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Abstract

The 6th-generation networks aim to further increase the average data rate and the
edge rate, decrease in energy consumption and cost, and be able to transfer the energy
at the same time. Precoding technology is one of the core technologies to achieve above
goals. This thesis conducts in-depth research on uplink and downlink
synchronous transmission scenarios, spectrum efficiency in energy-harvesting (EH)
communication scenarios and Reconfigurable Intelligent Surfaces (RIS)-aided

communication scenarios under precoding optimization methods.

Firstly, we propose a joint design of precoding matrix for base station and uplink
users, and optimize the coefficient of time fraction in the same ti me. We also propose
a joint design of precoding matrix for base station and uplink users, and optimize the

allocation of downlink and uplink bandwidth in the same time.

Secondly, this dissertation considers multi-cell and multi-user communication s-
cenario with EH, combining the fractional time method and the improper Gaussian
signaling (IGS) precoding, an iterative algorithm is designed to optimize the user’s
max-min throughput in the optimization of spectrum efficiency. Furthermore, a simpli-
fied improper Gaussian signaling precoding optimization algorithm is proposed, the

algorithm reduces the complexity of the algorithm under improper Gaussian signaling.

Thirdly, in the RIS-aided communication scenario, this dissertation proposes a joint
design of RIS and transmit beamforming under proper and improper Gaussian signaling,
and introduces the unit-modulus constraints (UMC) of RIS reflection coefficients into

the objective function which reduces the complexity of the algorithm.

Fourthly, a joint design of linear transmit beamformers and the programmable

reflecting coefficients of an RIS to maximize the geometric mean of the users’ rates is
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proposed. We also consider the joint design of widely linear transmit beamformers and

the programmable reflecting coefficients to further improve the GM of the users’ rates.

Finally, this dissertation considers RIS-aided wireless communication system with
EH network where the RIS links the connection between the [Us and the BS as there
is no direct path between the former and the latter. Joint optimization algorithms
for information transfer beamforming, energy transfer beamforming and reflecting
coefficients of the RIS based on transmit time-switching approach are developed. The

superiority of the proposed algorithm is verified in the simulation section.

In summary, the optimization of precoding for wireless communication systems is
studied, and method proposed in this thesis has certain significance for the theoretical

research and technical realization of wireless communication systems.



Chapter 1
Introduction

This chapter starts with the motivation and scope of this thesis, then introduces some

related research topics, and finally shows outlines of this dissertation.

1.1 Motivation and Scope

With the rapid popularization of mobile smart terminals, the number of mobile terminals
has exploded in recent years. The 5th-generation(5G) wireless communication system
adopts massive multiple input multiple output (Massive MIMO), millimeter wave
(mmWave), full duplex (FD), non-orthogonal multiple access (NOMA),heterogeneous
network and other technologies to provide communication with high transmission rate,
low delay, high channel capacity, and high spectrum efficiency to meet the exponentially
increasing demand for wireless data services. With the commercialization of the 5G
wireless communication, researchers also put forward further requirements for wireless
communication, such as higher communication quality, faster indoor transmission
rate, lower energy consumption, wireless energy harvesting, etc. [1]. The industry and
academia have begun to explore the 6th-generation (6G) wireless communication system.
3GPP expects to start the standardization study of 6G wireless communication system
in 2023, and realize commercial use in 2028. The goal of the 6G wireless communication
system is to interconnect the world and provide everyone with ubiquitous wireless

connections [2]. Compared with 5G wireless communication system, 6G wireless
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communication system proposes performance requirements such as 1000 times the
peak rate, 10 times the regional spectrum efficiency, 100 times th e re gional energy
efficiency, 10 0 ti mes th e us er ex perience ra te, 10 00 ti mes th e pe ak ac cess density
and 1/10 time delay [3]. In the mean time, the system should meet the needs of
energy transmission, high physical layer security, fast data analysis, and modular
network construction [4, 5]. In order to meet the above performance indicators and
functional demand, THz communication, visible light communication, energy harvesting
communication [6], intelligent mata-surface communication [7], orthogonal multiple
access and other key technology are proposed [8]. Based on the performance indicators
and key technologies of 6G proposed recently, this dissertation conducts in-depth
research on uplink and downlink communication, energy harvesting (EH), and RIS.

Corresponding convex optimization algorithms and closed-form solutions are developed.

1.2 Problems in Next-Generation Wireless Com-

munication Systems

In order to meet the rapid popularization of mobile smart terminals and the consumers’
growing demand, many potential technologies are proposed in the next-generation
wireless communication systems. In this dissertation, uplink and downlink commu-
nication communication, energy harvesting (EH), and RIS aided communication are

investigated to improve the quality of service (QoS) of wireless communication systems.

1.2.1 Uplink and Downlink Communication

With the popularization of mobile intelligent terminals, the bandwidth required and
the demand for spectrum resources by wireless communication systems is increasing.
Uplink and downlink communication provide a solution for alleviating the strained
wireless spectrum. However, due to the influence of interference, in general, radio
communication cannot be received and transmitted in the same frequency band [9],

which means that uplink and downlink wireless communication must work in half-
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duplex mode. Some recent work attempts to break this limitation, and various in-band
full-duplex wireless communication systems have been designed and proposed [10]. The
introduction of full-duplex has a huge impact on the design of communication networks,
for example, it can double the spectrum efficiency of cellular networks. Frequency-
division duplex (FDD) uses two separate channels to transmit uplink and downlink
respectively, so that the communication system can work at full duplex mode. In-band
full-duplex can make each individual channel achieve the same performance, saving half
of the spectrum resources. The reason why full duplex is difficult to achieve is that part
of the energy of the transmission signal will be received by its own receiver and affected
by the distance. The power of the self-interference is one billion times stronger than
the power of the target received signal (100dB+-). This is an unsolved problem. All
uplink and downlink communication systems are designed to allocate transmission and
reception at different frequencies to avoid self-interference. Recently, self-interference
cancellation (SIC) technology has made significant progress. Many research teams have
simulated self-interference cancellation wireless communication systems in practical
scenarios. The results show that the development of self-interference cancellation
technology will gradually satisfy full-duplex communication demand. However, in the
long term, the next-generation wireless communication system puts forward higher
requirements such as low energy consumption and high speed, and SIC technology is
obviously difficult to meet these requirements. [11] and [12] have designed uplink and
downlink communication methods based on time slot allocation, which divide the single
time slot, so that the uplink and downlink communications are alternately transmitted
in the divided time slot. Due to the extremely short alternate transmission interval,
this method can meet the current requirements for simultaneous communication on
the uplink and downlink. At the same time, since self-interference and inter-link
interference are avoided, the spectrum utilization and energy efficiency of the system

are greatly improved.

1.2.2 Energy Harvesting

The main methods for energy harvesting communication are simultaneous wireless

information and power transfer (SWIPT) [13] and time-fraction-based information and
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power transfer (TFIPT) technology [14]. Wireless energy harvesting communication
combines wireless information transfer (WIT) and wireless power transfer (WPT),
which simultaneous transmit through same wireless media. The energy transfer in the
network brings great challenges to the processing of interference, but it also provides
the possibility for energy harvesting. Wireless energy transfer communication was first
proposed by L.R.Varshney in 2008. The author proposed the concept of "Capacity
Energy Function', and aimed at the binary discrete channel and the amplitude-
limited additive Gaussian white noise(AWGN) channel scenario, where the energy
transmission efficiency and information rate are traded off [15]. Subsequently, the
literature [16] studied the application of wireless energy transfer communication in
AWGN channel, and designed the simultaneous transmission of short-range wireless
information and energy through a coupled inductance circuit, which gives a compromise
between information rate and energy efficiency. In addition, for the scenario where
the transmitter can obtain channel state information (CSI), literature [17] studied the
joint optimization of information and energy processing schemes and receiver power
control. The study showed that the best compromise strategy is to allocate all channel
gains to energy transfer. After that, a large number of literatures have conducted
research on wireless energy transfer communication in various complex system models,
mainly including broadcast channel [18], interference channel [19], relay system [20]
and so on. Recently, research has proposed energy transmit communication based
on time slot allocation [14]. This method uses time slot allocation to use part of the
single time slot for information transfer, and then use the remaining time slot for
energy transmit, which can avoid the interference to information signals caused by
energy signal transmit. In addition, the method can separately perform precoding for
energy transfer and information transfer. During information transmission, precoding
is used to suppress noise and improve information transmission quality. During energy
transmission, precoding is used to amplify signal power to improve energy transmission

efficiency.
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1.2.3 Reconfigurable Intelligent Surfaces

In order to achieve higher transmission rates, ultra-dense networks (UDN), massive
MIMO technology and millimeter wave communication systems have been proposed one
after another [21], but these technologies still face severe consumption and hardware
consumption issues in practical applications. For example, in an UDN, the energy
consumption of circuits and cooling increases almost linearly with newly deployed
base stations, while mmWave communication requires a large number of expensive
radio frequency (RF) chains and complex signal processing technologies. On the other
hand, adding too many active devices, such as micro base stations and relays, to
the wireless communication network will cause more serious interference problems.
Therefore, researchers are still looking for energy-saving and spectral methods to assist
in achieving the requirements of next-generation wireless communication networks [22].
(23] proposed the concept of reconfigurable intelligent reflective surface to meet the
above challenges. The reconfigurable intelligent reflective surface is a planar array
containing a large number of passive devices (such as low-cost printed oscillators).
Each device in the array will be controlled by a small controller to introduce a
phase shift for each independent incident electromagnetic wave. As a key component
of traditional reflective arrays, passive reflective surfaces are widely used in radar
and satellite communications. However, since traditional reflective surfaces have a
phase shift determined during manufacture, they cannot meet the dynamics of time-
varying channel communication networks. However, the recent development of RF
micro electromechanical systems (MEMS) and meta-materials has made it possible
to reconfigurable reflective surfaces with real-time phase control [24]. By intelligently
adjusting the phases of all components on the reconfigurable intelligent reflective surface,
the signals can be coherently superimposed at the target receiving end to increase the
power of the received signal, or the signal can be destructively superimposed on the
non-target receiving end to avoid interference and strengthen the security and privacy.
In [25], Q. Wu compared RIS and related technologies such as amplify-and forward
(AF) relay [26], backscatter communication and the active reflection surface intelligence
based on massive MIMO [27], the results showed that RIS has the advantages in not
requiring a radio frequency chain, lower hardware consumption, and lower energy

consumption.
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1.3 Dissertation Outline

The outline of the dissertation is as follows:

Chapter 1

This chapter presents the motivation and scope, the research topics and the outline of
the dissertation.

Chapter 2

A brief review of proper and improper Gaussian signal. Then, an overview of convex
optimization theory is introduced.

Chapter 3

With the goal of improving the spectrum efficiency and energy efficiency of the commu-
nication system, chapter 3 studies the uplink and downlink transmission and reception
communication scenarios, and discusses full-duplex communication, half-duplex com-
munication, communication based on time slot allocation, and communication methods
based on bandwidth allocation, respectively. Corresponding spectrum efficiency and
energy efficient optimization algorithms are designed for the above communication
methods, which effectively improves the throughput and energy efficiency of the com-
munication network. The simulation results show that the algorithms based on time
slot allocation and bandwidth allocation outperform the full-duplex communication and
half-duplex communication algorithms, and the joint optimization algorithm based on
time slot allocation is better than the joint optimization algorithm based on bandwidth

allocation. The work in this chapter has been published in:

« H. Yu, H. D. Tuan, T. Q. Duong, H. V. Poor and Y. Fang, "Optimization for
Signal Transmission and Reception in a Macrocell of Heterogeneous Uplinks and

Downlinks". IEEE Transactions on Communications, 2020, 68(11): 7054-7067.

Chapter 4

Chapter 4 studies the energy harvesting network based on improper Gaussian signaling
in the multi-cell and multi-user scenario, which the covariance information of the signal
is used in the optimization to obtain the optimal minimum throughput. Compared with
the algorithms based on proper Gaussian signals, IGS based algorithms have better

spectrum efficiency and information confidentiality, but the algorithm complexity is
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also higher. To lower the algorithm complexity, a simplified improper gaussian signaling
(s-IGS) algorithm is proposed. Compared with the regular IGS algorithm, s-IGS based
algorithm has faster convergence speed and the complexity degree of the algorithm is

greatly reduced. The work in this chapter has been published in:

H. Yu, H. D. Tuan, T. Q. Duong, Y. Fang and L. Hanzo, "Improper Gaussian
Signaling for Integrated Data and Energy Networking". IEFEE Transactions on
Communications, 2020, 68(6): 3922-3934.

o H. Yu, H. D. Tuan, A. A. Nasir, T. Q. Duong and L. Hanzo, "Improper Gaussian
Signaling for Computationally Tractable Energy and Information Beamforming'".
IEEE Transactions on Vehicular Technology, 2020, 69(11): 13990-13995.

o« H. Yu, H. D. Tuan, A. A. Nasir, M. Debbah and Y. Fang, "Regularized Zero
Forcing Beamforming for Serving More Users in Energy-Harvesting Enabled
Networks". Proceedings of 2020 IEEE Tenth International Conference on Com-
munications and Electronics (ICCE), Vietnam, 2020: 51-56.

o« H. Yu, H. D. Tuan, A. A. Nasir, M. Debbahd and Y. Fang, "New Generalized
Zero Forcing Beamforming for Serving More Users in Energy-Harvesting Enabled
Networks". Physical Communication, 50(2022): 101500.

Chapter 5

RIS-aided communication system is studied in this chapter. Aiming at the minimum
achievable throughput and spectrum efficiency optimization, a joint optimization
algorithm of precoding and PRCs is proposed, which improves users minimum achievable
throughput. In the mean time, the design of the optimization algorithm under the IGS
is also considered, and the covariance information of the signal is used to further improve
the spectrum efficiency of the communication system. The simulation experiment
considered two common scenarios: direct channel between the base station and the user
and the direct channel between the base station and the user is blocked by obstacles.
The results show that optimizing the reflection phase of the reconfigurable intelligent
reflector is helpful to the spectrum efficiency of the communication system. The
improvement is significant when the direct channel between the base station and the

user is blocked by obstacles, and the minimum achievable throughput of IGS based
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algorithms outperforms that of PGS based algorithms. The work in this chapter has
been published in:

e H. Yu, H. D. Tuan, A. A. Nasir, T. Q. Duong and H. V. Poor, "Joint De-
sign of Reconfigurable Intelligent Surfaces and Transmit Beamforming under

Proper and Improper Gaussian Signaling". IEEE Journal on Selected Areas in
Communications, 2020, 38(11): 2589-2603.

Chapter 6

In this chapter, a RIS-aided network which relies on a multiple antenna array aided
base station and a RIS for serving multiple single antenna downlink users is studied.
In order to further reduce the complexity of the algorithm, an optimization method
based on closed-form solutions is proposed. In the mean time, the geometric mean
(GM) rate is set as the optimization target to improve the communication efficiency of
the system while ensuring the edge users’ rate. Sum rate optimization and GM rate
optimization results are compared in the simulation section which demonstrates the

superior of the proposed algorithms. The work in this chapter has been published in:

« H. Yu, H. D. Tuan, E. Dutkiewicz, H. V. Poor and L. Hanzo, "Maximizing
the Geometric Mean of User-Rates to Improve Rate-Fairness: Proper vs. Im-

proper Gaussian Signaling". IEEE Transactions on Wireless Communications,

2021,21(1):295-309.

Chapter 7

A network of a multi-antenna array base station and a RIS to deliver both information
to information users and power to energy users is discussed in this chapter. To provide
reliable links for all users over the same time-slot, we adopt the transmit time-switching
approach, under which information and energy are delivered over different time-slot
fractions. This allows us to rely on conjugate beamforming for energy links and
zero-forcing /regularized zero-forcing beamforming (ZFB/RZFB) and on the PRCs
of the RIS for information links. We show that ZFB/RZFB and PRCs can be still
separately optimized in their joint design, where PRC optimization is based on iterative
closed-form expressions. We then develop a path-following algorithm for solving our

max-min [U throughput optimization problem subject to a realistic constraint on the
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quality-of-energy-service in terms of the EUs’ harvested energy thresholds. We also

propose a new RZFB for substantially improving the IUs’ throughput.

e« H. Yu, H. D. Tuan, E. Dutkiewicz, H. V. Poor and L. Hanzo, "RIS-aided Zero-
Forcing and Regularized Zero-Forcing Beamfoming in Integrated Information

and Energy Delivery'. IEEE Transactions on Wireless Communications, 2021.
(Early Access)

Chapter 8
This chapter summarizes the works of this PhD dissertation and presents the future

research developments.
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Introduction

1.4 Notation

In this section we describe our notation used in the following chapters.

Table 1.1 Notation

Notations Description

T Vector

X Matrix

X Vector variable
X Matrix variable

N e N N
R
L

— o~ o~ o~ —~ —
I A
—~
S~—

=

X>0

X >0

(X + (+)1)

vec(X)

vec(AX B)
r=(1,...,2,)7 €R"
Lx

C(0,a)

Conjugate operation
Transpose operation
Conjugate transpose operation
Inverse operation
Trace operation
trace(X)
det(.),log-determinate operation
Real part of a complex variable
Imaginary part of a complex variable
Identity matrix of size N x N
Zero matrix of size M x N
A diagonal matrix of the size n x n
xXxt
trace(X7Y)

trace( X7 X)
Expectation opteration
X is positive semi-definite matrix
X is positive definite matrix
(X + (X))
Stack the columns of the matrix X into a single column
(BT @ A)vec(X),where ® is the Kronecker product
e = (e, ... er)l e Cn
Argument of a complex number x

Circular Gaussian random variables




Chapter 2
Background

In this chapter, we briefly describe the improper Gaussian signaling. Then, the

optimization theory used in this dissertation is introduced.

2.1 Improper Gaussian signaling

In this section, we will briefly introduce proper Gaussian signal and improper Gaussian

signal. To analyze the second-order statistical properties of z = u 4 jv for x € C",

u
and u,v € R, integrating its imaginary and real parts a random vector z (z = [ } ) is
v

considered. Its mathematical expectation value can be expressed as follows [28]:

— [“] , (2.1)
o

and the covariance matrix is then formulated as

Eu
Ev

(2.2)
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where F, = E(u— i) (u— )T, Fup = E(u—p)(v— )T The augmented expectation

of = can be expressed as:

P+ J o
,Uu - ],uv

p,=Ex=Tp, = [,ux] = , (2.3)
o

:T/'LZ7 T:

x [
where z = [ T e caan represents the real to imaginary

x* I —jI
transformation, the covariance matrix of x is formulated as:

FIQ} ﬁxm
- - Fr Fp
it can observed that Fy, = F and F,, = F7:
Frx :E(x_ﬂx)(x_ﬂm)H = Fuu+ Fuy ""](qu; _Fuv) = Fagcv (2'5)
ﬁxm = E(x - Ux>($ - ,UI)T = Fuu — Fuy +J(F$; + Fuw) = ng (2'6)

Furthermore, x is a proper Gaussian signal for F,, = 0, or x is a improper Gaussian

signal.

2.2 Optimization Theory

In this section, an overview of mathematical optimization and convex optimization are
introduced.

2.2.1 Mathematical Optimization

A mathematical optimization problem usually can be expressed as:

minimize  fo(z)

(2.7)
s.t. filx) <b, i=1,...,m,
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where vector x = (21, ..., x,) is the optimization variable of the optimization problem,
function fy is the objective functions, the functions f; are constrain functions, and
(b1, ...bm) are the limits, or bounds for the constraints. The vector z* reaches its optimal
value or solution of (2.7) when fy has the smallest value among all vectors satisfy the

constraints: for any z with fi(z) < by, ..., fi(2) < by, we have fo(2) < fo(x*) [29].

As an important example, if the objective and constraint functions fy, ..., f,, are
linear and satisfy f;(ax + fy) = afi(z) + Bfi(y) for z,y € R", and a, € R, then the
optimization problem (2.7) is called a linear program. If the optimization problem is

not linear, it is called a nonlinear program.

The optimization problem (2.7) is called a linear optimization problem if the

objective and constraint functions (fo, ..., f,) are linear

filax + By) = afi(z) + Bfi(y). (2.8)

for x,y € R", and «, 8 € R [30].

2.2.2 Convex Optimization

A convex optimization problem is a class of optimization problems in which the objective

and constraint functions are convex, which means they satisfy the inequality

filax + By) < afi(z) + Bfi(y). (2.9)

for z,y € R" and «, 8 € R [30].

Comparing (2.8) and (2.9), it can be observed that convexity is more general than
linearity: inequality replaces the more restrictive equality. Since any linear program
is therefore a special circumstance of convex optimization problem, we can consider

convex optimization to be a generalization of linear programming [29].

Fundamental definitions in convex optimization are given as follows
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Definition 1 [30] Let a, b be two points of R™. The set of all x € R™ of the form

r = (1=XNa+Xb
= a+Ab—a), NeR (2.10)

is called the line through a and b. A subset M of R™ is callsed an affine set if it contains
every line through two points of it, i.e., if (1 — XN)a+ b € M for everya € M, be M,
and every A € R.

Definition 2 [30] Given two points a,b € R", the set of all points x = (1 — X)a+ Ab
such that 0 < X\ <1 is called the (closed) line segment between a and b and denoted by

[a,b]. A set C' C R" is called convex if it contains any line segment between two points

of it; in other words, if (1 — N)a+ \b € C whenever a,b e C, 0 <\ < 1.

Definition 3 [30] A function f(x) is convex, if x is on a convexr domain C, for all

r,y € Cand 0 < X\ <1, it is true that

FOz+ (1 =XNy) < Mf(@) + (1 =N f(y). (2.11)

Definition 4 [30] A function f(x) is concave, if x is on a convex domain C, for all

x,y € C and 0 < X\ <1, it is true that
fOx+ (1= Ny) = Af(2) + (1= N f(y)- (2.12)
Definition 5 [30] To the problem min{ f(z)|x € D}, a point x* € D such that
f(z") < f(x), Yz € D, (2.13)

is called a global minimizer. A point x' € D such that there exists a neighborhood W
of ' satisfying
f@) < f(x), Ve e DNW, (2.14)

1s called a local minimizer.
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A convex optimization problem is represented by

min x
st. fi(x) <0, i=1,...,m,
where f;(-),7 =0,...,m are convex functions. The most important characteristics of

such a convex optimization problem are

« Any local minimizer of (2.15) is also its global minimizer;

e (2.15) is computationally tractable for very wide classes of convex functions f;(-)

is the sense there are algorithms of polynomial complexity for its computation.






Chapter 3

Optimization for Signal
Transmission and Reception in a
Macrocell of Heterogeneous

Uplinks and Downlinks

3.1 Introduction

The Internet-of-things (IoT) is characterized by massive wireless connectivity of low
latency, which means that the future wireless communication must be cost-efficient and
environment-friendly in accommodating a plethora of wireless downlinks and uplinks
over the same time slot within a constrained communication bandwidth [31]. One of
the first and perhaps the most natural answers is the full-duplexing (FD) exploitation,
which provides means for simultaneous signal transmission and reception (STR) over the
same frequency band/bandwidth by the same base station (BS) of co-located transmit
and receive antennas [32-34]. However, the FD exploitation suffers its self-interference
(SI) bottleneck as the interference to the receive signal from the transmit signal is
expected very strong [10, 35]. Even for microcells, it is impossible to control SI under
a level so that the FD-based STR is more spectral-efficient or energy-efficient than the

conventional half-duplexing (HD)-based transmission and reception, which transmit
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and receive signal in two separated time-slots, even by using the advanced techniques
of signal processing [36-48]. Motivated by this unsolved issue of the FD exploitation,
and also originated from [14], where the information and energy are proposed to be
transferred separately over the same wireless channels within a time-slot instead of their
simultaneous transfer, it was suggested in [48, 12, 49] to use a fraction of a time-slot to
transmit signals to the relays and then the remaining complementary time-fraction to
forward the received signals at the relays to the destination end. Such time-fraction-wise
half-duplexing (HD) relaying is not only much easier implemented but is much better
than that using the FD-based relaying. Additionally, unlike FD-based relaying, which
must use a half of the relays’ antennas for receiving signals and another half of relays’
antennas for forwarding them, the time-fraction-wise HD relaying can use all available
antennas for receiving and then forwarding signals to enjoy multi-antenna diversity
in both signal transmission and reception. Time-fraction-wise based communication
is capable of improving the SISO system’s communication capacity [50, 51]. Another
approach to STR within a time-slot, which can also avoid the SI, is to transmit signal
and receive signal at the same time-slot using separated communication bandwidths,
i.e. the whole bandwidth is divided into two parts, one is used for signal transmission
and the remaining complementary one is used for signal reception. This bandwidth-
fraction-wise STR must still use a half of antennas for signal transmission and another
half of antennas for signal reception. Moreover, it can be practically implemented only

when the bandwidth parts are fixed beforehand.

The present chapter examines the three aforementioned approaches to serve a
macrocell of heterogeneous downlinks and uplinks within a time-slot. Under the FD-
based STR, the focus is to design the transmit beamformers at the BS and uplink users.
Under the time-fraction-wise STR, the focus is to jointly design the time-fraction-wise
beamformers at the BS and uplink users and time-fraction allocation, while the focus
under the bandwidth-fraction-wise STR is to jointly design the bandwidth-fraction-wise
beamformers at the BS and uplink users and bandwidth-fraction allocation. Motivated
by saving energy to control the negative impact of wireless communication in global
warming [22, 52], all these design problems aim to maximize the network energy-
efficiency (EE) under the quality-of-service (QoS) constraints for downlink and uplink
throughput. While the spectral efficiency (SE) of (microcell) FD transceivers has
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been considered previously (see e.g. [39] and references therein), its EE subject to the
downlink and uplink QoS constraints was not appropriately considered. This chapter
is the first work to consider STR over macrocell, which exploits time-fraction-wise
and bandwidth-fraction-wise beamforming. All the problems of beamforming design
are formulated as nonconcave objective function optimization subject to nonconvex
constraints, which are computationally challenging. Our further contributions are

developments of tailored path-following algorithms for their computation.

The rest of the chapter is organized as follows. Section II is devoted to the problem
of EE maximization under FD-based STR, where in the end the FD-based STR’s
drawbacks are analysed in depth. Sections III and IV then are devoted to the problem
of EE maximization under time-fraction-wise STR and bandwidth-fraction-wise STR,
which provide remedy means for the FD-based STR. Simulations are provided in
Section V to substantiate the analytical development of the previous sections, where
the SE of STR is also additionally revealed. The appendix provides some fundamental

inequalities used for deriving the equations in Sections II-IV.

3.2 FD-based STR

Fig. 3.1 FD-based STR system

Consider a macrocell of a BS serving d downlink single-antenna users termed by

DL;, j =1,...,d, and u uplink single-antenna users termed by UL;, i = 1,...,u, as
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illustrated by Fig. 3.1. The BS is equipped with n antennas. Under the FD-based
STR, n; antennas are used for signal transmission to serve the downlinks and other
ny = n — ny antennas are used for signal reception to serve the uplinks. Usually, ny > d
and n, > u are required for practical implementation. Let s§ € C with |s§| = 1 be
the information intended for DL;, which is beamformed by v; € C™ before the BS’s
transmission. Let s} € C with |s| = 1 be the information UL; intends to send to the
BS, which is allocated by power p? before the uplinks’ transmission. For notational

convenience, define

vE{; :j=1,....d},
pE{p :i=1,...,u}, D={1,...,d}.

The received signal at DL; is

Y = hfbsvjs? + Z hfbsws? + Z hﬂpis? —i—nj, ] = 1, ce ,d, (31)
dore o teD\G) =1
esired signal —_—————

DL interference UL interference

where h;,s € C™ and hj; € C are the channels from the BS to DL; and from UL; to

DL;, respectively, and n; is the background white Gaussian noise with the variance o3.

The throughput at DL; is
()2
ri(v,p) £ 1In (1 + Pilwy)I® > : (3.2)

where )\j(’l)j) = hfbs'vj, and ¢j(U,p) = ZEGD\{]’} |hfbs'l)g|2 + Z?leﬂhj’ﬂ? + O'g, which is

a convex quadratic function. At the same time, the received signal at the BS is

Yps = zu:hbs,ip,-sf%—H‘SIzd:vjéj—i—nbs (3.3)
i=1 j=1
desired signal residual S|
o]
= [hosr Posr - s |F 2 | e (3.4)
post]
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where hps; € C™ is the channel vector from UL; to the BS, nys is the background
white Gaussian noise with the variance o1I,,. Furthermore, H5T € Cm"2*™ is the
residual self-loop channel from the transmit antennas to the receive antennas at the
BS after all real-time cancelation in both analog and digital domains [53, 54]. §;
is the additive Gaussian noise with E [|5;]?] = 0%, and the SI level 0%, is the ratio
of the average SI powers before and after the SI cancelation process [55, 10, 53, 56].
The term fps = HSL Z?Zl v;5; + nps in (3.4) represents the self-loop interference plus
noise. By assuming that the entries of the self-loop channel HZ in (3.3) are treated as

independent circularly symmetric complex Gaussian random variables with zero mean

and unit variance, nips can be assumed white noise with the covariance
d
2 2 2
osr 2 |jlI° 4 s | Tns, (3.5)
j=1
which only depends on the BS transmit power and thus cannot be mitigated by the
transmit beamformer v.

Make QR decomposition

st sy - hisy] = QesRes € C™2X, (3.6)

where Qps = {Qbs,l Qbs2 - -- qbsm} € C™*™ is an unitary matrix and Rps € C"2**

is an upper rectangular matrix. It follows from (3.4) that

DP15]
P25y 5

ngbs = Rbs ? + Qbsnbs- (37)
DuSy

Upon successive interference cancellation (SIC) decoding, the throughput of s at

the BS is

2 © o\ 2
u pi|RbS(Zal)| ) .
(v, p; :ln<1—i— L i=1,...,u, 3.8
(v,pi) o(0) (3.8)

where 9us(v) £ 0%, Sjep |lojl]* + 0.
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Following e.g. [57], the consumed power P for the STR is modelled by the

following convex quadratic function
P (v,p) = (P'(v,p) + Pps + Pug, (3.9)

where P'(v,p) = Y |jv;||> + ) _p? is the total transmit power of the BS and UEs, and
jeD i=1
( is the reciprocal of drain efficiency of power amplifier, Pgs and Pyp are the circuit

power of the BS and UEs, respectively.

We consider the following design problem of downlink beamforming and uplink

power allocation to maximize the FD-based STR’s EE:

u

Z ri(v,p) + > ri(v,p)

j=1 i=1
max Pt (o, p) (3.10a)
d
s.t. > ;l|? < PEg, (3.10Db)
j=1
0<p < \PE i=1,...,u, (3.10¢)
riw,p) >rq, j=1,....d, (3.10d)
ri(v,p) >ry, 1=1,...,u, (3.10e)

where (3.10b)-(3.10c) cap the transmit power constraints, while (3.10d)-(3.10e) cap
the QoS constraints for both downlink and uplink transmission because r4 and r, are
throughput thresholds. Pgg* and Pjg* are the power budget for the BS and UL;,

respectively.

By changing variable if necessary one can replace |\;(v;)|? by (\;(v;))? for \j(v;) =
R{N\;(v;)} in (3.2), so

r§(v,p) =In (1 * W) ’
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and the downlink QoS constraint (3.10d) is equivalent to the second-order cone (SOC)

constraint

Ai(v;) = Vers —1,/1;(v, p)

(hjibsve)ep\ (5}
-V e’rd _1 (pllh],2|)?:1 7j — ]_7...,d, (311)
ot

2

while the uplink QoS constraint (3.10e) is also equivalent to the following SOC constraint

Pi| Ros(2, )| = Ver — 1y/thps(v)

CHE

Ubs/USI

=ogrver —1 J=1,...,u. (3.12)

2

Therefore, the problem (3.10) is equivalent to the following convex constrained opti-

mization problem

u

; r?('v,p) + > ri(v,p;)

i=1

PtOt(’U,p)
st (3.100), (3.10¢), (3.11), (3.12), (3.13)

L
max (v, p) =

where the computational difficulty is concentrated at its objective function ®(v,p),
which is not concave, making (3.13) a nonconvex problem. Usually, this objective is
handled by fractional programming. Let (v®), p{*)) be a feasible point for (3.10) found
from the (k — 1)th iteration. Then the so called Dinkelbach’s iteration [58] invokes
the following optimization problem to generate (v(**1) p(*¥1) at the s-th iteration:

(v pH)) at the x-th iteration:

u

d
max > rd(.p) + 3 (w,p) — (), o) P, p)
) J:l

=1

s.t. (3.100), (3.10¢), (3.11), (3.12). (3.14)
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However, this problem is still nonconvex and thus computationally intractable as the
first two terms in its objective function, which constitute the numerator of the objective
function ®(v,p) in (3.13) are not concave. Our previous works [48, 59] have proposed to
optimize the fractional objective function f(v,p) in (3.12), avoiding the computational
intractable iteration (3.14). We now develop another path-following iterations, which
like (3.14) generate a sequence {f(v™*), p*))} of improved values of the objective in
(3.12) but in contrast to (3.14) invoke a simple quadratic optimization problem at each

iteration and thus are very computationally efficient.

Applying the inequality (A.12) in the appendix for z = X;(v;), y = ¢¢(v,p) and
7= N7, 7= v, p) yields

4w, p) >ri" (v, p)
Y (., (F)\\2 d
8,400 _ () (A(v;7)) 5 (v, p) ) 315
R (ﬂjwﬁ“)&(v»—@( )2 80, p) (319
over the trust region
205 (V)N (0;) — (N (0§))? >0, j=1,....d, (3.16)

(3 (@$™))?
P (0 )+ (X, (08))2

where 0 < af* £ 74, p) 4265 and 0 < b5 £

Analogously, applying the inequality (A.12) in the appendix for & = p;|Rps(i,17)],
Y = Pps(v) and T = p\ | Rus(i, )], § = 1hs(v®) yields

L u(r) _ puilr) (PEH))Q + s (v ) (3.17)
! t 2p( ) 9

over the trust region

2 p, — (P >0, i=1,...u, (3.18)

7

u(8) _ufo (k) o(R) u,(x) u(k) _ (p{") | Rs (i,1)])2
where 0 < @, = (v, p"¥) 4+ 20, and b, = o G R G
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To generate the next iterative point (v+1), p(*+1)) at the sth iteration, we solve

the following convex problem :

d u
maX L( é T ’U + 7’;’('{) V,P;) — v“)) (r)) ptot v,
1, ; ,p) ; (v,p:) — f('",p"™) P (v,p)
s.t. (3.100),(3.10¢), (3.11),(3.12), (3.16), (3.18). (3.19)

Note that L® (0™ p®)) = 0 so L® (v*+D) p+1)) > 0 because (v+D), p+D) ig
the optimal solution of (3.19). This means

d u
Z (H-i—l (n+1)) + Z TZ{J,(H) (U(HH),])Z(KH))

i=1
—(I)(v( ®) pl)) prot(p(th) sty 5

d
Z 74 (D ,p n+1 )+ Z r (n+1),pl(n+1))
Jj= =1

—

> (v, p)

= Prot (/U(K/'f‘l)’p(ﬁ-‘r].))

& (Y prth) > (), p), (3.20)

i.e. (pth o+D)) can archive better results than (p*),v®)) for the nonconvex op-
timization problem (3.13). Then it is easy to show that the sequence {(p®),v()}
converges at least to a locally optimal solution of (3.13)/(3.10) [60]. It has been shown
e.g. in [14] that such a locally optimal solution often turns out to be the global one.

A pseudo-code of the proposed iterative process is given by Algorithm 1.

Algorithm 1 Full-duplex EE Optimization Algorithm
1: Initialization: Set x = 0. Calculate the initial point (v©®,p©®) by:
ming, >0, ||v;|[* + X1, p? subject to (3.10b), (3.10c), (3.11), (3.12).
2: Repeat: Generate the next feasible point (v(*+1) p(*+1) for (3.10) by solving the

convex problem (3.19). Set x := k + 1.
3: Output (v, p*)).

Although Algorithm 1 provides means for efficient computation of the FD-based
STR’s EE optimization problem (3.10), one can see the following inherent drawbacks
of FD-based STR preventing it from achieving high EE or providing high QoS:
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o The DL throughput defined by (3.2) is UL interference-limited: the UL interfer-
ence in (3.1) can be strong and uncontrolled whenever there is a UL near to a

DL.

o The UL throughput defined by (3.8) is SI-limited: the SI in (3.3), which is
proportional to the BS transmit power as (3.5) shows, is very strong due to the
co-location of BS transmit and receive antennas. It is technologically impossible
to suppress it to the background noise level even for microcells with much weaker

transmit signals.

e Only n; antennas are used for signal transmission and ny antennas are used for
signal reception, restricting the number of served downlinks and uplinks up to n,

and ny respectively.

The next two sections provide quite different STRs to resolve these drawbacks.

3.3 Time-fraction-wise STR

We now propose the first alternative approach, which not only resolves all the above
issues of (micro) FD-based STR but also works for macrocells. Still within a single
time slot, the BS uses n; antennas to transmit signal during a fraction 0 <7 < 1 of
the time-slot to serve DLs as illustrated by Fig. 3.2(a) and then users the remaining
no antennas in the remaining fraction 1 — 7 to receive signal from ULs, who are kept
silent during the first 7 fraction, as illustrated by Fig. 3.2(b). Inter-link interference

and SI are thus completely avoided.

Moreover, as illustrated by Fig. 3.3, all n antennas can be used to transmit signal
during a fraction 0 < 7 < 1 of the time-slot to serve DLs, which are then switched in a
fraction e of the time-slot to receive signal from ULs in the remaining fraction 1 —e —7.
Thus, the full number of antennas is utilized for transmission and reception with is no
inter-link interference and SI. We refer the first option as TF while the second option

as e-TF to distinguish them.
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(b)

Fig. 3.2 TF/BF STR system: (a) Signal transmit during a fraction 7 of time
slot/bandwdith; (b) Signal reception during the remaining fraction 1 — 7 of time
slot /bandwidth

Now, let 9; € C™*% be the beamforming vector for DL;, so n, = ny for TF while
n, = n for e-TF. For computational tractability, the power allocated to s} is defined by

1/p; instead of p? in the previous section.
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(b)

Fig. 3.3 e-TF STR system: (a) Signal transmit during a fraction 7 of time slot by all
antennas; (b) Signal reception during the remaining fraction n — 7 of time slot by the
same antennas

The received signal at DLU 7 is now:

g = hosst + > R vesi4ngi=1,....4d, (3.21)
T (eD\{j}

DL interference

desired signal

where iijs € C™ is the downlink channel from the BS to DL;.
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For v = {v;,j = 1,...,d}, the throughput at DL; is 7p$(v) with

pi(v) £ 1n (1 + w> , (3.22)

where \;(v;) £ ﬁj b0 and ¢d(@) £ - ]hj B 0* + o3
teD\{j}

The received signal at the BS is now
Tos =Y his 5% /\/Pi + Tibs, (3.23)
i=1

where ﬁbsi € C™ is the uplink channel from UL; to the BS (n, = ny for TF and n, =n
for e-TF), and 7 is the additive white Gaussian noise with variance og I, . Again,

making QR decomposition

[ﬁbs,l ilbsg ilbs,u} - Qbsts

with an unitary matrix Qbs of size n, x n, and an upper rectangular matrix }N%bs of size
n, X u, the uplink throughput of s¢ at the BS is (n — 7)p!(p;) with n =1 for TF and
n=1—¢ for e-FT, and

pi(pi) 2 In (1+ | Rus(i, i)/ oip:) (3.24)

For p £ {p;,i = 1,...,u}, instead of (3.9), the consumed power is modelled as
P*(v,p,7) = (P! (v,p,7) + Pgs + Pug, (3.25)
where P!(v,p,T) = TZ 9|2+ (n—7 Z 1/p; is the total transmit power of the

i=1
BS and UEs, which is no longer a convex function. The time-fraction-wise (TF-wise)
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STR’s EE optimization problem is now formulated as

T3+ (=) 3 )

oglff,%,p — Pt (5 p.7) — s.t. (3.26a)
d

TZI 9] * < P&, (3.26b)

(n—7)/pi < Péﬁ", i=1,...,u, (3.26¢)

(@) >re, j=1,....d, (3.26d)

(=7)pii) >, i=1,...,1, (3.26¢)

lo;]1> < P3™,  j=1,....4d, (3.261)

Py <pi, i=1,...,u, (3.26g)

where (3.26f) and (3.26g) caps the physical limit of transmit power rates for the BS
and ULs. Compared to the EE optimization problem (3.13) for the FD-based STR, the
problem (3.26) is more computationally difficult because not only the objective function
in (3.26) exhibits a more complex structure but all constraints (3.26b)-(3.26e) are no
longer computationally tractable because the presence of variable 7. By introducing

the variable @ = (61,05), which satisfies the convex constraint
T>1/0,>0, n—12>1/8,>0, (3.27)

the problem (3.26) is equivalently expressed by

> 6)/81 + Y2 5 p.) 6

g%i (v,p,0) 2 =1 ptot@’;’lg) (3.28a)
s.t.(3.261), (3.269), (3.27),

i |9;]]* < P5s™6,, (3.28b)

1/p; < P{;‘E;OQ, i=1,...,u, (3.28¢)

pi@) > 6irq, j=1,....d (3.28d)

pi(pi) > 6sry, i=1,... u, (3.28¢)
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for
u

1

2
P(v,x,0) 2 ¢ (Z ;1 - ) + PBS L UPYE, (3.29)
7j=1 1= 1

which becomes a convex function. Note that the constraints and (3.26f), (3.26g),
(3.27), (3.28b), and (3.28c¢) in (3.28) are now convex, while the constraints (3.28d) and
(3.28¢) are nonconvex. Let (%), p{®) §(®) be a feasible point for (3.28) found from the
(k — 1)th iteration.

Applylng the inequalities (A. 12) and (A.11) for z = ), i),y =¢5(®), t =6 and
T = )‘j(vj )7 Y= ¢?(U N, t= 91 yields

K@) > @)

R L (— |X{<~§H))‘2 . + fg(ﬁ) ) (3.30)
’ PRI @) A @)} — @) 95 ()
and
P?(QN’) > fd(n)(f) 9,)
6, ~— ’
& g _jae A3 /®)
’ TR @) N @)} — [N @) ¢5(*)
&g, (3.31)
over the trust region
2R{OG (TN N @)} — V@ >0, j=1,....4, (3.32)

where

0 <al™ = pd (@) + 265", 0 < 59 =
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and
. d () <
0 ~?,(n) QPJ (o) _'_2b?,(/-e)’
6y
0 < 140 _ |)\j(~]('n))|2
T (@8EW) + (7))o
](U ] vj 1
. d(p()
0 < 6?’(”) _ P ((H) )
(677)?

The nonconvex constraint (3.28d) is innerly approximated by the following convex

constraint
AO@) > 00, G=1,...,d (3.33)
i.e. any feasible point for (3.33) is also feasible for (3.28d).

Applying the inequalities (A.4) and (A.3) in the appendix for = p;og./|Rus(i, )2,
t =0,, and 7 = p\o /| Rus(i,1)[2, £ = 65 yields

u u,(k u,(k u,(k y
Pips) = pi (pe) £ 0™ — b (3.34)
p;
and
;'J % 7u,(k ~u,(Kk u,(k) Di ~u,(k
2 Di
where
K K K K R .7‘ 2
0.< @ = p(p) 4 50, pet) - Bl O] . (3.36)
i Ops + [ Rbs(i, 1))
and
uplEhy
7 0(5) 2 )
2
l;u7(/i) o ‘Rbs(iai)|2

Z (P02, + | Rus(i,4)[2)05"
u ('f)
59,(/@) P; (pz )

i = —

(657)%
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The nonconvex constraint (3.28e) is innerly approximated by the following convex

constraint

) >0y, i=1,.. . (3.37)

To generate the next feasible point ("1 p(=+1) ++1)) at the sth iteration, we solve

the following convex problem t:

max L®(@,p,0) 2> f7@,0,)+ Y " (@:,05) — 20, 2 0)) P! (v, p, 6)

5.t.(3.261), (3.26¢), (3.27), (3.28b), (3.32), (3.33), (3.37).  (3.38)

Note that any feasible point for the convex problem (3.38) is also feasible for the
nonconvex problem (3.28). Also, L) (509, p) §(")) = 0 so L) g+ plstD) gls+1)) >

0 at the optimal solution of (3.38) as far as (0(), p(®) A(r)) £ (pl+1) pltl) Hletl)y
Like (3.20),we then have

B(HD, Pl gDy 5 G pe) 9oy, (3.39)

ie. (90HD plvtD) g+1)) is a better feasible for (3.28) than (3%, p™) ")), As such,
the sequence {(5), p*), (%))} converges at least to a locally optimal solution of (3.28).

It is important to locate a feasible point (79, p(®, () for (3.28) for initialization
as follows: under fixed 7@ and (8\”,6%) = (1/7©),1/(n — 7)), by changing variable
if necessary one can replace |\;(@;)|? by (\;j(9;))? for \;(@;) = R{\,;(®,)} in (3.22), so

(@) =In <1+W>

and (3.26d) is equivalent to the SOC constraint

A(@) = \erd™ —1,/6;(D)
e \/ er/T(O) —_ ]_

(hfbsﬁé)ew\{j }

0d

7j:17""d7

2
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while (3.26e) is also equivalent to the following linear constraint

|Rps(i,3)| > piy/ers/=—m) —1oypg, i=1,... u. (3.40)

We then solve the following convex problem to generate (7(?), p(®))

d u

min > _|[7,]]7+ > La— (3.40), (3.40), (3.41a)

vp i i—1 Pi
d Pmax
le|6j|!2§TB(—§),|lﬁjll2§P§“, j=1....4, (3.41D)
=

1<ﬁp /P> <p;, i=1 u (3.41c)

_T]—T(O) 1y U = Pi, gy e .

Algorithm 2 summarizes our proposed computational procedure for solving (3.28).

Algorithm 2 TF-wise EE Optimization Algorithm

1: Set k = 0. For a fixed 0 < 7% < 1 solve (3.41) for a feasible point (7(*), p(®) for
(3.26) and then set 8\” = 1/7® and 65 = 1/(n — 7).

2: Repeat: Generate the next feasible point (%), p®), §)) for (3.28) by solving the
convex problem (3.38). Set k := k + 1.

3: Output (9™, p() 9)) and 7% = 1/0%”) as the optimal solution of (3.26).

3.4 Bandwidth-fraction-wise STR

Instead of time-fraction allocation for serving uplinks and downlinks, we now consider a
bandwidth allocation for their service, i.e. a portion 0 < 7 < 1 of the whole normalized
bandwidth is allocated to the downlink service, the portion e for guarding and the
remaining complementary portion (n—7) with n = 1—e is allocated to the uplink service.
Unlike two approaches presented in the previous section, this bandwidth-fraction-wise
STR can be practically implemented only when the portion 7 is determined and fixed
beforehand. In simulation, we also provide numerical for 7 = 1/2, i.e. a half of the
bandwidth is used for serving the uplinks and another half of the bandwidth is used

for serving downlinks.
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Asin (3.1), let h;ps € C™ be the channel vector from the BS to DL; and v; be the

beamformer for the information s? intended for DL;. The received signal at DL; is

92 s+ Y R s n(r).i=1,....d, (3.42)
teD\{j}

DL interference

desired signal

where n;(7) is the additive white circularly symmetric complex Gaussian noise with the
variance 7o3. Unlike (3.1), the received signal y; is now free from the UL interference

as the BS’s broadcast and ULs’ transmit are implemented in orthogonal frequency

bands.

The throughput at DL; is 7¢ (v, T) with

¢i(v,7) £ 1n (1 + m> , (3.43)

where \;(v;) £ hh; asin (3.2), and v;(v,7) & e 5y |hhvel* + 703

As in (3.4), let hps; € C™ be the channel vector from UL; to the BS, and s} be the
information UL; intends to send to the BS. The received signal at the BS is

@bs é Z hbs,i\/ITiS;] + nbs(T>7 (344)
i=1

where p; is the UL;” transmit power, and nys(T) is the additive white circularly symmetric
Gaussian noise with variance (n — 7)o2.Iy,. The achievable uplink throughput for s!

at the BS is (n — 7)Y (p;, T) with
) o N2
i(p.7) = In (1 +p7’|Rbs(l’ZZ| ) : (3.45)

The consumed power P™ is modelled by the following convex quadratic function

P (v,p) = (P (v,p) + P?5 + UPY", (3.46)

d u
where P'(v,p) £ Y |jv;||* + > _pi.
j=1 i=1
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The bandwidth-fraction-wise (BF-wise) STR’s EE optimization problem is formu-

lated as

A

max ®(v,p,7) =

0<r<lu,p
d u
> i, )+ (n—71)> (P T)
Jj=1 i=1
t. 3.47
Ptt(v, p) 5 ( a)
d
> sl < Pgg, (3.47b)
7j=1
p; < PiES, i=1,...,u, (3.47¢)
Toj(w,T) =g, j=1,....d, (3.47d)
(n—7)pi(pi,7) =10, i=1,...,u, (3.47¢)

which a nonconvex problem as the objective function is nonconcave while the downlink
and uplink QoS constraints (3.47d) and (3.47¢) are nonconvex. Like the computa-
tional approach presented in the previous sections, we now develop a lower-bounding
concave approximation for the numerator of its objective function and inner convex

approximations for its nonconvex constraints.

Let (v, p®) 7(:)) be a feasible point for (3.47) at (k — 1)th iteration. Applying
the inequalities (A.12) and (A.13) for
d,(k
) > ¢ )

N (0, (R)
7y dd,(n)_gd,(n) ’)\j(vj )‘2 Uj(’U,T)

j J (23%{(7\]'(1)](.“)))*5\].(1)3-)}_‘}\j(vj(n))|2 +Uj(v(“),7'(“))> (3.48)

and
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over the trust region (3.32), where

"dv('{) _ d K K Adv(’i) Adv('{) _
0 < a —gpj(v( ) 7l ))—1—ij 0 <0 =

_ . (3.50)

and

0 < é‘;v(n) _ QT(K)QO?(U(H),T(K)) + 2[3;'7("6)’

TN (04)]?
v (00, 7)) 4 X (082
0 < B0 = (7028 () £()).

Rdi(k)
O<bj =

Applying the inequalities (A.7) and (A.10) in the appendix for £ = p;|Rus(i,)|?,

y = (n— 7)ok and 7 = p\” | Rus(i,0) 2, § = ( — 7))oty yields

pip.) = o (p,7)
() _
A Gl _ ) (za L n=T ) | (3.51)
pi  n—1"
and
n—T)eip,r) > f 1)
. (x) Au, ()
ay 29,(/@) . Bu (Kl) pz /)7 -7 - Ci (3 52)
Z Co\e =T T '
where
() u,(x) 0 () | Rus (i, 1)
0 < as™ = @ (p), 709y 4 252 0 < p) = Z e, (3.53)
(n —7®)ops + p;" | Rps(i,4) 2
and

0 < C?L;H(H) _ 2(7] _ T(H))Wf(p(n), T(H)) + 28;17('4)7

(n — 70N | Res (4, 1)

0< @9’(”) = N
(n — 7)o + pi™) | Rus(i, 1)[2
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0 <& = (=70 (", 7).

We thus solve the following convex problem to generate the next feasible point
(D) pletd) (-1 for (3.47):

max L") (v,p,7) 2

0<rt<lu,p
d u
S )+ 30 7 1) — B0 p®) | 70) Pret(w, p)
j=1 i=1
st (3.32), (3.47b), (3.47¢), (3.54a)
oI, > g/, j=1,....d, (3.54b)
STy >re/n—1), i=1,...,u, (3.54c)

where by (3.49) and (3.52), a lower-bounding concave expression for the numerator of
the objective function in (3.47a) is provided by the first two terms in (3.54a), while by
(3.48) and (3.51) the convex constraints (3.54b) and (3.54c) provides an inner convex
expression for the nonconvex constraint (3.47d) and (3.47e), respectively. Similarly to

(3.39), it is easy to show that

Y

HpHD, ) ()Y S G(yR) ) 00y

as far as (v plst) 74Dy oL ((0) p(e) 7)) o (ps+D) pletl) 7s+1)) g g better
feasible point than (v, p) 7()) for the nonconvex optimization problem (3.47). The

sequence {(v™,p") 7)1 thus converges at least to a locally optimal solution of
(3.47).

To locate an initial feasible point (v(®, p(® 7)) for (3.47) we fix 7(®) and replace
(@))% by (A(v)))? for A;(;) = R{X;(v))} in (3.43), to make
(A (vy))?

¢(v,7) =1In <1+ 0 ,7)
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so the nonconvex downlink QoS constraint (3.47d) is equivalent to the SOC constraint

N(vy) = Vel —1yu(0,7)
_ /e,r.;_nin/T(()) . 1

hi v :
( ],bs K)EED\{]} , (355)

2

ToOd

while the nonconvex uplink QoS constraint (3.47e) is also equivalent to the following

SOC constraint

il Rus(is 1)) > B0 1 = 2Oy i =1,

We then solve the convex problem
d u
. 2
min ]521 ||v;]]* + ;:lpi s.t. (3.47b), (3.47¢), (3.55), (3.56) (3.56)

to obtain a feasible point (v, p(® 7)) for (3.47).

Algorithm 3 summarizes our proposed computational procedure for solving (3.47).

Algorithm 3 BF-wise EE Optimization Algorithm

1: Set k = 0. For a fixed 0 < 7(? < 1 solve (3.56) for a feasible point (v(@,p©® 7))
for (3.47).

2: Repeat Generate the next feasible point (v*+) p(v+1) +(++1)) for (3.47) by solving
the convex problem (3.54). Set k := x + 1.

3: OQutput (oD, ptl) rlet1))

3.5 Numerical Results

The data of wireless communications in a macrocell environment is used to weight the
pros and con of the proposed STRs. Table I taken from [61] lists important parameters
used in all simulations. The number of served downlink users and uplink users are

d = u = n/2, which also means n; = ny = n/2. For e-FT and FB, set ¢ = 0.1. * The

! According [62], the one time slot is 0.667ms and the antennas switching time is 0.02ms while the
guard band is also about 10% of the available bandwidth.
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channel vector between the BS and an user follows the line for sight (LOS) path loss
model as 10~PL10s/20h, with PLyog = 103.4 + 24.21log,, 61, where the entries of h are
independent circularly-symmetric Gaussian random variables with zero means and
unit variance and 0, (km) is their distance. The interfering channel from an UL to
a DL follows the non-line-of-sight (NLOS) path loss model as 10~ FIxros/20h,  with
PLyxpos = 131.1 + 42.81og; 02, where ﬁuu is circular-symmetric random variable with
zero means and unit variance, and ds is their distance. If not specially specified, DL
and UL users are uniformly distributed in the cell so that 6; = 0.25 km and d, = 0.1

km, respectively.

Table 3.1 Simulation Parameters

Parameter Value

Carrier frequency 2 GHz
System bandwidth 10 MHz
Maximum BS transmit power (P5g¥) 46 dBm
Maximum user transmit power (PJE*) 23 dBm

Dynamic circuit power of the BS (P5%) 6.31 W
Static circuit power of the BS (P2%) 0.5012 W
Dynamic circuit power of a UE (PYF) 4.417 W
Static circuit power of the UEs (PUF) 0.1W

s

Noise power density -174dBm/Hz

The tolerance for the algorithm convergence is set to 1074, In arriving at the final

figures, the results of 1000 Monte-Carlo runs are averaged.

3.5.1 Spectral efficiency in terms of max-min throughput

Although the chapter is mainly focused on EE optimization subject to downlink and
uplink QoS constraints, it is still of interest to know how the spectral efficiency of the

three STRs by considering the following max-min throughput optimization problem

max min{nllindr}j(v,p), min 7¥(v,p;)} st (3.100), (3.10¢) (3.57)
v, j= "

-----
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for the FD-based STR, and

max mln{ mln TS ( ), mln (77 T)pi (i)}

o<r<lwp  J=Ll..d 7 "=l
st (3.260), (3.26¢), (3.261), (3.269) (3.58)
for the TF-wise STR, and
d
o nax min{ nlnnd'r]z_:l (v, 7), mln (n T)os (pi, T) }8.4.(3.47D), (3.47¢), (3.59)

for the BF-wise STR. Obviously, these nonsmooth nonconvex optimization problems
can be solved by the Algorithms that are similar to Algorithms 1-3, which at the xth

iteration compute the following convex problem

max min{ mlndr d(s )('v p) min ot )(’U,pi)}

777777777

st (3.100), (3.10c), (3.16), (3.18), (3.60)

with 7’?’('{) and r"") defined from (3.15) and (3.17) to generate a better feasible point
(v +D) pl++D) for (3.57), and

max mm{ min f (’U 0,), min fo (zi,02)}
vpbr  J=Led il “

st (3.26f), (3.269), (3.27), (3.28b), (3.32), (3.61)

with ff’(”) and f*") defined from (3.31) and (3.35) to generate a better feasible point
(D) pletd) gletl) 21y for (3.58), and

, nax mln{ min f ('U,T) min e ,T)}s.t. (3.32),(3.47D), (3.47¢) (3.62)
T 2ov$€9,$p  g=l,...a - = 1=1,..,

with ff’(ﬁ) and f""") defined from (3.49) and (3.52) to generate a better feasible point
(v pletl) (51 for (3.59).

Fig. 3.4 plots the achievable minimum throughput under different n. Only the
achievable max-min throughput of the FD based STR is severely downgraded when
the SI 0%; increases, which is especially low for the practical range [—120, —90] dB
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of 02;. Both TF and BF outperform FD for 0%, > —110 dB. At 0%, = —90 dB, the
achievable minimum throughput by the formers is actually twice of that achievable
by the latter. The gap is wider by increasing the number of transmit antennas, which

leads to more downlink interference to uplinks under FD.
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Fig. 3.4 Achievable minimum DLU and ULU
throughput vs SI o%;

Fig. 3.5 shows the effectiveness of the optimal time fraction as e-TF clearly

outperforms the half-duplex (HD) TDD, which use all n antennas and (1 — n)/2
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fraction of the time slot for each downlink and uplink service. It also shows the benefit
of employing all antennas for both downlink and uplink services, as TF is not only
consistently outperformed by e-TF but it is also outperformed by HD TDD with n > 6.
It is not surprised that the HD FDD, which allocates (1 —7)/2 bandwidth’ portion for

each downlink and uplink service, is the worst performer.
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Fig. 3.5 Achievable minimum DLU and ULU throughput vs BS antennas number N,

Table 3.2 provides the rounded average number of iterations for the results in
Fig. 3.4, which particularly shows that all the three algorithms converge within 25

iterations.

Table 3.2 The rounded average number of iterations for implementing the
max-min-throughput Algorithms

n=2n=4|\n=6|n=12
FD-based STR(0%; = —140dB) 6 8 10 14
FD-based STR(0%; = —130dB) 7 9 11 15
FD-based STR(0%;, = —120dB) 7 10 15 16
FD-based STR(62, = —110dB) | 8 11 17 17
FD-based STR(0%; = —100dB) 10 12 18 20
FD-based STR(d%; = —90dB) 11 12 21 22
TF-wise STR 5 7 12 12
e-TF-wise STR 6 7 11 12
BF-wise STR 4 10 12 16
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Furthermore, to examine the impact of UL users to DL users in the FD-based STR
we also simulate the following scenario: DL users are still uniformly distributed over
the macrocell but there is one UL user in proximity of each DL user. Table 3.3 shows
the achievable minimum throughput by the FD-based STRs for n = 6, which is very
sensitive to the distance 9, between a DL user and its nearest UL user. The ratio of
that between that achieved for d5 = 0.05 km and that achieved for 6, = 0.005 km is

more than ten and increases as the SI 0%; increases.

Table 3.3 Achievable minimum throughput of FD-based STR (bps/Hz) under different
o and o%;

5, 02 0.05 km | 0.03 km | 0.01 km | 0.005 km
—140 dB | 3.1125 | 2.3542 | 0.9213 | 0.3214
—130 dB | 2.0376 | 1.6678 | 0.5033 | 0.2392
—120 dB | 1.4424 | 0.9874 | 0.1779 | 0.0884
—110dB | 0.8431 | 0.4879 | 0.0621 | 0.0297
—100 dB | 0.4101 | 0.1892 | 0.0203 | 0.0096
—90 dB | 0.1740 | 0.0676 | 0.0065 | 0.0031

3.5.2 EE optimization

The downlink and uplink throughput thresholds for the QoS are set as rq = 0.4 bps/Hz
and r, = 1 bps/Hz, while the circuit power at the BS and ULs are Pgg = nP?5+ PBS W
and Pyg = uPYF + PVP W and the drain efficiency of power amplifier is ¢ = 20%[63].

Fig. 3.6 shows the achievable EE by Algorithms 1-3 under various numbers (n)
of BS antennas. As expected, the achievable EE by the FD-based STR. is quickly
dropped when the SI level 0%; raises up. At o%; = —90 dB, the achievable EE by the
latter becomes double of that by the former. TF and e-TF are seen more efficient than
BF. Furthermore, e-TF outperforms TF thanks to its its exploitation of all available
antennas for its STR. As it happens to the spectral efficiency, using more antennas
in serving more users makes the FD’s EE deteriorated but improves the EE of other
STRs. They perform similarly at low SI level 0%; € [—140, —120] dB but the FD is
quickly outperformed by others for 0%, > —110 dB.
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Fig. 3.6 Achievable EE by three STRs

The rounded average number of algorithm iterations to output Fig. 3.6 is given
by Table 3.4. All the proposed algorithms are seen convergent within 45 iterations.
Compared to Table 3.2, a few more iterations are needed, which are quite expected
because the EE optimization problem is seen more complex than the spectral efficiency
optimization problem. Both Algorithms 2 and 3 exploit well the fractional structure of

the objective function without its direct approximation. All the percentage number in
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the tables represent the probability of obtaining a valid result in all Monte-Carlo runs.
The success percentage of the FD-based STR is extremely low for 0%; € [-100, —90] dB
as it hardly provides the required QoS. In contrast, the other STRs always perform well

with hundred percentage of success as they can avoid the FD inherent self-interference.

Table 3.4 The rounded average number of iterations for the convergence of Algorithms

1-3

n=2 n=4 n==~6 n =12
FD-based STR (0%, = —140 dB) | 16 (100%) | 19 (100%) | 16 (100%) | 27 (100%)
FD-based STR (0%, = —130 dB) | 17 (100%) | 20 (100%) | 22 (100%) | 22 (100%)
FD-based STR (02, = —120 dB) | 19 (99%) | 23 (100%) | 27 (94%) | 34 (100%)
FD-based STR (02, = —110 dB) | 20 (99%) | 28 (96%) | 34 (88%) | 40 (75%)
FD-based STR (02, = —100 dB) | 22 (66%) | 35 (75%) | 35 (69%) | 38 (50%)
FD-based STR (0%, = —90 dB) | 25 (2%) | 35 (17%) | 38 (3%) | 44 (6%)
TF-wise STR 14 (100%) | 11 (100%) | 10 (100%) | 10 (100%)
o-TF-wise STR 12 (100%) | 9 (100%) | 10 (100%) | 9 (100%)
BF-wise STR 19 (100%) | 10 (100%) | 22 (100%) | 18 (100%)
e-TF-wise STR (double users) | 13 (100%) | 11 (100%) | 12 (100%) | 11 (100%)

3.5.3 EE in serving doubled number of users

Until now, the e-TF and HD-TDD are purposely allowed to serve n/2 downlink users
and n/2 uplink users to accommodate comparison with other STRs. Table 3.5 provides
their achievable spectral efficiency and EE in serving double numbers of both downlink
and uplink users (n downlink users and n uplink users). The rounded averaged number
of iterations to output the EE of e-TF is given by the last row of Table 3.4. It is
reasonable to expect that their achievable EE is higher compared to that achievable by

serving n/2 donwlink users and n/2 uplink users under the same power constraints.

3.6 Conclusions

The chapter has proposed three possible techniques for implementing heterogeneous

macrocell downlink and uplink communications within one time-slot, which are the
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Table 3.5 Achievable spectral efficiency (SE) in terms of achieved minimum throughput
(bps/Hz) and EE (bps/Hz/W) in serving double users vs BS antennas number n

n=2|n=4|n=6|n=12
e-TF STR’s SE | 7.6310 | 6.9935 | 6.7696 | 6.7040
HD TDD’s SE | 6.3821 | 5.9489 | 5.8242 | 5.5425
e-TF STR’s EE | 1.0232 | 1.0996 | 1.1352 | 1.1996
HD TDD’s EE | 0.9393 | 0.9964 | 0.9996 | 1.0711

FD-based STR, fraction-time-wise STR, and bandwidth-fraction-wise STR. The three
optimization algorithms have been developed to compute the energy efficiency by joint
downlink beamforming and uplink power allocation under these STRs. As expected,
the FD hardly suitable as its inherent self-interference is not expected to be suppressed
to the level for proper implementation. Being free from the mutual interference between
downlinks and uplinks, other two techniques have been shown to be effective for STR.
Especially, the fraction-time-wise STR is very efficient and can serve many more
downlinks and uplinks as it can exploit the full number of the BS antennas for STR.
Both the fraction-time base STR and fraction-bandwidth STR. for multi-cell result in
separated down-link multi-cell systems and uplink multi-cell systems, so they can be

used in realistic cellular networks.






Chapter 4

Improper Gaussian Signaling for
Integrated Data and Energy
Networking

4.1 Introduction

The Internet-of-things (IoT) further broadens the challenges imposed on wireless
communications by demanding wireless access for not only information but also for
energy [64]. An access point may provide an information service or energy service, or
both. In terms of base stations (BSs), it is expected that they are able to transfer
not only information but also energy, requiring both high information throughput and
substantial harvested energy. In fact, signal processing conceived for high information
throughput aims for mitigating the interference at the receiver end, whilst interference

actually can be beneficial for harvesting energy.

At the time of writing, there are two popular techniques of transfering information
and energy over the same wireless medium within a time slot. The first one is the
so-called simultaneous wireless information and power transfer (SWIPT) [65-69], which
splits the received signal into two components, namely one for energy-harvesting (EH)
and one for information decoding (ID) either by power splitting or time-switching (T'S).

Its practical implementation requires a sophisticated variable power-splitter [67]. From
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a signal processing perspective, it would be counterproductive to design a common
beamformer to optimize the conflicting targets of information and energy beamforming
at the same time. The second approach is the so-called time-fraction-based information
and power transfer (TFIPT) relying on separate fractions of the time-slot [40, 70, 71],*
which may be conveniently implemented in practice and it is capable of outperforming
SWIPT. Under this approach, the EH is improved by energy beamformers, while the

information throughput is improved by information beamformers.

To improve the information throughput, which suffers from the network’s ambition
to provide EH service, we may invoke non-orthogonal multiple access (NOMA) (see e.g.
[72, 73]), in order to compensate for the EH-induced throughput loss, when supporting
multiple users. It was also shown in [73] that NOMA-based TFIPT outperforms
its SWIPT counterpart. Since the main factor limiting the network throughput is
multi-user interference, under NOMA the users of better channel conditions access
and decode the information intended for users of poorer channel conditions to subtract
it from their received signal before decoding their own information. However, this
procedure degrades the secrecy of the users of poorer channel conditions. Moreover,
the information throughput gain by NOMA is only substantial enough when the users
channel conditions are strongly differentiated. Otherwise, conventional orthogonal
multi-access (OMA) is still preferred in terms of both its information throughput and

user secrecy.

Proper Gaussian signaling (PGS) relies on proper signals is popular owing to its
ease of analysis and design, but it requires the multi-user interference (MUI) to be
completely suppressed [74]. This requirement may be eliminated by Improper Gaussian
signaling (IGS) [75, 76], which was shown to exhibit supremacy over PGS in diverse
practical scenarios, for example in single-input single-output (SISO) networks [77-84]
or in MIMO interference networks [85-89] of multiple unicast transmitter-receiver pairs,
as well as in broadcast networks [90-92] and in cognitive networks [93-95] relying on
PGS for the primary users and IGS for the secondary users. Most recently, NOMA-PGS
and NOMA-IGS was designed for multi-user multi-cell networks in [96]. In contrast
to proper Gaussian signals having arbitrary covariance, improper Gaussian signals

are characterized by the so-called augmented covariance of double size associated

LOne should not confuse this with SWIPT, which splits the received signal using time-switching.
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with a special structure involving its covariance and pseudo-covariance [75]. As such,
in contrast to PGSs which are generated by linearly beamforming proper Gaussian
sources, IGSs are generated by the widely linear beamforming of Gaussian sources,
which are determined by a pair of correlated beamforming vectors. The design of
beamforming vectors for IGS is more complex than for PGS not only because it involves
twice the number of decision variables, but more importantly, the throughput functions
are log-determinant logdet(.) even for multi-input single output (MISO) networks.
Hence their optimization problem is facing large challenging on commutating than that
the optimization of the logarithmic PGS throughput. However, as mentioned above,
NOMA PGS requires additional processing at the users of better channel conditions
to decode the information intended for the users of poorer channel conditions, and
thus jeopardizes the secrecy of weaker users. By contrast, IGS improves the users’

throughput without the above-mentioned extra NOMA-processing at the receiver end.

Against the above background, this chapter proposes IGS for energy-harvesting

aided networks with the following main contributions:

o We conceive and generate improper Gaussian signals by applying widely linear
beamforming to proper Gaussian sources to improve the information throughput
subject to EH constraints. The corresponding beamforming optimization problem
becomes nonconvex, which involves log determinant functions, and thus it is
computationally challenging. Hence a path-following computational procedure is
proposed for this nonconvex problem, which iterates between improved feasible

points and converges at least to a locally optimal solution.

 Additionally, we then develop a simplified IGS (s-IGS), which still improves the
information throughput by applying linear beamforming to improper Gaussian
sources. The resultant reduced-complexity beamforming optimization problem is

then solved by a new path-following procedure.

o The simulation results provided demonstrate that both IGS and s-IGS outperform
NOMA PGS. Hence,the information throughput can be improved without any

additional signal processing at the user end and yet the user secrecy is preserved.
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The chapter is organized as follows. Beamforming optimization problems for IGS and
s-IGS are addressed in Sections II and Section III, respectively, while the simulations
demonstrating their advantage over NOMA are provided in Section IV. Section V
concludes the chapter, which is followed by the Appendix. The Appendix develops new
fundamental matrix inequalities, which were used for developing the path-following

algorithms in Sections II and III.

4.2 System Model for improper Gaussian signal

processing

Fig. 4.1 illustrates the downlink (DL) of a N cells system, where the all the BSs
are equipped with N;-transmit antennas (TAs) serving multiple single-antenna-aided
users. In the i-th cell, there are K energy-harvesting (EH) users (EU) indexed by
(i,€1),...,(i,ex), who harvest energy transferred by the BS through the wireless
channels and thus have to be located sufficiently near to their BS. There are M
information-receiving users (IUs) indexed by (i, d,), ..., (i, dnr), who receive and decode
information transmitted by the BS through the wireless DL channels. Note that there
is a potential overlap between the sets of EUs and IUs, whenever there are users, who
receive both energy and information from the BS through the same wireless channels.
Then
Sp2{(s,e)) : s=1,....N;{=1,... K}

and
Sr={(s,dy) : s=1,...,N;4=1,...,M}

respectively represent the set of EUs and IUs. Under time-fraction-based information
and energy transfer [40, 70, 71], we use the specific fraction of time 0 < 1/t; < 1 for
power delivery, and use the remaining fraction of 0 < 1/t5 < 1 is used for information

transmit. Let hy;., € C'*™ be the channel spanning from the BS s to the EU (i, ¢;),

XL, = se,85e, € CY! be the beamformed energy signal intended for the EU (s, e,),

where v,,, € CV*! is the energy beamformer and 3,., € C is the energy symbol

with E(|3s.,[?) = 1. All 35,, s=1,...,N;¢=1,..., K are independent. The signal
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Fig. 4.1 Multi-cell energy-harvesting aided system
received by the EU (7, ¢;) is

yi"ej = Z hs’i’ersE,eg + In’i,eja (41)
(s,e0)ESE
where n; .. € C is the background noise, which is proper Gaussian with zero mean and
variance o2. Given the energy conversion efficiency 0 < ¢ < 1, the energy harvested by
the EU (i,e;) € Sg is (1/t1)CE(|yie,|*), which is®

(1/60)CTie; (Vs (4.2)
where
K
T ,ej vSE Z Z7Z,€J zeg|2~ (43)

In (4.3), the energy of the background noise n;.; and the interference from the BSs of

the other cells are low for EH and thus are ignored.

Let n;4, € C be the background noise at IU (i, d;), which is proper Gaussian with

zero mean and variance 0. For the information transfer during the remaining 1/t,

2The RF-to-harvested energy conversion function is in practice non-linear. However, there is no
generally agreed accurate function at the time of writing. Hence, to avoid obfuscating the salient
IGS-related trends, we have opted for this simple linear model.
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fraction of time, the signal received by the IU (i, d;) is

Yid; = > hs,i,djxidg + Ny, (4.4)
(s,d¢)EST
where in general, the beamformed information signal intended for the 1U (s, dy) is
denoted as x!, € CV*! in (4.4), which is improper Gaussian, i.e. E ((X£7d2)2> # 0,
and it is generated by widely linear beamforming of a normalized proper Gaussian
source g4, (E(|s54,/*) = 1 and E((s54,)%) = 0) as [96]

I _ *
Xsdy — wl,s,dzss,de+w2,8,dzss,dg (4'5)

with the aid of the beamformers w; s 4, € CM*! and wy 54, € CV**!. Then, the signal

received in (4.4) at the IU (7, d;) is rewritten as

Yid, = > Psid; (W1,5.d,55,d, + Was.d,5%.4,) + Nisd,- (4.6)
(s,d¢)€ST

By writing
Ss,d
I * * * S,a¢
(Xs,dg) - {w2,s,d5 wl,s,d4:| [* :|
S,dg

and defining w; 4, = {w; s4,,7 = 1,2}, we can express the augmented equation of (4.6)

as
_ A yi,dj
Yiad; = .
y’i,dj
o Z |:hs,i,djw1,s,dg hs,i,djw2,s,dg [Ss,d[] n [ni,dj
* * * * * *
(s,d¢)EST hs,i,dij,S,d[ hs,i,djwl,s,d[ SS,d[ ni,dj
Niia;(Wig;)bsia; + Yo Asia(wsa,)bssa, + 0y, (4.7)
(s,de)€ST\{i,d;}
for

(4.8)
* * * *
s,i,dij,s,dg hs,i,djwl,s,dg

As,i,dj (ws,dg) é |:

hs,i,djwl,s,dg hs,i,dj wQ,S,dg]
’
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which represents a linear mapping from C?V9)*! to C?*2 and

bs,q, 2 [SS’d‘ € C’ nyq = {ni’dj e C2. (4.9)
Seds N d;
It may be readily shown that
E{[bss,)2} = Lo E{ 002} = o° . (4.10)
and
E{[AS,i,dj (IwS,dz)b_sLdj]z} = [AS,i,dj (wS,de>]2' (4'11)

The throughput at the IU (i,d;) expressed in nats/sec/Hz is given by the mutual

information (MI) between #; 4, and 5; 4, computed as [97]

1
oAt (ws,) (4.12)
for
-1
ria, (ws,) = | L+ [Asa, (w50 (Via,(ws,)) |, (4.13)
and
\I;i,dj (wsl) é [As,i,dj (ws,de)]2 + 0'2[2. (414)

(s,de)eSI\{(i,d;)}
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Based on (4.2) and (4.12), we consider the following problem of max-min throughput

optimization

max s.t. 4.15a
vSE,'wSI,tZ(tl,tQ)TGRﬁ_,‘y v ( )
ria;(Ws,) > 2vte, (i, d;) € S, (4.15b)
Tie; (USE) > emgintla <i7 ej) € Sg, (4.15C)
1 1
—+—<1 4.15d
t * ty — ( )
w; .
7Z|| Ze]||2 M<RZ:17_“’N’ (4‘156)
to
v z’,e]-ll2 < P, (i,e;) € Sp; |[[wig,||* < P, (i,d;) € 81, (4.15f)

where P is the power budget granted for each BS and we have
wia, |1 = lfwyia,|[* + [[waa |,
J J J

which is the power of the widely linear beamformer in (4.5). Note that by (4.15b), v
in (4.15a) represents min q,)es, (1/2t2)rq;(ws,), i.e. it is the minimal value among
the IUs’ throughput (1/2t2)r; 4, (ws,), (¢,d;) € S;. Furthermore, en, in (4.15¢) is the
threshold of EH, so the constraint (4.15¢) sets the threshold in serving the EUs. The
constraint (4.15d) restricts the fractional-time-based implementation within a single
time slot, and (4.15e) is a typical sum-power constraint, while (4.15f) is the physical
transmission power constraint. The last three constraints (4.15d)-(4.15f) in (4.15) are

convex.

The problem (4.15) is nonconvex because the pair of constraints (4.15b) and (4.15¢)
representing the information throughput and EH power are nonconvex. To develop
a path-following algorithm for its computation, which improves its feasible value in
each iteration, we have to develop an inner convex approximation of these nonconvex

constraints.

Let (USE), w‘(:), () 4(%)) be the feasible point for (4.15) found from the (k — 1)th

iteration.
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To obtain an inner convex approximation of (4.15b) we have to derive a concave
upper bounding function approximation of its left-hand-side (LHS) and a convex lower
bounding function approximation of its right-hand-side (RHS). Applying the inequality
(A.15) in the Appendix yields the following concave upper bounding approximation of
the LHS of (4.15b):

"+ 2B Mg, (i) — (8 (A, (W) + Ui, (ws,))
> o (C)) + 2(BY) N, (wig,)) — (O, ST [Asia, (wsg,)]?)

ri,dj (wSI) Z S
(

(S,dg)ESI
— agjj}j — 02<o.<*”~>> + 2<B§f§) Aiia, (Wi g,))
- Z Agfzd dee)Ozd ASZd (wsde»
(s,de)eST
= al) —oHCI)Y + 2ABI Nsa,(wia)) — S IO A g, (weg,) [
(S,dz)ES
= 7 z(le(ws[),
where we have
K K K K -1
al = 1, (8) = ([Misa, W) (Wi, (w8)) ), (4.162)
K K K -1
Bf,d)j = (Aijia;(w gd)»H (‘Pzd(wfs,)» , (4.16b)

005 = (Vg @) — (M, (wEP + Wi, (). (4160)

Meanwhile, the RHS of (4.15b) is upper bounded as follows:

(k) (k) 2
7ty Y to
29ty < 2 (70{) + té”) . (4.17)

Using (4.16) and (4.17), the nonconvex constraint (4.15b) is innerly approximated by
the following convex constraint in the sense that any feasible point for the latter is

also feasible for the former:

i (ws) >

2
L) ) es (1.18)
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From (4.3), the LHS of (4.15¢) is seen to be convex quadratic, hence the nonconvex

constraint (4.15¢) is said to be reverse convex and can be innerly approximated by a

convex constraint by linearizing its LHS at vg:) [30]

K
SRR IR s vie} — |hise, o P> 0 (iey) € Sp, (4.19)
=1

z eg 2,2,€5 1,2,€5 “1,ey C

which was used in the previous treatises of [40, 70, 71] handling EH constraints.

We solve the following convex problem at its xth iteration, which provides a
feasible value for (4.15),the next feasible point (vg (“H) wé’?”, D)~ (DY for (4.15)
is generated by:

max v st (4.15d) — (4.15f), (4.18), (4.19). (4.20)
st,wsl,tZ(tl,tz)TeRi,’y
This convex problem involves n, = NN, (K + 2M) + 3 decision variables and m, =

1+ N(K + M + 1) quadratic constraints, hence its computational complexity is [98]

O(mZ*(n2 + m.)). (4.21)

Note that we have y"+1) > ~(%) as long as ( E;H) ngﬂ), D) (et D)) o (vg;), wgf),

t#) 4 ) because they respectively are the optimal solution and a feasible point for
(4.20). This means that (v (“H)?wé’jﬂ),t(”ﬂ),v(”“)) is a better feasible point than
(vg'g,wé”),t(“),w(” ) for (4.15). As such, the sequence {(ng,wg? )~ Y of feasible
points for (4.15) converges at least to a point satisfying the Karush-Kuh-Tucker (KKT)
condition of optimality [60]. Our previous result (see e.g. [71]) shows that such a point
often turns out to be the globally optimal solution of (4.15).

It is important to locate a feasible point (vé ), (0) 10~ for (4. 15) for initializing

the path-following procedure. Let us fix ¢ = (t(o) t2 ) and good v(*) and randomly
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generate (vgo), wS ) feasible for (4.15¢)-(4.15f). Then iterate as follows

max 7 s.t. (4.15f) (4.22a)

vSE 7wSI iy

i (ws,) > 29Ot (i,d;) € S;, (4.22b)

K

K €min (0
2[2%{( zeg) Hejhf{z ejvl ee} - | z,z,ejvz(e)g| ] Z C t(l )"7, (Z 6]) € SE? (4220)
/=1

1 & > llwig, |1” :
15(70)2||,vi,ej||2+3215W~7 <Pi=1,...,N, (4.22d)
1 j=1 2

until reaching n > 1 at (vgg, w‘(gol)) in order to guarantee that (¢, (g, ng), vg;)) is

feasible for (4.15).

Algorithm 4 represents the formal pseudo code of the above computational proce-

dure.

Algorithm 4 IGS algorithm for (4.15)

1: Initialization: Set x := 0 and iterate (4.22) for finding a good initial feasible

point (v‘(g;,wg?, )) for (4.15)
(k+1)

2: Repeat until (4.15) is reached: Generate the feasible point (vgjl), wg )
for (4.15) by solving the convex optimization problem (4.20); Reset k := xk + 1.

3 Output t =t vg, =03, and ws, = wl).

4.3 Simplified improper Gaussian signaling

In (4.5), the improper Gaussian signal xg,d , is generated as a widely linear transform
of a proper Gaussian source s;4,. By contrast, in this section, the improper Gaussian

signal x!, in (4.4) is generated as a linear transform of an improper Gaussian source

s,dp

as follows

I Nex1
Xgd, = Ws,dySs,dys Ws,dy e C™ s (423)
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where s, 4, is a normalized improper Gaussian random variable (E(|ss4,|?) = 1), which

is fully characterized by the augmented covariance defined in [75]:

Ps7dé

E(|ssq,l?)  E(s2,) ]
(E(s2,))" E(ssa,]?)

H
Ss,de] lss,dg]
Sz,dg Sz,dg
1 qs,dg]
q:,dz 1

= E

(4.24)

with qs 4, € C satisfying the following convex quadratic constraint to make it qualified

as a pseudo-covariance of s, 4,
|ea,|? < 1, (s,de) € S, (4.25)

which makes P, 4, positive definite. Note that gy 4, = 0 in (4.24) means E(s? ;) = 0,

i.e. 5,4, becomes proper.

By taking the square root according to

=0

p— 9

pl/2 — [as,dg Bs d,

s,dg T *
/Bs,de Oésvdl

in conjunction with
(1+ /1 —lasq,l?)"?

s d, = \/5 5

ds,d
ﬁs,dg - =&

V2(1 4+ /1 = |aeq )2

it can be readily shown that

~ ~%
Ss,dp = Qls,dySs,dy T /stdéss,dg

for a normalized proper Gaussian 3, 4,. Therefore (4.23) can be written in the widely

linear form

1 = <%
Xsde = Ws,dyAs,dySs,dy + ws,deﬁ&dess,dw (4'26)
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which a particular class of (4.5) associated with

w175»d£ = &Svdewszdé & w2787d£ = 657d5w87d5' (4'27)

The advantage of (4.23) over (4.5) is that for each (s,dy), the former involves only
N, + 1 complex decision variables for information beamforming (w, 4, of dimension
N, plus the complex variable qs4,), while the latter involves 2/N; complex decision

variables (w;q,, j = 1,2, each of dimension N;).

For the information transfer during the remaining 1/t fractional time, the signal

(4.4) received at the IU (i, d;) is now specified as

yi,dj = Z hs7i,djws,dg Ss7dg + ni,dj . (428)
(S,d[)ES]

By writing down its augmented form:
i d Sg N d.
[y*’djl - Z ﬁs,z‘,dj (Ws.q,) [ *’dé]] -+ [ *’dJ] , (4.29)
Yid, (s,d¢)€ST Ss,dy 1 4,

for
hs,i,djws,dg 0

* *
0 h‘s,i,djws,dg

'Cs,i,dj (ws,dg) £ [ € CQXQa

which is a linear operator from CM*! to C?*2, we can readily determine the augmented

covariance of the signal of interest in (4.28) as
D, 4, (Wi gy, Qi) = Liia; (Wiay)Pia, L7 4 (Wia,) (4.30)
and interference-plus-noise of (4.28) can be expressed in augmented covariance form as

[ig;(ws;,qs,) = > Ly, (ws,dZ)Ps,dgﬁfi,dj (Wq,) + 1. (4.31)
(s,de)eSI\(4,d5)

The information throughput at user (i, d;) is then expressed as [74]

1

TtQTi,dj (wS[7 qSI)7 (432)
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where

-1

Tid;(Ws;,As;) = In | Iy + @ g, (Wi g;, Aia,) (Fi,dj (ws, , QLS,)) (4.33)

With x[ , defined by (4.23), the problem of max-min information throughput opti-
mization subject to the EUs” harvested energy and power constraints is formulated as

follows instead of (4.15):

max ~ st (4.15¢), (4.15d), (4.25), (4.34a)
t:(tl,tz)ERi,’st,wSI,qSI,"‘/

Tid; (wsla qSI) > 27t2’ (Z7 d]) < SI’ (434b)

I-<_ Vie. 2 ]\{ W; 4. 2
Z]_1|| JH +ZJ—1|| ’dJH <Pi=1,...,N, (4.34c¢)

t1 t2

i, |2 < Passs (i) € S, (4.340)
|[w; a,]]* < Paax, (i, d;) € Sr, (4.34e)

where (4.34b) is the counterpart of (4.15b) for maximizing the IUs’ minimal throughput,
while (4.34c) and (4.34d)-(4.34e) correspond to the power constraints (4.15e) and (4.15f),
respectively. In (4.34), the constraint (4.25) is obviously convex, and the constraints

(4.15¢), (4.34c) and (4.34d)-(4.34e) are also convex just like their counterparts in (4.15).

The nonconvex constraint (4.34b) involves much fewer decision variables than
its counterpart (4.15b) but the former also contains many crossed terms between
beamformers and pseudo-covariances that require a different approximation technique.

Let (), ~(®), ng), vé’?, qé’?) be the feasible point for (4.34) found from the (x —1)th
iteration. The nonconvex constraint (4.15d) in (4.34a) is innerly approximated by
the convex constraint (4.19). However, we still have to develop an inner convex

approximation of the nonconvex constraint (4.34b).

4.3.1 Path-following iteration

Use the equivalent representation

rid,(Ws;, as;) = fidg, Wia;, Pia,) + gig,(Ws,;, ds,), (4.35)
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in conjunction with

fi,dj (’wi,dj, Pi,dj) = ’@i,dj (wi,dja qz',dj) = ‘hi,i,djwi,dj ’2 +1n ’Pi,dj \7 (4-36)

and
1 1
gi,d]' (w517 qS[) é ln (¢i,dj (wi,dja Qi,dj)) + (Fi,dj (w317 qSI)) (437)
Using the inequality (A.18) yields
fia;(Wia,,Pig;) >
2/ s, w0l 2
f% e Z("v) ST/ I e L AR Pz'(@aP;l. >
]( d d) |hiidwid~|2 < ,d;j ,dj>
fia (w3, P"”) +4— (PP )
2[hi, d; wz dj ’2 2
2§R{< )thzdhzzd'wzd} ’hzzdwzd|2
fi(,di (Wi g;, Pia;) (4.38)
over the trust region
2%{( ) h’z 7 d h‘i,i,djwi,dj} ’hz ) d w |2 (439)

Furthermore, using the inequality (A.17) in the Appendix yields

gi,dj (wSpqS[) 2
Gid; (wfs,)>q‘§s'j)) +2 - (Bz(d D, (Wig,, dig,)) — <CZ‘(72an’,dj(wS[aqsf)> =

gia, (WS q8)) +2 = aHC)Y = S (Xidysa, Wed, )P Pag,), (4.40)
(s,dg)ES[

where

O%B(K) (q)@,d] ld,qld ) ( z(d)7qz(lfi))+rld wSI’qSI )

0= C@dj £ (Fz,dj (w‘(S"j)a @Lg?)) - ((I)z d; ( Z(’Zl) 7qZ(d ) + Fz d; (wsl)a qg?)) )

||>

(4.41)
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and
Xy Wig,) 2 L0 (wia)) (B2,
Xi1d]'757d4 (w57dl) - E:,i,dj (w57d2>(07,(::l)7 )1/27 (8’ dg) S SI \ (Z7 d])

Let us introduce the positive definite matrix variables X; 4, 54, of size 2 x 2 satisfying

(4.42)

the semi-definite constraints of

2
|:Xi7dj187dl (ws,dz)i| j Xi,dj,S,dp (87 df) G SI (443)
Xi i) i,d;,s ws
o doade - XidpsddWsdd| g gy g (4.44)
(Xi,dj,s,dg (ws,d5)> I

Then, by using the inequality (A.18), we arrive at:

IN

<[Xi,dj,s,dz (wS,de)]27 Ps,de>
(Xidjsde> Poay) <
1 K — K K K —
A 0a) ™ (Kiay s P, + X33 0, Poa) (PL) AP (s.de) € 51, (445)

for
K K 2
X5 i = Xy, (wS)] . (5,dp) € S (4.46)
Hence,
Gi.d; (wsp CISI) > gff}] (Xs;, 0181) (4.47)
for

K 1 K - K K
gz(,d)j (XSU qSI) 2 — Z ||<X7,’(,dz-,s,dg) 1z (Xz‘,dﬁS,dg Ps(7d)g +X7§(,d§-,s,ngs,dz)
(S,dg)ES[

(P 211+ i, (0 ) + 2. -
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To generate the next iterative point (t(“+1),7(“+1),wgf+1),vé’jl),qgﬁﬂ)) at the xth

iteration, we solve the following convex optimization problem t

max v st (4.15d),(4.19), (4.25), (4.34¢),

tws,,qs; Vs, 7. Xs;
(4.34d) — (4.34¢), (4.39), (4.44), (4.49a)
/y(li)té’%) < ,7 t2

2
+ 2 (id) €S, (4.49b
2 (L téﬂ)) (i.d) € Sr. (4.490)

Fi wia, Pig) + o) (X, as,) >

The computational complexity of this convex problem is (4.21) is determined by
ny=3+NM(N+t+1+3M)+ K]and m. =1+ N2K +4M +1).

Note by observing (4.38) and (4.47) that the LHS of (4.49b) is a concave lower
bounding approximation of the LHS of (4.34b), while by (4.17), the RHS of (4.49b)
is a convex upper-bounding approximation of the RHS of (4.34b). Hence in fact
the convex constraint (4.49b) is an inner approximation of the nonconvex constrain-
t (4.34b). The convex problem (4.49) is then seen as an inner approximation of
the nonconvex problem (4.34). Then y*+1) > 4 as far as y(*T1) #£ ~(®) because
(¢ D) A (stD) ngﬂ), vg;“), qf;ﬂ)) and (¢, () wé?,vé’?, qgj)) are the optimal solu-
tion and a feasible point for (4.49). As such, the sequence {(t"), 4%, ng), vg;), qgj))}
generated by (4.49) is of improved feasible points for the nonconvex problem (4.34)

and it converges at least to a point satisfying the KKT condition of optimality [60].

4.3.2 Alternating descent iteration

One can see that the function 7; 4, (ws,, qs,) defined by (4.33) is complex. We therefore

develop an alternating procedure for its more efficient computation.

Alternating optimization in wg

By fixing qs, = q‘(;), we address the problem

max 7 s.t. (4.15¢), (4.15d), (4.34c), (4.34d) — (4.34e), (4.50a)

tws; vsp Y

ria (s, q8)) > 2vts, (i, d;) € S (4.50b)
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Using the inequality (A.15) in the Appendix yields

(%)
Ti,d; (wSp qSI

)
riay (08 48) = @i, () a2, (Tua, (0§ 4§)) )
PR (L (i) P Ll (0]) (T, () 060)) )

K -1 K -1

—(Tia, (0§, a8)) = (Pia, (Wil ali)) + Tia, () 68)))
;i q; (Wi a;, 6],(2) + lig; (ws;, C]};?))

i (ws,). (4.51)

>

To generate the next feasible point (¢*+1), y(+1) ngﬂ), (F1) for (4.34), we solve the

following convex problem for:

max v s.t. (4.15¢),(4.19), (4.34c¢), (4.34d) — (4.34e), (4.52a)

tws; Vs Y
A < v, b

(%)
S T
NI

ri,dj (wSI) Z

) ,(4,d;) € Sp. (4.52b)

The computational complexity of this convex problem is (4.21) determined by n, =
3+ NN{(M + K) and m. = N(3K + 2M +1).

Since the convex constraint (4.52b) is an inner approximation of the nonconvex
constraint (4.50b), the convex problem (4.52) is seen as an inner approximation of the

nonconvex problem (4.50). We then have
S > (), (4.53)

because they are the optimal and a feasible value for (4.52).

Alternating optimization in qg,
By fixing (t,ws,,vs,) = (t*"+Y), w‘(s'jﬂ) vg?l)) we address the problem

max v s.t. (4.25), (4.54a)

as; Y

ria, (ws as,) > 295 (4, d;) € Sy (4.54D)
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Using the inequality (A.16) in the Appendix yields

K+1
Ti,d; (w‘(S'I : ) qS})

rk+1 K k+1 -1 rk+1
ria, (WS, q8) + 4= (Do, (s, 68))  Tia, (W™ as,)
+1 K+1 K
— (@40, (w5, q0) + Ti, (w8, ¢8)),
K K -1
((I)zd (w; ( H),de ) + Fi,dj(wé1+1)7q81>> )

7 (as,)- (4.55)

v

[I>

To generate the next feasible point (q‘(;ﬂ) (+1)) for (4.34), we then solve the following

convex optimization problem:

max vy s.t. (4.25),

as; Y

79 (as,) > 29tV (i, d)) € S (4.56)

The computational complexity of this convex problem is (4.21) determined by n, =
14+ NM and m, = 3NM.

Note that we have v+ > ’7(’”1) > ~() provided that 41 > 5(++1) hence the
sequence { (¢, ) wé’? ng), qs, )} is of feasible points for the nonconvex problem
(4.34), which converges to a feasible point satisfying the KKT conditions for one of

two variable sets (t,vs,,ws,) and gs,, when the other is held fixed.

4.3.3 Generating a good feasible point for (4.34)

It is important to generate a good feasible point for (4.34). For this we fix t(© to

satisfy (4.15d) and qS (for instance ¢*)

s.d, = 0.2) and reasonable 7 We then randomly
(0 )

generate wg’ and USE satisfying the convex constraints (4.34c)-(4.34e). Let us set

(0)
1,05 - (0 '
(qz,dj) 1
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We then iterate

psX 1 s.t. (4.22d), (4.34d) — (4.34e), (4.57a)
R (ws,) > 29t8, (i, d;) € S, (4.57b)

i lvie P 30 [lwig, | .
0 0 <Pi=1,...,N, (4.57¢)

until we have § > 1 for guaranteeing that (t(o),fy(o)n,w‘(gi),v‘(g'?,q‘(;)) is feasible for

(4.34).

4.3.4 Algorithm

For optimizing a trade-off between the convergence speed and the solution optimality
we propose Algorithm 5, which uses the alternating optimization until its convergence
and then switches to the path-following optimization in order to converge at least to a

locally optimal solution.

Algorithm 5 s-IGS algorithm for (4.34)

1: Initialization: Fix q‘(SOI). Set x := 0 and then iterate (4.57) for finding a good
initial feasible point (Ugg,wg),t(o)) for (4.34)

2: Repeat until (4.34) is reached: Generate the feasible point (vgj;l), wé’?”, D)
for (4.34) by solving the convex optimization problems (4.52) and (4.56) of alter-
nating optimization to ; Reset k := k + 1.

3: Repeat until convergence of the objective in (4.34): Solve the convex opti-
mization problem (4.49) of path-following optimization to generate the feasible
point (v‘(s'zﬂ), w‘(s'jﬂ),t("””“)) for (4.34); Reset k := r + 1.

4: Output t =t Vs, = U‘(g';), and ws, = ng)-

4.4 Performance results

In all our simulations we consider networks of three cells (N = 3). The channel
spanning from a BS to a user at a distance of d meters is expressed as v/10-opL/10],
where opr, = 30+ 103 1og;,(d) is the path-loss in dB, and & is the Rician fading channel
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gain associated with a Rician factor of 10 dB for the EUs served by that BS only.
Otherwise, & is the normalized Rayleigh fading channel gain. The path-loss exponent 3
is set to 3 for the Rician channels and to 2 for the Rayleigh channels. The power of the
signal received by the UEs must exceed the threshold of —21 dBm with 13 nm CMOS
technology [67] to facilitate EH. We set ey, = —20 dBm, ¢ = 0.5, P = 35 dBm. The
bandwidth is set to B = 20 MHz, the power spectral density of noise is —174 dBm/Hz.

4.4.1 NOMA favored scenario
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Fig. 4.2 NOMA favored scenario

Fig. 4.2 illustrates a scenario, where K EUs (i,¢;), j = 1,..., K also act as the
first K IUs. The other K IUs (i,dk+;), 7 =1,..., K in each cells are distributed near
the cell boundary. Those IUs which are located near the cell-boundary, are not only in
poorer channel conditions than the IUs (i,d;), j = 1,..., K but are then subject to
intercell-interference. By bringing about the differentiated channel conditions between
the near 1Us (i,d;), 7 = 1,..., K and far IUs (i,dk+;), 7 = 1,..., K, such scenario
favours NOMA, helping it to perform better than the conventional OMA. Both NOMA
and OMA use proper Gaussian signal for carrying information, i.e. ¢4, = 0 in (4.24)
so the information signal x! ; defined by (4.23) or (4.5) for w, 4, = 0 is generated by
linearly beamforming of a normalized proper Gaussian source s;4,. Under OMA, each

IU (i,d;), j = 1,...,2K decodes its own information s; 4, while under NOMA each
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pair of IUs (4,d;) and (i,dg;), j =1,..., K decode the information s; g4, for the [U
(4,dk ;) and then the IU (i, d;) subtracts s; 4, , from its interference in decoding its

own information s; 4, .

Fig. 4.3 characterizes the convergence behaviour of the proposed Algorithms for
N; = 6 and K = 3, i.e. each BS is equipped with N; = 6 DL TAs and there are a
total of 27 users served by the network. The NOMA PGS algorithm [73] converges
rapidly as a benefit of the efficient approximation of the logarithmic functions. The
convergence rate of the IGS and s-IGS algorithms is similar, but the computational

complexity of the latter is significantly lower.

= N w
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Fig. 4.3 Convergence for IGS, s-IGS and NOMA algorithms

Fig. 4.4 plots the achievable minimum throughput under different numbers N,
of DL TAs for K = 2 (18 users in total) and K = 3 (27 users in total). Both the
IGS and s-IGS outperform NOMA [73]. IGS outperforms s-IGS since the latter is
a particular class of the former. All of them still benefit from the spatial diversity
associated with the number N; of BS TAs. This figure also shows the efficiency of the
time fraction optimization as IGS, s-IGS and NOMA outperform their counter parts
IGS (t; =ty = 2), s-IGS(t; = ty = 2) and NOMA (t; = to = 2), respectively, which
use the half of the time-slot for power transfer and the remaining half for information

transfer.
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Fig. 4.4 Achievable minimum throughput vs number N;: (a) K = 2 (18 users); ()
K =3 (27 users)

We now examine the achievable minimum throughput upon varying the BS transmit
power budget P in Fig. 4.5 under (V;, K) = (6,3). Both the IGS and s-IGA exploit
the available transmit power much better than NOMA since the latter cannot use
the total affordable power budget because its achievable minimum throughput is not
sensitive to P > 33 dBm. By contrast, by employing additional beamformers ws , 4,

for the conjugate proper Gaussian information source s} ;, in (4.5) or optimizing the
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pseudo-covariance qs g, in (4.24), IGS allows the total power budget be exploited for
improving its throughput. Naturally, beyond a certain threshold, namely P = 41 dBm
in Fig. 4.5, its performance also becomes saturated. This should not be a surprise for

interference-limited networks.

——1GS

Maxmin Throughput (bps/Hz)

2.5
e
31 33 35 37 39 41

BS transmit power budget, Pyax (dBm)

Fig. 4.5 Achievable minimum throughput vs BS transmit power budget P

Fig. 4.6 portrays the users’ max-min throughput under (N, K) = (6,3) upon
varying the EH threshold e,;, to show the impact of the latter imposed on the former.

As expected, the increase of the latter degrades the performance of the former.

Table 4.1 provides the rounded average number of iterations required required for
the convergence of the three algorithms for K = 3 under different number of BS TAs
N;. For lower N, the feasibility set becomes narrower, which forces all algorithms to

converge slower.

Table 4.1 The rounded average number of iterations for the
convergence under NOMA favored scenario

Ny=4| N =5 N=6|N,=7
IGS 30 31 20 20
S-1GS 25 28 31 18
NOMA 24 22 15 18
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Fig. 4.6 Achievable minimum throughput vs BS transmit power budget P

4.4.2 General scenario

Fig. 4.7 illustrates a general scenario, where M [Us are located outside the EH zone,
hence they cannot act as EUs. The IUs’ channel conditions are not differentiated,
therefore NOMA is inefficient. We thus compare IGS and s-IGS to the conventional
PGS orthogonal multiple access (OMA), in which IU decodes its own message only.
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Fig. 4.7 OMA favored scenario
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Fig 4.8 shows the achievable minimum throughput for IGS, s-IGS and PGS OMA
for different values of N;. There are K = 2 EUs and M = 4 [Us for simulating
Fig. 4.8(a), and K = 3 EUs and M = 6 IUs for simulating Fig. 4.8(b). As expected,
IGS is the best performer, followed by s-IGS, while PGS OMA is the worst performer.
Similarly to Fig. 4.4, this figure also includes the performance of IGS, s-IGS and PGS
OMA at t; =ty = 2 to show the efficiency of the time fraction optimization.
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Fig. 4.8 Achievable minimum throughput vs BS antennas number N;: (a)
(K, M) = (2,4); (b) (K, M) = (3,6)
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Fig. 4.9 provides the achievable minimum throughput for varying values of the BS
transmit power budget P. All three algorithms are capable of exploiting the affordable
power budget to compensate for the increased distance from the BS to the IUs that

makes the pathloss higher.
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Fig. 4.9 Achievable minimum throughput vs BS transmit power budget P

Finally, Table 4.2 provides the rounded average number of iterations for the con-
vergence of IGS, s-IGS and PGS OMA for (K, M) = (3,6) and different values of N;.

Table 4.2 The rounded average number of iterations for the
convergence under general scenario

N=4| N=>|N=6|N, =7
IGS 17 16 19 18
S-IGS 16 20 21 19
PGS OMA 6 8 10 11

4.5 Conclusions

We have applied improper Gaussian signaling (IGS), in both general format and a

particular format (s-IGS), for improving the information throughput of a multi-cell
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energy-harvesting enabled network, which aims for transferring both information and
energy over the same wireless channels within a time slot. In contrast to NOMA, which
improves the network throughput by allowing the users of better channel condition
to access and decode the information of the users of poorer channel condition, IGS
is capable of improving the network throughput more substantially than NOMA,
maintaining the users’ secrecy under OMA. Although the problem of max-min infor-
mation user throughput subject to the EH thresholds and power budget is much more
computationally challenging than its NOMA counterpart, the chapter has developed
path-following algorithms for its computation, which converge at least to a locally
optimal solution. The numerical examples provided for networks serving 18 users and
27 users have confirmed the advantages of IGS over NOMA and OMA proper Gaussian

signaling.



Chapter 5

Joint Design of Reconfigurable
Intelligent Surfaces and Transmit
Beamforming under Proper and

Improper Gaussian Signaling

5.1 Introduction

The next-generation networks aim to increase 1000-fold in the average data rate,
100x improvement in the edge rate (worst data rate that a user can reasonably
expect), and at least 100x decrease in energy consumption and cost compared to that
offered by presently commercialized ones [99]. Though recently proposed technologies,
e.g., massive multiple-input multiple-output (MIMO) and millimeter wave (mmWave)
communication systems, have the potential to meet data rate requirements [21], they fail
to address the target of low energy consumption and hardware cost [100]. Particularly,
efficient communication by these technologies require large number of costly and power-
hungry radio frequency (RF) chains (depending on the number of antennas), where
each comprises several active components. Therefore, researchers are still hunting
for an energy efficient as well as spectral efficient solution to assist the realization of

futuristic networks [101, 22].
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Recently, the use of reconfigurable intelligent surface (RIS) has been identified as a
low-energy consumption and spectral efficient solution [64, 102, 6]. RIS is a planar array
of a large number of low-cost and nearly-passive reflecting elements with reconfigurable
parameters. Each reflecting element on RIS can introduce an independent phase shift
on the incident electromagnetic wave (from the acesss points (AP) or transmitter)
[103]. The phase shifts induced by the passive elements can be programmed to ensure
that reflected signals from the RIS elements coherently add, together or also with other
direct-path signals, if available, at the user end [102, 104, 105]. More importantly, RIS
can be installed in such places such as buildings which block the direct transmission
from the AP to its users [106]. RIS technology is quite different with several distinct
positives when compared with the other existing technologies such as backscatter
communication [107, 108], amplify-and forward (AF) relaying, and intelligent surface
based massive MIMO [109]. A detailed comparison among these technologies is provided
in [6, 110]. The work [23] shows that a particular RIS-aided MIMO system can achieve
the same rate performance as that achieved by massive MIMO system without using
RIS, but the former option is energy-and cost-efficient with significantly reduced active

antennas/RF chains.

Naturally, RIS-aided systems need to be optimized in terms of transmit beamform-
ers and RIS reflecting coefficients for delivering high rates. Optimization of RIS-aided
systems looks computationally intractable because of two reasons: (i) both rate and
transmit power become very complex functions in the beamformers and RIS reflect-
ing coefficients; (i) The RIS reflecting coefficients are constrained by the nonconvex
unit-modulus constraint (UMC). Alternating optimization between the beamformers
and the RIS reflecting coefficients is often applied. Each round of alternating opti-
mization consists of optimization in the beamformers with the reflecting coefficients
held fixed and optimization in the reflecting coefficients with the beamformers held
fixed. These optimization problems are still nonconvex and thus still computationally
challenging. The authors in [64] and [111] use general-purpose gradient/projected
gradient algorithms for their computation, which do not necessarily converge. The
authors in [23] reformulate alternating optimization in the reflecting coefficients as a
matrix rank-one constrained optimization problem. The matrix rank-one constraint is

then dropped for convex relaxation. The reader is also referred to [112] for computa-
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tional efficiency of this convex relaxation. At each round of alternating optimization,
the objective function is replaced by a surrogate function in [113-115], and then the
nonconvex unit-modulus constraint on the reflecting coefficients is relaxed to the con-
vex bounded-by-unit-modulus constraint for alternating optimization in the reflecting
coefficients, while the minimum-mean-square-error (MMSE) algorithm is used for
alternating optimization in the beamformers. Alternating optimization does not seem
to be computationally efficient if each round still invokes two nonconvex problems,
which are still computationally challenging. Theoretically, its found solution is not even

locally optimal as it is only optimal in one set of variables with other set of variables
held fixed.

It should be emphasized that all the aforementioned works are based on the con-
ventional proper Gaussian signaling (PGS), which is induced by linearly beamforming
proper Gaussian source. Recently, it has been shown e.g. in [90, 91, 88, 92, 96, 116-118]
that improper Gaussian signaling (IGS), which is induced by widely linearly beam-
forming proper Gaussian source [75], outperforms PGS clearly in interference-limited
networks. Under PGS, the transmit signal is still proper Gaussian and completely
characterized by its covariance. In contrast, the transmit signal under IGS is improper
Gaussian and is characterized by the so-called augmented covariance of double size
with a special structure, which involves both the covariance and the pseudo-covariance
information [75]. As such, in contrast to PGS, which is induced by single beamformers,
IGS is induced by pairs of correlated beamformers. The design of beamforming vectors
for IGS is more complex than for PGS because it involves twice the number of decision
variables, and more importantly, the rate functions are log-determinant log det(.) even
for multi-input single output (MISO) networks. Their optimization is much more
computationally challenging than that for PGS, which involves logarithmic functions

only.

Against the above background, this chapter investigates the joint design of transmit
beamformers and RIS reflecting coefficient in networks of a multiple antenna array AP
serving multiple single-antenna users with the aid of an RIS, under both PGS and IGS.

The contributions of the chapter are following:
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o Under PGS, based on the exactly penalized optimization reformulation, which
incorporates the computationally intractable unit-modulus constraint on the
reflecting coefficients into the optimization objective, we develop an algorithm of
low computational complexity, each iteration of which invokes up to two convex

problems. Moreover, it rapidly converges at least to a locally optimal solution.

o This is the first work to use IGS for RIS-aided communication networks. Again,
based on the exactly penalized optimization reformulation, we develop another
algorithm of low computational complexity, which rapidly converges at least to a

locally optimal solution.

e IGS bases algorithms clearly outperforms PGS bases algorithms in severely
interference-limited scenarios when the number of transmit antennas is less than

the number of served users.

The chapter is organized as follows. The joint design of beamformers and RIS reflecting
coefficients to maximize the worst users’ rate under PGS and RIS are addressed in
Sections II and Section III, respectively. The simulations to demonstrate the advantage
of RIS over PGS are provided in Section IV, which is followed by Section V for
concluding the chapter. The Appendix provides fundamental matrix inequalities, which

were used for developing the algorithms in Sections IT and III.

5.2 Proper Gaussian signaling

Consider a RIS-aided network as illustrated by Fig. 5.1, where a RIS of N reflecting
units assists the downlink from an M-antenna array AP to K single-antenna users
(UEs). Let z be the transmit signal from the AP. The received signal at UE k can be

expressed as

Ye = <\/ﬂAP-RIS\/5R15-khr,leR/I§-keHAR + 6AP-kha7k> T+ ng, (5.1)

where +/fBap.ris and y/fPris.x model the path-loss and large-scale fading of the AP-
to-RIS link and from the RIS-to-UE £k link, respectively [119, 111], v/Bapx models
the path-loss and large-scale fading of the direct path between the AP and the UE
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Fig. 5.1 System model

k, Hap € CN*M ig the line-of-sight (LoS) channel matrix between the AP and RIS,
hyy € C*Y and h, € C*M 1 respectively, denote the small-scale fading channels
from the RIS and the AP to UE k, Rgrisx € CV*¥ represents the spatial correlation
matrix for the RIS elements with respect to the user k [111, 120], ny € C(0,0) is the
background noise at UE k, and for @ £ (6,,...,0y) € CV with

6, =1,n=1,...,N, (5.2)

which denotes the vector of the RIS’s reflecting-coefficients, the matrix of reflection-

coefficients of the RIS is

b 0 ... O
0= 0 92 0 E(CNXN.
0 ... Oy

Since the RIS is usually deployed on the facade of high-rise building [106] and the AP
is usually deployed at a certain height it is justified to assume LoS communication
between the AP and RIS [111]. The communication channel between the AP and UEs

'Tn Section IV, we also consider particular cases of no direct path between the AP and UEs, i.e.
ha,k =0
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hak is non-LOS (NLoS) and thus modeled by Rayleigh fading, while the presence of
LoS link is assumed between the RIS and UEs and thus the corresponding channel
sk is modeled by Rician fading [121]. The NLoS communication between the AP and
UEs motivates the use of an RIS to support the transmission. To focus on the design
of beamforming vectors and reflection-coefficients of the RIS, the chapter assumes that
the channel state information is perfectly available at the AP, which is responsible
for calculating the reflection-coefficients of the RIS and feeding them back to the RIS
controller through dedicated control channels. This assumption is in line with the
existing relevant research in the literature [113-115]. Under this assumption, the results

of the chapter will represent an upper bound on the practical achievable performance.

Let s, € C(0,1) be the information intended for UE k. Under PGS, the proper
Gaussian source sy, is linearly beamformed by the beamformer w;, € C*. Therefore,

the transmit signal z, which is given by

K
Tr = Zwksk, (53)
k=1

is also proper Gaussian. Using (5.3), the equation (5.1) is written by

K
yr = Hr(0) D wisy, + ny, (5.4)
k=1
for
Hy(0) £ \/BAP—RIS\/BRIS—khr,kR[l{/Ié-keHAR + 1/ Bapihar € CHM. (5.5)

Let w 2 {w;, k € K}. Based on the signal-to-interference-plus-noise (SINR) defined by

| H1.(0)wy.|?
>jer\iry | Hr(@w;]? + o’

pr(0,w) = (5.6)
the rate in nats at UE k is calculated by

(0, w) =1In (1 + pr(6,w)) . (5.7)
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Given a power budget P, the max-min rate optimization problem can be formulated

as

max  min_ re(0,w) s.t. (5.2), (5.8a)

K
> lwil* < P, (5.8b)
k=1

which is equivalent to max-min SINR optimization:

max f(0,w) = min pe(0,w) st (5.2),(5.8D). (5.9)

77777

This optimization problem is nonconvex because its objective function is nonconcave
and the unit-modulus constraint (UMC) (5.2) is obviously nonconvex. To the authors’
best knowledge, there is no efficient method to handle the UMC (5.2), which is often

relaxed to the convex bounded-by-unit-modulus constraint
0. <1,n=1,...,N. (5.10)

The existing works use alternating optimization to address (5.8). Let (6 w()) be
a feasible point for (5.8) that is found from the (k — 1)-th round. The n-th round
aims to solve the following alternating optimization problem in w to generate the next

iterative point w®*+1)

max f(0"),w) st. (5.80). (5.11)

and then aims to solve the following alternating optimization problem in 8 to generate

the next iterative point §¢+1):

max FO,w" ) st (5.2), (5.12)

It should be noted that the SINR pj, defined by (5.6) is a quotient of two functions,
which are separately convex quadratic in @ and w, so both (5.11) and the unit-modulus-

relaxed problem

max f(,w") st (5.10), (5.13)

can be efficiently computed by the algorithms of [71, 70].
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In [113], the objective is replaced by a surrogate function at each round so the
alternating optimization in w is a convex problem, and by relaxing the UMC (5.2) by

(5.10), the alternating optimization in 8 is also a convex problem.

The authors in [23] consider the following problem of power minimization subject
to the SINR constraints
K
min > [fwyl|* st (5.2), pe(6,w) = v,k €K, (5.14)
Y =1
for a given v > 0. The alternating optimization in w to generate w1 is equivalent to a

second-order cone problem of convex programming [122]. The alternating optimization

in @ to generate A"+Y is the feasibility problem
(5.2), pr(@, W) > 4 k € K. (5.15)
O 0

07 1

which must satisfy the semi-definite constraint © > 0 and linear constraints ©(n, n) = 1,

The authors use the auxiliary matrix variable © £ e CIN+Dx(N+1) g ¢ CN*N|

n € N and the matrix rank-one constraint

rank(©) = 1. (5.16)

This matrix rank-one constraint is then dropped to have a convex relaxation for the
feasibility problem (5.15). Obviously, ) is already feasible for (5.15), so it is not clear
for what one needs to consider (5.15) and how to judge which of feasible points for
(5.15) is preferred. The number of decision variables in the convex relaxed problem
is N(2N + 3)/2, which is quickly grown in N. For instance, it is already 2575 for
N = 50, hiking the computational complexity O((N(2N + 2)/2)3) of convex solvers.
The reader is also referred to [112] for capacity of convex relaxation-based approaches
in locating the needed matrix-rank one solution. After all, like [113], the convergence

of the alternating procedure in [23] is not guaranteed.

We now propose a quite different approach for addressing the max-min SINR

optimization problem (5.9). Note that the UMC (5.2) is equivalent to the convex
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constraint (5.10) plus the constraint
N
N <> 16,1 (5.17)
n=1

which is reverse convex [30]. Indeed, (5.10) implies >, |6, < N, which together
with (5.17) yield =2, |6,/ = N that is possible if and only if (5.2) is fulfilled. It is

obvious that (5.17) is the same as

1 1

— >0, 5.18
NS 6 (5-18)

and the equality sign in (5.18) forces the UMC (5.2). This means

1 1

ARSI (5.19)

can be used a measure for satisfaction of the UCM (5.2). Like [123-125], instead
of handling the nonconvex constraint (5.18) we minimize the measure (5.19) for its
satisfaction by incorporating it in the optimization objective, leading to the following

exactly penalized optimization problem

max g(6,w) = [f(0 W)+u<1 !

N Wﬂ s.t. (5.80),(5.10), (5.20)

where p > 0 is the penalty parameter.? For yu sufficiently large, (5.9) and (5.20) have

the same optimal solution [126]. Later, we will show how p is chosen before hand.

Although all constraints in (5.20) are convex, (5.20) is still a difficult nonconvex
problem as its objective remains to be nonconcave. We now develop iterative processes

for its computation.

Let (w®),0*)) be the feasible point for (5.20) that is found from the (x — 1)-th

round.

2Since the constraints (5.8b) and (5.8b) are already convex, there is no need to incorporate them
in the optimization objective.
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5.2.1 Alternating descent round

In alternating descent, we generate the next iterative point w1 with @ held fixed at

K

w) and then the next iterative point 8***1) is generated with w held fixed at w*+b.

Beamforming descent iteration

To generate w1 we do not solve (5.11) but we seek w "+ such that f(#*), w*+D) >

JICARRTICAN

Using the inequality (A.21) in the appendix A yields

P09 w) > pl” (w)

2 oR{bMwi) — ¢ ST [ He(0W)w; |2 — o), (5.21)

JER\{k}
with (k) (k)
o) 2 (wy” ) (Hr(0Y) FH, (0)) 0< e | H: (6w, |2
y ()2
0<y”2 S [Hu0)wl]? + 0.
JERN{k}

The function p,(:) (w) is seen quadratic concave, which matches with p (0%, w) at w®.

The computational complexity of the problem is O ((MK)?3) [98, p. 4]. To generate

w1 at the k-th iteration, we solve :
&) (w) 2 mi (r)
max f (w) min - py (w) s.t. (5.8b), (5.22)
where f(*) is concave [30]. Note that
f(n)(w(nﬂ)) > f(ﬂ)(w(n))

if w1 £ (") Therefore,

F(899, wD) > @) > F0 () = (), ), (5.2)
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Phase descent iteration

We seek the next iterative point §*+1 such that g(9*+D wrE+D) > g(g*) 4+,

Using the inequality (A.21) in the appendix A yields

(@ w™t) > 570
2 ORI HLO)wY —EY S [He@)w! V) - ol (5.24)

JeR\{k}
with (e41) (5 1)
) o (W) (He(09)H A0 & |Hy (0w
b, = (k+1) , U< = (k+1)\9 ’
ykl ) (v )
0 < y]gn-f— ) A Z |7_[k(0(n))w](lﬁ+ )|2_}_0_7
JERN{k}
and
1 1
< (K) 0) £ (5.25)
St 16a]? ML 2R{(027)6,} = 1057]2)
over the trust region
N
Z 2R{(0%)*0,} — 109]?) > 0. (5.26)

The computational complexity of the optimization problem is O ((N)3(N + 1)) [98,

p. 4]. To generate §""+Y at the x-th iteration, we solve:

max g")(9) & min A7 0) + (jlv — N)(a))] st (5.10), (5.26), (5.27)

-----

which is convex because its objective function is concave. Note that g(f,w"+1) >
g"(8), and g(0") wtD) = ¢ () so, by using a similar argument to that for
proving (5.53), we can show that

GO B DY > g(gR) (D)), (5.28)

as far as (+1) £ g(x)
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Convergence

It follows from (5.24) and (5.28) that
g(0" Y W) > (0", w), (5.29)

and as such the sequence {(8*), w*))} converges to a point (#,w) such that 6 (w, resp.)

is a locally optimal solution of (5.20) with w (8, resp.) held fixed at w (6, resp.).

5.2.2 Path-following iteration

Using the inequality (A.20) in the appendix A yields

b(”)
0 w) > o _ K —” 3 0\w,|? 5.30
pe(0,w) > a, FTRCGITE Ch jeK\{k}Wk( Jw| ( )

0<b O<e
k K ) k K ) k K
y y (ys)?
0<y 2 3 HO)w P +o.
JER\{k}
We have
Yoo He@w;)* = (RO, > w]?) < (Xi, DY), (5.31)
JER\{k} JER\{k} JER\{k}

for the Hermitian symmetric matrix variables Xy, k € K and Y}, j € K of size M x M

satisfying the semi-definite (convex) constraints

X "9
Xer pEO))2 o | T MO (5.32)
Hy(0) 1
Y, -wj*jeke |7 =0 (5.33)
wf 1
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For X\(t) £ [HE(6®)]2 + tIy, and Y (t) = [w!™]? + tI), while Y\(k)( =
X jerc\ i w J(H)] + tly, for k € K, using the inequality (A.19) in the appendix A
yields

<Xk’ Z YJ> = <Xk+€IM7 Z YJ+€[M>—€<X]€—|— Z Yj>—62M
JERES JER\{k) JERNk)

; {H (X,gfe)(e))*l/z (X + eInr) (Y\(:)(E))l/z P

I (x(0) ( > OY+ efM) (v0) " ||2]

VAN

JeER\{k}
—eXi+ > Y;)—€EM
JER\{k}
£ g w, X, Y), (5.34)

for X £ {X;, k€ K} and Y £ {Y;,j € K}, and € > 0.

Next, in the appendix B, we show that the nonconvex constraint

M (O)we]* > 2y, (5.35)

is innerly approximated by the semi-definite constraint

(Ha @O )M 0) + (4)) = i = (X . -
Y™ ) Hf (6) [y )™+ ()] = [y 4l |
(5.36)
for n > 0, i.e. each feasible point for (5.36) is also feasible for (5.35).
It follows from (5.30), (5.34) and (5.36) that
(x) s 0 _ b (x)
pr(0,w) > p (0, w, 24, X, Y) 2 0 — 5 — W g (w, Xy, Y). (5.37)

Zj

for the scalar variable zj, satisfying the semi-definite constraint (5.36) and the linear constraint

z, > 0. (5.38)

For gz(7 )60,w,2,X,Y) 2 minj_; g pé )6, w, 24, X5, Y) + 1 (% — (®) (0)), at the k-th itera-

tion we solve the following convex problem of computational complexity O((2K M 2L KM+ K

-----
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+N)3(4K + N +2)) [98, p. 4] to generate (QU+1) gyt (xt1) X (rt1) 1y (1)),

oma;(cYgé”)(O,w,z,X,Y) st (5.8D), (5.10), (5.26), (5.32), (5.33), (5.38), (5.36)(5.39)

For zl(f) = [wl(f)]2 and z(®) = {z,(:"), k € K}, it is true that

g (B0HD) (D) (D) Y (kD) y (et D))y 5 o) (g(0) () () X () ()

because (AU ptl) H(s41) | x (x+1) "y (v+1)) and (90) w27 X (%) Y (%)) are respective-
ly the optimal solution and a feasible point for (5.39). Also, under (5.26), (5.32), (5.33),
(5.38), (5.36), g(6,w) > g5 (0, w, 2z, X,Y), and g(0*), w®)) = g{ (H*) () () x () y ),
Therefore, like (5.24), it is easy to show (5.29) but the sequence {(8¢*),w(*))} of improved
feasible points for the nonconvex problem (5.7) converges at least to a locally optimal solution
of (5.7) [71].

5.2.3 Initialization and penalty parameter

We address the following optimization problem

max f(6,w) st. (5.10),(5.8b) (5.40)

6w
by Algorithm 6, which is based on the above described alternating descent iterations.

Suppose that (w(®,0(©) is the found solution of (5.40) with the optimal value v(?). Then
determine u by
~(0)
p=—— - (5.41)
ZNil ‘9510)|2 - N

to make the values of the objective function and penalty term in (5.20) of similar magnitudes
[127].

Algorithm 6 PGS initializing algorithm

1: Initialization: Randomly generate (¥, w(®) satisfying the convex constraints
(5.8b) and (5.47b). Set k = 0.

2: Repeat until convergence of the objective in (5.40): Solve the con-
vex problem (5.22) to generate w**!) and then solve the convex problem
maxe Mming—; g ,5,(:) @) s.t. (5.10) to generate A"V, Reset k := K + 1.

3: Output (w™,0*)) and reset (w®, ) + (w*), o).
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5.2.4 Two-phase Algorithm

Observe from (5.22) and (5.27) for the proposed alternating descent procedure and (5.39) for
the proposed path-following procedure that the latter is much more computationally costly
than the latter. Therefore, we propose Algorithm 7 to exploit the computational efficiency of

the alternating descent procedure and the solution optimality of the path-following procedure.

Algorithm 7 Two-phase PGS algorithm

1: Alternating descent phase: repeat until (5.20) is reached: Generate w1}
by solving the convex problem (5.22) and then generate “*1) by solving the convex
problem (5.27); Reset x := x + 1.

2: Path-following phase: repeat until (5.20) is reached: Generate
(w+D 9+ by solving the convex problem (5.39); Reset & :=  + 1.

3: Output (w™®), ")),

5.3 Improper Gaussian signaling

In (5.3), the proper Gaussian sources sy are linearly beamformed by the beamformer wy, so
the transmit signal x is proper Gaussian too. In this section, the proper Gaussian sources sy
are widely linearly beamformed by a pair of two beamformers w1 ;. € CM and wo ) € CM as
[75]

{un,k ’U)2,k} tg} , (5.42)

making the transmit signal

™=

=) (WikSk+wWaksy), (5.43)

b
Il

1

improper Gaussian. The equation (5.1) is written by

K

yr = Hi(0) Z(wl,ksk +wa i sy) + N (5.44)
k=1
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Write the augmented equation for (5.44) as

uk| H(0) 0 i Wiy Wak| |Sk L
Yk 0 H*)] i1 Wy Wil |Sk ny
K
= Ag (0) Z W5, + ng, (545)
k=1
H (0 0 w w
for Ax() = +(0) € C2*@2M) and W, £ Lk T2k C2?M*2 which are linear
0 H;.(6) w’ik wik
mappings, and 5, £ o eC? n, 2 "k e C2
S, ng

For w £ {(wyk,wa) k € K}, the rate at UE k is calculated by (1/2)rg(8,w) [74] with

~1
T’k(o,’w) =1In|l) + [Ak(0)Wk]2 ( Z [Ak(B)Wj]Q + 0[2) (5.46)
JER\{k}

For the particular class wg, = 0, i.e. x in (5.43) is proper Gaussian, a straight calculation

yields

~1
rp(@,w) =2In [ 1+ |Hk(0)w1’k]2 ( Z ]Hk(G)ij\Q + O’) )
JER\{k}

so (1/2)ry(0,w) is the known PGS rate (5.7).

Given a power budget P, the max-min rate optimization problem under IGS is thus

formulated as

, 1
rro}fvx Qi Qrk(0,w) st (5.2), (5.47a)
K
> (il + lwail ) < P, (5.47b)
k=1
which is equivalent to
max ®(0,w) = min  7(0,w) s.t. (5.2),(5.47b). (5.48)
6w k=1,... K

Like (5.20), we address (5.48) via its exact penalized problem

max U(0,w) = [@(O,w) +p ( - !

o N_E,LWN st. (5.10), (5.47b), (5.49)
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where p > 0 is the penalty parameter. Unlike its PGS counterpart (5.20), which involves
a single beamformer for each user, the problem (5.49) involves a pairs of correlated beam-
formers w; j, and wy ;. More importantly, the problem (5.49) is an log-determinant function
optimization and thus is much more computationally challenging than its PGS counterpart
(5.20) of fractional function optimization. Particularly, the Algorithms 6 and 7 for PGS
cannot be extended for the case of IGS. Nevertheless, we are still able to propose alternating

descent and path-following iterations tailored for its computation.

5.3.1 Alternating descent round

Beamforming descent iteration

We seek w1 such that @0, wEHD)) > (9 w(K).

By using the inequality (A.15) in the appendix A, we obtain a concave quadratic lower

bounding function approximation of 74 (6", w) as

(0™, w) > P w) 2 ol 4 2RUBIWLY - (O, S [AO)W12), (5.50)
jex

with
al™ £ 1, (0%, w®) — (A0 W R — o(C),
B & (W) H (A (0%)H () 1A (0%)),
0 <00 2 (V)1 - (v + (A0 wR)
0 <Y &5 o iy MA@ W2 4 oI,

The computational complexity of the optimization problem isO ((2M K)3) [98, p. 4]. To

K+1)

generate w' , we solve the following convex problem of at the x-th iteration:

: (k)
max  min 7 (w) s.t. (5.470), (5.51)
which like (5.22) gives
(0" D) > (9K () (5.52)

as far as w1 =£ (),
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Phase descent iteration

We seek w(# 1) such that W(HHD) s+ > T () 4p(s+1)),

By using the inequality (A.15) in the appendix A, we obtain a concave quadratic lower

bounding function approximation of (8, w+1) as

7 ()

a; + 2R{(BL AL @) W) = (O, S [ARO) WU (5.53)
jeK

Tk (07 w(n+1))

Y

lI>

with
@ (0%), WD) — ([AL (@)W 1y - (),

)~
B“ 2 (Wt <Ak<e<“>>>H<Y,§““> !
0 < G & (y -1 (Y,C(““’JF[A;C(@(H))W,T“)] )

0= Yk(n+1) 2 e\ (k) [Ak(e(”))Wj(RH)P +ols.

Accordingly, we solve the following convex problem has the computational complexity of

O (N3(N +1)) [98, p. 4]. To generate 0*+1) at the s-th iteration we solve:

in 9 1w
max | min 7 (0)+,u(N L (9))} s.t. (5.10), (5.26), (5.54)
where :(*)(8) is recalled from (5.25).
Like (5.28), we can easily show that
GO 5 +D)) S @) ety (5.55)

as far as 0(5+1) =£ g(v)

5.3.2 Path-following round

Decompose (0, w) = ¥1(0,w) + ¢r(0,w), for (0, w) £ 1n ‘[Ak(O)Wk}2|, and

-1
op(0,w) 2 In |[AL(O)W,] 2 + ( > [Ak(o)wj]2+alg) .

JER\{k}
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Using the inequalities (A.17) in the appendix A yields
er@w) > af” — (B [M@OW) — (¢, S AOW,)
JER\{k}
= o — (A/(0) B A(6), W) — (A (O)CIA(0), > [W,1?)
JER\{k}
> al” — (X, Yi) — (Xop, > Y)) (5.56)

JER\{k}

for the newly introduced Hermitian symmetric matrix variables X; ; and Xy, k € K and

Y, j € K of size (2M) x (2M) satisfying the semi-definite constraints

3 X A (9)(B™1/2]
X1k = A O)BIALO) & | 1;’2’“ OB 0, (5.57)
|(By,)/*Ax(0) I |
and ) (r1sa]
. X A (@)(CH?
Xox = A O)CLIAL0) & | (o 172’“ B (5.58)
(G ) = Ak (0) I |
and
Y, W,
Y= [Whe | 2 s, (5.59)
Wi I
under the definitions
0l £ o009, W) +2 - o (C) (G £ K),
-1
-1
0B 2 ([A0)WP?) - (Z[Akw(“))W}“)mob) ,
jeKX
-1 -1
0 < C}gn) s ( 3 [Ak(e(n))Wj(H)P—FO'IQ) _ (Z[Ak(9(”))W](”)]2+aIQ> ’
jeR\{k} jek

and X (%) 2 A1 (6) B AL(0%), and X7 £ A (60)CL A(6)).
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Furthermore, using the inequality (A.19) in the appendix A yields

RHS of (556) = a,(:) - <X1k + GIQM,Yk + 6[2M> — <X2,k + GIQM, Z Yj + 6]2M>

JER\{k}
+e Y (Y)) + e(Xup + Xog) + 2Me”
jex
) _ Lo gt ) T2 W) )22
> o = SIH(X0) T Kt elonr) (17(0)
1 K 1/2 o -1/2
—S I (X R@) " (Y + elaan) (M) IR
1 o -1/2 . 1/2
(X)) Ko+ eloa) (Vi(0) 12
1 % 1/2 e —1/2
—5 11 (x£7) (Z Yj+€sz> (%) IR
JER\{k}
+e (V) + (X + Xop) + 2M €
jex
£ SOI(:) (0) Xl,kv XQ,k) Y)u (560)

for X\ () 2 X\ +thonr, i € (1,2}, Y (1) & W PtIons, and Y () 2 5 oy W12+
tlong.

Next, similarly to (5.36), the nonconvex constraint
[ALOYW ] = Zy, (5.61)

for the newly introduced Hermitian symmetric matrix variable Zj of size 2x, is innerly

approximated by the following semi-definite constraint

A0V () AH (8) + (+)H " .
Y ()AL (0) W W + ()" +lor |
Z 0 Z. AL
k+nQk 2><((i§\42) Hk x(0) ~ 0. (5.62)
Omyxe (Wi ']7] AR () Lo |

for 7 > 0 and the slack Hermitian symmetric matrix variable Qy of size 2 x 2.

The inequality (5.62) together with the inequality (A.18) in the appendix A yield

V(0,24
Yr(09), ) — (A0 W2, (24) ) (5.63)

wk(e,w)

v

[I>
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under the trust region

Z; - 0. (5.64)

Thus, we solve the following convex problem of inner approximation of (5.49) with compu-
tational complexity O ((12KM? +2KM + 4K + N)3(5K + N +2)) [98, p. 4] to generate

(004D 4p("+1)) at the x-th iteration:

. K K 1 K
gy | win (670, X10 X0 Y) + 000 20) 4 4 (1~ 90))

st (5.10), (5.26), (5.47b), (5.57), (5.58), (5.59), (5.62), (5.64),  (5.65)

where +(%)(8) is recalled from (5.25).

5.3.3 Initialization and penalty parameter

We use Algorithm 8 for computing

max ®(0,w) st. (5.47b),(5.10) (5.66)

6w

Suppose that (w(®,00) is the found solution of (5.66) with the optimal value (°). Then
determine g by (5.41). It is noteworthy that the optimal solution w;j; and wsy from

Algorithm 8 are not the complex conjugate of each other.

Algorithm 8 IGS initializing algorithm

1: Initialization: Randomly generate (¥, w(®) satisfying the convex constraints
(5.8b) and (5.47b). Set k = 0.

2: Repeat until convergence of the objective in (5.66): Solve the con-
vex problem (5.51) to generate w*!) and then solve the convex problem
maxe Ming_i, g 7*,(:)(0) s.t.  (5.47b) to generate 8"+, Reset x := k + 1.

3: Output (w™,0*)) and reset (w®, ) + (w*), H*)).

5.3.4 Two-phase Algorithm

We propose 9, which like Algorithm 7 consists of two phases to exploit the computational
efficiency of the alternating descent procedure and the solution optimality of the path-following

procedure.
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Algorithm 9 Two-phase IGS algorithm

1: Alternating descent phase: repeat until (5.49) is reached: Generate w1
by solving the convex problem (5.51) and then solve the convex problem (5.54) to
generate §t1): Reset s := K + 1.

2: Path-following phase: repeat until (5.49) is reached: Generate
(w+D 9=+ by solving the convex problem (5.65); Reset & :=  + 1.

3: Output (w®), 6*),

5.4 Performance results

The performance of our proposed algorithms is examined in this section. The large scale

fading coefficients, Sap-ris, Aris-k, and Bapx, in (5.5), are modeled as [121, 111]

Bapris = Gap + Gris — 35.9 — 22logg(dap-ris) (in dB), (5.67a)
Brisk = Gris —33.05 —30logo(drisk) (in dB), (5.67Db)
Bapkx = Gap —33.05—36.7logo(dapxk) (in dB), (5.67¢)

where Gap = 5 dBi and Gris = 5 dBi denote the antenna gain of the AP and the gain of the
elements of RIS, respectively [121, 111], dap.ris, drisk, and dap.k are the distances between
the AP and RIS, the RIS and UE k, and the AP and UE k, respectively. The full-rank
AP-to-RIS LoS channel matrix is defined as [Hag|n,m = T ((n=1) sin 0 sin dn+(m—1) sin 0, sin ¢"),
where 6,, and ¢,, are uniformly distributed as 6,, ~ U(0,7) and ¢,, ~ U(0, 27), respectively,
and 6,, = m—6,, and d_)n = T+ ¢y, [111]. The normalized small-scale fading channel h, j follows
Rayleigh distribution while the small-scale fading channel gain A, ;, follow Rician distribution
with a Rician K-factor of 3. The spatial correlation matrix is given as [RRrisk)nn» =
eIm(n—n')sin G Sinék, where ¢ and 6 represent the azimuth and elevation angle for UE k,
respectively. The noise power is set to ¢ = —114 dBm, i.e., noise power spectral density

= —174 dBm/Hz and transmission bandwidth = 1 MHz.

Considering the system model setup in Fig. 5.1 and let us use (z,y,z) to denote the
coordinates (placement) of the AP, RIS and UEs, the AP is deployed at (40, 0,25), the RIS is
deployed at (0,60, 40), and K = 10 UEs are randomly placed in 120m x 120m right-hand-side
of the obstacles and RIS. The following results have been plotted to analyze the performance
of our proposed algorithms, where the tolerance level for the convergence of algorithms is set

to 1073.
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e PSG-RIS: This result simulates the performance of PGS algorithm. Particularly, the
proposed Alg. 1 is simulated for initialization and proposed Alg. 2 is simulated during

optimization phase.

e IGS-RIS: This result simulates the performance of IGS algorithm. Particularly, the
proposed Alg. 3 is simulated for initialization and proposed Alg. 4 is simulated during

optimization phase.

e PGS-RIS with random @: This result simulates the performance of PGS algorithm
without phase optimization, i.e., it assumes random phase coefficients @ at the RIS.
This result demonstrates the gain achieved by the proposed PGS-RIS algorithm, which

assumes joint phase optimization with beamforming design.

e IGS-RIS with random 0: This result simulates the performance of IGS algorithm by
assuming random phase coefficients 8 at the RIS. This result demonstrates the gain
achieved by the proposed IGS-RIS algorithm, which assumes joint phase optimization

with beamforming design.

e PGS without RIS This result simulates the performance of PGS algorithm in the
absence of RIS. This result demonstrates the advantage of deploying RIS.

e PGS without RIS This result simulates the performance of IGS algorithm in the absence
of RIS. This result demonstrates the advantage of deploying RIS.

Fig. 5.2 plots the convergence of the proposed algorithms with P = 20 dBm, M =9
AP-antennas, and N = 100 RIS elements. Fig. 5.2 assumes the presence of the direct path
between the AP and the UEs. It can be seen from Fig. 5.2 that all the algorithms converges
rapidly within a few iterations (15-30). As expected, the PGS based algorithms converge
faster than the IGS based algorithms because the latter need to handle more optimization
variables. Fig. 5.3 plots the achievable max-min rate versus the number of antennas at
the AP, M, with P = 20 dBm and N = 100 RIS elements. The results have been plotted
for the side-range of AP-antennas M = {7,8,9,10,11} to consider all three situations; (i)
M < K, (ii) M = K, and (iii) M > K, where K = 10 is the number of UEs as described
previously. Fig. 5.3 shows that the proposed IGS-RIS algorithm outperforms the "IGS
without RIS" and "IGS-RIS with random 0". The performance margin increases when the
value of M increases. Fig. 5.3 indicates that "IGS without RIS" and "IGS-RIS with random
0' yield similar performance which provides an important insight that there is no advantage

of deploying RIS unless RIS reflection coefficients are optimized. Fig. 5.3 also plots the
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Fig. 5.2 Convergence with P = 20 dBm, M = 9 AP-antennas, and N = 100 RIS
elements.
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Fig. 5.3 Achievable max-min throughput versus the number of antennas at the AP, M,
with P =20 dBm and N = 100 RIS elements.

performance of the proposed PGS-RIS algorithm which outperforms the "PGS without RIS"
and "PGS-RIS with random 6". Fig. 5.3 also shows that the performance of PGS-RIS
performance gets closer to that of IGS-RIS for M > K, i.e., M = 11 AP-antennas.

Fig. 5.4 plots the achievable max-min rate versus the transmit power budget at the AP,
P, with M = 9 AP-antennas and N = 100 RIS elements. As expected, the performance of
the proposed IGS-RIS and PGS-RIS algorithms improve with the increase in the available
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Fig. 5.4 Achievable max-min throughput versus the transmit power budget at the AP,
P, with M =9 AP-antennas and N = 100 RIS elements.

power budget. Fig. 5.4 also shows the advantage of the proposed IGS-RIS over "IGS without
RIS" and "IGS-RIS with random 8" while the latter two yield similar performance. Similarly,
Fig. 5.4 shows the performance gain of the proposed PGS-RIS over "PGS without RIS" and
"PGS-RIS with random 0".

5 M
=) £l
4588 = :
N
=
~
g
£ 4r
g
g —%— IGSRIS
2 35¢ —B— IGS-RIS with random ¢ ||
= —©—PGS-RIS
g —V— PGS-RIS with random 6@

T —— e

0 50 100 150
number of RIS elements, N

Fig. 5.5 Achievable max-min throughput versus the number of RIS elements, N, with
M =9 AP-antennas and P = 20 dBm.

Fig. 5.5 plots the achievable max-min rate versus the number of RIS elements, N, with

M =9 AP-antennas and P = 20 dBm. In Fig. 5.5, N = 0 implies IGS or PGS without RIS
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Fig. 5.6 Under the setup in Remark 1, achievable max-min throughput versus the
number of antennas at the AP with P = 20 dBm and N = 100 RIS elements.

deployment. Fig. 5.5 shows that only the performance of the proposed algorithm IGS-RIS
algorithm improves with the increase in the number of RIS elements. Fig. 5.5 shows that
the proposed IGS-RIS algorithm clearly outperforms the "IGS-RIS with random 8" and
the performance margin increases with the increase in N. Similarly, Fig. 5.5 shows the
performance gain of the proposed PGS-RIS over "PGS-RIS with random 6". Fig. 5.5 clearly
shows the advantage of employing IGS over PGS.

Obstacles

Fig. 5.7 A simulation setup with the blockage of the direct path between the AP and
the UEs. The results for this setup are shown in Figs. 5.8-5.10.
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Fig. 5.8 Assuming blockage of direct path between AP and UEs h,; = 0, achievable
max-min throughput versus the number of antennas at the AP, M, with P = 26 dBm
and N = 60 RIS elements.

Remark 1 In this chapter, we consider more or less a practical RIS in the diffuse scattering
regime with the size of each its meta-surface of the order of the radio wavelength [110]. The
product of the two path-losses in the AP-RIS-UE reflected link (see (5.1)) attenuates it very
much (see [121] for analysis in details). Both PGS-RIS and IGS-RIS can achieve much more
significant gains in the anomalous reflection regime with the size of each RIS meta surface
of ten times larger than the radio wavelength [110]. The path-loss of the reflected path then
follows the model which is inversely proportional to sum of the two distances of AP-RIS
and RIS-AP links [6], making the AP-RIS-UE reflected link in much better condition. For
illustrative purpose, Fig. 5.6 plots the achievable maz-min rate vs the number of antennas
at AP for Bap.risBris-k in (5.1) modelled by Bap-rissk = Gap — 33.05 — 301og;o(dap-ris +
drisk) (in dB).

Next, we consider another scenario of equally important practice as illustrated by Fig.
5.7, where there is the blockage of direct signal path between the AP and the multiple UEs,
ie. hgr = 0in (5.1) and (5.5). The path-loss Sap-ris and Prisk are defined by (5.67a)
and (5.67b). For simulation under this scenario, we can consider slightly smaller distances
between AP and the UEs since there is no direct path availability. So under the scenario
in Fig. 5.7, the AP is deployed at (20,0, 25), the RIS is deployed at (0, 30,40), and K = 10
UEs are randomly placed in 60m x 60m right-hand-side of the obstacles and RIS.
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Fig. 5.9 Assuming blockage of direct path between AP and UEs h,; = 0, achievable
max-min throughput versus transmit power budget at the AP, P, with M = 8
AP-antennas and N = 60 RIS elements.

Fig. 5.8 plots the achievable max-min rate versus the number of antennas at the AP
with P = 26 dBm and N = 60 RIS elements. Fig. 5.8 clearly shows that the proposed
IGS-RIS algorithm outperforms the "[GS-RIS with random 6" and similarly the proposed
PGS-RIS algorithm outperforms the "PGS-RIS with random @". It clearly demonstrates
the gain achieved by the proposed algorithms, which consider joint phase optimization with
beamforming design over beamforming design alone (random phase selection). Fig. 5.8
also shows the advantage of employing IGS over PGS. Similar trend with superiority of the
proposed IGS-RIS algorithm can be observed in Figs. 5.9 and 5.10, which plot achievable
max-min rate versus the transmit power budget at the AP and the number of RIS elements,

respectively. The above results also show that wy j, and ws j, are not one the complex conjugate
of the other in IGS-RIS.

Computational experience

To speed up the convergence of Algorithms 7 and 9, at the x-th round, define

N(K)é{ne./\/‘é{L?N} : ’97(’:{)’221_61501} (568)
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Fig. 5.10 Assuming blockage of direct path between AP and UEs h,j = 0, achievable
max-min throughput versus the number of RIS elements, N, with M = 8 AP-antennas
and P = 26 dBm.

for a given tolerance €. Then, replace the trust region constraint (5.26) in (5.27), (5.39),

(5.54), and (5.65) by the following constraints

> @R{ON) 0} — 105717) > 0, (5.69)
neEN\WN (%)
DRI(O) 6} — [0 > 1 — crorsm € N, (5.70)

to control the convergence of individual |0,|, n € N to one.

Table 5.1 and Table 5.2 provides the rounded average number of rounds in obtaining the
numerical results in Fig. 5.3 (with the direct path between the AP and the UEs) and Fig.
5.8 (without direct path between the AP and the UEs). In most cases, the second phase of
Algorithm 7 and Algorithm 9 takes a couple of iterations to confirm the optimality of the
solution found from the first phase. In general, IGS Algorithms 8 and 9 need more rounds
than that needed for PGS Algorithms 6 and 7 because optimization of logarithm-determinant
functions with IGS is much more computationally challenging than that of logarithmic

functions with PGS.
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Table 5.1 The rounded average number of rounds for implementing Algorithms 6-9 in
obtaining Fig. 5.3 (direct path between the AP and the UEs)

M=7 M=8\ M=9 M=10| M =11
IGS-RIS 36 33 32 34 30
IGS-RIS with random 6 35 31 39 36 33
IGS without RIS 34 33 37 37 37
PGS-RIS 13 14 16 14 14
PGS-RIS with random 6 16 17 24 23 20
PGS without RIS 15 17 24 23 20

Table 5.2 The rounded average number of rounds for implementing Algorithms 6-9 in
obtaining Fig.5.8 (without direct path between the AP and the UEs)

M=7 M=8\ M=9  M=10| M =11
IGS-RIS 53 55 55 56 55
PGS-RIS 41 43 46 49 49
IGS-RIS with random 6 15 15 16 16 16
PGS-RIS with random € 6 6 6 6 6

5.5 Conclusions

The chapter has considered a network of an multiple-antenna array acess points (AP) serving
multiple single-antenna users (UEs) with the assistance of a reconfigured intelligent surface
(RIS), under both proper Gaussian signaling (PGS) and improper Gaussian signaling (IGS)
with and without direct channels from the AP to UEs. The problem of jointly designing
the RIS’s reflecting coefficients and transmit beamformers to maximize the users’ worst
rate subject to the transmit power constraint has been addressed. Namely, the chapter has
developed algorithms of low computational complexity, which converge at least to a locally
optimal solution. The provided simulations have shown the clear advantage of IGS over
PGS, and of RIS-aided links over RIS-less links. Their extensions to similar problems for

multiple-antenna users are under current study.



Chapter 6

Maximizing the Geometric Mean of
User-Rates to Improve
Rate-Fairness: Proper vs.

Improper Gaussian Signaling

6.1 Introduction

The spectral efficiency optimization of wireless networks is often carried out by sum rate
(SR) maximization, thanks to the computational tractability of the latter when relying on
beamforming [39, 128]. However, by its nature, SR maximization has the deficiency of
allocating a large fraction of the sum-rate to a few users having good channel conditions,
while leaving the rest of the users with almost zero rates. Furthermore, the SR performance
is typically improved with more users involved because there are more flexible choices for the
users’ channels [129]. The spectral efficiency is thus addressed more appropriately via either
SR maximization under specific quality-of-service (QoS) constraints for users’ minimum
rate, or by max-min user-rate optimization, but their computation is quite demanding

39, 130-132, 128].

Reconfigurable intelligent surfaces (RISs) [103] are constructed by a planar array of
programmable reflecting elements (PREs), which have recently been introduced for improving

the energy and spectral efficiencies of future wireless networks (6G) [64, 102, 106, 133],
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the coverage, reliability and the average achievable rate of UAV communication systems
[134-136] and the outage probability and bit error rate (BER) of indoor mixed dual-hop
VLC/RF systems [137]. Moreover, channel estimation and physical layer security for RIS-
aided networks have been studied recently [138-141]. A typical RIS-aided system consists of
a base station (BS) and a RIS for beneficially reflecting the incident electromagnetic waves
from the BS to multi-target directions, where the spectral efficiency may be improved by the
joint design of the transmit beamformer at the BS and RIS PREs [7]. The joint design is
often based on alternating optimization between the beamformer and PREs. Thus, compared
to the design of stand-alone transmit beamformers, the new challenge is the optimization
of the PREs with the beamformer weights fixed, which is computationally challenging due
to the nonconvex unit-modulus constraint (UMC) imposed on the PREs. In [64] and [111],
general-purpose gradient/projected gradient algorithms were used, which do not necessarily
converge. By contrast to either convex relaxation relying on dropping the matrix-rank of
one constraint or on relaxing the UMC to the convex bounded-by-unit-modulus constraint
were used in [23, 142-145] for mitigating the computational challenge. Except for the works
[23] and [145], which particularly considered the problem of transmit power minimization
subject to signal-to-interference-plus-noise ratio (SINR) constraints, all the following treatises
[64, 111, 142-144] considered the problem of SR maximization. The authors of [142-144]
applied convex relaxation not only to the UMC but also to the SR objective function. It
should be noted that alternating optimization between two sets of decision variables is only
efficient, when the optimization within each set with the other set held fixed is computationally
tractable. However that is not the case for the problems considered in all these papers because
both the optimization of the beamformers with the PREs held fixed and that of the PREs
with the beamformer weights held fixed present difficult nonconvex problems. In the end, the
convergence of alternating optimization-based algorithms to a locally optimal solution is not
guaranteed. Our recent work [146] has been the first one that addressed the spectral efficiency
of RIS-aided communication via max-min user-rate optimization. Instead of alternating
optimization, we proposed an alternating descent at the first stage and then a joint descent
at the second stage to confirm the optimality of the solutions computed. While the descent
iterations in the beamformers generate a sequence of better feasible points, the descent
iterations in the PREs generate a sequence of better infeasible points, which converges to a
feasible point. Moreover, it has been also shown in [146] that using widely linear beamformers

for facilitating improper Gaussian signaling (IGS) improves the users’ max-min rate.

Against the above background, this chapter offers the following contributions:
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o We consider the problem of maximizing the geometric mean (GM) of users’ rates for
allocating the rates to all users in an equitable manner. We use the users’ rate deviation
(RD) from their mean and the ratio of the users’ maximal and minimal rates (RR) as
the main criterion to judge the users’ rate balance, which are 0 and 1, respectively,
when all users are granted the same rate. The smaller these values are, the fairer the

users’ rate allocation becomes (more balanced).

e As this problem of GM maximization is computationally intractable, we address it
via the min-max joint design of beamforming weights and RIS PREs. To eliminate
the UMC of the RIS PREs, we use the polar form of unit-modulus complex numbers
that allows each descent iteration of the RIS coeflicient calculation to be based on the
closed-form solution of an unconstrained nonconvex problem in the PREs’ arguments.
Each descent iteration of the beamformer weights and the PREs’” arguments are also
based on the closed-form solutions of convex problems. Thus, the proposed alternating

descent method is purely based on closed forms and hence it is computationally efficient.

o Like in [146], here we also use improper Gaussian signaling (IGS) in the BS signal
transmission, which has been shown to substantially improve the users’ max-min rates
(see e.g. [88, 92, 96, 116, 147]) thanks to its ability to mitigate the severe interferences
in interference-limited systems. The performance gap between IGS and conventional
proper Gaussian signaling (PGS) becomes substantially wider under more severe
interference regimes. To elaborate a little further, IGS is not useful in interference-free
regimes such as that of zero-forcing beamforming, which forces all interferences to zero.
The interference scenario of SR maximization under PGS is unique in the sense that
those users who were allocated zero-rate impose no interference on the other users.
As a result, SR maximization under PGS exhibit a high RD and near-infinite RR.
Our finding is that compared to PGS, IGS does not improve the system’s SR but it
results in much lower RD and RR as a benefit of having no users with zero rate. Hence
SR maximization becomes a practically feasible option while providing the users with

beneficial rate-fairness.

The chapter is organized as follows. The joint design of beamformer weights and PREs
to maximize the GM of users’ rates by tractable computation both under PGS and IGS
is addressed in Section II and III, respectively. Their performances are evaluated by the

simulations in Section IV, while Section V concludes the chapter.
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6.2 Proper Gaussian signaling

RIS
RIS controller i e Rl
[ i e B N
@ """"""""" > I e s [ e |
u o e e e
Hp_g hr-x %

UE

10

Fig. 6.1 System model

We consider the RIS-aided communication system illustrated by Fig. 6.1, where a RIS
of N reflecting units supports the downlink spanning from an M-antenna array BS to K
single-antenna users (UEs) k € K = {1,..., K}. Since the RIS is typically deployed on the
facade of high-rise buildings and the AP is also usually at a certain elevated height [106], it
is justified to assume a LoS link between the AP and RIS, LoS communication between the
RIS and UEs, and NLoS propagation between the AP and UEs. Accordingly, the channels
spanning from the BS and the RIS to UE k and from the BS to the RIS are modelled by
hgx = VBeahsx € CVM, hgy = /Bryhri € CY, and Hpr = BarHpr € CV*M,
where v/Bs.x, vV Br-x, and v/Bg.r model the path-loss and large-scale fading of the BS-to-UE
k link, the RIS-to-UE k link, and the BS-to-RIS link, respectively [119, 111], while hgr_y and
Hp_ g are modelled by Rician fading for modeling the line-of-sight (LoS) channels between the
RIS and the UEs as well as between the BS and the RIS [121]. Furthermore, hp_y is modelled
by Rayleigh fading in the face of non-LoS (NLoS) channels between the BS and the UEs.
Like many other papers on RIS-aided communication networks, we assume having perfect

channel state information, which can be obtained from channel estimation [138, 64, 23].

Set s3, € C(0,1) as the information symbol for UE k, which is beamformed by w; € CM.

The signal = transmited from the BS is

Tr = Zwksk. (6.1)

kel
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The signal received at UE k can be expressed as

Yk = (ER-kR%{/_idiag(eﬁ)ﬁB-R + EB-k) x + ny (6.2)
= Hi(0) Y wisk + g, (6.3)
kek
for
Hi(0) = hprodiag(e®)Hpg + hpy € CM, (6.4)
with
herk = VPBRV BR-th-leR/_i e c N, (6.5)

where Rp.x € CVXN represents the spatial correlation matrix of the RIS elements with
respect to user k [111, 120], ng € C(0,0) is the background noise at UE k, and diag(e”?) in
(6.2) for @ = (61,...,0x)T €[0,27]" represents the matrix of PREs.

Let w = {wy, k € K}. The rate in nats/sec at UE k is

[ Hy,(0)wy|*
T 0)=1In . .
k(w,0) (1 + S o He@wy P T U) (6.6)

We consider the following problem of jointly designing the beamformers’ weight set w and

the PREs 0 to maximize the GM of users’ rates:

1/K

K
rﬁ%x (;}_Il rk(w,0)> s.t. (6.7a)
K
> llwil? < P, (6.7b)
k=1

where (6.7b) sets the transmit power constraint within a given power budget P. It is plausible

that this problem is equivalent to the following one:

1

min f (r1(w,0),...,rx(w,0)) = i $.£.(6.7D). (6.8)
7K
e (I 7w, 0))
The function f(ri(w,0),...,rx(w,#)) is the composition of the convex function f(r1,...,7x) =

1/(TTE., )Y and the non-convex functions ry(w,8), k=1,... K.
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Let (w®), 0()) be a feasible point for (6.8) that is found from the (k—1)-st round. We note
that the linearized function of f (r1(w,@),...,rx(w,0)) at (r1 (w0 g (w™), 9("‘)))

is

r (w(n) e(n)))i f: Tk('waa) (6 9)

) y 'K ) K = T‘k(’w(’{), 9(5)) .
Since we have f (rl(w("‘),e(”)), . .,TK(w("),G(””))) > 0, we can use steepest descent op-
timization for the convex function f(rq,...,7x) for generating the next feasible point

(w(n+1)7 9(H+1)):
5 rn(w,0)
S e F (w00, g (0, 0))) st (6.70), (6.10)

Tk (w(ﬁ)a e(ﬁ))

K
mmwmmézﬁmwm&tmm, (6.11)

for

k=1,...,K. (6.12)

6.2.1 Beamforming descent iteration

To generate w1 we seek wt1), so that the following holds:
FOI D) 680) = 00 9 ) (613)

Using the inequality (A.15) for V. = H (0w, Y = D jek\{k} [y (0" Nw;|?> + o, and
V=1 (0w, V =y 2 5 e gy [He (0wl 2 + o, yields

re(w, 0%)) > 1 (w)
K
af + 2R{(0)7 wi)} — el S (M (0W wy (6.14)

7j=1

(1>
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with
o\ 2 (), 009) — 1,00l /yl” — el b 2 HIE (001, (00 ol fy
and
0 < cf” 2 0w/ [ (s + [Hu (0@l P) |

The function r,(:) (w) is seen to be concave quadratic, which matches with r,(f) (w, 0*)) at

w"). We solve the following convex problem at the x-th iteration to generate w(+1):

max fy(w) st (6.7b), (6.15)
where
fb(n)(w) = Z%c Tk
K
- nyk ak +2Z§R{ 'yk b("i >}—Z(wk)H\I/(”)wk (6.16)
k=1
with

K
0= W) 235l (g3 (g().

j=1
By using the Lagrangian multiplier method, we obtain the following closed-form solution of

(6.15)*

K
(\I,(n))—l,y('@)b(’f) if H(\I,(/-c) — 'f)b H2 <P
w](jJrl) _ k "k k‘;l (617)
(\I;(H) +ul M) —17](j) b](:) otherwise,

where p > 0 is chosen by bisection such that

Z (2 4 o)~ A2 = P

L (w(®)~1 is understood as the pseudo-inversion when ¥(*) >0
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6.2.2 Programmable reflecting elements’ descent iteration

We seek the next iterative point 0" such that

FE () gst1)y 5 £ () (4 (41) gy (6.18)

Using the inequality (A.15) for

V=H@w Y = 3 Hu@)wlP 4o,

JER\{k}
and
V:Hk(e(n))w’(:—i-l),i/:y](:-i-l)é Z ’Hk(g(n))w§n+l)‘2+
JER\{k}
yields
re(wD,0) > 77 (6)
2R (wi T NHHI (0N HLO)w ™Y | ) e .
o 2Rifuy )7 MO} 00 )Zm W™V (6.19)
Y
with
d,(f) £ rk(w(ﬂﬂ), 9(@) - Pk(w(mrl)a e(n)) - ‘751(:)7
and
K Kk+1) Kk+1) Kk+1 K k+1
0 < 2 [ (0w VPR [y (5 a0y IP)].

Let us define T, as the matrix of size N x N having only zero entries, except for its (n, n)-entry,

which is 1, to express
diag(e?) = Z e,
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We then use (6.4) to arrive at:

(i) (6 @)Y =
fi-l-l))HHH ri))|:hBR kdlag(e‘j )HBR+th:| (k+1 )
(w{" Ty (9<“>)BB_kw,(j+ D ( (K TDVH g H (905 diag () Hp g™ =

() TH O g +Z I (019 R T Hprwy e =
N ~
Z B (n)e?n, (6.20)

with

ozgf”) 2 (w (HH))H?{H(H(”))h B-kW ;(:H)a
and?

b (n) = (™) HHE (0 g Lo Hprwf™ ™ n = 1, N.

To expound further, we have:

’Hk(o)w]('ﬁﬂ)’Q = KhBR «diag(e?®)Hp g +hp. )w ”H)’Q
2

= ’hBR kdlag(ej HB- ‘

+2R{ (w; et ) (hB k) hBR. kdiag(eJG)HB_Rw§”+l)}

= ‘hBdelag(ej )HBR’w ‘ + | g w(ﬁﬂ)fz

+23{3{Z () (BB-k) iLBR-anHB_RwJ(-”H)eJ""}. (6.21)

Furthermore,

N N
iNLBR_kdiag(ejo)HB_Rw](.“H) = hBR.K (Z eJG”Yn> HB_Rw](.”H) = Z a,(:fl)(n)ejen, (6.22)

n=1 n=1

for a,i'ffl)(n) = EBR-anHB-Rw](-HH), n=1,...,N.

2In what follows b(i) is the i-th entry of b and [A](7,4) is the i-th diagonal entry of A, and [A]* (i, 1)
is the complex conjugate of [A](4,1)
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Based on (6.19), (6.20), (6.21), and (6.22), we obtain

N K | N
0 = o (S o) -3 [3° ol gen
n=1 j=1In=1
N K
= A RO e ) ) el e (6:23)
= =1
where
(k+1) a ~(x) (k+1) S +1
R M
~(k (K HZ H K’ 7 H~ F
0250 () s ot
and

@,(C'ffl)(n,m) (a,(:;rl)(n))*agjfl)(m), n=1,...,Nym=1,...,N.

Note that CI’,S?I) = 0. Therefore,

lI>

K
90 2 3 4R 6)
k=1

N
= a4 2R (D D (n)ern} — () H Ut e, (6.24)
n=1
for
K K
a2 3 A0t B () £ 3 R (), n =1, N,
k=1 k=1
and

+1 A I{ n+1
0-<<I>"C ) ZZ’yk k; .
k=1j=1

We use the following problem at the x-th iteration to generate (++1):

max 79(6). (6.25)

C
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Following [148], we have (6.26).

(m+1)( )ejen} _ (eje)H((I)(nJrl) o )\max((l)(ﬁ+1))IN)ej0

Mz

@) = a4 oy

3
—_

i
By
+
=
~ |

_)\max( ( 630)HIN€J0

(/4+1)( )6]0"} . (eje)H((b(H-i-l) o )\max(q)(n_‘—l))IN)ejo

Mz

_ ~(m+1) + 2%{

3
Il
_

- >\max ((I)(H+1
780
N

al ) £ 2R3 B (e} — [2R{() ! (@ — A (@) Iy) e}

n=1

7( ]G(K))H( (k+1) )\max(q)(l{—‘rl))IN) ]0(”)] . )\max( (I{+1))N

v
=

(1>

_ ~(m+1 _’_2%{2 /-c+1 Z 6710( )(I)(n+1)(m n) + A X(q)(wl))ef]e&“))e]en}
n=1 m=1
— (WY HPs A 0 9y (@EFD)N, (6.26)

We thus solve the following problem at the k-th iteration to generate §(+1):
C

max 7ir)(8), (6.27)

where the function fc(n) (9) is an affine function of ¢, By noting that R{ce?n} = |c| cos(Zc +

0,,) and thus it is maximized at #,, = —Zc, we obtain the closed-form solution of (6.27) as?
A )
97(154-1) _ _4(6(n+1)(n) - Z e—]Om q)(n—i-l)(m,n)
m=1
(x)
Fmax (@EFN e =1, N. (6.28)

It follows from (6.26) that f(?)(w(+D g+1) > £0(p+Dy > F (4D > £ (9(0)) =
fc(ﬁ (0%)) = £ (p(5+1) 9(®)) " confirming (6.18), so #*+1) is a better feasible point than #(),

3[(@H1) — 1T y)e®™](n) is the n-th entry of (@1 — ;T y)er?"™
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6.2.3 Proper Gaussian Signaling Geometric Mean Rate Opti-

mization

Algorithm 10 provides the pseudo-code for the proposed computational procedure of steepest
descent for computing (6.9) as the iterations (6.17) and (6.28) seek a descent direction by
seeking a better feasible point for the nonconvex problem (6.10) instead of seeking its optimal
solution for reducing the computational load with guaranteed convergence, as it is often done
in the context of the Frank-and-Wolfe method [149]. Of course, one can still seek the optimal
solution of (6.10) for the steepest descent by iterating (6.17) and (6.28) many times, because
according to [146], this kind of alternating descent iterations often converge to at least a
locally optimal solution of (6.10). The global optimality can not be proved theoretically, but

we found that it is globally optimal in many cases.

To the best of our knowledge, there is no the conventional descent algorithm, because the
conception of descent descent algorithms is a research branch in computational optimization
and what make descent algorithms different is the specific way they choose their a descent
directions. Hence, our descent directions are completely new and rather different from the
popular steepest descent techniques. Furthermore, all other exiting algorithms, which solve
convex problems and iteratively at a high complexity are very sensitive to the problem sizes.

However, our algorithms iterate using closed- form expressions, hence their complexity is low.

Algorithm 10 PGS GM descent algorithm

1: Initialization: Set x = 0. Randomly generate (w®, 8(°)) satisfying the constraint
(6.7b) and define v by (6.12).

2: Repeat until (5.8) is reached: Generate w**! by (6.17) and 01 by (6.28).
Reset k <k + 1.

3: Output (w™,0")) and rates rp(w™,0%) k = 1,...,K with their GM

(Hi(:l T,k(w(/@)7 9(,{)))1/@

6.3 Improper (GGaussian signaling

In (6.1), the proper Gaussian sources s are linearly beamformed by the beamformers wy,
hence the transmit signal  is also proper Gaussian, i.e. E(zaT) = 3, cc wi(wi) TE[(sx)?]0.

In this section, the proper Gaussian sources s are widely linearly beamformed by the pairs
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of beamformers w; j € CM and wy i, € CM as in [75]

Sk
{ka wz,k} { *} ) (6.29)
Sk
resulting in the transmit signal
K
T = Z(’kaSk +wa S)), (6.30)
k=1

and for improper Gaussian, as
K
E(zz”) = Z(wl,kwgk +w2,kw1T,k)E(|5k:|2) # 0.
k=1

The equation (6.2) of the received signal at UE k becomes:

K
Y = %k(e) Z(wlyksk +'U)2’k-3;;) + ng. (631)
k=1
We augment (6.31) as
we| _ |Hk(@) O f: Wik Wkl |Sk| |7
Yi 0 Hi(0) | =1 wh o wig| | Sk ng
K
= Ap(0) > Wiy + i, (6.32)
k=1
for the linear mappings
AL(8) 2 He@) 0 e C2X(M) W, & Wik W2k C2Mx2
0 Hi(0) Wy Wi
and
52 |l ec?n 2 |™ e
5k ny,
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For w £ {w; £ [wl’k € C*M . |k ¢ K}, the rate at UE k is calculated by (1/2)r:(w,8) [74]
w2 k
with
-1
re(w,8) = In |Ir + [Ax(0)W]? ( > AOW? + 012) : (6.33)
JER\{k}

For the particular class of wy, = 0, i.e. when x in (6.30) is proper Gaussian, it may be shown

that

i(w,0) = 2In (1 + [Hi@)w k] (Zjex oy [He@)wr 5] + U)) :
hence (1/2)ri(w,0) is the known rate (6.6).

Like (6.8), the problem of maximizing the GM for users’ rates corresponding IGS is thus

formulated as

min £ (r1(w,0) ..., 7ic(1,0)) 2 L (6.342)
» (I 7, ))
K
st ([lwy el |” + |[wai]?) < P (6.34D)
k=1

Let (w(*), () be a feasible point for (6.34) that is found from the (k—1)-st round. Like (6.11),
we use the following steepest descent optimization for the convex function f(r1,...,rx) =

1/(TTE, 7)V/E to generate the next feasible point (w1, g+1).

K
max F0)(w,0) 23 4" (w,0) st. (6.34b) (6.35)
k=1

w,0

where
(k) & f (7"1 (w(ﬁ), 9(&)), o ,TK(’LU(“), 9(“)))

2 ) k=1,..., K. (6.36)
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Another way of defining the UEs’ rates is through the equivalent composite real system for

(6.31):

R {ui}
| S{yw}
R{HL(0)) —S{Hu(0)}
[S{HRO)}  R{Hk(0)}

K R{w g+ Riwa b —S{wi ) + S{wa )| | R{s))
i=1 | S{wist + S{we b Ww; ) — Riws;} | [S{s;}
B K
= ’Hk(O) Z ngj + N,
j=1
where we have:
= oo | T{HRO)) —S{HeO)}| | 5 [R{s;}
Hi(0) = 8j = ,
S{HLO)} R{Hk(0)} | S{s;}
1,12 EX
S A e
under the following transformation:
Riwi;} +Wwa;; —S{wry} + S{wey}|
=V,
S{wi ;) + Hwa;; Wwy;) — R{ws;}
This transform is indeed legitimate, since its inverse is given by
'vjl-l +vj22 v?l _ v}z

R{wi,;} 3{“’1,3'}]
Rlwa;} S{w;}

Furthermore, we have:

[Jw; ||* =

1
2

J

1 2 2 )
S I,

1=1/¢=1

11 _ .22 .21 12
v CHa +vj

R{n}

S{ne

hence the power constraint (6.34b) for w is transferred to the following constraint

>

Jj=1

[lv;1* < 2P

(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)
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for
vj!
v
v; 2vec(V,)= |7 |. (6.44)
vl?
J
022

For v £ {v;,j € K}, the problem (6.35) is equivalent to the problem

K
max FO®,0) 25 7\ (v,0) st (6.43) (6.45)
v k=1
with
-1
Trp(v,0) =In|Iy + [ﬁk(e)Vk]Q ( Z [ﬂk(o)Vj]Q + UIQ) . (6.46)
JeR\{k}

We propose the following alternating descent iterations at the k-th round to generate a better

feasible point (w(+1) gLty

6.3.1 Widely linear beamforming descent iteration

We seek w*+1) such that
FE) (+D) )y 5 ) (4y(8) g()y, (6.47)
Upon using (6.40) to define

Sl o [REE+ R} S (i)} + S{ul))

: : ! 2 (6.48)
/ S{w) + S{wl)t R} - R{wl?)

we have vj(ﬁ) £ vec(Vj(“)).

By using the inequality (A.15) for

V = Hi(0"))Vy,

Y=Y [Hi (0N ,]? + oI,
JER\{k}
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and

V = H (0",
— vy & Z ’Hk OV 4oLy =0,
ek\{

we obtain the following concave quadratic lower bounding function approximation of fk(ﬁ(“) ,V):

i, 00) 2 77 (0) £ 0 + 2ABIV) = (O, 3ROV, (6.49)
JjeK
with
a2 7 (0™, 00)) — ([H (0P — oo,
B & (VI (B (00) () Hul6),
and

0~ Clgn) A (Yk(n))_l . (Yk(n) + [Hk(e(n))vk(n)]Q)_
Note that (B"V}) = (vec((BY™)T), vy), and

(O, 0@V = [lvec ((CF)V2HL(0@)V;) |2
= || (B @ (CF) 2 Hk(00))) vec(V)]
= vec (V) [l & (HE(0W)CLIHL(0)) | vee(V)

. T ,
= ”ij v;

for O 2 I @ (AL (0))CL 7y (6)).

Thus,we have

K
> o) = ol 2 Sl el (B ) + 3 30T 00
k=1

k=1j=1

K K
- Z a2 Z (e vec((BY) ywr) + 3 of ( 7 Qg-“))vk
k=1 =1

(6.50)
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We solve the following convex problem at the k-th iteration to generate v(+1)

K
(k) ~(k)
max kz_:l Yo T (w) st (6.43),

(6.51)
which similarly to (6.15) gives
FW) (plt1) glr)y 5 f(e) (y(9) () (6.52)
as far as v("t1) £ (%)
Like (6.15), the problem (6.51) admits the following closed-form solution
(T Q") afvec((B{)T)
~1
K+1 . K K K K
o= Z [ (Zﬁ 9 >) W vee(B)|P < 2P (6.53)
K -1 K .
( JK 1% Q( + ,uIM) ’ylg )vec((B,(g ))T) otherwise,
where p > 0 is found by bisection such that

. - () (%) B (k) (%)

YD ulu | P vec(B)T)IP =2P.

k=1 \j=1

By reconstructing U;Z’(HH), i1=1,2and £ =1,2, from vj(-”H) we use (6.41) to determine
wgzﬂ) and wé'f;rl):
RrwE DL gt 1 11 (rt1) | 22,0641) 21 (k1) 12,(s+1)
{ 1n+1 } C\{ 1/€+1)} 9 11 (r+1) ]22,(n+1) J21,(n+1) ]12,(n+1) ’ (6.54)
%{ wy 4 } S{w wy } v; vy v +wv

J
which results in (6.47).

6.3.2 Programmable reflecting elements’ descent iteration
We seek ("t such that

F(n) (w(ﬁ+1)’ 0(n+1)) > F(n) (w(nJrl)’ 9(/{)) (655)
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By using the inequality (A.15) for

V=nmOWT Y= S MOWTP 1oL,
jer\{k}

and

V=00 Wy =y 2 ST a0 WY ol = 0,
JER\{k)

we obtain the following concave quadratic lower bounding function approximation of r (w(”“) ,0):

(D, 9) > 77 (0)
2 a4 2B A@OW T — (O, S @)W YR
JjeK
= a\y) + 2R{UBIALOWT) Y — (G, A @WIT (A (0)) ),
(6.56)
with
ag‘z) A Tk(w(n-i-l)’ 0(/{)) _ <[Ak(6(n))ngn+1)]2(ylc(n+1))—1> N O—<C'](gﬁ)>’
Bl(f) A (W]£”+1))H(Ak(e(m)))H(Yk(fﬂ-l))—l e (CQXQ,
- —1
0 < CfY 2 ()T — (VD 4 (AR (0 W) e e,
and
0 < W & 3yt
jex
For
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we can write

Ap(0) =
o + hpr-diag(e?) Hp r o 01><M0 _
01><M hﬁ_kdlag(e_] )HE—R_
v [ :
hgrx¥VnHRr O 0 0
M + Z BRkYnlipr Ovar) g, O ] IxM | _
n=1 O1x 01 O1% M O1xnm hﬁ_k\I/nHE_R
N
Hpa+ > [Fneﬂn + Ene—ﬁn} : (6.57)
n=1
with
heri U, Hpr 0
r, & BR-kYnHBR Oixnm m=1.. ..N
01><M O1><M
0 0
=, 2 UM T N, (6.58)
Oixm P WnHp g
By using the identity
R{ab*} = R{a"b} VaeC,beC, (6.59)

we arrive at:

N
RUBIALOWSTIY = aly) + RO G (n)e + b5 (n)e 7))
n=1

N
= ay) +R{Y W (n)e ), (6.60)
n=1
for
ay) 2 RUBY Hea W)Y,
6% (n) & (BIT, W),
b5 (n) & (B =, W),
and
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Furthermore,
(C A@WITIAE (0)) =

N
(&), lz (Tne +Ze79™ ) + My ]W;f“ lz (i e 4 =fler) 4 1 k‘| =

n=1

N
(O HpaW VM) + 2RO, Hpa WD Y (Tl e 4 639")}

n=1

al O 0 (k+1) al H _—30 O
J! ._4 —J0n K —JUn .— J! —

<élgn),7'l W(HH Hip)

+2%{Z( s L)+ (G HeaV VD) )

N N
+Z Z k ,F Wkﬁ+1)FH> n ¢ gem+z Z k ,F W(n—l—l) SH) gifn g=10m

n=1m=1 n=1m=1
N N
1 — 1)—
+Z Z ”),uan% )FH> Pn gem+z Z C(n 7~nW,gH+) H>e e
=1m=1 n=1m=1

A0+ RSB )e)) + (A Q09 + (AT Qe + () (2l e
+(e®) Q) e, (6.61)
where
~:(3'1? = <C~'1£H)7HB-1<W,EKH)7{§_I{>,
B (1) 2 (O, HaWV T H) (G, HpaW V=),
QY (n,m) = (G, =, W V=),
Q9 (n.m) = (O T, W),
Qﬁ’;)k(n m) = <C}iﬁ),FnWIgn+1)Eg>,n =1,...,Nym=1,...,N.

Let us define

Q22k+Qllk_Q2k + QQk ;
o) kn) RNXN QI J(K) c RVXN
2 ’
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_ |cos@ ’ Q?k“ QI )1 Teos@ 5
() (QQQk: Qn k) = lsin® QI (%) QR (n sindl’ (6.62)

<eﬂ">TQ§H>kef" + () H(Q) e =
[cosO}T[ f:’k(“) + ( f’k('{))T o e " —( {1(:)) ] [00501

: I,(k I,(k R,(k : (663)
sin 6 L) _ (@M _ gt _ (@l | [sing

where the matrix Qg ’k(ﬁ) is symmetric, while the matrix Qé’,(:) is skew-symmetric because

the matrix Qg’;)k + Qﬁ)k is Hermitian symmetric, and
Qg;?k — Qﬁv]{(”) 4 jQ{:g{)j Qik(“) c RNXN’ Q{:](:) c RNXN‘

Upon recalling that e = cos + 7sin@, we have (6.62) and (6.63), whose proof is given
in the Appendix.

Therefore, we have (6.64) for

K R,(k R,(k R,(k
Qirr 2 Qi + Qi + (),
K I,(k I,(k)
Qe 2~y - o — (i),

)

R,(k K K
Qi) 2 i — off — (o)T.

Combining (6.56), (6.60), (6.61), and (6.64) yields

T
. . N cos@ ) |cos@
P w1 0) = a;’+2%{zb,§><n>ef"n}—{ ] QP[ ] (6.65)

el sin @

with
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(*)7(Qi + Qiwe” + (*)T Qe + (#)(Q))e ™ =

cos @ kz)% Q,(f)c cos@
) [(QW o] |sme .

Therefore, we have:

FW (@) g 4Ky > FR)(g)

T
0 0
2 gy 25}3{2 59 (m)eny — |“C71 @t [“P (6.66)
sin@ sin @
for
K
d(ﬁ)) — Z &g@)’
k=1
K ~
B (n) =Y b (n),n=1,...,N,
k=1
and
K () ()
e P e
=1 Qe 9f
with

K
Z Qk: R Q Z Qk Cv gﬁ) = Z Ql(:}
k=1

Furthermore, we have (6.67). Now, using the formula

o) (n) cos B, + o) (1) sin @, = R{(n)e?"}
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N T
FW@) = a™ +2R{> 0" (n)e)} — [0080] (Q = A (Q®) ) [0050]
n=1

sin @ sin @
_)\max(Q(K))N
> g L op - b(E) (1) e 0n cos0"]" (®) _ DN cos @
> a+2 {nz::l (n)e™)} =2 sin ) (Q ~ Amax(Q) 2N> sin @
cos 01T . . cos ) x
Line(n)] (9" = Anax(Q) ) [sinﬁ(”)] R
~ N =~ N
= @+ 2R3 (™)} =23 (o™ (n) cos, +a" M (n)sing,)
n=1 n=1
& ), (6.67)

with

S00) _ ~(k cos 00" o [cos ) .
at®) = a" — [Sine(n) (=) Sine(n) - 2>‘max(Q( ))Na

o =) — (QR,(H))T (Q%i) _ Amax(Q(ﬁ))IN> + (el,(n))T(ng))T c RlxN’
aI,(n) — (GR,(H))T(Qg?)) + (0[,(5))T (Qg'{) o )\maX(Q(H))IN) c RIXN

for B(n) = \/(aR’(”) (n))2 + (al(®)(n))2e="(™) | where v(n) is such that [cosy(n),siny(n)] =
[af(5) (), (k) (n)]/\/[aRv('ﬁ) (n)]2 + [a!(")(n)]2, we can rewrite (6.67) by

FO@) = 52X ) -2 Y RAme)
n=1 n=1

N
= @™+ 23 BB (n) - B(n)) e}, (6.68)

n=1

Accordingly, we solve the following convex problem at the x-th iteration to generate §(+1):
max E")(). (6.69)
Like (6.28), its optimal solution is given in closed-form by

ot — _y (g(n)(n) _ g(n)),n =1,...,N. (6.70)
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It follows from (6.67) that F(9) (w(x+D) gty > FI (glet1)y > F9) (gletl)y 5 fl9) (gx)) =
FC(H)(O(“)) = F) (@D 9K)) | confirming (6.55), so 1) is a better feasible point than
(%),

6.3.3 Improper Gaussian Signaling Geometric Mean Rate Op-

timization

All other exiting algorithms, which solve convex problems and iteratively at a high complexity
are very sensitive to the problem sizes. However, our algorithms iterate using closed-form
expressions, hence their complexity is low. Algorithm 11 provides the pseudo-code for the

proposed computational procedure for the solution of (6.35).

Algorithm 11 IGS GM descent algorithm

1: Initialization: Set x = 0. Randomly generate (0®), w(%)) satisfying the constraint
(6.34b) and then define v(© by (6.12).

2: Repeat until (5.48) is reached: Cenerate w1 by (6.53)- (6.54) and §*+1) by
(6.70). Reset k < Kk + 1.

3: Output (w™,0*)) and the rates ry(w®,0%)), k = 1,... K with their GM
(H§:1 L (w('f)7 Q(N)))l/K'

6.4 Numerical examples

This section evaluates the efficiency of the proposed algorithms by numerical examples.
Table 6.1 provides the numerical values of the main parameters taken from [121, 111] for
numerical characterization. Furthermore, the elements of the BS-to-RIS LoS channel matrix
_ ejﬂ((n—l) sin Oy, sin ¢, +(m—1) sin e?%7 sin qﬁn)

are generated by [HR]nm , where e/ and ¢,, are

uniformly distributed as e?» ~ (0, 7) and ¢, ~ U(0, 27), respectively, and 6,, = T — 6,, and
¢n, = T + ¢y, [111]. The normalized small-scale fading channel hp_y spanning from the BS to
UE k follows the classic Rayleigh distribution, while the small-scale fading channel gain hg_x
of the RIS to UE k obeys Rician distribution with a K-factor of 3. The spatial correlation
matrix is given by [Rrk|nn = eim(n—n’)sin oy Sinék, where ¢, and 6 are the azimuth and
elevation angle for UE k, respectively. Unless otherwise stated, P = 20dBm and N = 100 are

used. The results are multiplied by log, e to convert the unit nats/sec into the unit bps/Hz.

The convergence tolerance of the proposed algorithms is set to 1073, For computational
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stability, 'y,(f) in (6.12) is scaled as

S — k=1 K. (6.71)
min;=1,...,.K v,

Table 6.1 Major parameters setup

Parameter Numerical value
BS-to-RIS path-loss in (5.5) | Ggs + Gris — 35.9 — 22log,((dp.r) (in dB)
RIS-to-UE path-loss in (5.5) Gris — 33.05 — 301ogo(drx) (in dB)
BS-to-UE Path-loss in (5.5) Gps — 33.05 — 36.7 log,((dpx) (in dB)
Antenna gain Ggg and GRrs 5 dBi
Bandwidth 1MHz
Noise power density —174 dBm/Hz

For the setup of Fig. 6.1 the BS and the RIS are deployed at the coordinates of (40,0, 25)
and (0,60,40) in the three-dimensional (3D) space, while K = 10 UEs are randomly placed
in a (120m x 120m) area right of the BS and RIS. In what follows, we refer to SR-PGS and
SR-IGS as the SR under PGS and IGS, which are achieved by iterating (6.17) and (6.28),
and (6.53) and (6.54) with fy,(f) = 1. Their stand-alone counter-parts dispensing with the
RIS are referred by SR-PGS w/t RIS and SR-IGS w/t RIS, which are achieved by iterating
(6.17) and and (6.53) with ’yl(f) = 1 in the corresponding stand-alone models. Another pair
of counter-parts labelled by SR-PGS-RIS w. random 6 and SR-IGS-RIS w. random @ represent
the SR with the PREs randomly selected, which correspond to iterating (6.17) and (6.53)
under a fixed ) = @ with fy,(f) = 1. Finally, GM-PGS-RIS and GM-IGS-RIS represent to the
achievable GMs under PGS and IGS, which are computed by Algorithm 10 and 11.

Fig. 6.2 plots the SR performance versus the number M of antennas at the BS. The
SR-PGS and SR-IGS are only slightly better than their counter-parts SR-IGS w/t RIS and
SR-PGS, because the direct channel kg spanning from the BS to UE k is much stronger
than the reflected channel BR_lel%/_ i(eﬂa)ﬁB_R. The performance margin becomes wider with
M increased. Furthermore, SR-PGS approaches SR-1GS for M > K in Fig. 6.2.

Next, Fig. 6.3 portrays a rate distribution pattern for (M, N, P) = (9,100, P = 20dBm).
Observe in the figure that only GM-IGS and GM-PGS are capable of avoiding the assignment

of zero rate, hence demonstrating its superiority.

To substantiate this fact, Table 6.2 provides the average number of zero-rate users (ZR-

UEs) for the optimization schemes considered under different number of antennas M. For
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Fig. 6.2 SR for different the number of antennas M.
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Fig. 6.3 Rate distribution for M = 9.

SR-IGS and SR-PGS, the number of ZR-UEs increases when M is reduced. SR-PGS results in
more ZR-UEs than SR-1GS, while there are no ZR-UEs in GM-IGS and GM-PGS, confirming

that both of them are beneficial in providing the adequate rates to all users.

Furthermore, we also examine the resultant ratio of the minimum rate and maximum
rate (min-rate/max-rate) and the resultant rate-variance of these schemes versus the number
of antennas, M. Fig. 6.4 shows that both GM-PGS and GM-IGS produce min-rate/max-rates
that are substantially higher than that of SR-PGS and SR-IGS. SR-IGS produces higher
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Table 6.2 The average number of ZR-UEs versus M

Number of antennas | SR-IGS | SR-PGS | GM-IGS | GM-PGS
M=7 0.33 3.13 0 0
M=238 0.23 2.37 0 0
M=9 0.17 1.64 0 0
M =10 0 1.10 0 0
M=11 0 0.72 0 0

min-rate/max-rates than SR-PGS does. Fig. 6.4 also shows the min-rate/max-rate of SR-PGS
remains zero for M < K since there are always some ZR-UEs. Furthermore, upon increasing
the number of AP antennas, both the min-rate and the max-rate both are improved due to
the increased benefit of spatial diversity, but the value of min-rate /max-rate is not necessary
a monotonic function of the number of AP antennas. In Fig. 6.5, the rate variance of SR-PGS
is seen to be twice of that by its IGS counter SR-IGS at M = 7. The discrepancy becomes
narrower upon increasing M and it is closer to zero for M = 11. The rate-variances are
beneficially reduced by the GM-maximization based schemes GM-1GS and GM-PGS. Both
Fig. 6.4 and Fig. 6.5 indicate the advantages of IGS over PGS both in terms of SR and GM

maximization. Fig. 6.6 shows the GM rates. As expected, GM-1GS and GM-PGS produce

0.5
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g N
5 03f ——x—\’
8
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=) —7— GM-IGS
g GM-PGS
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number of AP’s antennas

Fig. 6.4 Min-rate/max-rate for the different number of antennas M.

much better GM rate than that of SR-IGS and SR-PGS. Note that GM-PGS has better GM
rates than GM-IGS for M > K due to the well-known capability of PGS to mitigate the
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Fig. 6.5 Rate-variance for the different of antennas M.

multi-user interference, when the number of transmit antennas is higher than the number of

users.
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Fig. 6.6 GM for the different number of antennas M.

We also consider another scenario as illustrated by Fig. 6.7, where the direct signal
path between the BS and users is blocked, i.e. we have hgy = 0 in (6.2) and (6.4). The
distances between the BS and users becomes slightly smaller upon deploying the BS at the
coordinates (20,0,25) and the RIS at the coordinates (0,30,40). In this scenario, K = 10
UEs are randomly placed in a (60m x 60m) area right of the BS and RIS.
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Fig. 6.7 System model

Fig. 6.8 portrays the SR versus M, where SR-IGS outperforms SR-PGS. Furthermore,
bo