generic Few-shot Learning

We review the generic few-shot learning and then introduce the fine-grained

few-shot learning, as the second research issue of this thesis is RPSI defects

recognition under the few-shot setting.

As a representative of the learning methods with limited samples, e.g.,

weakly supervised learning (Lan, Yuen & Chellappa 2017, Zhang, Wei, Feng,

Yang & Huang 2018), active learning (Huang, Zhang, Hu & Zhu 2016, Zhao,

Shi, Zhang, Chen & Gu 2019, Gu, Zhai, Deng & Huang 2020, Zhao, Qiu &

Sun 2022), and semi-supervised learning (Zhu et al. 2003, Calder & Slepčev

2019), Li et al. (Fei-Fei, Fergus & Pietro 2006) firstly introduced few-shot
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learning based on the Bayesian theory. Recently, due to the excellent per-

formance of deep neural networks, machine few-shot learning (Vinyals et al.

2016, Snell et al. 2017, Sung et al. 2018b, Liu, Lee, Park, Kim, Yang, Hwang

& Yang 2019b, Simon, Koniusz & Harandi 2022) revives again and achieves

significant improvements against previous methods. Previous works of the

generic Few-Shot (FS) learning are conducted from various perspectives,

such as learning with memory (Munkhdalai & Yu 2017, Santoro, Bartunov,

Botvinick, Wierstra & Lillicrap 2016), which leverages recurrent neural net-

works to store the historical information; learning from fine-tuning (Chen,

Liu, Kira, Wang & Huang 2019, Finn, Abbeel & Levine 2017a, Rajeswaran,

Finn, Kakade & Levine 2019, Ravi & Larochelle 2017), which designs a

meta-learning framework to obtain well initial weights for the neural net-

work; learning to compare (Li, Wang, Xu, Huo, Gao & Luo 2019, Li, Xu,

Huo, Wang, Gao & Luo 2019, Snell et al. 2017, Sung et al. 2018b, Vinyals

et al. 2016, Zhang, Li & Cheng 2019), etc.

Among these, learning to compare is the most widely used (Gidaris &

Komodakis 2018, Hao, He, Cheng, Wang, Cao & Tao 2019, Li, Wang, Xu,

Huo, Gao & Luo 2019, Li, Xu, Huo, Wang, Gao & Luo 2019, Snell et al. 2017,

Sung et al. 2018b, Vinyals et al. 2016, Wertheimer & Hariharan 2019, Wu,

Li, Guo & Jia 2019, Zhang & Koniusz 2019, Jiang, Huang, Geng & Deng

2020). In general, learning to compare methods can be divided into two

modules: feature embedding and similarity measurement. By adopting the

episode training mechanism (Vinyals et al. 2016), these approaches optimize

the transferable embedding of both auxiliary data and target data. Then,

the query images can be identified by the distance-based classifiers (Hao

et al. 2019, Li, Wang, Xu, Huo, Gao & Luo 2019, Liu et al. 2019a, Snell

et al. 2017, Sung et al. 2018b, Vinyals et al. 2016). Currently, (Hao et al.

2019, Li, Wang, Xu, Huo, Gao & Luo 2019, Wu et al. 2019) focused on

exploring regional information for an accurate similarity comparison.

Different from learning to compare methods that separate the auxil-

iary data (meta-training data) into a set of few-shot tasks, some research
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works (Qiao et al. 2018, Gidaris & Komodakis 2018, Chen, Liu, Kira, Wang

& Huang 2018, Qi, Brown & Lowe 2018) utilize all auxiliary classes to pre-

train the few-shot model, which is then adapted to novel-class recognition.

For example, Tian et al. (Tian, Wang, Krishnan, Tenenbaum & Isola 2020)

decoupled the learning procedure into the base-class embedding pre-training

and novel-class classifier learning. By adopting multivariate logistic regres-

sion and knowledge distillation, the proposed model outperforms many few-

shot approaches. We denote these methods (Qiao et al. 2018, Gidaris &

Komodakis 2018, Chen et al. 2018, Qi et al. 2018) as transfer-learning-based

few-shot models.

However, generic FS methods are not designed to address the high intra-

class yet low inter-class variance issue in the fine-grained few-shot problem.

In Chapter 4, we aim at tackling the fine-grained defect/image classification

from the class variance perspective, i.e., we propose a two-stage framework to

capture a more robust representation of images by simultaneously eliminating

the intra-class variations through feature alignment and enhancing the inter-

class discrimination by adopting the group pair-wise second-order feature

extraction. Thus the proposed methods outperform the generic few-shot

models. Based on our analysis, the proposed two-stage framework can also

be extended to other weakly supervised tasks, such as objection detection

(Zhang, Han, Zhao & Zhao 2020, Zhang, Han, Guo & Zhao 2018), localization

(Oquab, Bottou, Laptev & Sivic 2015, Peyre, Sivic, Laptev & Schmid 2017),

and segmentation (Zhang, Han, Yang & Xu 2018), etc., where only image-

level supervision is available. The intra-class and inter-class variances in these

tasks can be modeled by the proposed target-oriented matching mechanism

and global pair-wise bilinear pooling operation, respectively. In Chapter 5,

we further research the semi-supervised few-shot defect/image classification.

Inspired by the transfer-learning-based few-shot framework, we adapt this

framework to semi-supervised few-shot learning by exploring both unlabeled

novel-class data and base-class data to boost the performance of few-shot

tasks.
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2.4 Fine-grained Few-shot Learning

In this section, we review the fine-grained few-shot learning for image recog-

nition. Wei et al. (Wei et al. 2019a) proposed a Piecewise Classifier Mappings

(PCM) framework for fine-grained image categorization under the few-shot

setting. PCM injects the bilinear feature (Lin, RoyChowdhury & Maji 2015a)

into a group of mapping networks to reduce the dimensionality of the features.

A deep distance classifier is then appended to generate the final prediction.

SoSN (Zhang & Koniusz 2019) adopts the power normalizing second-order

pooling to generate the fine-grained features, and a pair-wise mechanism is

then proposed to capture the correlation of support-query pairs. Li et al. (Li,

Xu, Huo, Wang, Gao & Luo 2019) replaced the bilinear pooling with a covari-

ance pooling operation, and a covariance metric is proposed as the distance

classifier. Moreover, (Wertheimer & Hariharan 2019) designs a localization

network to generate the foreground and background features for an input

image with external bounding box annotations. The bilinear-pooled fore-

ground and background features are concatenated and fed into the classifier.

In (Li, Xu, Huo, Wang, Gao & Luo 2019, Wei et al. 2019a, Wertheimer &

Hariharan 2019, Zhang & Koniusz 2019, Koniusz & Zhang 2021, Zhang, Li

& Koniusz 2022), the authors adopted the second-order pooling on the in-

put image itself (noted as self-bilinear pooling) to capture the fine-grained

representation.

In our research, three published models are proposed to deal with the

fine-grained few-shot problem (Chapter 4). To further leverage the second-

order pairwise relationship between support and query images, we propose

the pairwise bilinear pooling (Huang, Zhang, Zhang, Wu & Xu 2019, Huang,

Zhang, Zhang, Xu & Wu 2021), of which, (Huang et al. 2019) adopts the

matrix-outer-product pooling to model pairwise relationships, and (Huang,

Zhang, Zhang, Xu & Wu 2021) proposes a factorized Hadamard-product low-

rank bilinear operation. However, the high intra-class variance issue is not

explicitly addressed in these works (Wei et al. 2019a, Zhang & Koniusz 2019,

Li, Xu, Huo, Wang, Gao & Luo 2019, Wertheimer & Hariharan 2019, Huang
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et al. 2019). The second model (Huang, Zhang, Zhang, Xu & Wu 2021)

presents a feature position re-arrangement module for feature alignment with

a global MSE loss to boost the discrimination of the fine-grained features.

With such feature arrangement module, the model can alleviate the intra-

class variance. Different from (Huang, Zhang, Zhang, Xu & Wu 2021), in the

third model (Huang, Zhang, Yu, Zhang, Wu & Xu 2021), we explicitly make

full use of the spatial dependencies between the support and query pairs. We

propose to generate the attention map based on the pair-wise similarities and

reformulate the support image spatial features without external supervision.

The third model achieves superior performances over (Huang, Zhang, Zhang,

Xu & Wu 2021). Moreover, to address the low inter-class variance challenge

in fine-grained images, existing models (Wei et al. 2019a, Zhang & Koniusz

2019, Li, Xu, Huo, Wang, Gao & Luo 2019, Wertheimer & Hariharan 2019,

Huang et al. 2019, Huang, Zhang, Zhang, Xu & Wu 2021) usually adopt

second-order feature extraction. Different from prior works, we propose to

integrate the local compositional concept representations into global pair-

wise bilinear pooling operation in the third model.

Besides the bilinear-based works, generative models (Pahde, Nabi, Klein

& Jähnichen 2018, Tsutsui, Fu & Crandall 2019, He & Peng 2018) are also

used to synthesize more samples for the support classes. MAML-based

model (Zhu, Liu & Jiang 2020) adopts a meta-learning strategy to learn

good initial FGFS learners. In (Haney & Lavin 2020), the authors revised

the hyper-spherical prototype network (Mettes, van der Pol & Snoek 2019)

by maximally separating the classes while incorporating domain knowledge

as informative prior. Thanks to the prior knowledge, (Haney & Lavin 2020)

achieves good performance in FGFS classification. In (Ruan, Lin, Long &

Lu 2021), the authors proposed a Spatial Attentive Comparison Network

(SCAN) to fuse the support-query features based on selective comparison.
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2.5 Semi-Supervised Few-shot Learning

The last research issue in this thesis is the Semi-Supervised Few-Shot Learn-

ing (SSFSL) for RPSI defect recognition. We review SSFSL methods in

this section. SSFSL aims to leverage the extra unlabeled novel-class data to

improve the few-shot learning. For example, Ren et al. (Ren et al. 2018)

proposed the first meta-learning-based SSFSL framework by extending the

prototypical network (Snell et al. 2017) with unlabeled data to refine class

prototypes. LST model (Li, Sun, Liu, Zhou, Zheng, Chua & Schiele 2019)

re-trains the base model using the unlabeled data with generated pseudo la-

bels. During the evaluation, it dynamically adds the unlabeled sample with

high prediction confidence into testing. In (Yu et al. 2020), TransMatch was

proposed to initialize the novel-class classifier with the pre-trained feature

imprinting, and then employ MixMatch (Berthelot, Carlini, Goodfellow, Pa-

pernot, Oliver & Raffel 2019) to fine-tune the whole model with both labeled

and unlabeled data. As closely related research to SSFSL, the transduc-

tive few-shot approaches (Liu et al. 2018, Kim, Kim, Kim & Yoo 2019, Ziko

et al. 2020, Lazarou, Stathaki & Avrithis 2021) also attempt to utilize un-

labeled data to improve the performance of the few-shot learning. These

methods adopt the entire query set as the unlabeled data and perform in-

ference on all query samples together. For instance, TPN (Liu et al. 2018)

employs graph-based transductive inference to address the few-shot problem,

and a semi-supervised extension model is also presented in their work.

Different from TransMatch and meta-learnig based SSFSL models, in

Chapter 5, we decouple the SSFSL learning progress into feature embed-

ding fine-tuning and classifier learning. We propose to use unsupervised

embedding fine-tuning to transfer the base-class knowledge to novel-class by

Contrastive training (He, Fan, Wu, Xie & Girshick 2020, Chen, Kornblith,

Norouzi & Hinton 2020). Moreover, a powerful Poisson graph model (Calder

et al. 2020) is adopted during the final evaluation stage with both the la-

beled and unlabeled data. In this way, we can make full use of the unlabeled

information.
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Chapter 3

RPSI Defect Recognition Using

Fine-grained Deep

Convolutional Neural Networks

3.1 Introduction

As discussed in Section 1.2.1, Railway Power Supply Infrastructure (RPSI)

is an important component for rail transportation. Therefore, RPSI defects

recognition plays a vital role in the railway maintenance system. For RPSI

defects inspection, defects of damaged or worn equipment are usually found

in some small parts compared to the whole object. How to find these subtle

defects is a typical fine-grained recognition problem.

Despite the fact that deep neural models (Jia et al. 2016, Lu et al. 2017,

Faghih-Roohi et al. 2016, Jia et al. 2016, Lu et al. 2017) have made great

progress in some industrial defect detection tasks, considering that RPSI

defects recognition is a fine-grained problem, it should be better to use a

specific fine-grained model to deal with it. For example, in animal species

classification, vehicle type discrimination, and food recognition, where classes

in these datasets have small inter-class variations but large intra-class gaps.

It is reported that fine-grained methods achieve better performance than
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classical deep models (Zhang et al. 2014, Lin, Shen, Lu & Jia 2015a, Peng

et al. 2018a, Lin, RoyChowdhury & Maji 2015a, Jaderberg et al. 2015, Chen

et al. 2017).

Inspired by the great success of deep fine-grained models in dealing with

fine-grained image classification, this paper presents an end-to-end deep net-

work to solve the RPSI defects recognition problem. To our best knowl-

edge, we are the first to apply the deep fine-grained model to railway in-

frastructure defects recognition. We deal with the challenge that complexes

noisy background as well as subtle variations of objects in a fine-grained

way. We define defect recognition as a two-class fine-grained problem: ”de-

fect” or ”not-defect”. Following Lin’s methodology (Lin, RoyChowdhury &

Maji 2015a, Lin et al. 2018), we further improve this algorithm using a com-

bination of Spatial Transform and Low-rank operation. We propose a new

bilinear deep network named Spatial Transformer And Bilinear Low-Rank

(STABLR) model and apply it to the RPSI defects recognition. More specif-

ically, in order to solve the high variation within a class, we adopt the Spatial

Transformer Network, and to achieve more effective performance, we present

a Low-Rank Bilinear model. Moreover, cooperated with Sydney Trains, we

constructed the first RPSI defects dataset. The experimental results demon-

strate that the proposed method outperforms both hand-craft features based

machine learning methods and classic deep neural network methods.

3.2 RPSI Defect Dataset

The data used in this thesis was collected from Sydney Train Maintenance

Center. Instead of performing defect detection in the full resolution images

directly, we break the task into two steps: general object (no matter it is

defective or not) detection and fine-grained object classification on given

cropped objects. This thesis focuses on the second part. We selected the

five most common defects on specific equipment as the objective data, which

contains 1546 images. In each type of object like Splice, defect objects are
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classified into a new class and result in 10 classes (defect and non-defect ob-

jects). Therefore our dataset contains both low inter-class variation and high

intra-class nonconformity due to the different posture and angle of cameras,

illumination variations etc.

More specifically, we picked up 2336 frames from the original video data,

which contains power supply equipment and defects. The maximal resolu-

tions of collected images are 2048 × 5400 pixels and 3792 × 2730 pixels,

respectively. According to maintenance logs, we manually label the bound-

ing boxes and crop five types of object from each original image and fi-

nally produce 1546 images. In summary, we define ten categories includ-

ing Splice Standard, Splice V-wear, Knuckle Standard, Knuckle Misinstalled,

Kline Standard, Kline Twisted, Dropper1 Standard, Dropper1 Defects, Drop-

per2 Standard, Dropper2 Broken. The detailed constituents of this dataset

as Table 3.1 shows.

Table 3.1: Railway Power Supply Infrastructure (RPSI) Defects Dataset.

Equipment Name Class Name Image Number

Splice
Splice Standard 219

Splice V-wear 116

Knuckle
Knuckle Standard 332

Knuckle Misinstalled 36

K-line Insulator
Kline Standard 84

Kline Twisted 79

Dropper1
Dropper1 Standard 91

Dropper1 Defects 138

Dropper2
Dropper2 Standard 315

Dropper2 Broken 136

Summary 10 classes 1546

In Figure 1.2, we give examples of Splice as well as defects samples. For

an intuitive understanding of the data set, we list examples of the remaining

categories in Figure 3.1.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3.1: An example of railway infrastructure defects categories. (a) and

(b) represent Knuckle, (c) and (d) represent Kline, (e) and (f) represent

Dropper1, and (g) as well as (h) represent Dropper2. The detailed parts to

distinguish defects are labeled with red boxes.

3.3 Methodology

3.3.1 STABLR Model

Our STABLR model has two parts: Spatial Transformer Network (STN) and

Low-Rank Bilinear Convolutional Neural Network (Low-Rank BCNN).

Spatial Transformer Network

One of the challenges of fine-grained classification is the large variation within

class due to the pose and location difference of the target objects in the im-

ages. Jaberberg et al. (Jaderberg et al. 2015) proposed a Spatial Transformer

Network (STN in Figure 3.2) that can automatically learn the invariant rep-

resentation of the original images and locate the target object in the images
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Figure 3.2: The complete architecture of the STABLR model. STABLR can

be divided into two parts: STN and Low-Rank BCNN. STN can learn the

invariant representation of the dataset and Low-Rank BCNN can capture

the fine-grained features of the input images.

at the same time. In our model, we adopt the affine transformer networks as

the original paper presented (Jaderberg et al. 2015).

Low-Rank BCNN

Lin et al. (Lin, RoyChowdhury & Maji 2015a, Lin et al. 2018) proposed a

sample and effective architecture for fine-grained classification. It applied

outer product operation on deep feature maps to obtain second-order feature

descriptors for final classification. A classic Bilinear CNNs model for images

recognition can be defined as a quadruple:

B = (E1,E2,Pb, C), (3.1)

where B is a bilinear CNNs model, E1 and E2 represent feature extractor

functions, which are specific deep convolutional neural networks like Incep-

tionV3 and InceptionV4 in (Chen et al. 2017). Pb is the second-order pooling

function and C represents a classifier. A feature extractor is defined as below:

E : S −→ X ∈ Rc×hw, (3.2)

where S ∈ RH×W×C represent the images with H height, W width and C

color channels. Through function E, an image is transformed into a tensor
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M ∈ Rh×w×c with c feature channels and h,w indicate the hight and width

of the feature map. Then M is squeezed to a feature matrix X with c× hw
dimensions. Given two specific functions E1 : S −→ Xα ∈ Rc1×hw and

E2 : S −→ Xβ ∈ Rc2×hw. Bilinear pooling operator can be described by the

following formula:

Pb(S,E1,E2) = AV G(XαX T
β ),

AV G(XαX T
β ) =

1

hw

hw∑
i=1

fα,if
T
β,i,

(3.3)

where fα,i ∈ Rc1 and fβ,i ∈ Rc2 denote feature vectors at specific location

in each feature matrix Xα and Xβ with i ∈ [1, hw]. The pooled feature is

a c1 × c2 vector. Using matrix outer product, bilinear pooling produces a

confertus representation of distinct features from different deep extractors at

each location of feature maps in a second-order way.

Notice that an image passed through bilinear pooling in Equation (3.3)

will become a c1 × c2 vector. Using VGG-D and VGG-M, c1 = c2 = 512

that the final length of feature is 262,144 (262K). Using these high dimen-

sional features will result in big overhead for time and storage. To address

this problem, some researchers adopted low-rank approximation methods to

replace the original features (Gao et al. 2016, Kong & Fowlkes 2017, Lin

et al. 2018).

Unlike (Gao et al. 2016, Kong & Fowlkes 2017) using complex matrix

dimension reduction methods, (Lin et al. 2018) applied PCA (Jolliffe 2011)

to activation features before bilinear pooling and achieved as consistent per-

formance as (Gao et al. 2016, Kong & Fowlkes 2017). Following this idea,

we propose a simple but effective way to reduce the dimension of activation

features:

fαlow
= θ(fαhigh

),

fαlow
∈ RClow , fαhigh

∈ RChigh ,

Chigh > Clow.

(3.4)

θ(·) is a convolutional layer with 1 × 1 kernel size and 1 stride. fαhigh
and
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fαlow
denote original bilinear and low-rank bilinear features, respectively.And

Chigh, Clow are the input feature channels and output feature channels of

the convolutional layer. With this layer, the proposed bilinear model can

automatically learn the dimension reduction rules of the features in an end-

to-end way.

According to Lin (Lin, RoyChowdhury & Maji 2015a), normalization

operation after bilinear pooling could enhance the performance significantly.

Without using normalization in (Lin, RoyChowdhury & Maji 2015a), we

adopt a more robust normalization on bilinear feature vector f in (Lin &

Maji 2017):

sign(sqrt(f))
√
|sqrt(f)|

‖sign(sqrt(f))
√
|sqrt(f)|‖

2

. (3.5)

At last, f will pass through a fully connected layer as the classifier and get

final prediction results. The complete network architecture is in Figure 3.2.

3.3.2 CNN Feature Acquisition

In a bilinear CNNs model (BCNN), how to define proper deep backbone net-

works is decisive where different deep neural network structure extracts dif-

ferent image features, thus determines the latter classification performance of

the B-CNN. In Lin’s previous works (Lin, RoyChowdhury & Maji 2015a, Lin

et al. 2018), BCNN used VGG-M (Chatfield, Simonyan, Vedaldi & Zisserman

2014) and VGG-D (Simonyan & Zisserman 2014), which removed the fully

connected classification layer as feature extractors. In (Chen et al. 2017),

they adopted InceptionV3 (Szegedy, Vanhoucke, Ioffe, Shlens & Wojna 2016)

and InceptionV4 (Szegedy, Ioffe, Vanhoucke & Alemi 2017) as backbone net-

works.

In Section 3.3.1, an image passed through bilinear pooling in Equa-

tion (3.3) will become a c1 × c2 vector. Using VGG-D and VGG-M, c1 =

c2 = 512 that the final length of feature is 262,144 (200K), where using Incep-

tionV3 and InceptionV4, c1 = 2048 and c2 = 1536 which result in a 3,145,728

(3000K) feature vector. So the Inception based B-CNN model will have
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Table 3.2: CNN features extractors for Railway Infrastructure Defects.

Low-Rank Bilinear Features Extractors

VGG16 VGG19

Layer Type Kernel; Out dim Layer Type Kernel; Out dim

Conv1 1 3× 3; 64 Conv1 1 3× 3; 64

Conv1 2 3× 3; 64 Conv1 1 3× 3; 64

Pool 1 2× 2; MaxPooling Pool 1 2× 2; MaxPooling

Conv2 1 3× 3; 128 Conv2 1 3× 3; 128

Conv2 2 3× 3; 128 Conv2 2 3× 3; 128

Pool 2 2× 2; MaxPooling Pool 2 2× 2; MaxPooling

Conv3 1 3× 3; 256 Conv3 1 3× 3; 256

Conv3 2 3× 3; 256 Conv3 2 3× 3; 256

Conv3 3 3× 3; 256 Conv3 3 3× 3; 256

Conv3 4 3× 3; 256

Pool 3 2× 2; MaxPooling Pool 3 2× 2; MaxPooling

Conv4 1 3× 3; 512 Conv4 1 3× 3; 512

Conv4 2 3× 3; 512 Conv4 2 3× 3; 512

Conv4 3 3× 3; 512 Conv4 3 3× 3; 512

Conv4 4 3× 3; 512

Pool 4 2× 2; MaxPooling Pool 4 2× 2; MaxPooling

Conv5 1 3× 3; 512 Conv5 1 3× 3; 512

Conv5 2 3× 3; 512 Conv5 2 3× 3; 512

Conv5 3 3× 3; 512 Conv5 3 3× 3; 512

Low-Rank 1× 1; 64 Conv5 4 3× 3; 512

Feature Maps Feature Maps

Bilinear Pooling layer; Output dim: 64× 512
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about 10 times more parameters need to be trained compared to VGG based

model, and thus slower than VGG based BCNN model. For our railway in-

frastructure defects detection task, a real-time and high-accuracy inspection

is required. Along these lines, in this thesis, we choose VGG16 (Simonyan

& Zisserman 2014) and VGG19 (Simonyan & Zisserman 2014) as the feature

extractors, which are more powerful than VGG-M and have fewer parame-

ters than Inception networks. In addition, after passing through a Low-Rank

layer, the final dimension of bilinear pooled features is 64 × 512 (32K). Un-

like that (Lin, RoyChowdhury & Maji 2015a) resizes the images as 448×448

and (Chen et al. 2017) resizes input images as 229×229, we resize the input

images in a 224×224 pixels size since our dataset is relatively simple, and

using this way can reduce training time while speeding up detection.

We remove the last fully connected layers of both VGG16 and VGG19

networks as image descriptor extractors. The detailed features extractor

architecture is illustrated in Table 3.2.

3.4 Experiments

In this section, we empirically evaluate the STABLR model on the new RPSI

dataset. Firstly, we will introduce our experiment in detail. Then we will

analyze the experiment results of both hand-craft machine learning based

and classic deep neural networks methods.

3.4.1 Experiment Setup

For RPSI video frames, we first resize all image frames into a uniform size as

224 x 224. Then we split the whole dataset into two parts: the train set and

test set that 773 images are for training, and the rest are for testing. During

the training stage, we randomly crop, rotate, and randomly horizontal flip

train images to augment our train sets.

In our experiment, we compare three kinds of methods: hand-craft ma-

chine learning based classification, classic deep CNNs model, and deep bilin-
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ear methods.

For the hand-craft machine learning based algorithm, we use HOG (Dalal

& Triggs 2005) as images feature and SVM (Cortes & Vapnik 1995) as the

classifier. In HOG extraction, we set cell size as 8×8 pixels and block size as

2 × 2 pixels, which are the same as default values in the original paper. By

changing the size of the input image, we get 1764 and 8100 dimensions HOG

features. We build linear SVM detectors with LIBSVM (Chang & Lin 2011)

on MATLAB R2014b platform. And we choose the optimal parameters c, g

for SVM using a traversal way.

For classical deep CNNs methods, we use VGG16 (Simonyan & Zisserman

2014) and VGG19 (Simonyan & Zisserman 2014) networks as candidate mod-

els. It is impossible to train such deep architectures with our small dataset

from scratch. Thus we use the pre-trained VGG16 and VGG19 models in the

ImageNet (Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy,

Khosla, Bernstein, Berg & Fei-Fei 2015). We replace the last layer of both

VGG16 and VGG19 networks with our classifier layer for defects recognition.

We only fine-tune the last layer.

For a more comprehensive analysis of our algorithm, besides original

BCNN models (Lin et al. 2018), we design a Spatial Transformer Network

for VGG networks (STNVGG16 and STNVGG19) referred to (Jaderberg

et al. 2015) that add a STN in front of the VGG networks. In addition,

we compare our proposed method with other bilinear models: B-LR models

that add our proposed Low-Rank layer to original BCNNs, STNBM models

that add STN network in front of BCNN models. In each of above bilinear

models, we adopt three types of feature extractors: (16-16) represents two

independent VGG16 structures as feature extractors, (19-19) represents two

independent VGG19 structures as feature extractors and (16-19) that use a

VGG19 and a VGG16 as feature extractors. In summary, we compare 15

methods with our STABLR models.

Both classical deep networks and bilinear models are implemented using

PyTorch. For all deep models, we use Adam optimizer to update networks
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with Adam’ default initial parameters like learning rate and weight decay.

Both the training and the testing batch size of all deep models is 8. We

then train these models 300 epochs. For the sake of fairness, we freeze the

feature extract structures for all deep models and fine-tune the remaining

parts of the networks. Deep models experiments of our paper are based on

two NVIDIA P4000 GPUs and one NVIDIA P5000 GPU.

3.4.2 Experiments Results Analysis

In this section, we show the results about detection accuracy, average detect

time per image, precision, and recall (Powers 2011) of above models for RPSI

defect dataset.

In Table 3.3, Avg Time means average classification time per image for

both methods, all models have been run at least five times to obtain average

performance. The training is relatively stable. Compared with hand-craft

machine learning based methods, deep learning based methods achieve signif-

icant improvement in classification accuracy. For example, the classification

accuracy of the classic VGG network increased from 78% to 85%, an increase

of about 7 percentage points. It indicates that the deep networks induced

features have a better discriminative capacity than traditional hand-craft fea-

tures. We also observe that simply adding the dimensions of the hand-craft

features does not significantly improve the classification accuracy, but may

reduce the accuracy as Table 3.3 shows. In addition, BCNNs models outper-

form classical DCNN methods in test accuracy, improving from 87.13% for

VGG16 to 92.24% for BCNN(16-19), which indicates that B-CNN models can

obtain more subtle features than classical DCNNs. For BCNN models, the

fusion of heterogeneous models seems better than the fusion of homogeneous

models. This may be caused by that heterogeneous networks can capture

more different image features than homogeneous networks. Therefore the

bilinear pooled features have stronger fine-grained classification ability.

It can be observed that the Low-Rank layer will make a small reduction of

classification performance that the accuracy of B-LR models is approximately
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Table 3.3: Detection Results for Railway Supply Power Infrastructure (RPSI)

Defects Dataset.
Methods Feature Dim Accuracy Avg Time(ms)

HOG SVM 1764 78.33% 2

HOG SVM 8100 76.39% 10

VGG16 4096 85.81% 39

VGG19 4096 84.51% 40

STNVGG16 4096 87.13% 40

STNVGG19 4096 87.40% 42

BCNN(16-16) 512×512 91.04% 64

BCNN(19-19) 512×512 90.67% 63

BCNN(16-19) 512×512 92.24% 65

B-LR(16-16) 64×512 90.74% 40

B-LR(19-19) 64×512 90.40% 42

B-LR(16-19) 64×512 91.41% 41

STNBM(16-16) 512×512 91.88% 66

STNBM(19-19) 512×512 91.59% 68

STNBM(16-19) 512×512 94.09% 69

STABLR(16-16) 64×512 92.67% 50

STABLR(19-19) 64×512 91.18% 54

STABLR(16-19) 64×512 92.14% 52

one percent lower than the BCNN models. After the STN is integrated, the

performance of entire networks is improved that STNVGG models outper-

form VGG models and STNBM models outperform BCNN models. From

Table 3.3, STNBM(16-19) achieves the best recognition performance among

all (16-19) bilinear models, STNBM(19-19) reaches the best performance

among all (19-19) bilinear models and so is to STABLR(16-16) model. We

found that our STABLR can achieve a similar performance as STNBM with

8 times fewer feature dimensions.

Compared with the recognition time per image, HOG SVM is the fastest
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method with 10 ms per image or less due to the relatively low complexity of

SVM models in contrast to deep models. VGG models are faster than most

bilinear models except for B-LR models. B-LR model is 20 ms faster than

BCNN and STNBM models. STNBM models are the slowest models among

all methods owing to the huge network parameters. Our STABLR model

is 10 ms faster than STNBM and BCNN models with a good classification

performance. It indicates that STABLR is the most effective model with

good classification performance as well as high recognition speed.

Two important indicators for evaluating the performance of defect de-

tection models are precision and recall. We first use micro-average precision

and recall scores (Van Asch 2013) to validate our STABLR models for multi-

class classification. As shown in Figure 3.3, micro-average precision scores

of STABLR models are 0.977804, 0.964940, 0.970082 for VGG16-VGG16,

VGG19-VGG19, and VGG16-VGG19, respectively, which validates the ef-

fectiveness of our methods.

More detailed, we display Precision-Recall (P-R) curves of each class in

railway dataset using 1-vs-all strategy in Figure 3.3. It can be observed that

in each class, precision and recall scores are close to 1.0, thus indicating

the effectiveness of our STABLR models. We also notice that class 0 with

the dark blue line and class 1 with the red line which corresponds to Splice

equipment, are the hardest class to discriminate, as we mentioned before.

This type of flaw has a subtle variation compared to standard equipment.

Notice that the iso-f1 curve presents all possible standard F1 scores, which

a higher score of F1 means a better model. All STABLR models have F1

scores above 0.8, and the VGG16-VGG16 model gets the highest F1 score.

3.5 Summary

In this chapter, we present a novel railway power supply infrastructure de-

fects detection method STABLR. We use Spatial Transformer Network to

learn the invariant representation of the dataset and adopt a simple but ef-
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(a) STABLR VGG16-VGG16

(b) STABLR VGG19-VGG19

(c) STABLR VGG16-VGG19

Figure 3.3: P-R curves for all classes in STABLR models.
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fective low-rank approximation method to reduce the dimension of original

BCNN’ activation features. We convert detection into a recognition task and

construct a railway infrastructure defects dataset. More importantly, this

paper is the first work that applies the fine-grained bilinear CNNs model to

the railway infrastructure defects detection problem. Experimental results

have shown the effectiveness and high performance of the proposed method.

Since STABLR adopts an affine transformer network as the STN module,

it is hard to learn a perfect invariant transformation of original images, as

affine transformation can not capture complex variations. Therefore, how to

design an advanced feature transformation is an open problem. Moreover,

STABLR can be applied to other industrial defect-recognition tasks in the

future.
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Chapter 4

Fine-grained Few-shot RPSI

Defect Recognition using

Aligned Pairwise Bilinear

Framework

4.1 Introduction

In Chapter 3, we investigate RPSI defects recognition using deep models.

We claim that the RPSI defects recognition is a typical fine-grained image

classification task and therefore designed a fine-grained model to tackle it.

However, as discussed in Chapter 1.2.2, a key challenge for RPSI defects

recognition is the limited labeled samples. To this end, in this chapter,

we study the RPSI defects recognition with limited labeled samples. More

specifically, we try to solve this problem under a classic few-shot setting, i.e.,

Fine-grained Few-shot RPSI defects recognition. We aim to design a unified

framework to deal with the Fine-grained Few-shot tasks for both generic

image identification and RPSI defects recognition.

Fine-Grained (FG) image recognition aims to identify different sub-categories

which belong to the same entry-level category, such as animal identifica-
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tion (Khosla, Jayadevaprakash, Yao & Li 2011, Wah et al. 2011) and ve-

hicle recognition (Krause, Stark, Deng & Fei-Fei 2013). Existing FG mod-

els (Cui et al. 2017b, Krause, Jin, Yang & Li 2015, Lin, RoyChowdhury &

Maji 2015a, Yu et al. 2018, Zhang et al. 2014, Zhang, Tang & Jia 2018, Wang,

Hu, Zhu, Li, Lu, Garibaldi & Li 2019) utilize large-scale and fully-annotated

training sets to ‘understand’ and ‘memorize’ the subtle differences among

classes, thus achieving satisfactory performances in identifying new samples

from the same label space. However, in many practical scenarios, it is hard

to obtain abundant labeled data for fine-grained classification. For example,

in the RPSI defects detection, most defects exist only in a few common cat-

egories, while most other categories only contain a small portion of defects.

Moreover, annotating a large-scale fine-grained dataset is labor-intensive,

which requires high expertise in many fields. Thus, how to obtain an effec-

tive model with a small number of labeled samples remains an open problem.

Human beings can learn novel generic concepts with only one or a few

samples easily. To simulate this intelligent ability, few-shot machine learning

was initially identified by Li et al. (Fei-Fei et al. 2006). They propose to

utilize probabilistic models to represent object categories and update them

with a few training examples. Most recently, inspired by the advanced

representation learning ability of deep neural networks, few-shot deep ma-

chine learning (Vinyals et al. 2016, Snell et al. 2017, Sung et al. 2018b, Liu

et al. 2019b, Li, Xu, Huo, Wang, Gao & Luo 2019, Li, Wang, Xu, Huo, Gao

& Luo 2019) revives and achieves significant improvements against previ-

ous methods. However, considering the cognitive process of human beings,

preschool students can easily distinguish the difference between generic con-

cepts like the ‘Cat’ and ‘Dog’ after seeing a few exemplary images of these

animals, but they may be confused about fine-grained dog categories such as

the ‘Husky’ and ‘Alaskan’ with limited samples. The undeveloped classifica-

tion ability of children in processing information compared to adults (Brown

1975, John & Cole 1986) indicates that generic few-shot methods cannot

cope with the few-shot fine-grained classification task admirably. To this
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Figure 4.1: The high inter-class visual similarity and significant intra-class

variations in FGFS tasks are more rigorous than general FG tasks. Some

Herring gull and western gull images have similar visual appearances, which

indicates the subtle inter-class variance. However, in each class, gulls present

different postures with different backgrounds, which brings significant intra-

class variance.

end, in this chapter, we focus on one of the limited sample learning methods

for FG tasks, i.e., Fine-Grained image classification under Few-Shot settings

(FGFS). We present several solutions for both generic and RPSI image recog-

nition with the limited labeled in a ‘developed’ way.

The core challenges of the FG problem are the high intra-class variance

and low inter-class fluctuations within the datasets (Fu et al. 2017, Lin, Roy-

Chowdhury & Maji 2015a). The high intra-class variance is mainly caused by

different viewpoints, spatial poses, motions, and lighting conditions of differ-

ent samples in each class. On the other hand, the subtle inter-class variance

reflects the taxonomy definition that different fine-grained categories belong

to the same entry-level category. The ideal data distribution in a classi-

fication problem should posses the low intra-class variance with the high
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inter-class variance. If the low inter-class variance is accompanied by high

intra-class variance, it can easily lead to inaccurate classification boundaries.

With large-scale and fully-annotated datasets available, the high intra-class

variance can be somehow relieved through supervised training to obtain a

robust representation of each class. However, for FGFS, each class only con-

tains limited labeled samples. As seen from Figure 4.1, in the one-shot bird

classification scenario, if the single support (labeled) sample shows a diving

gesture, while query (unlabeled) ones are standing. The query-support pairs

are not spatially aligned, which can be ‘confusing’ for classifiers to distin-

guish them. Therefore, the large intra-class differences bring significant im-

pacts on the representation learning in FGFS. Unfortunately, current FGFS

models (Li, Xu, Huo, Wang, Gao & Luo 2019, Wei et al. 2019a, Wertheimer

& Hariharan 2019, Zhang & Koniusz 2019) rarely focus on this issue.

An effective way to deal with the low inter-class variation in FGFS is to

acquire subtle and discriminative image features. Wei et al. (Wei, Wang,

Liu, Shen & Wu 2019b) poposed a deep model named Piece-wise Classifier

Mapping (PCM), in which the authors adopt the naive self-bilinear pooling to

extract image representations, which widely used in the state-of-the-art FG

object classification (Lin, RoyChowdhury & Maji 2015a, Cui et al. 2017b, Lin

et al. 2018). Besides, Li et al. (Li, Xu, Huo, Wang, Gao & Luo 2019) proposed

a covariance pooling (Li et al. 2018) to learn the image representation of each

category. These matrix-outer-product based bilinear pooling operations (Li,

Xu, Huo, Wang, Gao & Luo 2019, Wei et al. 2019b) could extract the second-

order image features and contains more information than traditional first-

order features (Lin et al. 2018), and thus achieve better performance on

FGFS tasks than generic ones. Both (Li, Xu, Huo, Wang, Gao & Luo 2019)

and (Wei et al. 2019b) employ bilinear pooling on the input image itself to

enhance the information of original features, which noted as the self-bilinear

pooling operation. However, when a human identifies the similar objects,

she/he tends to compare them thoroughly in a pairwise way, e.g., comparing

the heads of two birds first, then the wings and feet last. Therefore, it
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Figure 4.2: The proposed Aligned Pairwsie Bilinear Framework (APBF) in

the five-way-one-shot fine-grained image classification. The support set con-

tains five labeled samples for each category (marked with numbers) and the

query image labeled with a question mark. The APBF can be divided into

four components: Encoder, Alignment Layer, Pairwise Bilinear Pooling, and

Comparator. The Encoder extracts coarse features from raw images. Align-

ment Layer matches the pairs of support and query. Pairwise Bilinear Pool-

ing acts as a fine-grained extractor that captures the subtle features. The

Comparator generates the final results.

is natural to enhance the information during the comparing process when

dealing with FGFS classification tasks.

To sum up, the high intra-class variation and low inter-class variation

are not well addressed in current FGFS models. Therefore, in this chapter,

we propose to develop a framework to tackle these two challenges simulta-

neously. We name the whole framework as Aligned Pairwise Bilinear

Framework (APBF). By jointly employing the feature alignment transfor-

mation to reduce the high intra-class variance and the second-order com-

parative feature extraction to enlarge the low inter-class discrimination, we

explore robust fine-grained relations between each support-query pair. More

specifically, the APBF consists of two stages: encoded feature alignment and

second-order comparative feature extraction, as indicated in Figure 4.2.
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To address the high intra-class variance with limited supervision, we de-

sign an embedded feature alignment layer to match the query samples (unla-

beled) and support samples (labeled) in the embedded feature space. There-

fore, within each class, the sizeable intra-class variance is suppress using the

alignment mechanism. To address the low inter-class variance in the FGFS

task, we propose a novel pairwise bilinear pooling operation on the aligned

support and query samples to extract the comparative second-order images

features. Based on the explicit elicitation of correlative information of pair

samples, the proposed operation can extract more discriminate features than

existing approaches(Wei et al. 2019b, Sung et al. 2018b, Li, Xu, Huo, Wang,

Gao & Luo 2019, Zhang & Koniusz 2019)

Based on the proposed framework APBF, we further develop three mod-

els to progressively solve the FGFS image (generic image and RPSI image)

recognition. The first model is the Pairwise Alignment Bilinear Net-

work (PABN), which is the first work to uncover the fine-grained relations

between different support (labeled) and query unlabeled) image pairs. We

propose a novel pairwise bilinear pooling operation that adopts a matrix-

outer-product operation to extract the second-order comparative features

from support-query pairs. Moreover, we instantiate the alignment layer by

using two alignment losses to regularize the embedding features. The second

model is the Low-Rank Pairwise Alignment Bilinear Network (LR-

PABN), a more advanced pairwise pooling operation with a low-rank con-

straint is proposed. Instead of directly operating the matrix-outer-product

as the PABN model, we propose to learn multiple transformations for fus-

ing the input image features. By applying these transformations, LRPABN

generates more compact and discriminative bilinear features than previous

ones. Moreover, we introduce a low-rank approximation of the new bilinear

model as our final model to further reduce the computation complexity. To

improve the feature alignment, a novel alignment mechanism is introduced,

we incorporate a feature position re-arrangement layer with the alignment

losses. In the third model, we develop a Target-Oriented Alignment
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Network (TOAN) to tackle the FGFS problem. To reduce the intra-class

variance, we propose a target-oriented matching mechanism to reformulate

the spatial features of each support image to match the query ones in the

embedding space. To enhance the inter-class discrimination, we devise dis-

criminative fine-grained features by integrating local compositional concept

representations with the global second-order pooling. Comprehensive exper-

imental results analysis and ablation studies are conducted on four public

fine-grained and RPSI datasets, and the proposed TOAN model achieves the

state-of-the-art performance compared against PABN, LRPABN, and other

compared models.

Next, we will introduce the problem definition of the FGFS task first.

Then the three proposed models will be presented separately. The experi-

mental results and analysis will be given in the end.

4.2 Problem Definition

Given a Fine-Grained target dataset T :

T =
{
B = {(xb, yb)}

K×C̃
b=1

}
∪
{
N = {(xv)}Vv=1

}
,

yb ∈ {1, C̃}, x ∈ RN ,B ∩N = ∅, V � K × C̃.
(4.1)

For the FGFS task, the target data set T contains two parts: the labeled

subset B and the unlabeled subset N , where samples from each subset are

fine-grained images. The model needs to classify the unlabeled data xv from

N according to a few labeled samples from B, where yb is the ground-truth

label of sample xb. If the labeled data in the target data set contains K

labeled images for each of C̃ different categories, the problem is noted as

C̃-way-K-shot.

It is far from obtaining an ideal classifier with the limited annotated B.

Therefore, FGFS models usually utilize a fully annotated dataset, which has

the similar data distribution but disjoint label space with T as an auxiliary
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dataset A:

A =
{
S = {(xi, yi)}Li=1

}
∪
{
Q = {(xj, yj)}Jj=1

}
,

yi, yj ∈ {1, C}, x ∈ RN ,S ∩ Q = ∅,A ∩ T = ∅,
(4.2)

where xi/yi and xj/yj represent images and their corresponding labels.

To make full use of the auxiliary set, we follow the widely used episode

training strategy (Vinyals et al. 2016) as our meta-training strategy. Specif-

ically, in each round of training, the auxiliary data set A is randomly sepa-

rated into two parts: support data set S, and query data set Q. With setting

L = K × C̃, we can mimic the composition of the target data set in each

iteration. Then A is employed to learn a meta-learner F, which can transfer

the knowledge from A to target data T . Once the meta-learner is obtained,

it can be fine-tuned with labeled target data set B, and finally, classify the

samples fromN into their corresponding categories (Vinyals et al. 2016, Sung

et al. 2018b, Wei et al. 2019b, Liu et al. 2019b, Huang et al. 2019, Li, Wang,

Xu, Huo, Gao & Luo 2019, Li, Xu, Huo, Wang, Gao & Luo 2019).

4.3 Pairwise Alignment Bilinear Network

The first FGFS model under APBF is Pairwise Alignment Bilinear Network

(PABN), and the pipeline of PABN is shown in Figure 4.3. Different from

traditional few-shot embedding structures (Vinyals et al. 2016, Snell et al.

2017, Sung et al. 2018b), we add the fine-grained image feature extractors as

shown in the dotted line box, which is our main contribution. In addition,

we modify the non-linear comparator (Sung et al. 2018b) and apply it to

our fine-grained task. Fine-grained feature extractor can be divided into

two components: alignment loss regularization and pairwise bilinear pooling

layer. The former aims to match the features of the same position in the

embedded image features. For example, the features of the bird’s head in

the target dataset B should match the query bird’s head features from Q.

This alignment can reduce the intra-class variance between the query and
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Figure 4.3: The pipeline of PABN under the one-shot fine-grained image

recognition setting. There are three parts of PABN: Encoder, Fine-grained

Features Extractor, and Comparator. Encoder extracts coarse features from

raw images. Fine-grained Extractor captures the subtle features further.

Comparator produces the final classification results.

each support-class. The latter pairwise bilinear pooling layer is designed to

extract the second-order comparative features from pairs of base images (like

samples from B) and query images (like samples from N ), which can enlarge

the low inter-class variance among different classes.

The pairwise bilinear pooling layer is the core component of the PABN

model, which captures the nuanced comparative features of image pairs and

therefore decides the relations between base and query images which is crucial

to the classifier. However, if the image pairs are not well-matched, these

pairwise bilinear pooled features cannot result in the maximum classification

performance gain. Thus we propose two feature alignment losses to guarantee

the registration between pairs of images. In the next section, we will firstly

introduce the pairwise bilinear pooling layer. Then we will present the feature

alignment regularization with two alignment losses.
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4.3.1 Pairwise Bilinear Pooling

Original Bilinear CNN (Lin, RoyChowdhury & Maji 2015a) for the fine-

grained image recognition can be defined as a quadruple:

B-CNNs = (E1,E2, fb, C),

E : I −→ X ∈ Rc×h×w,

fb(I,E1,E2) =
1

hw

hw∑
i=1

fα,if
T
β,i.

(4.3)

E1 and E2 are two encoders. fb is the self-bilinear pooling and C represents

a classifier. I ∈ RH×W×C is an image that has H height, W width and

C color channels. Through encoder E, the input image is transformed into

a tensor M ∈ Rh×w×c, which has c feature channels and h,w indicate the

hight and width of the embedded feature map. Given two specific functions

E1 : S −→ Xα ∈ Rc1×h×w and E2 : S −→ Xβ ∈ Rc2×h×w. fα,i ∈ Rc1×1 and

fβ,i ∈ Rc2×1 denote feature vectors at specific location in each feature matrix

Xα and Xβ with i ∈ [1, hw]. The pooled feature is a c1 × c2 vector. C is a

fully-connected layer with the cross-entropy training loss between self-bilinear

feature and image label.

The self-bilinear operates on pairs of embedded features from the same

image. However, in our pairwise bilinear pooling , given a pair of image

IA (e.g., IA ∈ S ) and image IB (e.g., IB ∈ Q ), an encoder Ẽ, pairwise

bilinear pooling fpb can be defined as:

fpb(IA, IB, Ẽ) = Ẽ(IA)Ẽ(IB)T ,

Ẽ : I −→ X ∈ Rc×hw.
(4.4)

After obtaining these pairwise bilinear vectors, a sigmoid activation is used

to generate the relation scores of the compared pairs. The relation scores are

then passed to the final comparator.

Note that in our pairwise bilinear pooling, we only have one shared em-

bedding function Ẽ. Different from the self-bilinear pooling that operates

on the same input image, pairwise bilinear pooling uses matrix outer prod-

uct on two disparate samples. The training loss in our bilinear comparator
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is Mean Square Error (MSE) loss which regresses the relation score to the

images’ label similarity as discussed in (Sung et al. 2018b). In this way, we

can capture the fine-grained second-order comparative features in a pairwise

manner.

4.3.2 Feature Alignment Loss

In Equation (4.3), self-bilinear pooling operates on the same image, which

means in any location of the embedded features map, the operates features

should be aligned. However, our proposed pairwise bilinear pooling conducts

on different samples. Thus the encoded features may not always be matched.

To overcome this problem, we design two feature alignment losses as follows:

Alignloss1(IA, IB, Ẽ) = MSE(Ẽ(IA), Ẽ(IB)). (4.5)

The first Alignloss1 loss is a coarse approximation of two embedded image

descriptors, which minimizes the Euclidean distances of two transformed fea-

tures.

Alignloss2(IA, IB,S) = MSE(S(IA),S(IB)),

MSE(S(IA),S(IB)) =
hw∑
1

(S(IA)−S(IB))2,

S(I) =
c∑
1

Ẽ(I), Ẽ : I −→ X ∈ Rc×hw.

(4.6)

The second Alignloss2 loss is a more concise feature alignment loss , where we

sum all the raw features along with the third-channel first and then measures

the MSE of summed features as Equation (4.6) indicates.

By training with the proposed alignment losses, we encourage the network

to learn the matching features automatically. Therefore, the intra-class vari-

ance can be somewhat reduced. Moreover, the well-matched support-query

pairs can generate a better pairwise bilinear feature, which fatherly enlarges

the inter-class variance among different classes.
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4.4 Low-Rank Pairwise Alignment Bilinear

Network

We introduce the second FGFS model Low-Rank Pairwise Alignment Bilin-

ear Network (LRPABN) in this section. The pipeline of LRPABN is sim-

ilar to PABN, as illustrated in Figure 4.2 and Figure 4.3, which consists

of Encoder, Alignment Layer, Pairwise Bilienar Pooling, and Comparator.

Given the support set consisting of five classes with one image per class,

an Encoder that is trained with the auxiliary data A can extract the first-

order image features from the raw images, then the Alignment Layer coordi-

nates the embedded feature in support set with the query image feature in

pairs. Next, the Pairwise Bilinear Pooling is used to generate the compar-

ative second-order image representation from the embedded feature pairs.

Finally, the Comparator assigns the optimal label to the query from sup-

port labels in consonance with the similarity between the query and different

support classes. LRPABN improves the PABN model from two aspects: an

advanced low-rank pairwise bilinear pooling to reduce the feature di-

mension and model complexity, and a novel alignment layer consists of

a Multi-Layer Perceptron (MLP) feature alignment losses to guarantee the

registration of the pairs.

4.4.1 Low-Rank Pairwise Bilinear Pooling

As presented in Section 4.3.1, PABN adopted matrix-outer-product as the

pairwise bilinear pooling, which is defined in Equation (4.4). However, the

pooled pairwise feature is a c1 × c2 vector, which results in a square growth

of the original feature dimension. For example, with an embedding network

AlexNet (Krizhevsky, Sutskever & Hinton 2012), c1 = c2 = 512, the pair-

wise bilinear pooling generates a 512 × 512 = 262,144-d representation. As

reported in (Gao et al. 2016), in such a high-dimensional feature space, less

than 5% of dimensions are informative. Moreover, recent research (Gao,

Wu, Zhang, Dai, Jia & Harandi 2020) also indicates that the matrix-outer-
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product-based bilinear pooling suffers from redundancy and burstiness issues

because of the rank-one property of bilinear features. The dimensionality of

matrix-outer-product-based bilinear features incites the heavy computational

loads as well as burstiness phenomenons.

To overcome this shortcoming of the previous proposed pairwise bilin-

ear pooling, inspired by the Factorized Bilinear Pooling (Kim et al. 2017a)

applied in the visual-question-answer task, we further propose a low-rank

pairwise bilinear pooling operation. For the given XA =
[
xA1 ,x

A
2 , · · · ,xAhw

]
and XB =

[
xB1 ,x

B
2 , · · · ,xBhw

]
from Equation (4.4), where xj ∈ Rc×1 stands for

any spatial feature vector in X , j ∈ [1, hw]. The low-rank pairwise bilinear

can be formulated as:

zj =
(
xAj
)T
Wix

B
j , (4.7)

where Wi ∈ Rc×c is a projection matrix, xAj and xBj are the feature vectors

from XA and XB in the same position j, separately. Equation (4.7) fuses

these feature vectors into a common scalar zj. Given a set of projection ma-

trices W = [W1,W2, · · · ,Wn] ∈ Rc×c×n, the redefined bilinear feature at any

position j is zj = [z1, z2, · · · , zn]T , where n is the dimension of this bilinear

feature. Then the comparative bilinear representation for the original pairs

can be represented as Z = [z1, z2, · · · , zhw]. It is worth noticing that Equa-

tion (4.7) is different from Equation (4.4), which adopts projection matrix

Wi in learning the bilinear feature. Moreover, in Equation (4.7), the dimen-

sion of comparative bilinear feature is n that can be far smaller than c × c
in Equation (4.4). In this way, the model gets a low-rank approximation for

the original comparative bilinear feature.

In Equation (4.7), the learned projectionW requires c×c×n parameters,

where c = 64 and n = 512 in our implementation, i.e., 2,097,152 parameters

in total, which requires a large amount of memory footprint, inference time,

and computational complexity. To solve this problem, we present a low-rank

50



CHAPTER 4. FINE-GRAINED FEW-SHOT RPSI DEFECT
RECOGNITION USING ALIGNED PAIRWISE BILINEAR

FRAMEWORK

approximation of Wi:

zj =
(
xAj
)T
Wix

B
j

=
(
xAj
)T
UiV

T
i xBj

= UT
i xAj ◦ V T

i xBj ,

(4.8)

where Ui ∈ Rc×1 and Vi ∈ Rc×1, ◦ denotes the Hadamard product. Equation

(4.8) is the final form of the proposed low-rank pairwise bilinear pooling,

which applies projection matrix and matrix factorization to approximate a

full low-rank bilinear model (Equation (4.7)). In Equation (4.8), it needs 2nc

parameters to generate the pairwise bilinear feature. Therefore, the spatial

complexity of the required parameters is reduced from O(nc2) to O(nc). It is

worth noting that there are two low-rank approximations applied in the final

form of LRPABN. One is to tackle the information redundancy and bursti-

ness issue of the matrix-outer-product-based bilinear pooling (Equation (4.4)

to (4.7)), the other is to apply the low-rank matrix factorization to approx-

imate the learned transformations (Equation (4.7) to (4.8)). The proposed

LRPABN is different from (Kim et al. 2017a, Yu et al. 2018), where (Kim

et al. 2017a) adopts the factorized bilinear pooling to fuse the multi-modal

features, and (Yu et al. 2018) operates on convolutional features of the same

image. Our method conducts on pairs of support and query images. To our

best knowledge, LRPABN is the first work that extracts the low-rank bilinear

feature from pairs of distinct images for FGFS tasks.

Theoretically, the previous proposed model (Huang et al. 2019) belongs

to the category of matrix-outer-product bilinear pooling, which has been

proved as a similarity-based coding-pooling (Riesenhuber & Poggio 1999, Gao

et al. 2020). As (Gao et al. 2020) (Corollary 2) indicates that such bilinear

pooling has the unstable dictionary, which is determined by the input pairs,

therefore it is inconsistent for all data. This local dictionary can not capture

the global geometry of the whole data space, which results in burstiness

issues. However, the newly proposed low-rank pairwise bilinear model (4.8)

is a type of factorized bilinear coding (Equation (24) in (Gao et al. 2020)),
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which can learn a global dictionary from the entire data space in a scalable

way, thus achieves better performance than the previous one.

4.4.2 Feature Alignment Layer

The self-bilinear pooling operates on the same image, which means the op-

erating features are entirely aligned in any spatial location of the embedded

feature pairs. However, since the proposed pairwise bilinear pooling operates

on different inputs, the encoded features may not always be matched. To

overcome this obstacle, in the first PABN model, we devise two alignment

losses to match the input pairs in the embedding space simultaneously dur-

ing the training stage, which aims at encouraging the embedding network to

generate well-matched features in the testing stage. However, it may be hard

to obtain the desired embedding network that fully aligns feature pairs by

merely adopting the alignment losses.

Therefore, we design a new feature alignment mechanism inspired by the

PointNet (Qi, Su, Mo & Guibas 2017). Given a position transformation T

and the encoded feature X = [x1,x2, · · · ,xhw], the transformed feature can

be computed as follows:

X ′ = XT,

s.t. TTT = I,
(4.9)

where T ∈ Rhw×hw, and I is an identity matrix. The transformed feature

is noted as X ′ = [x′1,x
′
2, · · · ,x′hw], in which only the positions of the orig-

inal feature vectors are rearranged. The transform matrix can be learned

with a shallow neural network. Moreover, to ensure the effectiveness of the

alignment, we further design two feature alignment losses as follows:

Alignloss1(IA, IB, Ẽ) = MSE(Ẽ(IA), Ẽ(IB)T), (4.10)

where Ẽ is the feature encoder. The first Alignloss1 loss is a coarse approxi-

mation of two embedded image descriptors, which minimizes the Euclidean

distances of two transformed features.
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Alignloss2(IA, IB,O) = MSE(O(IA),O(IB)T),

O(I) =
c∑
1

Ẽ(I), Ẽ : I −→ X ∈ Rc×hw.
(4.11)

The second Alignloss2 loss is a more concise feature alignment loss. In-

spired by the pooling operation, we sum all the embedded features (X ∈
Rc×hw) along with the channel dimension (Rc) first. And then, we mea-

sure the MSE of summed features. By training with the proposed alignment

losses, we encourage the model to automatically learn the matching features

to generate a better pairwise bilinear feature. It is worth noting that the

alignment mechanism utilizes feature position rearrangement matrix T on

one image features (Ẽ(IB)) to match the target feature (Ẽ(IA)). IB can be

either the support or query image, and in our implementation, we choose

the support image as IB. Under the supervision of alignment losses, the

model can generate more compactly matched feature pairs compared to the

previous method.

In theory, the transformation T is proposed to project the given feature

into a different embedding space. The main purpose of the alignment oper-

ation is to match the query and gallery within a common embedding space,

and this common space can be either the gallery feature space, the query fea-

ture space, or even a new feature space. Our proposed strategy is to project

the query-gallery feature pairs into the gallery feature space, since for each

C-way-K-shot task, the gallery samples are fixed, transformations only need

to be applied to query features.

4.4.3 Comparator

As indicated in Figure 4.3 and Figure 4.2, after passing through the above lay-

ers, the pairwise comparative bilinear features are sent to a comparator. This

module aims to learn the relations between the query images and support

classes. In the one-way-K-shot setting, the support classes are represented
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by a single image, where for C̃-way-K-shot setting, the support classes are

computed as the sum value of embedded features of K images in each class,

i.e., for each query image, the model generates C̃ comparative bilinear fea-

tures corresponding to each class. For a pair of query image i and support

class j, the comparative bilinear feature can be represented as Zi,j, where

Z = [z1, z2, · · · , zhw]. The relation score of i and j is computed as:

ri,j = C(Zi,j),

j = 1, 2, . . .W ; i = 1, 2, . . . , K × C̃,
(4.12)

where C is the comparator, and ri,j is the relation score of query i and class

j.

4.4.4 Model Training

The training loss L in our bilinear comparator is the MSE loss, which re-

gresses the relation score to the images’ label similarity. At a certain itera-

tion during the episodic training, there exists m query features and n support

class features in total, L is thus defined as:

L =
m∑
i=1

n∑
j=1

(ri,j − δ (yi = yj))
2 , (4.13)

where δ (yi = yj) is the indicator, it equals to one when yi = yj and zeroes

otherwise. The LRPABN has two optional alignment losses Alignloss1 and

Alignloss2 . We back-propagate the gradients when the alignment losses are

computed immediately. That is, during the training stage, the model will be

updated twice in one iteration.

4.4.5 Network Architecture

The detailed network architecture is shown in Figure 4.4. It consists of three

parts: Embedding Network, Low-rank Bilinear Pooling Layer, and Compara-

tor Network.
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(a)	Embedding	Network
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Conv 1x1
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Out-channel: N

(b)	Low-rank	Bilinear	Pooling

Batch Norm Batch Norm
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In-channel: N

Out-channel: N

ReLU

Sigmoid

yi

MaxPool 2x2

FC Layer
In-channel: N

Out-channel: 1

Figure 4.4: Detailed network architectures used in LRPABN. (a) The Embed-

ding network with Alignment Layer. (b) Low-Rank Pairwise Bilinear Pooling

Layer. (c) The Comparator. Ii represents the query image, while Ij is the

support image, xi, xj are the embedded image features and bi,j represents the

comparative bilinear feature. yi is the predicted label by the comparator.

Embedding Network: For a fair comparison with the state-of-the-art generic

few-shot and FGFS approaches, we adopt the same encoder structure in

(Vinyals et al. 2016, Snell et al. 2017, Sung et al. 2018b, Liu et al. 2019b, Li,

Xu, Huo, Wang, Gao & Luo 2019). It consists of four convolutional blocks,

where each block contains a 2D convolutional layer with a 3 × 3 kernel and

64 filters, a batch normalization layer, and a ReLU layer. Moreover, for the

first two convolutional blocks, a 2 × 2 max-pooling layer is added. For sim-

plicity, we integrate the feature alignment layer into the embedding network

as the first-order feature extractor, indicated in Figure 4.4.(a). Unlike the
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alignment mechanism used in (Qi et al. 2017, Peng et al. 2018b), we devise a

simple two layers MLP with the Regulation (4.9). As our alignment mech-

anism is inspired by PointNet (Qi et al. 2017), which originally adopts a

deeper network to learn the transformation matrix T. However, in FGFS,

we find that a shallow MLP network M(·) is more efficient in learning a good

transformation T. Besides, two optional alignment losses (4.10), (4.11) are

applied in the alignment layer to generate the well-matched pairwise features.

Low-rank Bilinear Pooling Layer : For the Low-Rank Pairwise Bilinear

Pooling layer in Figure 4.4.(b), we use a convolutional layer with 1 × 1 ker-

nel followed by the batch normalization and a ReLU layer. The Hadamard

product and normalization layers are appended to generate the comparative

bilinear features.

Comparator Network : The comparator is made up of two Fully Connected

(FC) layers. A ReLU, as well as a Sigmoid nonlinearity layer, are applied to

generate the final relation scores, as Figure 4.4.(c) shows.

4.5 Target-Oriented Alignment Network

The third FGFS model is presented in this section. We name this model

as Target-Oriented Alignment Network (TOAN). To address the high intra-

class variance with limited supervision, we propose a Target-Oriented Match-

ing Mechanism (TOMM), which is inspired by the classical template-based

fine-grained methods. As a decent solution to alleviate the high intra-class

variance in traditional fine-grained classification, template-based fine-grained

methods (Lin, Shen, Lu & Jia 2015b, Farrell, Oza, Zhang, Morariu, Darrell

& Davis 2011, Yang, Bo, Wang & Shapiro 2012, Yao, Khosla & Fei-Fei 2011)

utilize the templates (the closest samples or parts to the class centroid) to

align the samples in each class. However, in FGFS, the labeled samples

in each class are extremely limited. It is hard to select a good template

to represent each category. Therefore, we set each query (testing) sam-

ple as the template for all the support (labeled) samples and then adopt
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Figure 4.5: The overview of proposed TOAN in the N-way-one-shot FGFS

task, other support samples are omitted (replaced by N). The model consists

of three parts: the feature embedding fθ learns the convolved features, the

fine-grained relation extractor gω gnerates bilinear features, and the compara-

tor Cφ maps the query to its ground-truth class. gω contains target-orientated

matching mechanism (TOMM) and group pairwise bilinear pooling (GPBP),

TOMM aims at reformulating the features of support image to match the

query image feature in the embedding space through the cross-correction at-

tention mechanism, while GPBP is designed to extract discriminative second-

order features by incorporating the channel grouping. With TOMM and

GPBP, gω learns to generate robust bilinear features from support-query

pairs. PBP stands for the pairwise Bilinear Pooling, and we use different

colors to indicate the feature maps in GPBP.

the cross-correction attention to transform support features to match query

ones. TOMM reformulates the convolutional representations of support im-

ages by comparing them with the spatial features of the target query. Dif-

ferent from the conventional self-attention mechanism (Vaswani, Shazeer,

Parmar, Uszkoreit, Jones, Gomez, Kaiser & Polosukhin 2017) that operates

on the input feature itself, we propose to generate the attention weights in

a target-oriented fashion. That is, the similarities of the convolutional fea-

tures between the support-query pairs are computed first and then converted

into a soft-attention map, also noted as the cross-correction attention (Hou,

Chang, Ma, Shan & Chen 2019). The spatial features of the support image
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are then recomputed as the weighted sum of the whole feature map to reduce

the possible variance compared to the query.

To address the low inter-class variance, different from existing works fo-

cusing on devising high order features from the global view, we propose to

mine the concept local compositionality representation of the bilinear fea-

tures to enhances their discriminability. Compositionality helps humans

learn new concepts from limited samples since it can convert concepts to

knowing primitive (Biederman 1987, Hoffman & Richards 1984, Marr &

Nishihara 1978). For a convolutional neural network, the channels of convo-

lutional feature usually correspond to different sets of visual patterns (Simon

& Rodner 2015, Zhang, Xiong, Zhou, Lin & Tian 2016, Zheng, Fu, Mei &

Luo 2017). Therefore, inspired by (Hu, Sun, Saenko & Sclaroff 2019, Zhang,

Qi, Xiao & Wang 2017, Zheng et al. 2017, Zheng, Fu, Zha & Luo 2019), we

incorporate the compositional concepts into the fine-grained feature extrac-

tion by combining the channel grouping operation with the pairwise bilinear

pooling, noted as Group Pairwise Bilinear Pooling (GPBP).

It is worth noting that the LRPABN model contains a feature position

re-arrangement module for feature alignment with a global MSE loss to boost

the discrimination of the fine-grained features. With such feature arrange-

ment module, the model can alleviate the intra-class variance. Different

from LRPABN, in this work, we explicitly make full use of the spatial de-

pendencies between the support and query pairs. We propose to generate

the attention map based on the pairwise similarities and reformulate the

support image spatial features without external supervision. Moreover, to

address the low inter-class variance challenge in FG images, existing mod-

els (Wei et al. 2019a, Zhang & Koniusz 2019, Li, Xu, Huo, Wang, Gao &

Luo 2019, Wertheimer & Hariharan 2019, Huang et al. 2019, Huang, Zhang,

Zhang, Xu & Wu 2021) usually adopt second-order feature extraction. Differ-

ent from prior works, we propose to integrate the local compositional concept

representations into global pairwise bilinear pooling operation, which fatherly

improve the low-rank pairwise bilienar pooling. The pipeline of the proposed
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TOAN is shown in Figure 4.5.

Given a support image set S = {(xs, ys)}K×Cs=1 =
{
{x(1)1..K}, · · · , {x

(C)
1..K}

}
1,

where x
(t)
K is the K-th sample in class t, and a query image set Q = {xq}Pq=1,

the learning-to-compare FS model generally consists of two parts: feature

embedding module fθ and the comparator Cφ, which can be described as:

FS(S, xq) = Cφ ◦ fθ(S, xq), (4.14)

where ◦ denotes the operator of the function composition, fθ aims to learn

the feature embedding of raw images, and Cφ is the classifier. However,

this framework cannot capture the subtle difference in FG data. Accord-

ingly, FGFS models (Li, Xu, Huo, Wang, Gao & Luo 2019, Wei et al. 2019a,

Wertheimer & Hariharan 2019, Zhang & Koniusz 2019) incorporate a high-

order feature generation module to address the low inter-class variance. How-

ever, the large intra-class variance issue is less considered in these methods.

To this end, we propose the Target-Oriented Alignment Network (TOAN)

to jointly tackle these issues through a deep fine-grained relation extractor

gω. Fig. 4.5 illustrates the workflow of the proposed model:

TOAN(S, xq) = Cφ ◦ gω ◦ fθ(S, xq) = Cφ(ZS,q), (4.15)

where the comparator Cφ assigns each xq to its nearest category in S accord-

ing to the fine-grained relation ZS,q, which is generated by applying gω on

the embedded features fθ(S) and fθ(xq) as:

ZS,q = gω(fθ(S, xq))

= GPBP ◦ TOMM(fθ(S, xq))

= GPBP({A1, · · · , AC}, B),

(4.16)

where gω is composed of two parts, TOMM and GPBP. TOMM is designed

to generate the query image feature B and a set of support class prototypes

{A1, · · · , At, · · · , AC}, (e.g., At represents the prototype of class t), which are

spatially matched in the embedding space. GPBP focuses on extracting the

1For a clear understanding, we group the support set S into C subsets.
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second-order features from the aligned support class prototypes and query

features.

4.5.1 TOMM (Target-Oriented Matching Mechanism)

As discussed previously, it is hard to select a support sample as the template

to fully represent its category. Moreover, traditional template-based meth-

ods (Lin, Shen, Lu & Jia 2015b, Farrell et al. 2011, Yang et al. 2012, Yao

et al. 2011) often require a large amount of labeled data. To address the intra-

class variance issue with limited training data, we choose each query sample

(target) as the template to orient all support samples. Since different sub-

classes belong to the same entry-level class, samples from those classes often

share similar appearances. The similarities of same parts among sub-classes

are higher than those in different parts from the same class. Therefore, we

instantiate TOMM using the cross-correction attention. That is, for a pair

of support image x
(t)
s and query image xq, TOMM is expressed as:

A(t)
s , B = fθ(x

(t)
s , xq) ∈ Rc×hw,

dα : A(t)
s −→ Rc′×hw, dβ : B −→ Rc′×hw, (4.17)

where c indicates the channel number of the convolutional feature map and

h,w denote the size of the feature map. A
(t)
s and B are the embedded support

and query features. dα and dβ are two convolutional sub-networks that cap-

ture the task-agnostic similarity between two features (c′ ≤ c). The aligned

support feature A
′(t)
s and the support class prototype At is computed as fol-

lows:

(A′(t)s )T = Softmax(
dβ(B)Tdα(A

(t)
s )√

c′
)(A(t)

s )T ,

At =
1

K

K∑
s=1

A′(t)s ,

(4.18)
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where the Softmax(·) operates in a row-wise way. A
(t)
s is transformed to A

′(t)
s ,

where the similarity of each spatial position between A
′(t)
s and B reaches max-

imal. By averaging all aligned features in the given support class, TOMM

obtains spatially matched support-class prototypes and query features. Con-

sequently, the intra-class variance in each class is reduced. As is shown in

Figure 4.5, the red support bird’s embedded features are reformulated ac-

cording to the query support bird through our TOMM module. It explicitly

transforms the ‘posture’ of support image to match the query ones.

It is worth noting that, for generic FS tasks, since the inter-class variance

is relatively large, the cross-correction attention is used to locate the closest

features to classify different classes (Hou et al. 2019, Wu et al. 2019, Hao et al.

2019). However, in FG classification, the inter-class variance is relatively

subtle, yet much higher intra-class variance exists. Those closest features

between query-gallery pairs often perform poorly compared with generic FS.

Therefore, we propose to use the cross-correction mechanism to align the

feature pairs instead of finding the closest features. Specifically, we explicitly

transfer the support image features to match the query ones spatially.

4.5.2 GPBP (Group pairwise Bilinear Pooling)

Semantic compositional information plays an important role in FG tasks, as

the discriminative information always exists in some small parts. However,

current FGFS models (Wei et al. 2019a, Zhang & Koniusz 2019, Wertheimer

& Hariharan 2019, Huang, Zhang, Zhang, Xu & Wu 2021) focus on learning

the FG features from the global view. Moreover, studies show that high-

level convolutional channels represent specific semantic patterns (Zhang et al.

2017, Zheng et al. 2019, Zheng et al. 2017). To this end, we propose to

combine compositional concept representations into the second-order feature

extraction to generate more discriminative features for FGFS.

GPBP is composed of the convolutional channel grouping operation fol-

lowed by the pairwise bilinear feature extraction. Given a pair of support

class feature At ∈ Rc×hw and query image feature B ∈ Rc×hw, we define the
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semantic grouping operation as follows:

Â = Group(At), B̂ = Group(B),

Group(·) : I −→ [i1; · · · ; ik; · · · ; iN ],

I ∈ Rc×hw, ik ∈ R
c
N
×hw,

(4.19)

where Group(·) converts the original feature into N different groups along

the channel dimension, each of these feature groups contains c
N

channels,

which corresponds to a semantic subspace (Hu et al. 2019). For Â = [a1; · ·
· ; ak; · · · ; aN ] and B̂ = [b1; · · · ; bk; · · · ; bN ], we define a bilinear feature zp of

ak and bk as:

zp = Bilinear(ak, bk,Wkp) ∈ R1×hw

= [(a1k)
TWkpb

1
k, · · · , (ahwk )TWkpb

hw
k ],

(4.20)

where aik, b
i
k ∈ R c

N
×1 represent the spatial features of ak and bk in the given

position i. Wkp ∈ R c
N
× c

N is a projection matrix that fuses aik and bik into a

scalar. By adopting Wkp on each spatial position of feature pairs, a bilinear

feature zp ∈ R1×hw is obtained. For each channel group k, GPBP learns M
N

projection matrices (M is the dimension of the final bilinear feature), and

then we concatenate these scalars to generate a fine-grained relation:

Zk = [z1; · · · ; zp; · · · ; zM
N

] ∈ R
M
N
×hw. (4.21)

After obtaining the fine-grained relations of each group, we combine them

into the final relation Z 2 as:

Z = [Z1; · · · ;Zk; · · · ;ZN ] ∈ RM×hw, (4.22)

where M is the final dimension of Z. Similar to (Kim, On, Lim, Kim, Ha &

Zhang 2017b, Yu et al. 2018), we adopt a low-rank approximation of Wkp to

2For brevity, we omit the subscript of ZÂ,B̂
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reduce the number of parameters for regularization:

zp = Bilinear(ak, bk,Wkp)

= [(a1k)
TWkpb

1
k, · · · , (ahwk )TWkpb

hw
k ]

= [(a1k)
TUkpV

T
kpb

1
k, · · · , (ahwk )TUkpV

T
kpb

hw
k ]

= [UT
kpa

1
k � V T

kpb
1
k, · · · , UT

kpa
hw
k � V T

kpb
hw
k ]

= (UT
kp[a

1
k, · · · , ahwk ])� (V T

kp[b
1
k, · · · , bhwk ])

= (UT
kpak)� (V T

kpbk),

(4.23)

where Ukp ∈ R c
N
×1, Vkp ∈ R c

N
×1, and � denotes the Hadamard product.

4.5.3 Comparator

After capturing the comparative bilinear feature of query image i and support

class j, the comparator is defined as:

Cφ(·) : Zi,j ∈ RM×hw −→ R1,

j ∈ {1, 2, · · · , C}, i ∈ {1, 2, · · · , P},
(4.24)

where Cφ learns the distance between the support class j and query image

i, that is, for each query i, the comparator generates similarities from C

support categories. The query image is assigned to the nearest category.

Same as (Sung et al. 2018b, Huang et al. 2019), we use the MSE loss as our

training loss to regress the predicted label to the ground-truth.

4.5.4 Network Architecture

Feature Embedding Module: In FGFS and FS tasks, fθ can be any

proper convolutional neural network such as ConvNet-64 (Chen et al. 2019,

Sung et al. 2018b, Vinyals et al. 2016).

Fine-grained Relation Extractor: We show the architecture details of

the fine-grained relation extraction module in Figure 4.6. TOMM : To con-

struct dα and dβ, we use a convolutional layer with a 1×1 kernel followed by
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A B

Conv 1 x 1
In- c h annel:  C

O ut- c h annel:  C'

Conv 1 x 1
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O ut- c h annel:  C'

Batc h  N orm Batc h  N orm

L eak yR eL U L eak yR eL U
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Attention

A' B

A' B

Ch annel G roup Ch annel G roup

P BP

a1 aN b1 bN

P BP

Ch annel
Canc atenation

Z

ai bi

Conv 1 x 1
In- c h annel:  C/ N

O ut- c h annel:  M / N

Batc h  N orm Batc h  N orm

R eL U R eL U

H adamard
P roduc t

Conv 1 x 1
In- c h annel:  C/ N

O ut- c h annel:  M / N

Figure 4.6: The architecture of fine-grained relation extractor, the left figure

denotes TOMM, and the right one represents the GPBP operation. A and

B indicate the embedded support sample and query sample respectively, Z

is the fine-grained relation.

the batch normalization and a LeakyReLU layer. The Cross-correction At-

tention is implemented using Eq. (4.18). GPBP : For the channel grouping,

we split the embedded feature map into N groups along the channel dimen-

sion. Pairwise bilinear pooling (PBP) consists of a convolutional layer with

a 1× 1 kernel followed by the batch normalization and a ReLU layer. Then

the Hadamard product operation is applied to generate the final bilinear

features.

Comparator: The comparator consists of two convolutional blocks and two

fully-connected layers. Each block contains a 3 × 3 convolution, a batch

normalization, and a ReLU layer. The activation function of the first fully

connected layer is ReLU, where the Sigmoid function is added after the last

fully connected layer to generate similarities of input pairs.
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4.6 Experiment

In this section, we evaluate the three proposed APBF-based models on the

RPSI defect dataset and four widely used fine-grained datasets. First, we give

a brief introduction to these datasets. Then we describe the experimental

setup in detail. Finally, we analyze the experimental results of the proposed

models and compare them with other few-shot learning approaches. For a

fair comparison, we conduct two groups of experiments on these data sets.

For the first group, we follow the setting, which Wei et al. (Wei et al. 2019b)

used, while for the second group, we follow the newest settings in the recent

few-shot methods (Li, Xu, Huo, Wang, Gao & Luo 2019, Li, Wang, Xu, Huo,

Gao & Luo 2019).

4.6.1 Datasets

There are five datasets used to investigate the proposed models:

• RPSI Defects is the dataset presented in Section 3.2.Instead of adopting

the selected ten classes in Section 3.2, we use the whole 39 categories3

in the experiment, with 2,336 images. The images per category vary

from 10 to 332.

• CUB Birds (Wah et al. 2011) has 200 classes of birds and 11,788 images.

• DOGS (Khosla et al. 2011) has 120 classes of dogs and 20,580 images.

• CARS (Krause et al. 2013) has 196 classes of cars and 16,185 images.

• NABirds (Horn, Branson, Farrell, Haber, Barry, Ipeirotis, Perona &

Belongie 2015) has 555 classes of north American birds and 48,562

images.

We designed the first group of experiments to validate the effectiveness

of proposed models on generic fine-grained datasets. We then designed the

3Due to the IP policy, we omit details about each of these categories.
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Table 4.1: The category partion for the four fine-grained datasets, which is

the same as PCM (Wei et al. 2019b). Ctotal is the original number of categories

in the data sets, CA is the number of categories in separated auxiliary data

sets and CT is the number of categories in target data sets.

dataset CUB Birds DOGS CARS NABirds

C total 200 120 196 555

CA 150 90 147 416

CT 50 30 49 139

Table 4.2: The class split of five datasets which is the same as (Li, Xu, Huo,

Wang, Gao & Luo 2019, Li, Wang, Xu, Huo, Gao & Luo 2019). Ctotal is

the original number of categories in the data sets, CA.T rain is the number

of training data categories in the auxiliary data sets, CA.V al is the number

of validation data categories in separated auxiliary data sets and CT is the

number of categories in target data sets.

dataset CUB Birds DOGS CARS NABirds RPSI Defects

C total 200 120 196 555 39

CA.T rain 120 70 130 350 20

CA.V al 30 20 17 66 9

CT 50 30 49 139 10

second group of experiments to further study our models on the RPSI defect

dataset and four generic fine-grained datasets. For the first group of exper-

iments, we use the splits of PCM (Wei et al. 2019b), as shown in Table 4.1.

For the second group, we adopt the dataset splits of Li’s (Li, Xu, Huo, Wang,

Gao & Luo 2019, Li, Wang, Xu, Huo, Gao & Luo 2019), as indicated in Ta-

ble 4.2. Both of these methods do not use the RPSI Defects and the NABirds

datasets. Thus, for these two datasets only, we do our splits.
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4.6.2 Experimental Setup

In each round of training and testing, for the one-shot image classification

setting, the support sample number in each class equals 1 (in both B and S,

K = 1). Therefore, we use the embedded features of these support samples as

the class features, i.e., Ẽ(IB). For the few-shot setting, we extract the class

features by summing all the embedded support features in each category.

In our experiments, we compare the following generic FS models and FGFS

methods:

Baselines MatchingNet (Vinyals et al. 2016), ProtoNet (Snell et al. 2017),

and RelationNet (Sung et al. 2018b) are three exemplary few-shot learning

methods. For fair comparisons, we re-implemented these methods by re-

ferring to the source codes with our experimental settings. We conducted

verification experiments on the MiniImageNet dataset (Vinyals et al. 2016)

with the ConvNet-64 backbone (Sung et al. 2018b) to validate the correct-

ness of our re-implementations of these three baselines. The classification

accuracies of our re-implementations possess no more than 2% fluctuations.

These minor margins are mostly caused by the differences in the experimental

settings, as (Chen et al. 2019) investigated.

FGFS models Since we aim at tackling the fine-grained classification un-

der the few-shot setting, we selected the most related FGFS methods as main

comparisons, including the first FGFS model PCM (Wei et al. 2019a). The

state-of-the-art models SoSN (Zhang & Koniusz 2019), and FGFS models

PABN+ as well as LRPABNcpt for comparison. For PCM, PABN+, and

LRPABNcpt, we quote the reported results. For other models, the results on

the four benchmarks are obtained from their open-sourced models.

Generic FS models It is worth noting that generic FS models can still

be applied to fine-grained data. By referring to the first FGFS method

(Wei et al. 2019a), we selected the most representative ones for comparisons.
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That is, we compare our model against DN4 (Li, Wang, Xu, Huo, Gao &

Luo 2019) and CovaMNet (Li, Xu, Huo, Wang, Gao & Luo 2019). Results

on CUB and NABirds are obtained from their open-sourced models, while

others are quoted from reported results.

PABN Family The first FGFS model proposed in this chapter is PABN

that uses pairwise bilinear pooling (4.4) without feature alignment trans-

form function (4.9): PABNw/o, this model does not use alignment loss on

embedded pair features. PABNniv and PABNcpt are the models that adopt

the alignment loss Alignloss1 and Alignloss2 for feature alignment, separately.

As Section 4.4.2 discussed, Alignloss1 loss is a naive alignment loss where

Alignloss2 is a more compact loss.

PABN+ models, these models apply the proposed alignment layer into

PABN models, which aims to investigate the effectiveness of the proposed

feature alignment transform function (4.9): PABN+niv and PABN+cpt are

the models that adopt the alignment loss Alignloss1 and Alignloss2 in the

alignment layer (4.9). PABN+cons adopts Cosine loss on the embedded

features in the alignment layer (4.9).

LRPABN Family We replaced the naive pairwise bilinear pooling (4.4)

with the proposed low-rank bilinear pooling (4.8), and apply the proposed

novel feature alignment layer (4.9) into the LRPABN models: LRPABNniv

and LRPABNcpt, which use the alignment loss Alignloss1 and the loss Alignloss2

in the alignment layer, respectively.

TOAN Family First of all, we added the proposed matching mechanism

TOMM to FS baseline models to investigate its effectiveness for FGFS tasks,

noted as FS+TOMM, where FS can be any one of the baselines. Similarly,

GPBP is also plugged into the RelationNet, noted as RelationNet+GPBP.

To investigate the grouping function, we replaced the proposed function by a

1×1 convolutional layer with a group parameter (Zhang et al. 2017), noted as

TOAN-GP*. Moreover, we removed the task-agnostic transformation d(·) in
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TOMM, noted as TOAN-w/o d(·), where pairwise similarities are computed

directly based on the embedded support feature At and query feature B.

We also replaced the backbone ConvNet-64 with the deeper ResNet-256(Li,

Wang, Xu, Huo, Gao & Luo 2019) to study the influence of different back-

bones, noted as TOAN:ResNet. Finally, we used a larger 224 × 224 input

image size with different backbones to study the effects of the input size for

TOAN, noted as TOAN 224 and TOAN:ResNet 224, respectively.

In the first experiment, the LRPABN models are compared with Rela-

tionNet, PCM, and our previous proposed PABN models. We follow the data

splits (Table 4.1) of PCM and PABN. All of these approaches do not contain

the validation data set.

In the second experiment, besides the RelationNet, PABN+ models, and

the proposed LRPABN models, we compare the newest state-of-the-art few-

shot method DN4 and the newest FGFS approach CovaMNet. To fair com-

pare, we use the same data splits (Table 4.2) and the training strategy of

DN4 and CovaMNet.

In the third experiment, we mainly analyze the proposed TOAN model

with the same data splits (Table 4.2). We compare the TOAN models against

PCM, PABN+, LRPABNcpt, SoSN, MatchingNet, ProtoNet, RelationNet,

CovaMNet, and DN4.

For all the comparing methods, we conducted both five-way-one-shot and

five-way-five-shot classification experiments. In the training stage of the first

group of experiments, both five-way-one-shot and five-way-five-shot exper-

iments have 15 query images, which means there are 15 × 5 + 1 × 5 = 80

images and 15 × 5 + 5 × 5 = 100 images in each mini-batch, respectively.

For the testing stage, we followed the RelationNet (Sung et al. 2018b) that

has one query for five-way-one-shot and five queries for five-way-five-shot in

each mini-batch. In both the training and testing stages of the second group

of experiments (experiment 2 and 3), we randomly select 15 and 10 queries

from each category for the five-way-one-shot and five-way-five-shot settings,

which is the same setting with (Li, Xu, Huo, Wang, Gao & Luo 2019, Li,
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Wang, Xu, Huo, Gao & Luo 2019).

For fair comparisons, we select the optimal models using the same valida-

tion strategies as (Sung et al. 2018b) for the first group of experiments and

(Li, Wang, Xu, Huo, Gao & Luo 2019, Li, Xu, Huo, Wang, Gao & Luo 2019)

for the second group of experiments, separately. In the first group, we ran-

domly sample and construct 100,000 episodes to train the LRPABN and

PABN+ models. In each episode, there only contains one learning task,

while in the second group, we randomly select 10,000 episodes for training,

and in each episode, 100 tasks are randomly batched to train the models.

For LRPABN models, we set the dimension of the pairwise bilinear feature

as 512, where the feature dimension of PABN and PABN+ is 64×64 = 4096.

In training, the learning rate of parameters is decayed by 0.5 every 10,000

epochs using the StepLR schedule in PyTorch. We resize all the input images

from all data sets to 84 × 84. All experiments use Adam optimize method

with an initial learning rate of 0.001, and all models are trained end-to-end

from scratch. More experimental details can be referred to in our published

papers (Huang et al. 2019, Huang, Zhang, Zhang, Xu & Wu 2021, Huang,

Zhang, Yu, Zhang, Wu & Xu 2021).

4.6.3 Experimental Results for PABN and LRPABN

on Generic Fine-grained Datasets

In the first group of experiments, we compute both one-shot and five-shot

classification accuracies on the four public fine-grained data sets by aver-

aging 10,000 episodes in testing. We show the experimental results of 10

compared models in Table 4.3. As the table shows, the proposed LRPABN

and PABN models achieve significant improvements on both one-shot and

five-shot classification tasks on all data sets compared to the state-of-the-art

FGFS methods and generic few-shot methods, which indicates the effective-

ness of the proposed APBF framework.

More specifically, the LRPABN, PABN+, and PABN models both obtain

around 10% to 30% higher in classification accuracy than PCM (Wei et al.
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Table 4.3: Few-shot classification accuracy (%) comparisons on four fine-grained data sets. The second-highest-

accuracy methods are highlighted in blue color. The highest-accuracy methods are labeled with the red color. ‘-’

denotes not reported. All results are with 95% confidence intervals where reported.

Methods
CUB Birds CARS DOGS NABirds

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PCM (Wei et al. 2019b) 42.10±1.96 62.48±1.21 29.63±2.38 52.28±1.46 28.78±2.33 46.92±2.00 - -

RelationNet 63.77±1.37 74.92±0.69 56.28±0.45 68.39±0.21 51.95±0.46 64.91±0.24 65.17±0.47 78.35±0.21

PABNw/o 65.99±1.35 76.90±0.21 55.65±0.42 67.29±0.23 54.77±0.44 65.92±0.23 67.23±0.42 79.25±0.20

PABNniv 65.04±0.44 76.46±0.22 55.89±0.42 68.53±0.23 54.06±0.45 65.93±0.24 66.62±0.44 79.31±0.22

PABNcpt 66.71±0.43 76.81±0.21 56.80±0.45 68.78±0.22 55.47±0.46 66.65±0.23 67.02±0.43 79.02±0.21

PABN+niv 66.68±0.42 76.83±0.22 55.35±0.44 67.67±0.22 54.51±0.45 66.60±0.23 66.60±0.44 81.07±0.20

PABN+cpt 65.44±0.43 77.19±0.22 57.36±0.45 69.30±0.22 54.66±0.45 66.74±0.22 67.39±0.43 79.95±0.21

PABN+cos 66.45±0.42 78.34±0.21 57.44±0.45 68.59±0.22 54.18±0.44 65.70±0.23 66.74±0.44 80.58±0.20

LRPABNniv 64.62±0.43 78.26±0.22 59.57±0.46 74.66±0.22 54.82±0.46 66.62±0.23 68.40±0.44 80.17±0.21

LRPABNcpt 67.97±0.44 78.04±0.22 63.11±0.46 72.63±0.22 54.52±0.47 67.12±0.23 68.04±0.44 80.85±0.20

71



CHAPTER 4. FINE-GRAINED FEW-SHOT RPSI DEFECT
RECOGNITION USING ALIGNED PAIRWISE BILINEAR

FRAMEWORK

2019b), which demonstrates that the comparative pairwise bilinear feature

outperforms the self-bilinear feature on FGFS tasks. Besides, the pairwise

bilinear feature-based approaches achieve better classification performances

than RelationNet (Sung et al. 2018b), which validates the proposed second-

order image descriptors surpasses the naive concatenation of feature pairs

used in RelationNet for FGFS problems.

From Table 4.3, compared to PABN models, PABN+ and LRPABN

models obtain a definite classification performance boost. For instance, the

PABN+niv gains 1.64% and 0.37% improvements over PABNniv in one-shot

and five-shot settings on CUB Birds data, while LRPABNcpt achieves 1.26%

and 1.23% improvements over PABNcpt in one-shot and five-shot setting on

the CUB Birds dataset.

These results demonstrate that the effectiveness of the proposed feature

alignment layer. It can be observed from Table 4.3 that LRPABN models

achieve the best or second-best classification performance on nearly all data

sets compared to other methods under various experimental settings. For

CARS data, the LRPABNcpt obtains 5.67%, 6.31%, 6.83% significant im-

provements over PABN+cos, PABNcpt, and RelationNet on one-shot-five-way

task, while achieves 5.36%, 5.88%, 6.27% improvements against PABN+cpt,

PABNcpt, and RelationNet on the five-shot-five-way setting, which validates

the effectiveness of our low-rank pairwise bilinear pooling. It is worth noting

that the dimension of the pairwise bilinear feature in LRPABN is 512, where

the corresponding feature dimension of PABN and PABN+ is 4096.

4.6.4 Experimental Results for PABN and LRPABN

on the RPSI Defect Dataset

For a further analysis of our models, we conduct an advanced experiment

on the RPSI Defects and the above fine-grained datasets comparing the LR-

PABN models with DN4 and CovaMNet. In this experiment, we also compare

the PABN+ models. Moreover, we use the same setting to rerun the Rela-

tionNet on five data sets as the baseline method. We follow the same data
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Table 4.4: Few-shot classification accuracy (%) comparisons on four fine-grained and RPSI Defect data sets. The

highest-accuracy and second-highest-accuracy methods are highlighted in red and blue, respectively. All results are

with 95% confidence intervals where reported.

Methods
CUB Birds CARS DOGS NABirds RPSI Defect

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

RelationNet 59.82±0.77 71.83±0.61 56.02±0.74 66.93±0.63 44.75±0.70 58.36±0.66 64.34±0.81 77.52±0.60 57.60±0.87 66.43±0.72

CovaMNet 58.51±0.94 71.15±0.80 56.65±0.86 71.33±0.62 49.10±0.76 63.04±0.65 60.03±0.98 75.63±0.79 59.62±0.92 70.21±0.80

DN4 55.60±0.89 77.64±0.68 59.84±0.80 88.65±0.44 45.41±0.76 63.51±0.62 51.81±0.91 83.38±0.60 60.43±0.88 76.70±0.77

PABN+niv 63.56±0.79 75.23±0.59 53.39±0.72 66.56±0.64 45.64±0.74 58.97±0.63 66.96±0.81 80.73±0.57 61.79±0.89 69.53±0.80

PABN+cpt 63.36±0.80 74.71±0.60 54.44±0.71 67.36±0.61 45.65±0.71 61.24±0.62 66.94±0.82 79.66±0.62 62.24±0.90 70.73±0.81

PABN+cos 62.02±0.75 75.35±0.58 53.62±0.73 67.15±0.60 45.18±0.68 59.48±0.65 66.34±0.76 80.49±0.59 62.08±0.92 70.56±0.79

LRPABNniv 62.70±0.79 75.10±0.61 56.31±0.73 70.23±0.59 46.17±0.73 59.11±0.67 66.42±0.83 80.60±0.59 63.46±0.90 76.61±0.80

LRPABNcpt 63.63±0.77 76.06±0.58 60.28±0.76 73.29±0.58 45.72±0.75 60.94±0.66 67.73±0.81 81.62±0.58 64.51±0.87 77.21±0.79
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set split with DN4 and CovaMNet. The original papers of these two papers

do not report the results on CUB Birds (CUB-2011) (Wah et al. 2011) and

NABirds (Horn et al. 2015), so we use the open released codes of DN44 and

CovaMNet5 to get the results. During the test, 600 episodes are randomly

selected from the data.

Table 4.4 presents the average accuracies of different models on the novel

classes of the RPSI Defects dataset as well as the fine-grained datasets. Both

the one-shot and five-shot classification results are reported. Both the PABN

and LRPABN models achieve superior performance over compared FGFS

and FS approaches for different experimental settings. Moreover, as the table

shows, the proposed LRPABN models get steadily and notably improvements

on the RPSI Defects dataset and almost all fine-grained datasets. More

detailed, compared with CovaMNet, our proposed models achieve plainly

growth performances on the RPSI defect dataset, CUB Birds, CARS, and

NABirds data sets on both one-shot and five-shot settings. Especially for

NABirds data, the LRPABNcpt obtains 7.70% and 5.99% gain over CovaMNet

for one-shot and five-shot settings, respectively.

These results again firmly prove that the proposed pairwise bilinear pool-

ing is superior compared to the self-bilinear pooling operation. Meanwhile,

the feature alignment layer further boosts the final performance.

For the comparisons against the DN4 method, from Table 4.4, LRPABN

models obtain the highest accuracy on one-shot setting on RPSI Defects,

CUB Birds, CARS, NABirds data sets, and get second best results on DOGS

data, where DN4 performs poorly in one-shot tasks on almost all data sets.

For five-shot RPSI Defects recognition, the LRPABNcpt model also achieves

the highest performance. Therefore, the proposed LRPABN model is tai-

lored for RPSI Defects recognition, which validates the effectiveness of the

proposed two-stage defects recognition framework. DN4 achieves the high-

est classification accuracy on four fine-grained data sets, while LRPABNcpt

4https://github.com/WenbinLee/DN4
5https://github.com/WenbinLee/CovaMNet
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achieves the second-highest performance on the CUB Birds, CARS, and

NABirds.

Harris Sparrow

Nighthawk

Cardinal

Western Gull

Yellow Bellied 
Flycatcher

Support Images Query Images

(a) By LRPABN-512

Harris Sparrow

Nighthawk

Cardinal

Western Gull

Yellow Bellied 
Flycatcher

Support Images Query Images

(b) By LRPABN-128

Harris Sparrow

Nighthawk

Cardinal

Western Gull

Yellow Bellied 
Flycatcher

Support Images Query Images

(c) By PABN+

Harris Sparrow

Nighthawk

Cardinal

Western Gull

Yellow Bellied 
Flycatcher

Support Images Query Images

(d) By RelationNet

Figure 4.7: Sample visual classification results of comparing methods over

CUB dataset. All the approaches use the same data batch under the five-way-

one-shot setting, and for each class, we randomly select five query images as

the testing data. We adopt five colors to label the support classes separately.

As to the query images, we label the images with the color corresponding to

the class label predicted by different models.

The reason for this is that DN4 uses a deep nearest neighbor neural net-

work to search the optimal local features in the support set as the support

classes’ feature for a given query image. For the target query features (e.g., a

set of local features), the algorithm selects the top k nearest local features in

the whole support data set according to the cosine similarity between query

local features and support local features. That is, the more image in the
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support classes, the better the class feature will be generated. Thus, for five-

shot classification, the DN4 outperforms LRPABN, where under the one-shot

setting, DN4 has smaller support features to extract a good representation

of the class feature. More importantly, our model is more efficient than DN4.

Specifically, under the C-way-K-shot setting, in the inference stage, for each

query image, DN4 has h2×w2×K×C×Ocos computations to predict its label,

while LRPABN only needs h×w×C×Ocomp computations. h and w denote

the height and width of the feature map, Ocos means the cosine similarity

computation used in DN4, and Ocomp represents the comparator computation

in LRPABN. Since h × w × K × Ocos � Ocomp, DN4 is much slower than

LRBPAN during both training and testing, as seen from Table 4.6, DN4

costs 15.20 ×10−3 s for each query, while LRPABN only needs 2.23 ×10−3

s, which is approximately seven times faster. Moreover, without considering

the computation load, our initial low-rank pairwise bilinear model PABNnew

(Equation (4.7)) can also achieve the comparable performance against DN4

under both one-shot and five-shot setting, i.e., 78.87% for PABNnew com-

pared to 79.64% for DN4 under the five-shot settings. On the other hand, in

many practical scenarios, such as endangered species protection, we may only

get a one-labeled sample. With higher accuracy under the one-shot setting,

our method can achieve more reliable performances compared to DN4 under

such circumstances. It indicates the practical value of our models.

The classification examples of LRPABN, PABN+, and RelationNet mod-

els are shown in Figure 4.7. We select LRPABNcpt and PABN+cpt as the

representative of LRPABN and PABN+ approaches. To investigate the low-

rank approximation, we set low-rank comparative feature dimensions as 512

and 128 for LRPABN-512 and LRPABN-128 models separately. By sending a

fixed testing batch through the model, which consists of one support sample

and five query samples for each of five classes, the prediction of LRPABN-

512 only contains six mislabels in the entire 25 queries, while the prediction

of LRPABN-128, PABN+, and RelationNet have 7, 8 and 10 wrong labels

separately. That validates the effectiveness of the LRPABN models. We
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also find that in some classes like Nighthawk and Harris Sparrow, the high

intra-variance and low inter-variance confuse all the models.

4.6.5 Experimental Results for TOAN on RPSI De-

fects and Fine-grained Datasets

We compare our third FGFS model TOAN against other FGFS and FS

methods on both RPSI Defects and four fine-grained datasets.

Comparison against existing FGFS methods The comparisons be-

tween TOAN and other state-of-the-art FGFS methods are shown in the

upper part of Table 4.5. We conclude that our method compares favorably

over existing FGFS approaches on five datasets. Specifically, under the five-

way-one-shot setting, the classification accuracies are 66.61% vs. 63.75%

(SoSN), 65.34% vs. 63.95% (SoSN), 65.90% vs. 29.63% (PCM), 49.30% vs.

49.10% (CovaMNet), and 70.02% vs. 67.73% (LRPABN) on RPSI Defects,

CUB, CARS, DOGS, and NABirds, respectively. Moreover, by replacing the

ConvNet-64 with the deeper ResNet-256 model (Li, Wang, Xu, Huo, Gao &

Luo 2019), the accuracy of TOAN:ResNet gets further improvements, e.g.

under five-way-five-shot setting, TOAN:ResNet achieves 82.07%, 82.09%,

89.57%, 69.83%, and 90.21% compared with 80.43%, 84.24%, 67.16%, and

85.52% of TOAN model on five datasets.

Comparison against Generic FS As our experiments were conducted

under the few-shot setting, we also investigate how generic few-shot learning

methods perform for the fine-grained classification. We report the results of

representative generic FS models in the lower part of Table 4.5. It can be

observed that the proposed TOAN models outperform most of these methods

by large margins, which is expected since our models are designed to address

both intra- and inter-class variance issues in the fine-grained classification.

More specifically, compared with DN4 (Li, Wang, Xu, Huo, Gao & Luo

2019), the proposed TOAN achieves the highest accuracy on RPSI Defects,
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Table 4.5: Fine-grained Few-shot classification accuracy (%) comparisons on RPSI Defect and four FG benchmarks.

All results are with 95% confidence intervals where reported. We highlight the best and second-best methods.

Methods Type Backbone
CUB CARS DOGS NABirds RPSI Defects

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchingNet FS ConvNet-64 57.59±0.74 70.57±0.62 48.03±0.60 64.22±0.59 45.05±0.66 60.60±0.62 60.70±0.78 76.23±0.62 50.47±0.90 65.33±0.74

ProtoNet FS ConvNet-256 53.88±0.72 70.85±0.63 45.27±0.61 64.24±0.61 42.58±0.63 59.49±0.65 55.85±0.78 75.34±0.63 47.54±0.89 64.97±0.76

RelationNet FS ConvNet-64 59.82±0.77 71.83±0.61 56.02±0.74 66.93±0.63 44.75±0.70 58.36±0.66 64.34±0.81 77.52±0.60 57.60±0.87 66.43±0.72

CovaMNet FS ConvNet-64 58.51±0.94 71.15±0.80 56.65±0.86 71.33±0.62 49.10±0.76 63.04±0.65 60.03±0.98 75.63±0.79 59.62±0.92 70.21±0.80

DN4 FS ConvNet-64 55.60±0.89 77.64±0.68 59.84±0.80 88.65±0.44 45.41±0.76 63.51±0.62 51.81±0.91 83.38±0.60 60.43±0.88 76.70±0.77

PCM FGFS AlexNet 42.10±1.96 62.48±1.21 29.63±2.38 52.28±1.46 28.78±2.33 46.92±2.00 - - - -

PABN+cpt FGFS ConvNet-64 63.36±0.80 74.71±0.60 54.44±0.71 67.36±0.61 45.65±0.71 61.24±0.62 66.94±0.82 79.66±0.62 62.24±0.90 70.73±0.81

LRPABNcpt FGFS ConvNet-64 63.63±0.77 76.06±0.58 60.28±0.76 73.29±0.58 45.72±0.75 60.94±0.66 67.73±0.81 81.62±0.58 64.51±0.87 77.21±0.79

SoSN FGFS ConvNet-64 63.95±0.72 78.79±0.60 62.84±0.68 75.75±0.52 48.01±0.76 64.95±0.64 69.53±0.77 83.87±0.51 63.75±0.91 75.43±0.78

TOAN FGFS ConvNet-64 65.34±0.75 80.43±0.60 65.90±0.72 84.24±0.48 49.30±0.77 67.16±0.49 70.02±0.80 85.52±0.50 66.61±0.90 79.92±0.80

TOAN:ResNet FGFS ResNet-256 67.17±0.81 82.09±0.56 76.62±0.70 89.57±0.40 51.83±0.80 69.83±0.66 76.14±0.75 90.21±0.40 68.79±0.85 82.07±0.78
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CUB, DOGS, and NABirds datasets, and achieves the highest performance

under the five-way-one-shot setting on the CARS dataset. DN4 achieves the

best performance under the five-way-five-shot setting on the CARS dataset,

and our TOAN model ranks the second best. In general, the proposed TOAN

method holds obvious advantages against DN4 for one-shot tasks and most

five-shot tasks. It is worth noting that DN4 employs a deep nearest neighbor

network to search the optimal local features in the support set as the class

prototypes for a given query image. For the query features, DN4 selects the

top k-nearest local features in the whole support set based on the cosine sim-

ilarities between the local features of query and support images. Therefore,

with more images from support classes (under five-shot setting on CARS),

DN4 tends to generate relatively accurate prototypes.

In the fine-grained classification, different categories share similar ap-

pearances. The similarities between any two samples are always high, which

means the top k-nearest local features sorted by DN4 in different support

classes are also similar. This leads to the degeneracy problem for DN4 in

dealing with fine-grained classification. However, the proposed TOAN aligns

the support-query pairs by TOMM. Thus the corresponding positions be-

tween two samples achieve the highest spatial similarity. Then a GPBP

module is adopted to compare the nuanced differences between the pairs us-

ing high-order feature extraction. Therefore, TOAN can learn a more robust

representation and generally achieves better performances than DN4.

4.6.6 Ablation Studies

To further investigate the proposed APBF framework, we present some ab-

lation studies of the proposed LRPABN and TOAN models in this section.

Analysis of LRPABN

Following the data split used in (Wei et al. 2019b, Huang et al. 2019), we

conduct several experiments to investigate the different components of the
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Table 4.6: Ablation study of LRPABN with different components. The re-

sults are reported with 95% confidence intervals. Model size indicates the

number of parameters for each model, the Test Time is the testing time for

each input query image, and the Bilinear Dim represents the bilinear feature

dimension of the each model.

Methods
CUB data set

1-shot (%) 5-shot (%) Model Size Test Time (ms) Bilinear Dim

PABNcpt 66.71±0.43 76.81±0.21 375,361 8.65 4096

PABN+cpt 65.44±0.43 77.19±0.22 505,682 8.94 4096

PABNnew 67.39±0.43 78.87±0.21 2,373,819 78.40 512

LRPABN 66.56±0.43 77.60±0.22 213,930 2.23 512

LRPABNonly cpt 66.72±0.44 77.98±0.21 213,930 2.23 512

LRPABNcpt 67.97±0.44 78.04±0.22 344,251 2.53 512

DN4 60.02±0.85 79.64±0.67 112,832 15.20 -

LRPABN model, and the experimental results are shown in Table 4.6. We

analyze our methods from various aspects:

Low-Rank Pairwise Bilinear Pooling: First, we replace previous pairwise

bilinear pooling (Equation (4.4)) with Equation (4.7) as PABNnew. As seen

in Table 4.6, PABNnew outperforms PABNcpt on both one-shot and five-shot

tasks with a lower dimension, which indicates the effectiveness of our pro-

posed initial Low-Rank pairwise pooling (Equation (4.7)). However, using

Equation (4.7), the model needs to learn a n×c×c transformation tensorW
(discussed in Section 4.4.1), which significantly increases the model size and

inference time. Thus, we employ Equation (4.8) to approximate the trans-

formation tensor as LRPABN. We observe that this approximation achieves

superior performance against our previous PABNcpt with a reduced model

size as well as a shorter bilinear feature dimension. Specifically, as observed

in Table 4.6, the proposed LRPABN costs 2.23 ×10−3 s to identify a query

image with a 213K model size, while the previous ICME model PABNcpt

requires 8.65 ×10−3 s and 375K parameters. Moreover, the inference time
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Table 4.7: Impact of input image size on FSFG.

Methods
CUB data set

1-shot (%) 5-shot (%) Image Size

PCM:AlexNet (Wei et al. 2019b) 42.10±1.96 62.48±1.21 224 × 224

LRPABNcpt:AlexNet 59.34±0.48 69.08±0.24 224 × 224

LRPABNcpt:AlexNet 66.19±0.46 75.05±0.23 448 × 448

LRPABNcpt:Conv4 67.97±0.44 78.04±0.22 84 × 84

DN4:Conv4 (Li, Wang, Xu, Huo, Gao & Luo 2019) 60.02±0.85 79.64±0.67 84 × 84

of LRPABN is 2.23×10−3 s, while PABNnew costs 78.40 ×10−3 s for each

query image. That is, our final low-rank pairwise pooling model LRPABN

is more advanced than previous PABN models and much more efficient than

PABNnew model.

Alignment Mechanism: To investigate the effectiveness of the proposed

alignment mechanism. We compare PABNcpt and PABN+cpt. Besides, we

adopt the proposed alignment loss Alignloss2 in Equation (4.11) into LR-

PABN as LRPABNonly cpt. As seen from Table 4.6, cooperating with the po-

sition transform function T, PABN+cpt and LRPABNcpt outperform PABNcpt

and LRPABNonly cpt, respectively. For instance, under the five-shot setting,

the classification accuracy of PABN+cpt is 77.19% compared to 76.81% of

PABNcpt. PABN+cpt obtains less improvements on one-shot setting com-

pared to LRPABNcpt model. This is expected as the proposed LRPABN

model is designed to extract more discriminative feature than PABN. With

more powerful feature, the alignment mechanism can perform better.

Input Image Size: It is reported that a higher resolution of the input

image can capture a more discriminative feature for Fine-grained classifica-

tion (Lin, RoyChowdhury & Maji 2015a, Cui et al. 2017b, Li et al. 2018).

However, few-shot learning models (Vinyals et al. 2016, Snell et al. 2017, Sung

et al. 2018b) usually adopt a low input resolution, e.g., 84 × 84. For a fair-

ness comparison with generic few-shot learning approaches, in Section 4.6.2,

we set the input image size to 84 × 84. To further investigate the effects
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Figure 4.8: The pairwise bilinear feature dimension selection experiment. In

each sub-figure, the horizontal axis denotes the dimension of the pairwise

bilinear feature and the vertical axis represents the test accuracy rate. 4.8(a)

is the one-shot experiment and 4.8(b) is the five-shot experiment on CUB.

of input size, we follow (Wei et al. 2019b) to replace the shallow embedding

network Conv4 (Vinyals et al. 2016, Snell et al. 2017, Sung et al. 2018b)

with AlexNet (Krizhevsky et al. 2012) as LRPABNcpt:AlexNet. Moreover,

we choose two resolutions for the input images, which are widely used in

Fine-grained classification. As Table 4.7 shows, with AlexNet, a higher res-

olution 448 × 448 brings a significant performance boost compared to lower

input size 224 × 224, which validates that a higher input resolution can gen-

erate a more subtle comparative feature for FSFG. We also observe that the

accuracy of the AlexNet-based methods performs worse than Conv4-based

methods. A high input resolution always accompanied by a deep embedding

network like AlexNet to extract the informative feature. However, training a

deeper embedding network with limited labeled samples is easier to lead the

over-fitting problem.

Bilinear Feature Dim: For the feature dimension selection, we change

the number of dimensions as 16, 32, 64, 128, 256, 512, 1024, and 2048 for

both one-shot and five-shot classification tasks on CUB Birds data. The

model we used for this experiment is LRPABNcpt. The results are shown

in Figure 4.8, it can be observed that as the feature dimension gets large,

the test accuracy gradually improves to a peak first, then it goes through a
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(a) By RelationNet (b) By LRPABN-Dim-128

(c) By PABN+ (d) By LRPABN-Dim-512

Figure 4.9: Visualization of the comparative feature generated by different

fusion mechanism in 2D space using t-SNE. Each dot represents a query

image that is numeric and marked with different colors according to the real

labels. For each class, we randomly select thirty query images to conduct

this experiment. The visualization is based on the CUB data set under

the five-way-five-shot setting. (a) shows results conducted by RelationNet,

(b) shows the result conducted by LRPABNcpt, and the dimension of the

comparative bilinear feature is 128, denoted as LRPABN-Dim-128, (c) shows

the result conducted by PABN+cpt model and (d) shows the result conducted

by LRPABNcpt, and the dimension of the comparative bilinear feature is 512,

denoted as LRPABN-Dim-512.
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drastic drop. For the one-shot setting, the performance changes smoothly

when the dimension is below 1024. For the five-shot task, the variation of

performance is relatively oscillatory, yet it can grow fast and steadily, with

the dimension increasing. Moreover, we find that even with a very compact

low-rank approximation (i.e., the dimension is 16), the model can still achieve

a decent classification performance, which fatherly verifies the stability of the

proposed method. When the dimension goes too large, the model performs

poorly, and this may be caused by the increased complexity of the framework

can not model the data distribution well with few training samples. As (Gao

et al. 2016) discussed, for self-bilinear features, less than 5% of dimensions

are informative. For FSFG, the best feature dimensions for LRPABN are

256 and 512 in the experiments, which are around 5% to 10% of the entire

self-bilinear feature dimension.

t-SNE visualization: The t-SNE (Maaten & Hinton 2008) visualization

for different comparative features is presented in Figure 4.9. We randomly

select five support images and thirty query images per category from CUB

Birds data to conduct the five-way-five-shot tasks. The original compara-

tive feature dimension of RelationNet is 128 × 3 × 3. We use the convolved

feature before the first fully-connected layer in classifier as the final compar-

ative feature with dimension size 576. The comparative feature of PABN+

is 64 × 64 = 4096, and we choose LRPABNcpt with comparative dimension

128 and 512 separately (denoted as LRPABN-Dim-128 and LRPABN-Dim-

512) for comparison. As the figure shows, the learned LRPABN-Dim-512

feature, which can be grouped into five classes correctly, outperforms oth-

ers, the discriminative performance of LRPABN-Dim-128 and PABN+ are

similar, which outperform RelationNet’ feature. The intuitive visualization

results among the above methods again validate the superior capacity of the

proposed low-rank pairwise bilinear features for FSFG tasks.
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Table 4.8: The ablation study on TOMM and GPBP. The upper and lower parts of the table show the ablation study

on TOMM and GPBP, separately. We incorporate each framework with TOMM and GPBP, we observe definite

improvements (%). We also show the results of the whole model TOAN.

Methods
CUB CARS DOGS NABirds

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchingNet (Vinyals et al. 2016) 57.59±0.74 70.57±0.62 48.03±0.60 64.22±0.59 45.05±0.66 60.60±0.62 60.70±0.78 76.23±0.62

MatchingNet+TOMM 60.87±0.78 75.12±0.61 53.79±0.72 72.67±0.55 47.06±0.74 63.22±0.62 65.83±0.75 80.73±0.57

+3.28 +4.55 +5.76 +8.45 +2.01 +2.62 +5.13 +4.50

ProtoNet (Snell et al. 2017) 53.88±0.72 70.85±0.63 45.27±0.61 64.24±0.61 42.58±0.63 59.49±0.65 55.85±0.78 75.34±0.63

ProtoNet+TOMM 61.60±0.76 75.09±0.61 52.50±0.69 68.13±0.58 46.36±0.73 61.56±0.65 64.77±0.79 80.84±0.56

+7.72 +4.24 +7.23 +3.89 +3.78 +2.07 +9.92 +5.50

RelationNet (Sung et al. 2018b) 59.82±0.77 71.83±0.61 56.02±0.74 66.93±0.63 44.75±0.70 58.36±0.66 64.34±0.81 77.52±0.60

RelationNet+TOMM 64.84±0.77 79.75±0.54 62.35±0.77 81.57±0.51 47.24±0.78 65.23±0.66 69.55±0.77 85.01±0.51

+5.02 +7.92 +6.33 +14.64 +2.49 +6.87 +5.21 +7.49

Methods
CUB CARS DOGS NABirds

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

RelationNet (Sung et al. 2018b) 59.82±0.77 71.83±0.61 56.02±0.74 66.93±0.63 44.75±0.70 58.36±0.66 64.34±0.81 77.52±0.60

RelationNet+GPBP 60.00±0.74 74.01±0.60 58.35±0.73 73.49±0.59 46.45±0.70 61.70±0.65 65.43±0.81 80.13±0.58

+0.18 +2.18 +2.33 +6.56 +1.70 +3.34 +1.09 +2.61

RelationNet (Sung et al. 2018b) 59.82±0.77 71.83±0.61 56.02±0.74 66.93±0.63 44.75±0.70 58.36±0.66 64.34±0.81 77.52±0.60

TOAN a 65.34±0.75 80.43±0.60 65.90±0.72 84.24±0.48 49.30±0.77 67.16±0.49 70.02±0.80 85.52±0.50

+5.52 +8.60 +9.88 +17.31 +4.55 +8.80 +5.68 +8.00

aTOAN consists of RelationNet, TOMM, and GPBP together.
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Table 4.9: Ablation study of TOAN for other choices. Few-shot classification results (%) on four FG datasets. The

lower parts of the table is the different backbone choices of TOAN.

Methods
CUB CARS DOGS NABirds

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

TOAN-GP* 65.80±0.78 79.37±0.61 65.88±0.74 82.69±0.50 50.10±0.79 65.90±0.68 69.48±0.75 85.48±0.53

TOAN-w/o d(·) 64.48±0.76 78.82±0.59 60.02±0.73 81.65±0.49 47.27±0.72 63.98±0.65 68.70±0.79 83.70±0.53

TOAN 65.34±0.75 80.43±0.60 65.90±0.72 84.24±0.48 49.30±0.77 67.16±0.49 70.02±0.80 85.52±0.50

TOAN 224 69.03±0.79 83.19±0.56 69.48±0.74 87.38±0.45 53.67±0.80 69.77±0.70 75.17±0.76 88.77±0.46

TOAN:ResNet 224 69.91±0.82 84.86±0.57 77.25±0.73 91.19±0.40 55.77±0.79 72.16±0.72 77.32±0.70 91.39±0.41

Methods
CUB CARS DOGS NABirds

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ConvNet-64 65.34±0.75 80.43±0.60 65.90±0.72 84.24±0.48 49.30±0.77 67.16±0.49 70.02±0.80 85.52±0.50

ConvNet-128 64.56±0.78 80.02±0.59 69.20±0.72 86.39±0.44 50.26±0.77 66.96±0.66 70.90±0.77 85.63±0.49

ConvNet-256 66.16±0.80 80.72±0.58 68.89±0.74 85.29±0.46 49.68±0.75 67.52±0.66 71.26±0.76 86.42±0.47

ConvNet-512 66.44±0.77 81.46±0.54 69.59±0.73 86.27±0.45 49.20±0.74 66.75±0.66 72.74±0.76 86.91±0.50

ResNet-64 69.25±0.81 81.90±0.61 74.64±0.76 90.20±0.41 53.33±0.82 69.96±0.70 75.98±0.72 89.55±0.44

ResNet-128 68.95±0.78 83.40±0.58 75.14±0.72 90.95±0.36 52.69±0.81 69.95±0.71 76.14±0.75 90.51±0.38

ResNet-256 67.17±0.81 82.09±0.56 76.62±0.70 89.57±0.40 51.83±0.80 69.83±0.66 76.14±0.75 90.21±0.40

ResNet-512 66.10±0.86 82.27±0.60 75.28±0.72 87.45±0.48 49.77±0.86 69.29±0.70 76.24±0.77 89.88±0.43
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Table 4.10: Ablation study of TOAN for the output channel size of dα, dβ.

The table shows five-way few-shot recognition results (%) on the CUB

dataset.

Num Channel d(c′)
CUB data set

5-way-1-shot 5-way-5-shot

32 65.47±0.77 80.51±0.60

64 67.17±0.81 82.09±0.56

128 68.73±0.80 83.88±0.61

256 69.40±0.81 84.01±0.59

(a) CUB Dataset (b) CARS Dataset (c) DOGS Dataset (d) NABirds Dataset

Figure 4.10: TOMM Visualization, the first image in each row (except for

the first row) represents the support image, and the remaining images in the

row are the aligned results of the support image, which are matched to each

query image (in each column from the first row).

Analysis of TOAN

Target-Oriented Matching Mechanism (TOMM): First of all, we investigate

the effectiveness of TOMM for FGFS tasks. As Table 4.8 shows, there is

an approximate 5% averagely increase after adopting TOMM in three FS

baselines, among which, when incorporating TOMM into the RelationNet,

the model achieves superior performances over other compared approaches.

For instance, under the five-way-five-shot setting, the accuracy of Relation-

Net+TOMM is 79.75% vs. 78.79% (Zhang & Koniusz 2019), 65.23% vs.

63.04% (Li, Xu, Huo, Wang, Gao & Luo 2019), and 85.01% vs. 83.38% (Li,
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(a) Semantic Grouping Validation.
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(b) Features Dimension Selection.

Figure 4.11: Ablation studies about the proposed GPBP, including semantic

channel grouping validation 4.11(a) and feature dimension selection 4.11(b).

For each group of validation experiments, we show the 1-shot and 5-shot

results.

Wang, Xu, Huo, Gao & Luo 2019) on CUB, DOGS, and NABirds. This ver-

ifies that the significant intra-class variance is a crucial issue in FGFS tasks,

and the TOMM is an effective mechanism to tackle such problems. Fur-

thermore, since the proposed task-agnostic transformation d(·) can better

capture the similarities of input pairs, TOAN outperforms TOAN-w/o d(·),
as shown in Table 4.9. To fully investigate the influence of the output channel

size (c′) of d(·) (dα and dβ) in Eq. (4.17), we employ ResNet-256 (Li, Wang,

Xu, Huo, Gao & Luo 2019, Li, Xu, Huo, Wang, Gao & Luo 2019) as the

backbone and experiment with different output channel sizes of the TOMM

(the input channel size is fixed as 256). As is reported in Table 4.10, the

larger output channel size of d(·) generally achieves a better performance.

In Fig. 4.10, we give the visualization of the TOMM. We utilized the

original images to get vivid descriptions of the proposed feature alignment.

More specifically, we first resized the original images to the same size as the

target-oriented attention map (19×19). Then we multiplied the image with

the corresponding attention map to generate the aligned features as Equa-

tion (4.18). We observe that for the support image (each row in Fig. 4.10),

TOMM transforms its features to match each query (top column images).

For instance, in the fourth column in Fig. 4.10(b), the postures of five sup-
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Table 4.11: Investigation of model complexity. Model size indicates the

number of parameters for each model, and the Test Time is the testing time

for each input query image.

Methods
CUB data set

1-shot (%) 5-shot (%) Model Size Test Time (ms) Feature Dim

ProtoNet 53.88 70.85 113,088 0.69 64

MatchingNet 57.59 70.57 113,088 0.68 64

RelationNet 59.82 71.83 228,686 1.14 128

DN4 55.60 77.64 112,832 15.20 64

PABNcpt 63.36 74.71 375,361 8.65 4096

LRPABNcpt 63.63 76.06 344,251 2.53 512

TOAN 65.60 78.93 198,417 0.66 64

TOAN 65.61 79.81 237,585 0.87 128

TOAN 64.69 80.35 315,921 1.04 256

TOAN 64.17 79.19 472,593 1.23 512

TOAN 65.34 80.43 785,937 2.34 1024

port cars are reshaped to the same posture of the red query car in the top

row.

Group pairwise Bilinear Pooling (GPBP): The distance-based frameworks

such as MatchingNet (Vinyals et al. 2016) and ProtoNet (Snell et al. 2017)

use the l2 or cosine distance of support-query pairs to conduct the classifi-

cation, while GPBP aims to learn the distance of support-query pairs with

a convolutional network, a classifier is then applied to generate the relation

confidences, which is the reason why it is not compatible with MatchingNet

or ProtoNet. On the other hand, RelationNet (Sung et al. 2018b) proposes

to use a comparator network to classify queries according to the distance

of support-query pairs. Therefore, we combine GPBP with RelationNet to

study its capability. RelationNet+GPBP brings certain performance gains

over RelationNet, as is shown in Table 4.8 (lower parts). As is expected,

after combining TOMM and GPBP together, the complete model TOAN

achieves significant improvements over the ablation models, indicating that
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Table 4.12: Investigation of model scalability. Model size indicates the num-

ber of parameters for each model.

Methods
CUB data set

10-way-1-shot(%) 10-way-5-shot(%) Model Size Time(ms) Dim

ProtoNet 37.50±0.48 57.46±0.56 113,088 0.74 64

MatchingNet 40.85±0.50 58.07±0.55 113,088 0.76 64

RelationNet 42.69±0.52 59.37±0.58 228,686 1.52 128

TOAN 50.95±0.57 68.82±0.57 198,417 1.05 64

the TOMM and GPBP can benefit from each other. From the second re-

sults row in Table 4.9, the grouping (Zhang et al. 2017) model TOAN-GP*

achieves analogous performances as TOAN under the one-shot setting. How-

ever, its performance is lower than TOAN under the five-shot, which verifies

the effectiveness of our grouping operation.

We conducted two additional experiments to furtherly investigate the

hyper-parameters of GPBP. First of all, we evaluate the semantic grouping

in Fig. 4.8(b). We observe that when the grouping number is less than or

equal to eight, a larger group size generally results in higher performances,

e.g., the accuracy reaches the highest (80.69%) when the grouping size equals

eight, under five-shot settings. This indicates the effectiveness of semantic

grouping on boosting the discrimination of the bilinear features. When the

grouping number is greater than eight, the performances tend to be stable

with small fluctuations.

Next, we conducted the selection of feature dimensions, as shown in

Fig. 4.11(b). It is observed that a higher dimension brings a slight improve-

ment under the five-shot setting. For example, the performance is 78.93%

vs. 80.10%, when the length of the bilinear feature is 64 vs. 2048 under the

five-way-five-shot setting on CUB, and the model works relatively stable for

one-shot experiments.

Input Image Size for TOAN: In high-order-based FG methods (Cui et al.

2017b, Li et al. 2018, Lin, RoyChowdhury & Maji 2015a), a higher resolution

of the input image usually results in a more fine-grained feature, which is
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consistent with the results of current FGFS models (Huang, Zhang, Zhang,

Xu & Wu 2021, Zhang & Koniusz 2019). Therefore, we conducted experi-

ments to investigate the effects of input resolution for TOAN. As can be seen

from Table 4.9, TOAN 224 and TOAN:ResNet 224 achieve further improve-

ments with a larger 224× 224 input size compared with the smaller 84× 84

resolution.

Different Backbones for TOAN: We selected different backbones to in-

vestigate our proposed model. First, we adopted the ConvNet-512 (Gidaris,

Bursuc, Komodakis, Pérez & Cord 2019) as the embedding network, which

is derived from ConvNet-64 by increasing the width across layers to 512

channels, and we further revise ConvNet-64 to ConvNet-128, ConvNet-256.

Similarly, we designed the ResNet-64, ResNet-128 and ResNet-512. From

Table 4.9 (lower parts), we observe that a wider ConvNet-based backbone

can result in higher performances in FSFG classification. On the other hand,

deeper backbones can achieve further improvements compare to shallow ones.

For instance, ResNet-64 outperforms ConvNet-512 on both one-shot and five-

shot experiments. Under the five-shot setting, TOAN achieves relatively

stable performances when the width of ResNet changes.

Feature Visualization Fig. 4.12(a) visualizes the feature distribution of

the learned fine-grained features using t-SNE (Maaten & Hinton 2008). The

features are generated under the five-way-five-shot setting on the CUB. We

used 30 query images per class. As can be observed, the learned features

by our TOAN have more compact and separable clusters than RelationNet

(Fig. 4.12(b)).

Model Complexity and Scalability The main complexity of our model is the

TOMM operation, which has O((hw)2), where h×w represents the size of the

convolutional map. In our implementation, h = w = 19. In general, a deeper

convolutional network usually results in a smaller feature map before feeding

to the classifier. Therefore, the TOMM operation is more efficient with

deeper backbones. We conducted additional experiments to investigate the

model size and inference time of TOAN compared with previous works (Snell
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et al. 2017, Vinyals et al. 2016, Sung et al. 2018b, Li, Wang, Xu, Huo, Gao &

Luo 2019, Huang et al. 2019, Huang, Zhang, Zhang, Xu & Wu 2021). As is

shown in Table 4.11, using the same feature dimension, the proposed TOAN

model achieves the best performance compared with other models with a

small model size as well as a short time. While using a larger dimension, the

classification performance can be further improved.

(a) TOAN, 80.67% accuracy. (b) RelationNet, 76.67% accuracy.

Figure 4.12: t-SNE visualization of the features learned by TOAN, five classes

are randomly selected, and in each class, 30 query images are randomly

chosen. Different colored numbers are used to denote different classes, i.e.,

red zero represents the white-necked raven, blue one denotes the blacked

capped vireo, green two represents the Laysan albatross, purple three denotes

the nighthawk, and yellow four denotes the spotted catbird. Moreover, each

sample is represented by its corresponding number. 4.9(a) and 4.9(b) show

the t-SNE results of TOAN and RelationNet, respectively.

Most current models (Wei et al. 2019a, Zhang & Koniusz 2019, Huang,

Zhang, Zhang, Xu & Wu 2021, Li, Xu, Huo, Wang, Gao & Luo 2019) are

based on a relatively smaller size of the category (five-way) when dealing

with FGFS. To further investigate the scalability of the proposed TOAN,

we conducted a larger number of categories experiments, which is referred to

(Chen et al. 2019, Liu et al. 2019a). As is shown in Table 4.12, with the same

feature dimension, the proposed TOAN outperforms other baseline models
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with the comparable model size and inference speed.

4.7 Summary

In this chapter, we present the Aligned Pairwise Bilinear Framework (APBF)

for PRSI defects and generic fine-grained image recognition. The key compo-

nents of APBF are the feature alignment layer and pairwise bilinear pooling.

Specifically, the alignment layer can eliminate the biases brought by the

intra-class variance in fine-grained datasets, which is a crucial issue but less

considered in current studies. Moreover, pairwise bilinear pooling is adopted

to extracts the second-order comparative features for the pair of support

images and query images, which can enlarge the low inter-class variance in

FGFS tasks. Using this framework, we proposed three FGFS models: PABN,

LRPABN, and TOAN, progressively. We have validated the effectiveness of

the proposed models on RPSI Defects and four generic fine-grained datasets,

which achieves state-of-the-art performance. Since TOAN applies a cross-

attention mechanism to align the support-query feature pairs, it may cost a

large computation load given a large input size and more feature pairs, as

cross-attention is a matrix product operation. Therefore, designing a more

effective and computationally friendly alignment is an interesting topic for

the APBF framework. In addition, fusing the alignment module with the

high-order feature extraction module is also an open problem.
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Chapter 5

Poisson Transfer Network for

Semi-supervised Few-shot

RPSI Defect Recognition

5.1 Introduction

In Chapter 4, we studied the RPSI defects recognition under fine-grained

few-shot settings and proposed a meta-learning-based framework to tackle

this challenge. As discussed in Chapter 1.2.2, the last research issue in this

thesis is to study the semi-supervised few-shot learning model that uses the

unlabeled samples to boost the few-shot learners. Therefore, in this chapter,

we propose to study the semi-supervised few-shot learning model to solve the

RSPI defects recognition and generic image recognition.

Generic few-shot learning (Miller, Matsakis & Viola 2000, Fei-Fei et al.

2006, Vinyals et al. 2016) aims to learn a model that generalizes well with

a few instances of each novel class. In general, a few-shot learner is firstly

trained on a substantial annotated dataset, also noted as the base-class set,

and then adapted to unseen novel classes with a few labeled instances. This

research topic has been proved immensely appealing in the past few years,

as a large number of few-shot learning methods are proposed from various
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perspectives. Mainstream methods can be roughly grouped into two cate-

gories. The first one is learning from episodes (Vinyals et al. 2016), also

known as meta-learning, which adopts the base-class data to create a set of

episodes. Each episode is a few-shot learning task, with support and query

samples that simulate the evaluation procedure. The second type is the

transfer-learning-based method, which focuses on learning a decent classifier

by transferring the domain knowledge from a model pre-trained on the large

base-class set (Chen et al. 2018, Qiao et al. 2018). This paradigm decouples

the few-shot learning progress into representation learning and classification,

and has shown favorable performance against meta-learning methods in re-

cent works (Tian et al. 2020, Ziko et al. 2020). Our method shares some-

what similar motivation with transfer-learning-based methods and proposes

to utilize the extra unlabeled novel-class data and a pre-trained embedding

to tackle the few-shot problem.

Compared with collecting labeled novel-class data, it is much easier to ob-

tain abundant unlabeled data from these classes. Therefore, semi-supervised

few-shot learning (SSFSL) (Ren et al. 2018, Liu et al. 2018, Li, Sun, Liu,

Zhou, Zheng, Chua & Schiele 2019, Yu et al. 2020) is proposed to mine the

knowledge from both labeled and extra unlabeled data to boost few-shot

learners. The core challenge in SSFSL is how to explore the auxiliary in-

formation from these unlabeled thoroughly. Previous SSFSL works indicate

that graph-based models (Liu et al. 2018, Ziko et al. 2020) can learn a better

classifier than inductive ones (Ren et al. 2018, Li, Sun, Liu, Zhou, Zheng,

Chua & Schiele 2019, Yu et al. 2020) since these methods directly model

the relationship between the labeled and unlabeled samples during the infer-

ence. However, current graph-based models adopt the Laplace learning (Zhu

et al. 2003) to conduct label propagation. The solutions of Laplace learning

generate restricted spikes near the labeled. Still, they are essentially constant

faraway from labeled samples, i.e., the label propagation of these models is

not robust and accurate, especially with few labeled examples. Therefore,

these models suffer from the underdeveloped message-passing capacity for
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the labels. On the other hand, most SSFSL methods adapt the feature em-

bedding pre-trained on base-class data (meta- or transfer- pre-trained) as the

novel-class embedding. This may lead to the embedding degeneration prob-

lem, as the pre-trained feature encoder is designed for base-class recognition.

It tends to learn the embedding that represents only base-class information

and lose information that might be useful outside base classes.

To address the above issues, we propose a novel transfer-learning-based

SSFSL method named Poisson Transfer Network (PTN). Specifically, to im-

prove the capacity of graph-based SSFSL models in message pass-

ing , we propose to revise the Poisson model tailored for few-shot problems

by incorporating the query feature calibration and the Poisson MBO model.

Poisson learning (Calder et al. 2020) has been provably more stable and in-

formative than traditional Laplace learning in low label rate semi-supervised

problems. However, directly employing Poisson MBO for SSFSL may suffer

from the cross-class bias due to the data distribution drift between the sup-

port and query data. Therefore, we improve the Poisson MBO model by ex-

plicitly eliminating the cross-class bias before label inference. To tackle the

novel-class embedding degeneration problem , we propose to transfer

the pre-trained base-class embedding to the novel-class embedding by adopt-

ing unsupervised contrastive training (He et al. 2020, Chen et al. 2020) on

the extra unlabeled novel-class data. Constraining the distances between the

augmented positive pairs while pushing the negative ones distant, the pro-

posed transfer scheme captures the novel-class distribution implicitly. This

strategy effectively avoids the possible overfitting of retraining feature em-

bedding on the few labeled instances.

By integrating the Poisson learning and the novel-class-specific embed-

ding, the proposed PTN model can fully explore the auxiliary information of

extra unlabeled data for SSFSL tasks. The contributions are summarized as

follows:

• We propose a Poisson learning based method to improve the capacity

of mining the relations between the labeled and unlabeled data for
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graph-based SSFSL.

• We propose to adopt unsupervised contrastive learning in the represen-

tation learning with extra unlabeled data to improve the generality of

the pre-trained base-class embedding for novel-class recognition.

• Comprehensive experimental analyses are conducted on RPSI and two

generic image datasets to investigate the effectiveness of PTN, and PTN

achieves state-of-the-art performance.

5.2 Methodology

5.2.1 Problem Definition

In the standard few-shot learning, there exists a labeled support set S of C

different classes, S = {(xs, ys)}K×Cs=1 , where xs is the labeled sample and ys

denote its label. We use the standard basis vector ei ∈ RC to represent the

i-th class, i.e., ys ∈ {e1, e2, . . . , eC}. Given an unlabeled query sample xq

from the query set Q = {xq}Vq=1, the goal is to assign the query to one of the

C support classes. The labeled support set and unlabeled query set share

the same label space, and the novel-class dataset Dnovel is thus defined as

Dnovel = S ∪ Q. If S contains K labeled samples for each of C categories,

the task is noted as a C-way-K-shot problem. It is far from obtaining an

ideal classifier with the limited annotated S. Therefore, few-shot models

usually utilize a fully annotated dataset, which has similar data distribution

but disjoint label space with Dnovel as an auxiliary dataset Dbase noted as the

base-class set.

For the semi-supervised few-shot learning (SSFSL), we have an extra

unlabeled support set U = {xu}Nu=1. These additional N unlabeled samples

are usually from each of the C support classes in standard-setting or other

novel-class under distractor classification settings. Then the new novel-class

dataset Dnovel is defined as Dnovel = S ∪ Q ∪ U . The goal of SSFSL is
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Figure 5.1: The overview of the proposed PTN. A feature embedding fθ0

is pre-trained from the base-class set using standard cross-entropy loss first.

This embedding is then fine-tuned with the external novel-class unlabeled

data by adopting unsupervised transferring loss �UT to generate fθ. Finally,

we revise a graph model named PoissonMBO to conduct the query label

inference. We also denote the Novel-Class Unlabel Set (U), Support Set (S),

and Query Set (Q) with different colors and shapes.

to maximize the value of the extra unlabeled data to improve the few-shot

methods.

For a clear understanding, the details of the proposed PTN are introduced

as follows: we first introduce the proposed Representation Learning, and then

we illustrate the proposed Poisson learning model for label inference.

5.2.2 Representation Leaning

The representation learning aims to learn a well-generalized novel-class em-

bedding through Feature Embedding Pre-training and Unsupervised Embed-

ding Transfer.
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Feature Embedding Pre-training

On the left part of Figure 5.1, the first step of PTN is the feature embedding

pre-training. By employing the cross-entropy loss to train the encoder with

Dbase, we obtain the base encoder fθ0 in a fully-supervised way, which is the

same as (Chen et al. 2018, Yu et al. 2020, Tian et al. 2020). This stage can

generate powerful embedding for the downstream few-shot learner.

Unsupervised Embedding Transfer

Directly employing the pre-trained base-class embedding for the novel-class

may suffer from the degeneration problem. However, retraining the base-

class embedding with the limited labeled instances is easy to lead to overfit-

ting. How can we train a novel-class embedding to represent things beyond

labels when our only supervision is the limited labels? Our solution is unsu-

pervised contrastive learning. Unsupervised learning, especially Contrastive

learning (He et al. 2020, Chen et al. 2020), recently has shown great po-

tential in representation learning for various downstream vision tasks, and

most of these works training a model from scratch. However, unsupervised

pre-trained models perform worse than fully-supervised pre-trained models.

Unlike previous works, we propose to adopt contrastive learning to retrain

the pre-trained embedding with the unlabeled novel data. In this way, we

can learn a decent novel-class embedding by integrating the fully-supervised

pre-trained scheme with unsupervised contrastive fine-tuning.

Specifically, for a minibatch of n examples from the unlabeled novel-class

subset Ui = {xu}nu=1, randomly sampling two data augmentation operators

t, t′ ∈ T , we can generate a new feature set Z = {Zt = {fθ0 ◦ t(xu)}nu=1} ∪
{Zt′ = {fθ0 ◦ t′(xu)}nu=1}, resulting in n pairs of feature points. We treat each

feature pair from the same raw data input as positive pair and the other

2(n−1) feature points as negative samples. Then the contrastive loss for the

minibatch is defined as

`cont = −
n∑

i,j=1

log
exp (cosine (zi, zj) /τ)∑
k 6=i exp (cosine (zi, zk) /τ)

, (5.1)
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where zi, zj denote a positive feature pair from Z, τ is a temperature

parameter, and cosine(·) represents the cosine similarity. Then, we adopt a

Kullback-Leibler divergence (`KL) between two feature subsets Zt and Zt′ as

the regulation term. Therefore, the final unsupervised embedding transfer

loss `UT is defined as

`UT = `cont + λ`KL(Zt ‖ Zt′). (5.2)

By training the extra unlabeled data with this loss, we can learn a robust

novel-class embedding fθ from fθ0 .

5.2.3 Poisson Label Inference

Previous studies (Zhu et al. 2003, Zhou, Bousquet, Lal, Weston & Schölkopf

2004, Zhu, Lafferty & Rosenfeld 2005, Liu et al. 2018, Ziko et al. 2020)

indicate that the graph-based few-shot classifier has shown superior perfor-

mance against inductive ones. Therefore, we propose constructing the clas-

sifier with a graph-based Poisson model, which adopts a different optimizing

strategy with representation learning. Poisson model (Calder et al. 2020)

has been proved superior over traditional Laplace-based graph models (Zhu

et al. 2003, Zhou et al. 2004) both theoretically and experimentally, especially

for the low label rate semi-supervised problem. However, directly applying

this model to the few-shot task will suffer from a cross-class bias challenge

caused by the data distribution bias between support data (including labeled

support and unlabeled support data) and query data.

Therefore, we revise this powerful model by eliminating the support-query

bias as the classifier. We explicitly propose a query feature calibration strat-

egy before the final Poisson label inference. It is worth noticing that the

proposed graph-based classifier can be directly appended to the pre-trained

embedding without adopting the unsupervised embedding transfer training.

We dob this baseline model as Decoupled Poisson Network (DPN ).
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Query Feature Calibration

The support-query data distribution bias, also referred to as the cross-class

bias (Liu, Song & Qin 2020), is one of the reasons for the degeneration of the

few-shot learner. In this chapter, we design a simple but effective mechanism

to eliminate this distribution bias for Poisson graph inference. For a SSFSL

task, we fuse the labeled support set S and the extra unlabeled set U as the

final support set B = S ∪ U . We denote the normalized embedded support

feature set and query feature set as Zb = {zb} and Zq = {zq}, and the

cross-class bias is defined as

∆cross = Ezb∼pB [zb]− Ezq∼pQ [zq]

=
1

|B|

|B|∑
b=1

zb −
1

|Q|

|Q|∑
q=1

zq.
(5.3)

We then add the bias ∆cross to query features. To such a degree, support-

query bias is somewhat eliminated. After that, a Poisson MBO model is

adopted to infer the query label.

The Poisson Merriman–Bence–Osher Model

We denote the embedded feature set as Znovel = Zb ∪ Zq = {z1, z2, . . . , zm}
(m = K × C + N + V ), where the first K × C feature points belong to the

labeled support set, the last V feature points belong to the query set, and the

remaining N points denote the unlabeled support set. We build a graph with

the feature points as the vertices, and the edge weight wij is the similarity

between feature point zi and zj, defined as wij = exp
(
−4 |zi − zj|2 /dK (zi)

2),
where dK (zi)

2 is the distance between zi and its K-th nearest neighbor. We

set wij ≥ 0 and wij = wji. Correspondingly, we define the weight matrix

as W = [wij], the degree matrix as D = diag([di =
∑m

j=1wij]), and the

unnormalized Laplacian as L = D −W . As the first K × C feature points

have the ground-truth label, we use ȳ = 1
K×C

∑K×C
s=1 ys to denote the average

label vector, and we let indicator Iij = 1 if i = j, else Iij = 0. The goal of this
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model is to learn a classifier g : z → RC . By solving the Poisson equation:

Lg (zi) =
K×C∑
j=1

(yj − ȳ) Iij for i = 1, . . . ,m, (5.4)

satisfying
∑m

i=1

∑m
k=1wikg (zi) = 0, we can then result in the label prediction

function g(zi) = (g1(zi), g2(zi), . . . , gC(zi)). The predict label ŷi of vertex zi

is then determined as ŷi = arg maxj∈{1,...,C} {gj(xi)}. Let G denote the set

of m × C matrix, which is the prediction label matrix of the all data. We

concatenate the support label to form a label matrix Y = [ys] ∈ RC×(K×C).

Let A = [Y − ȳ,0C×(m−K×C)] denotes the initial label of all the data, in

which all unlabeled data’s label is zero. The query label of Eq. (5.4) can be

determined by:

Gtp+1 = Gtp +D−1(AT − LGtp), (5.5)

where Gtp denotes the predicted labels of all data at the timestamp tp. We

can get a stable classifier g with a certain number of iteration using Eq.

(5.5). After that, we adopt a graph-cut method to improve the inference

performance by incrementally adjusting the classifier’s decision boundary.

The graph-cut problem is defined as

min
g:Z→H
(g)z=o

{
gTLg − µ

K×C∑
i=1

(yi − ȳ) · g (zi)

}
, (5.6)

where H = {e1, e2, . . . , eC} denotes the annotated samples’ label set,

(g)z = 1
m

∑m
i=1 g(zi) is the fraction of vertices to each of C classes, and

o = [o1, o2, . . . , oC ]T ∈ RC is the piror knowledge of the class size distri-

bution that oi is the fraction of data belonging to class i. With the con-

straint (g)z = o, we can encode the prior knowledge into the Poisson Model.

gTLg = 1
2

∑m
i,j=1wij(g(i) − g(j))2, this term is the graph-cut energy of the

classification given by g = [g(z1), g(z2), . . . , g(zm)]T , widely used in semi-

supervised graph models (Zhu et al. 2003, Zhu et al. 2005, Zhou et al. 2004).

In Eq.(5.6), the solution will get discrete values, which is hard to solve. To

relax this problem, we use the Merriman-Bence-Osher (MBO) scheme (Garcia-

Cardona, Merkurjev, Bertozzi, Flenner & Percus 2014) by adopting the

Ginzburg-Landau approximation:
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min
g∈SP{Z→RC}

(g)z=o

{
GLτ ′(g)− µ

K×C∑
i=1

(yi − ȳ) · g (zi)

}
,

GLτ ′(g) = gTLg +
1

τ ′

m∑
i=1

C∏
j=1

|g (zi)− ej|2 .

(5.7)

In Eq.(5.7), SP{Z → RC} represents the space of projections g : Z → RC ,

which allow the classifier g to generate any real values, instead of the discrete

value from H in Eq.(5.6). More importantly, this leads to a more efficiently

computation of the Poisson model. The Eq.(5.7) can be efficiently solved

with alternates gradient decent strategy, as shown in lines 9-20 of Algorithm

5.1.

5.2.4 Proposed Algorithm

The overall proposed algorithm is summarized in Algorithm 5.1. Given the

base-class set Dbase, novel-class set Dnovel, prior classes’ distribution o, and

other parameters, PTN will predict the query samples’ label G ∈ RV×C .

The query label ŷq is then determined as ŷq = arg max1≤j≤C Gqj. More

specifically, once the encoder fθ is learned using the base set Dbase, we employ

the proposed unsupervised embedding transfer method in Step 2 in Algorithm

5.1. After that, we build the graph with the feature set Znovel and compute

the related matrices W,D,L,A in Step 3-5. In the label inference stage

in Steps 6-20, we first apply Poisson model to robust propagate the labels

in Step 7, and then solve the graph-cut problem by using MBO scheme

in a certain Steps of gradient-descent to boost the performance. The stop

condition in Step 7 follow the constraint:
∥∥sptp −W1/

(
1TW1

)∥∥
∞ ≤ 1/m,

where 1 is a all-ones column vector, sptp = WD−1sptp−1, sp0 is a m-column

vector with ones in the first K×C positions and zeros elsewhere. Steps 9-19

are aimed to solve the graph-cut problem in Eq.(5.7), To solve the problem,

we first divide the Eq.(5.7) into E1 = gTLg − µ
∑K×C

i=1 (yi − ȳ) · g (zi) and

E2 = 1
τ ′

∑m
i=1

∏C
j=1 |g (zi)− ej|2, and then employing the gradient decent
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Algorithm 5.1 PTN for SSFSL
Input : Dbase, Dnovel = S ∪ U ∪Q,

o, µ, M1,M2,M3

Output: Query samples’ label prediction G

1 Train a base model Wφ ◦ fθ0(x) with all samples and labels from Dbase;
2 Apply unsupervised embedding transfer method to fine-tune the fθ0 with

novel unlabeled data U by using `UT in Eq. (5.2), and result in fθ;

3 Apply fθ to extract features on Dnovel as Znovel;

4 Apply query feature calibration using Eq. (5.3);

5 Compute W,D,L,A according to Znovel, G← 0m×C

6 PoissonMBO

7 Update G uisng Eq. (5.5) with given steps

8 dmx ← 1/max1≤i≤mDii, G← µG

9 for i = 1 to M1 do

10 for j = 1 to M2 do

11 G← G− dmx
(
LG− µAT

)
12 end

13 r ← ones(1, C)

for j = 1 to M3 do

14 ô← 1
n
1TProjH(G · diag(r))

r ← max (min (r + ϕ · (o− ô), υα) , υσ)

15 end

16 G← ProjH(G · diag(r))

17 end

18 G← G[m− V : m, :];
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alternative on these two energy functions. Steps 10-12 are used to optimize

E1. We optimize E2 in Steps 14-17, ProjH : RC → H is the closet point

projection, r = [r1, . . . , rC ]T (ri > 0), ϕ is the time step, and υα, υσ are

the clipping values, By adopting the gradient descent scheme in Steps 14-

17, the vector r is generated that also satisfies the constraint (g)z = o in

Eq.(5.7). After obtaining the PoissonMBO’s solution G, the query samples’

label prediction matrix is resolved by Step 20.

The main inference complexity of PTN is O(M1M2E) (Steps 9-19 in

Algorithm 5.1) , where E is the number of edges in the graph. As a graphed-

based model, PTN’s inference complexity is heavier than inductive models.

However, some studies (Liu et al. 2018, Calder et al. 2020) indicate that this

complexity is affordable for few-shot tasks since the data scale is not very big.

Moreover, we do not claim that our model is the final solution for SSFSL. We

aim to design a novel framework to well use the extra unlabeled information.

We report inference time comparison experiments in Table 5.8. The average

inference time of PTN is 13.68s.

5.3 Experiments

5.3.1 Datasets

We first validate the PTN model on the RPSI Defects dataset, as presented in

Chapter 3.2 and 4.6.1, which contains 2336 images with 39 categories. Then

we evaluate the PTN model on two generic few-shot benchmarks: miniIma-

geNet and tieredImageNet. The miniImageNet dataset (Vinyals et al. 2016)

is a subset of the ImageNet, consisting of 100 classes, and each class contains

600 images. The image size of miniImageNet is 84×84. We follow the stan-

dard split in (Vinyals et al. 2016, Tian et al. 2020) that divide the dataset into

64 base classes, 16 validation classes, and 20 test classes. The tieredImageNet

(Ren et al. 2018) is another subset of ImageNet which contains 608 classes

instead. We also adopt the standard split in (Ren et al. 2018, Liu et al. 2018)

that divides the dataset into 351 base classes, 97 validation classes, and 160
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test classes. We resize the images from RPSI Defects and tieredImageNet

to 84×84 pixels, and randomly select C classes from the novel class to con-

struct the few-shot task. Within each class, K examples are selected as the

labeled data, and V examples from the rest as queries. The extra N un-

labeled samples are selected from the C classes or rest novel classes. We

set C = 5, K = {1, 5}, V = 15 and study different sizes of N . We run 600

few-shot tasks and report the average accuracy using the 95% confidence

interval (Neyman 1937).

5.3.2 Implementation Details

Similar to previous works (Rusu, Rao, Sygnowski, Vinyals, Pascanu, Osin-

dero & Hadsell 2018, Dhillon, Chaudhari, Ravichandran & Soatto 2019, Liu

et al. 2020, Tian et al. 2020, Yu et al. 2020), we adopt the wide residual

network (WRN-28-10) (Zagoruyko & Komodakis 2016) as the backbone of

our base model Wφ ◦ fθ0 . We follow the protocols in (Tian et al. 2020, Yu

et al. 2020) fusing the base and validation classes to train the base model

from scratch. The batch size is set to 64 with SGD learning rate as 0.05 and

weight decay as 5e−4. The learning rate is reduced by 0.1 after 60 and 80

epochs. And the base model is trained with 100 epochs.

In unsupervised embedding transfer, the data augmentation T is defined

the same as (Lee, Maji, Ravichandran & Soatto 2019, Tian et al. 2020).

For fair comparisons against TransMatch (Yu et al. 2020), we conduct data

argumentation for each labeled image ten times by random transformations

and generate the prototypes of each class as labeled samples. We adopt the

SGD optimizer with a momentum of 0.9. The learning rate is initialized as

1e−3, and the cosine learning rate scheduler is used for ten epochs. The batch

size is set to 80 with λ = 1 in Eq. (5.2). For Poisson inference, we build the

graph adopting K-nearest neighbors with Gaussian weights to each sample.

We set K = 30, and the weight matrix W is summarized with wii = 0,

which accelerates the convergence of the iteration in Algorithm 5.1 without

changing the solution of Equation 5.4. We set the max tp = 100 in Step 7 of
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Algorithm 5.1 by referring to the stop constraint discussed in the Proposed

Algorithm section. We set hyper-parameters µ = 1.5,M1 = 20,M2 = 40 and

M3 = 100 empirically. Moreover, we set ϕ = 10, υα = 0.5, υσ = 1.0.

5.3.3 Experimental Results

Experimental Results on RPSI Defects Dataset

First of all, we compare the PTN with other state-of-the-art few-shot models

on the RPSI Defects dataset. During our experiments, we group the com-

pared methods into five categories, and the experimental results on the two

sets are summarized in Table 5.1. Due to the comparatively small size of the

RPSI Defects, we choose 50 unlabeled samples in each class. As indicated

in the table, PTN gets the best performance compared with both generic

few-shot learning methods and fine-grained few-shot learning methods with

a large margin, which indicates the proposed models effectively utilize the

unlabeled information for few-shot RPSI Defects recognition. More specifi-

cally, under the five-way-one-shot setting, the classification accuracy of PTN

is 74.11% vs. 68.79% TOAN:ResNet; under the five-way-five-shot setting, the

classification accuracy of PTN is 86.64% vs. 80.94% (Tian et al. 2020). Com-

pared with semi-supervised few-shot methods (TPN, LaplacianShot, Masked

Soft k-Means, and TPN-semi), PTN also achieved the best performance.

For example, in the 5-way-5-shot setting, the classification accuracy of PTN

is 86.64%, while the state-of-the-art LaplacianShot (Ziko et al. 2020) only

achieved 82.36%. This validates the effectiveness of the proposed Poisson-

based PTN models on the RPSI Defects recognition.

Experimental Results on Two Generic Datasets

In the second experiment, we conduct a further comparison of PTN and

DPN with other approaches on two benchmark datasets, and the experimen-

tal comparisons are shown in Table 5.2. With the auxiliary unlabeled data

available, our proposed PTN outperforms the metric-based and optimization-
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Methods Type Backbone
RPSI Defect

1-shot 5-shot

Matching Network (Vinyals et al. 2016) Metric, Meta ConvNet-64 50.47±0.90 65.33±0.74

Prototypical-Net (Snell et al. 2017) Metric, Meta ConvNet-256 47.54±0.89 64.97±0.76

Relation Network (Sung, Yang, Zhang, Xiang, Torr & Hospedales 2018a) Metric, Meta ConvNet-64 57.60±0.87 66.43±0.72

PABN+cpt Metric, Meta ConvNet-64 62.24±0.90 70.73±0.81

LRPABNcpt Metric, Meta ConvNet-64 64.51±0.87 77.21±0.79

TOAN Metric, Meta ConvNet-64 66.61±0.90 79.92±0.80

TOAN:ResNet Metric, Meta ResNet-12 68.79±0.85 82.07±0.78

RFS (Tian et al. 2020) Metric, Transfer ResNet-12 68.42±0.80 80.94±0.75

MAML (Finn, Abbeel & Levine 2017b) Optimization, Meta ConvNet-64 46.90±1.32 62.44±0.98

LEO (Rusu et al. 2018) Optimization, Meta WRN-28-10 63.27±0.21 75.70±0.30

MetaOptNet (Lee et al. 2019) Optimization, Meta ResNet-12 64.35±0.75 76.12±0.62

TPN (Liu et al. 2018) Transductive, Meta ConvNet-64 61.17±0.92 68.52±0.74

LaplacianShot (Ziko et al. 2020) Transductive, Transfer ResNet-12 69.18±0.22 82.36±0.09

Masked Soft k-Means (Ren et al. 2018) Semi, Meta ConvNet-128 46.77±0.43 62.89±0.21

TPN-semi (Liu et al. 2018) Semi, Meta ConvNet-64 49.54±0.18 66.62±0.15

DPN (Ours) Semi, Transfer WRN-28-10 72.21±1.24 84.53±0.90

PTN (Ours) Semi, Transfer WRN-28-10 74.11±1.10 86.64±0.78

Table 5.1: The five-way-one-shot and five-way-five-shot image classification

accuracy (%) on the RPSI Defect dataset with 95% confidence interval.

based few-shot models by large margins, indicating that the proposed PTN

model effectively utilizes the unlabeled information for assisting few-shot

recognition. By integrating the unsupervised embedding transfer and Pois-

sonMBO classifier, PTN achieves superior performance over both transduc-

tive and existing SSFSL approaches. Specifically, under the five-way-one-shot

setting, the classification accuracies are 81.57% vs. 63.02% TransMatch (Yu

et al. 2020), 84.70% vs. 80.30% LaplacianShot (Ziko et al. 2020) on miniIma-

geNet and tieredImageNet, respectively; under the five-way-five-shot setting,

the classification accuracies are 88.43% vs. 78.70% LST (Li, Sun, Liu, Zhou,

Zheng, Chua & Schiele 2019), 89.14% vs. 81.89% BD-CSPN (Liu et al. 2020)

on miniImageNet and tieredImageNet, respectively. These results demon-

strate the superiority of PTN for SSFSL tasks.

Different Extra Unlabeled Samples

We show the results of selecting different numbers of extra unlabeled in-

stances from the minImageNet dataset, as shown in Table 5.3. For Num U

= 0, PTN∗ can be viewed as the transductive model without extra unlabeled

data, where we treat query samples as the unlabeled data, and we do not
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Methods Type Backbone
miniImageNet

1-shot 5-shot

Prototypical-Net (Snell et al. 2017) Metric, Meta ConvNet-256 49.42±0.78 68.20±0.66

Relation Network (Sung et al. 2018a) Metric, Meta ConvNet-64 50.44±0.82 65.32±0.70

TADAM (Oreshkin, López & Lacoste 2018) Metric, Meta ResNet-12 58.50±0.30 76.70±0.30

DPGN (Yang, Li, Zhang, Zhou, Zhou & Liu 2020) Metric, Meta ResNet-12 67.77±0.32 84.60±0.43

RFS (Tian et al. 2020) Metric, Transfer ResNet-12 64.82±0.60 82.14±0.43

MAML (Finn et al. 2017b) Optimization, Meta ConvNet-64 48.70±1.84 63.11±0.92

SNAIL (Mishra, Rohaninejad, Chen & Abbeel 2018) Optimization, Meta ResNet-12 55.71±0.99 68.88±0.92

LEO (Rusu et al. 2018) Optimization, Meta WRN-28-10 61.76±0.08 77.59±0.12

MetaOptNet (Lee et al. 2019) Optimization, Meta ResNet-12 64.09±0.62 80.00±0.45

TPN (Liu et al. 2018) Transductive, Meta ConvNet-64 55.51±0.86 69.86±0.65

BD-CSPN (Liu et al. 2020) Transductive, Meta WRN-28-10 70.31±0.93 81.89±0.60

Transductive Fine-tuning (Dhillon et al. 2019) Transductive, Transfer WRN-28-10 65.73±0.68 78.40±0.52

LaplacianShot (Ziko et al. 2020) Transductive, Transfer DenseNet 75.57±0.19 84.72±0.13

Masked Soft k-Means (Ren et al. 2018) Semi, Meta ConvNet-128 50.41±0.31 64.39±0.24

TPN-semi (Liu et al. 2018) Semi, Meta ConvNet-64 52.78±0.27 66.42±0.21

LST (Li, Sun, Liu, Zhou, Zheng, Chua & Schiele 2019) Semi, Meta ResNet-12 70.10±1.90 78.70±0.80

TransMatch (Yu et al. 2020) Semi, Transfer WRN-28-10 62.93±1.11 82.24±0.59

DPN (Ours) Semi, Transfer WRN-28-10 79.67±1.06 86.30±0.95

PTN (Ours) Semi, Transfer WRN-28-10 82.66±0.97 88.43±0.67

Methods Type Backbone
tieredImageNet

1-shot 5-shot

Prototypical-Net (Snell et al. 2017) Metric, Meta ConvNet-256 53.31±0.89 72.69±0.74

Relation Network (Sung et al. 2018a) Metric, Meta ConvNet-64 54.48±0.93 71.32±0.78

DPGN (Yang et al. 2020) Metric, Meta ResNet-12 72.45±0.51 87.24±0.39

RFS (Tian et al. 2020) Metric, Transfer ResNet-12 71.52±0.69 86.03±0.49

MAML (Finn et al. 2017b) Optimization, Meta ConvNet-64 51.67±1.81 70.30±1.75

LEO (Rusu et al. 2018) Optimization, Meta WRN-28-10 66.33±0.05 81.44±0.09

MetaOptNet (Lee et al. 2019) Optimization, Meta ResNet-12 65.81±0.74 81.75±0.53

TPN (Liu et al. 2018) Transductive, Meta ConvNet-64 59.91±0.94 73.30±0.75

BD-CSPN (Liu et al. 2020) Transductive, Meta WRN-28-10 78.74±0.95 86.92±0.63

Transductive Fine-tuning (Dhillon et al. 2019) Transductive, Transfer WRN-28-10 73.34±0.71 85.50±0.50

LaplacianShot (Ziko et al. 2020) Transductive, Transfer DenseNet 80.30±0.22 87.93±0.15

Masked Soft k-Means (Ren et al. 2018) Semi, Meta ConvNet-128 52.39±0.44 69.88±0.20

TPN-semi (Liu et al. 2018) Semi, Meta ConvNet-64 55.74±0.29 71.01±0.23

LST (Li, Sun, Liu, Zhou, Zheng, Chua & Schiele 2019) Semi, Meta ResNet-12 77.70±1.60 85.20±0.80

DPN (Ours) Semi, Transfer WRN-28-10 82.18±1.06 88.02±0.72

PTN (Ours) Semi, Transfer WRN-28-10 84.70±1.14 89.14±0.71

Table 5.2: The five-way, one-shot and five-shot recognition accuracy (%) on

the two datasets with 95% confidence interval. We mark the best perfor-

mance in bold. The upper and lower parts of the table show the results on

miniImageNet and tieredImageNet, respectively.
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Methods Num U 1-shot 5-shot

PTN∗ 0 76.20±0.82 84.25±0.61

PTN 0 77.01±0.94 85.32±0.68

PTN 20 77.20±0.92 85.93±0.82

PTN 50 79.92±1.06 86.09±0.75

PTN 100 81.57±0.94 87.17±0.58

PTN 200 82.66±0.97 88.43±0.76

Table 5.3: The five-way-one-shot and five-way-five-shot recognition accuracy

(%) using various number of extra unlabeled samples on the miniImageNet

dataset. PTN∗ denotes that we adopt PTN as the transductive model with-

out fine-tune embedding. We mark the best results in bold.

fine-tune the embedding with query labels for fair comparisons. Contrary

to PTN∗, the proposed PTN model utilizes the query samples to fine-tune

the embedding when Num U=0. It can be observed that PTN achieves bet-

ter performances with more extra unlabeled samples, which indicates the

effectiveness of PTN in mining the unlabeled auxiliary information for the

few-shot problem.

We conduct further experiments to investigate the current semi-supervised

few-shot methods in mining the value of the unlabeled data. All approaches

are based on a pre-trained WRN-28-10 (Zagoruyko & Komodakis 2016)

model for fair comparisons. As indicated in Table 5.3.3, with more un-

labeled samples, all the models achieve higher classification performances.

Nevertheless, the proposed PTN model gets the highest performance among

the compared approaches, which validates the superior capacity of the pro-

posed model in using the extra unlabeled information for boosting few-shot

methods.
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miniImageNet 5-way-1-shot

0 20 50 100 200

TransMatch (Yu et al. 2020) - 58.43±0.93 61.21±1.03 63.02±1.07 62.93±1.11

Label Propagation (Zhou et al. 2004) 69.74±0.72 71.80±1.02 72.97±1.06 73.35±1.05 74.04±1.00

PoissonMBO (Calder et al. 2020) 74.79±1.06 76.01±0.99 76.67±1.02 78.28±1.02 79.67±1.02

DPN (Ours) 75.85±0.97 76.10±1.06 77.01±0.92 79.55±1.13 80.00±0.83

PTN (Ours) 77.01±0.94 77.20±0.92 79.92±1.06 81.57±0.94 82.66±0.97

miniImageNet 5-way-5-shot

0 20 50 100 200

TransMatch - 76.43±0.61 79.30±0.59 81.19±0.59 82.24±0.59

Label Propagation 75.50±0.60 78.47±0.60 80.40±0.61 81.65±0.59 82.60±0.68

PoissonMBO 83.89±0.66 84.43±0.67 84.94±0.82 85.51±0.81 86.30±0.65

DPN (Ours) 84.74±0.63 85.04±0.66 85.36±0.60 86.09±0.63 87.17±0.51

PTN (Ours) 85.32±0.68 85.93±0.82 86.09±0.75 87.17±0.58 88.43±0.76

Table 5.4: Accuracy with various extra unlabeled samples for different semi-

supervised few-shot methods on the miniImageNet dataset. All results are

averaged over 600 episodes. We mark the best results in bold.

Results with Distractor Classes

Inspired by (Ren et al. 2018, Liu et al. 2018, Yu et al. 2020), we further inves-

tigate the influence of distractor classes, where the extra unlabeled data are

collected from classes with no overlaps to labeled support samples. We follow

the settings in (Ren et al. 2018, Liu et al. 2018). As shown in Figure 5.2, even

with distractor class data, the proposed PTN still outperforms other SSFSL

approaches by a significant margin, which indicates the robustness of the

proposed PTN while tackling distracted unlabeled data. More specifically,

we present the experimental results of PTN on both miniImageNet (Vinyals

et al. 2016) and tieredImageneNet (Ren et al. 2018) datasets under different

settings in Table 5.5 and Table 5.6. Since PTN propagates the labels across

all samples according to the graph edges, distractor items could be harm-

ful and interfere with label propagation, as edges were built based on the

similarity between samples. Therefore, the performance degraded under the

distractor setting, as indicated in Table 5.5 and Table 5.6.
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Figure 5.2: The five-way-one-shot and five-way-five-shot classification accu-

racy (%) using different number of extra unlabeled samples on the miniIm-

ageNet dataset. w/D means with distractor classes.

The data distribution of distractor classes

Table 5.5: Distraction comparison on the miniImageNet dataset.

Methods 1-shot 5-shot 1-shot w/D 5-shot w/D

Soft K-Means (Ren et al. 2018) 50.09±0.45 64.59±0.28 48.70±0.32 63.55±0.28

Soft K-Means+Cluster (Ren et al. 2018) 49.03±0.24 63.08±0.18 48.86±0.32 61.27±0.24

Masked Soft k-Means (Ren et al. 2018) 50.41±0.31 64.39±0.24 49.04±0.31 62.96±0.14

TPN-semi (Liu et al. 2018) 52.78±0.27 66.42±0.21 50.43±0.84 64.95±0.73

TransMatch (Yu et al. 2020) 63.02±1.07 81.19±0.59 62.32±1.04 80.28±0.62

PTN (Ours) 82.66±0.97 88.43±0.67 81.92±1.02 87.59±0.61

� “w/D” means with distraction classification. In this setting, many extra

unlabeled samples are from the distraction classes, which is different from

the support labeled classes. All results are averaged over 600 episodes. We

mark the best results in bold.

5.3.4 Ablation Study

We analyze different components of PTN and summarize the results in Ta-

ble 5.7. All compared approaches are based on the pre-trained WRN-28-10
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Table 5.6: Distraction comparison on the tieredImageNet dataset.

Methods 1-shot 5-shot 1-shot w/D 5-shot w/D

Soft K-Means (Ren et al. 2018) 51.52±0.36 70.25±0.31 49.88±0.52 68.32±0.22

Soft K-Means+Cluster (Ren et al. 2018) 51.85±0.25 69.42±0.17 51.36±0.31 67.56±0.10

Masked Soft k-Means (Ren et al. 2018) 52.39±0.44 69.88±0.20 51.38±0.38 69.08±0.25

TPN-semi (Liu et al. 2018) 55.74±0.29 71.01±0.23 53.45±0.93 69.93±0.80

PTN (Ours) 84.70±1.14 89.14±0.71 83.84±1.07 88.06±0.62

> “w/D” means with distraction classification. In this setting, many extra

unlabeled samples are from the distraction classes, which is different from

the support labeled classes. All results are averaged over 600 episodes. We

mark the best results in bold.

embedding.

First of all, we investigate the graph propagation component (classifier).

It can be observed that graph-based models such as Label Propagation (Zhou

et al. 2004) and PoissonMBO (Calder et al. 2020) outperform the inductive

model TransMatch (Yu et al. 2020), which is consistent with previous re-

searches (Zhu et al. 2005, Liu et al. 2018, Ziko et al. 2020). Compared to

directly applying PoissonMBO on few-shot tasks, the proposed DPN (with-

out Unsupervised Embedding Transfer) achieves better performance,

which indicates it is necessary to perform the feature calibration to eliminate

the cross-class biases between support and query data distributions before

label inference.

For investigating the proposed unsupervised embedding transfer in repre-

sentation learning, we observe that all the graph-based models achieve clear

improvement after incorporating the proposed transfer module. For instance,

the Label Propagation obtains 1.61%, 1.86% performance gains on five-way-

one-shot and five-way-five-shot minImageNet identification. These results

indicate the effectiveness of the proposed unsupervised embedding transfer.

Finally, by integrating the unsupervised embedding transfer and graph prop-

agation classifier, the PTN model achieves the best performances compared

against all other approaches in Table 5.7.
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Methods 1-shot 5-shot

TransMatch 62.93±1.11 82.24±0.59

Label Propagation (LP) 74.04±1.00 82.60±0.68

PoissonMBO 79.67±1.02 86.30±0.65

DPN 80.00±0.83 87.17±0.51

Unsup Trans+LP a 75.65±1.06 84.46±0.68

Unsup Trans+PoissonMBO 80.73±1.11 87.41±0.63

Unsup Trans+PTN b 82.66±0.97 88.43±0.76

aUnsup Trans means Unsupervised Embedding Transfer.
bPTN consists of Unsup Trans and DPN.

Table 5.7: Ablation studies about the proposed PTN, all methods are based

on a pretrained embedding with 200 extra unlabeled samples each class on

miniImageNet for five-way-one-shot and five-way-five-shot classification (%).

Best results are in bold.

5.3.5 Inference Time

In this subsection, we present inference time experiments to investigate the

computation efficiency of PTN on the miniImageneNet (Vinyals et al. 2016)

dataset. Same as (Ziko et al. 2020), we compute the mean inference time

for each five-shot task. The results are summarized in Table 5.8. Com-

pared to inductive methods, the proposed PTN costs more time due to the

graph-based Poisson inference. However, our model achieves better classifi-

cation performance than inductive ones and other transductive models, with

affordable inference time.

5.4 Summary

In chapter 5, we studied the semi-supervised few-shot RPSI Defect and

generic image classification. We propose a Poisson Transfer Network (PTN)

to tackle the semi-supervised few-shot problems, aiming to explore the value
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Table 5.8: Mean inference time for the five-shot tasks on miniImageneNet

dataset.

Methods Inference Time (s)

SimpleShot (Wang, Chao, Weinberger & van der Maaten 2019) 0.009

LaplacianShot (Ziko et al. 2020) 0.012

Transductive fine-tune (Dhillon et al. 2019) 20.7

PTN(Ours) 13.68

of unlabeled novel-class data from two aspects. We propose to employ the

Poisson learning model to capture the relations from the few labeled and un-

labeled data, which generates a more stable and informative classifier than

previous semi-supervised few-shot models. Moreover, we propose to adopt

unsupervised contrastive learning to improve the generality of the embedding

on novel classes, which avoids the possible over-fitting problem when train-

ing with few labeled samples. Integrating the two modules, the proposed

PTN can well explore the unlabeled auxiliary information boosting the per-

formance of few-shot learning. Extensive experiments indicate that PTN

outperforms state-of-the-art few-shot and semi-supervised few-shot methods

on both RPSI Defects and two generic benchmark datasets. PTN is a three-

step model for SSFSL tasks. How to improve it as an end-to-end model is an

interesting problem. Moreover, how to reduce the computation complexity

of Poisson inference is also a challengeable research issue.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis summarizes several automatic deep-learning-based methods for

Railway Power Supply Infrastructure (RPSI) defects detection. We divided

the RPSI defects detection into two stages: general object localization and

object defects recognition, and this thesis focus on object defects recognition.

Two challenges are abstracted from RPSI defects recognition: fine-grained

defects identification and few-shot model training. Moreover, we further

studied three research issues: using deep fine-grained models to deal with

RPSI defects recognition, fine-grained few-shot RPSI defects classification,

and semi-supervised few-shot RPSI defects identification.

Chapter 3 proposed a fine-grained model named Spatial Transformer And

Bilinear Low-Rank (STABLR) model and applied it to the RPSI defects

recognition. To solve the high variation within the class, we adopted the

Spatial Transformer Network. To achieve more effective performance, we

presented a Low-Rank Bilinear model. Moreover, cooperated with Sydney

Trains, we constructed a novel RPSI defects dataset. The experimental re-

sults validate that the STABLR model outperforms both hand-craft features-

based machine learning methods and classic deep neural network methods.

This chapter is supported by the conference publication at DICTA18 (Huang,
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Xu, Zhang, Wu & Kirsch 2018).

Chapter 4 proposed an Aligned Pairwise Bilinear Framework (APBF) to

deal with the fine-grained few-shot RPSI defects classification. By adopt-

ing a meta-learning training strategy, APBF can simultaneously learn to

reduce the high intra-class variance and enlarge the inter-class discrimina-

tion of the fine-grained few-shot model. We then designed three models using

APBF: PABN, LRPABN, and TOAN. PABN is the first work to adopt pair-

wise bilinear pooling for fine-grained few-shot tasks. Moreover, two simple

yet effective alignment losses are presented in the PABN model. LRPABN

model is an advanced PABN model with low-rank pairwise bilinear pool-

ing and a better alignment layer. TOAN is the last APBF-based model

that achieves state-of-the-art performance on both RPSI defects and generic

fine-grained few-shot image identification. A novel cross-attention alignment

layer and group pairwise bilinear pooling are embedded. This chapter is sup-

ported by the conference publication at ICME19 (Huang et al. 2019), the

journal publications at T-MM (Huang, Zhang, Zhang, Xu & Wu 2021) and

T-CSVT (Huang, Zhang, Yu, Zhang, Wu & Xu 2021).

Chapter 5 proposed a Poisson Transfer Network (PTN) to tackle the

semi-supervised few-shot RPSI defects classification problem. Different from

Chapter 4, PTN aims to explore the value of unlabeled testing data to boost

the few-shot models. We proposed to employ the Poisson learning model to

capture the relations between the few labeled and unlabeled data, which re-

sults in a more stable and informative classifier than previous semi-supervised

few-shot models. Moreover, we proposed to adopt contrastive learning to

improve the generality of the embedding on novel classes, which avoids the

possible over-fitting problem when training with few labeled samples. Ex-

tensive experiments indicate that PTN outperforms state-of-the-art few-shot

and semi-supervised few-shot methods on both RPSI defects and generic

few-shot image classification. This chapter is supported by the conference

publication at AAAI21 (Huang, Zhang, Zhang, Wu & Xu 2021).
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6.2 Future Work

Most recently, the few-shot detection methods (Kang, Liu, Wang, Yu, Feng

& Darrell 2019, Fan, Zhuo, Tang & Tai 2020) have been introduced to learn a

detector with limited label video frames. However, these approaches have not

been studied in automatic industrial defect detection. How to design a decent

few-shot detection model for RPSI defects inspection is an open problem and

worth studying. Moreover, some researchers investigated the cross-domain

few-shot learning problems (Tseng, Lee, Huang & Yang 2019, Guo, Codella,

Karlinsky, Codella, Smith, Saenko, Rosing & Feris 2020), which aim to trans-

fer the knowledge from different well-labeled domains to the target few-shot

domain. Cross-domain few-shot is a more realistic setting for industrial de-

fects recognition and detection tasks since the extensive auxiliary training

dataset in the industrial area is hard to obtain. Utilizing the auxiliary data

with a large domain gap for the industrial data is a challenging issue. For

future works, these issues are expected to be well-addressed.
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