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Abstract

The 6th-generation networks aim to further increase the average data rate and the
edge rate, decrease in energy consumption and cost, and be able to transfer the energy
at the same time. Precoding technology is one of the core technologies to achieve above
goals. This thesis conducts in-depth research on uplink and downlink
synchronous transmission scenarios, spectrum efficiency in energy-harvesting (EH)
communication scenarios and Reconfigurable Intelligent Surfaces (RIS)-aided

communication scenarios under precoding optimization methods.

Firstly, we propose a joint design of precoding matrix for base station and uplink
users, and optimize the coefficient of time fraction in the same ti me. We also propose
a joint design of precoding matrix for base station and uplink users, and optimize the

allocation of downlink and uplink bandwidth in the same time.

Secondly, this dissertation considers multi-cell and multi-user communication s-
cenario with EH, combining the fractional time method and the improper Gaussian
signaling (IGS) precoding, an iterative algorithm is designed to optimize the user’s
max-min throughput in the optimization of spectrum efficiency. Furthermore, a simpli-
fied improper Gaussian signaling precoding optimization algorithm is proposed, the

algorithm reduces the complexity of the algorithm under improper Gaussian signaling.

Thirdly, in the RIS-aided communication scenario, this dissertation proposes a joint
design of RIS and transmit beamforming under proper and improper Gaussian signaling,
and introduces the unit-modulus constraints (UMC) of RIS reflection coefficients into

the objective function which reduces the complexity of the algorithm.

Fourthly, a joint design of linear transmit beamformers and the programmable

reflecting coefficients of an RIS to maximize the geometric mean of the users’ rates is



2 List of tables

proposed. We also consider the joint design of widely linear transmit beamformers and

the programmable reflecting coefficients to further improve the GM of the users’ rates.

Finally, this dissertation considers RIS-aided wireless communication system with
EH network where the RIS links the connection between the [Us and the BS as there
is no direct path between the former and the latter. Joint optimization algorithms
for information transfer beamforming, energy transfer beamforming and reflecting
coefficients of the RIS based on transmit time-switching approach are developed. The

superiority of the proposed algorithm is verified in the simulation section.

In summary, the optimization of precoding for wireless communication systems is
studied, and method proposed in this thesis has certain significance for the theoretical

research and technical realization of wireless communication systems.
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