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ABSTRACT

Deep reinforcement learning (DRL) has recently become a very popular topic in

the academic field. However, it usually suffers the sample inefficiency problem due

to the lack of effective exploration, instability, or temporal credit assignment issue.

High sample complexity leads to a huge computation cost and adversely affects the

employment of DRL techniques in practice. Despite many methods proposed to ad-

dress this challenge, further improvements are still needed. This thesis contributes to

developing sample-efficient DRL methods for continuous control from two perspec-

tives: single agent and multiple agents. Specifically, the key contribution includes

an uncertainty regularized policy learning method for single agent and two ensemble

learning frameworks for multiple agents. Importantly, this thesis highlights that the

multiple agents’ methods can be seen as bridging gaps among on-policy, off-policy

RL, and evolutionary algorithms. Moreover, our approach achieves consistent im-

provements over the baseline methods and gives novel insight into effectively taking

advantage of different methods to get the best of them.
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