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Abstract

The 6th-generation networks aim to further increase the average data rate and the 

edge rate, decrease in energy consumption and cost, and be able to transfer the energy 

at the same time. Precoding technology is one of the core technologies to achieve above 

goals. This thesis conducts in-depth research on uplink and downlink 

synchronous transmission scenarios, spectrum efficiency in energy-harvesting (EH) 

communication scenarios and Reconfigurable Intelligent Surfaces (RIS)-aided 

communication scenarios under precoding optimization methods.

Firstly, we propose a joint design of precoding matrix for base station and uplink 

users, and optimize the coefficient of  time fraction in  the same ti me. We  also propose 

a joint design of precoding matrix for base station and uplink users, and optimize the 

allocation of downlink and uplink bandwidth in the same time.

Secondly, this dissertation considers multi-cell and multi-user communication s-
cenario with EH, combining the fractional time method and the improper Gaussian 

signaling (IGS) precoding, an iterative algorithm is designed to optimize the user’s 

max-min throughput in the optimization of spectrum efficiency. Furthermore, a simpli-
fied improper Gaussian signaling precoding optimization algorithm is proposed, the 

algorithm reduces the complexity of the algorithm under improper Gaussian signaling.

Thirdly, in the RIS-aided communication scenario, this dissertation proposes a joint 

design of RIS and transmit beamforming under proper and improper Gaussian signaling, 
and introduces the unit-modulus constraints (UMC) of RIS reflection coefficients into 

the objective function which reduces the complexity of the algorithm.

Fourthly, a joint design of linear transmit beamformers and the programmable 

reflecting coefficients of an RIS  to maximize the  geometric mean of the  users’ rates is



2 List of tables

proposed. We also consider the joint design of widely linear transmit beamformers and
the programmable reflecting coefficients to further improve the GM of the users’ rates.

Finally, this dissertation considers RIS-aided wireless communication system with
EH network where the RIS links the connection between the IUs and the BS as there
is no direct path between the former and the latter. Joint optimization algorithms
for information transfer beamforming, energy transfer beamforming and reflecting
coefficients of the RIS based on transmit time-switching approach are developed. The
superiority of the proposed algorithm is verified in the simulation section.

In summary, the optimization of precoding for wireless communication systems is
studied, and method proposed in this thesis has certain significance for the theoretical
research and technical realization of wireless communication systems.



Chapter 1

Introduction

This chapter starts with the motivation and scope of this thesis, then introduces some
related research topics, and finally shows outlines of this dissertation.

1.1 Motivation and Scope

With the rapid popularization of mobile smart terminals, the number of mobile terminals
has exploded in recent years. The 5th-generation(5G) wireless communication system
adopts massive multiple input multiple output (Massive MIMO), millimeter wave
(mmWave), full duplex (FD), non-orthogonal multiple access (NOMA),heterogeneous
network and other technologies to provide communication with high transmission rate,
low delay, high channel capacity, and high spectrum efficiency to meet the exponentially
increasing demand for wireless data services. With the commercialization of the 5G
wireless communication, researchers also put forward further requirements for wireless
communication, such as higher communication quality, faster indoor transmission
rate, lower energy consumption, wireless energy harvesting, etc. [1]. The industry and
academia have begun to explore the 6th-generation (6G) wireless communication system.
3GPP expects to start the standardization study of 6G wireless communication system
in 2023, and realize commercial use in 2028. The goal of the 6G wireless communication
system is to interconnect the world and provide everyone with ubiquitous wireless
connections [2]. Compared with 5G wireless communication system, 6G wireless



4 Introduction

communication system proposes performance requirements such as 1000 times the 

peak rate, 10 times the regional spectrum efficiency, 10 0 ti mes th e re gional energy 

efficiency, 10 0 ti mes th e us er ex perience ra te, 10 00 ti mes th e pe ak ac cess density 

and 1/10 time delay [3]. In the mean time, the system should meet the needs of 
energy transmission, high physical layer security, fast data analysis, and modular 

network construction [4, 5]. In order to meet the above performance indicators and 

functional demand, THz communication, visible light communication, energy harvesting 

communication [6], intelligent mata-surface communication [7], orthogonal multiple 

access and other key technology are proposed [8]. Based on the performance indicators 

and key technologies of 6G proposed recently, this dissertation conducts in-depth 

research on uplink and downlink communication, energy harvesting (EH), and RIS. 
Corresponding convex optimization algorithms and closed-form solutions are developed.

1.2 Problems in Next-Generation Wireless Com-

munication Systems

In order to meet the rapid popularization of mobile smart terminals and the consumers’
growing demand, many potential technologies are proposed in the next-generation
wireless communication systems. In this dissertation, uplink and downlink commu-
nication communication, energy harvesting (EH), and RIS aided communication are
investigated to improve the quality of service (QoS) of wireless communication systems.

1.2.1 Uplink and Downlink Communication

With the popularization of mobile intelligent terminals, the bandwidth required and
the demand for spectrum resources by wireless communication systems is increasing.
Uplink and downlink communication provide a solution for alleviating the strained
wireless spectrum. However, due to the influence of interference, in general, radio
communication cannot be received and transmitted in the same frequency band [9],
which means that uplink and downlink wireless communication must work in half-
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duplex mode. Some recent work attempts to break this limitation, and various in-band
full-duplex wireless communication systems have been designed and proposed [10]. The
introduction of full-duplex has a huge impact on the design of communication networks,
for example, it can double the spectrum efficiency of cellular networks. Frequency-
division duplex (FDD) uses two separate channels to transmit uplink and downlink
respectively, so that the communication system can work at full duplex mode. In-band
full-duplex can make each individual channel achieve the same performance, saving half
of the spectrum resources. The reason why full duplex is difficult to achieve is that part
of the energy of the transmission signal will be received by its own receiver and affected
by the distance. The power of the self-interference is one billion times stronger than
the power of the target received signal (100dB+). This is an unsolved problem. All
uplink and downlink communication systems are designed to allocate transmission and
reception at different frequencies to avoid self-interference. Recently, self-interference
cancellation (SIC) technology has made significant progress. Many research teams have
simulated self-interference cancellation wireless communication systems in practical
scenarios. The results show that the development of self-interference cancellation
technology will gradually satisfy full-duplex communication demand. However, in the
long term, the next-generation wireless communication system puts forward higher
requirements such as low energy consumption and high speed, and SIC technology is
obviously difficult to meet these requirements. [11] and [12] have designed uplink and
downlink communication methods based on time slot allocation, which divide the single
time slot, so that the uplink and downlink communications are alternately transmitted
in the divided time slot. Due to the extremely short alternate transmission interval,
this method can meet the current requirements for simultaneous communication on
the uplink and downlink. At the same time, since self-interference and inter-link
interference are avoided, the spectrum utilization and energy efficiency of the system
are greatly improved.

1.2.2 Energy Harvesting

The main methods for energy harvesting communication are simultaneous wireless
information and power transfer (SWIPT) [13] and time-fraction-based information and
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power transfer (TFIPT) technology [14]. Wireless energy harvesting communication
combines wireless information transfer (WIT) and wireless power transfer (WPT),
which simultaneous transmit through same wireless media. The energy transfer in the
network brings great challenges to the processing of interference, but it also provides
the possibility for energy harvesting. Wireless energy transfer communication was first
proposed by L.R.Varshney in 2008. The author proposed the concept of "Capacity
Energy Function", and aimed at the binary discrete channel and the amplitude-
limited additive Gaussian white noise(AWGN) channel scenario, where the energy
transmission efficiency and information rate are traded off [15]. Subsequently, the
literature [16] studied the application of wireless energy transfer communication in
AWGN channel, and designed the simultaneous transmission of short-range wireless
information and energy through a coupled inductance circuit, which gives a compromise
between information rate and energy efficiency. In addition, for the scenario where
the transmitter can obtain channel state information (CSI), literature [17] studied the
joint optimization of information and energy processing schemes and receiver power
control. The study showed that the best compromise strategy is to allocate all channel
gains to energy transfer. After that, a large number of literatures have conducted
research on wireless energy transfer communication in various complex system models,
mainly including broadcast channel [18], interference channel [19], relay system [20]
and so on. Recently, research has proposed energy transmit communication based
on time slot allocation [14]. This method uses time slot allocation to use part of the
single time slot for information transfer, and then use the remaining time slot for
energy transmit, which can avoid the interference to information signals caused by
energy signal transmit. In addition, the method can separately perform precoding for
energy transfer and information transfer. During information transmission, precoding
is used to suppress noise and improve information transmission quality. During energy
transmission, precoding is used to amplify signal power to improve energy transmission
efficiency.
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1.2.3 Reconfigurable Intelligent Surfaces

In order to achieve higher transmission rates, ultra-dense networks (UDN), massive
MIMO technology and millimeter wave communication systems have been proposed one
after another [21], but these technologies still face severe consumption and hardware
consumption issues in practical applications. For example, in an UDN, the energy
consumption of circuits and cooling increases almost linearly with newly deployed
base stations, while mmWave communication requires a large number of expensive
radio frequency (RF) chains and complex signal processing technologies. On the other
hand, adding too many active devices, such as micro base stations and relays, to
the wireless communication network will cause more serious interference problems.
Therefore, researchers are still looking for energy-saving and spectral methods to assist
in achieving the requirements of next-generation wireless communication networks [22].
[23] proposed the concept of reconfigurable intelligent reflective surface to meet the
above challenges. The reconfigurable intelligent reflective surface is a planar array
containing a large number of passive devices (such as low-cost printed oscillators).
Each device in the array will be controlled by a small controller to introduce a
phase shift for each independent incident electromagnetic wave. As a key component
of traditional reflective arrays, passive reflective surfaces are widely used in radar
and satellite communications. However, since traditional reflective surfaces have a
phase shift determined during manufacture, they cannot meet the dynamics of time-
varying channel communication networks. However, the recent development of RF
micro electromechanical systems (MEMS) and meta-materials has made it possible
to reconfigurable reflective surfaces with real-time phase control [24]. By intelligently
adjusting the phases of all components on the reconfigurable intelligent reflective surface,
the signals can be coherently superimposed at the target receiving end to increase the
power of the received signal, or the signal can be destructively superimposed on the
non-target receiving end to avoid interference and strengthen the security and privacy.
In [25], Q. Wu compared RIS and related technologies such as amplify-and forward
(AF) relay [26], backscatter communication and the active reflection surface intelligence
based on massive MIMO [27], the results showed that RIS has the advantages in not
requiring a radio frequency chain, lower hardware consumption, and lower energy
consumption.
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1.3 Dissertation Outline

The outline of the dissertation is as follows:
Chapter 1
This chapter presents the motivation and scope, the research topics and the outline of
the dissertation.
Chapter 2
A brief review of proper and improper Gaussian signal. Then, an overview of convex
optimization theory is introduced.
Chapter 3
With the goal of improving the spectrum efficiency and energy efficiency of the commu-
nication system, chapter 3 studies the uplink and downlink transmission and reception
communication scenarios, and discusses full-duplex communication, half-duplex com-
munication, communication based on time slot allocation, and communication methods
based on bandwidth allocation, respectively. Corresponding spectrum efficiency and
energy efficient optimization algorithms are designed for the above communication
methods, which effectively improves the throughput and energy efficiency of the com-
munication network. The simulation results show that the algorithms based on time
slot allocation and bandwidth allocation outperform the full-duplex communication and
half-duplex communication algorithms, and the joint optimization algorithm based on
time slot allocation is better than the joint optimization algorithm based on bandwidth
allocation. The work in this chapter has been published in:

• H. Yu, H. D. Tuan, T. Q. Duong, H. V. Poor and Y. Fang, "Optimization for
Signal Transmission and Reception in a Macrocell of Heterogeneous Uplinks and
Downlinks". IEEE Transactions on Communications, 2020, 68(11): 7054-7067.

Chapter 4
Chapter 4 studies the energy harvesting network based on improper Gaussian signaling
in the multi-cell and multi-user scenario, which the covariance information of the signal
is used in the optimization to obtain the optimal minimum throughput. Compared with
the algorithms based on proper Gaussian signals, IGS based algorithms have better
spectrum efficiency and information confidentiality, but the algorithm complexity is
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also higher. To lower the algorithm complexity, a simplified improper gaussian signaling
(s-IGS) algorithm is proposed. Compared with the regular IGS algorithm, s-IGS based
algorithm has faster convergence speed and the complexity degree of the algorithm is
greatly reduced. The work in this chapter has been published in:

• H. Yu, H. D. Tuan, T. Q. Duong, Y. Fang and L. Hanzo, "Improper Gaussian
Signaling for Integrated Data and Energy Networking". IEEE Transactions on
Communications, 2020, 68(6): 3922-3934.

• H. Yu, H. D. Tuan, A. A. Nasir, T. Q. Duong and L. Hanzo, "Improper Gaussian
Signaling for Computationally Tractable Energy and Information Beamforming".
IEEE Transactions on Vehicular Technology, 2020, 69(11): 13990-13995.

• H. Yu, H. D. Tuan, A. A. Nasir, M. Debbah and Y. Fang, "Regularized Zero
Forcing Beamforming for Serving More Users in Energy-Harvesting Enabled
Networks". Proceedings of 2020 IEEE Tenth International Conference on Com-
munications and Electronics (ICCE), Vietnam, 2020: 51-56.

• H. Yu, H. D. Tuan, A. A. Nasir, M. Debbahd and Y. Fang, "New Generalized
Zero Forcing Beamforming for Serving More Users in Energy-Harvesting Enabled
Networks". Physical Communication, 50(2022): 101500.

Chapter 5
RIS-aided communication system is studied in this chapter. Aiming at the minimum
achievable throughput and spectrum efficiency optimization, a joint optimization
algorithm of precoding and PRCs is proposed, which improves users minimum achievable
throughput. In the mean time, the design of the optimization algorithm under the IGS
is also considered, and the covariance information of the signal is used to further improve
the spectrum efficiency of the communication system. The simulation experiment
considered two common scenarios: direct channel between the base station and the user
and the direct channel between the base station and the user is blocked by obstacles.
The results show that optimizing the reflection phase of the reconfigurable intelligent
reflector is helpful to the spectrum efficiency of the communication system. The
improvement is significant when the direct channel between the base station and the
user is blocked by obstacles, and the minimum achievable throughput of IGS based
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algorithms outperforms that of PGS based algorithms. The work in this chapter has
been published in:

• H. Yu, H. D. Tuan, A. A. Nasir, T. Q. Duong and H. V. Poor, "Joint De-
sign of Reconfigurable Intelligent Surfaces and Transmit Beamforming under
Proper and Improper Gaussian Signaling". IEEE Journal on Selected Areas in
Communications, 2020, 38(11): 2589-2603.

Chapter 6
In this chapter, a RIS-aided network which relies on a multiple antenna array aided
base station and a RIS for serving multiple single antenna downlink users is studied.
In order to further reduce the complexity of the algorithm, an optimization method
based on closed-form solutions is proposed. In the mean time, the geometric mean
(GM) rate is set as the optimization target to improve the communication efficiency of
the system while ensuring the edge users’ rate. Sum rate optimization and GM rate
optimization results are compared in the simulation section which demonstrates the
superior of the proposed algorithms. The work in this chapter has been published in:

• H. Yu, H. D. Tuan, E. Dutkiewicz, H. V. Poor and L. Hanzo, "Maximizing
the Geometric Mean of User-Rates to Improve Rate-Fairness: Proper vs. Im-
proper Gaussian Signaling". IEEE Transactions on Wireless Communications,
2021,21(1):295-309.

Chapter 7
A network of a multi-antenna array base station and a RIS to deliver both information
to information users and power to energy users is discussed in this chapter. To provide
reliable links for all users over the same time-slot, we adopt the transmit time-switching
approach, under which information and energy are delivered over different time-slot
fractions. This allows us to rely on conjugate beamforming for energy links and
zero-forcing/regularized zero-forcing beamforming (ZFB/RZFB) and on the PRCs
of the RIS for information links. We show that ZFB/RZFB and PRCs can be still
separately optimized in their joint design, where PRC optimization is based on iterative
closed-form expressions. We then develop a path-following algorithm for solving our
max-min IU throughput optimization problem subject to a realistic constraint on the
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quality-of-energy-service in terms of the EUs’ harvested energy thresholds. We also
propose a new RZFB for substantially improving the IUs’ throughput.

• H. Yu, H. D. Tuan, E. Dutkiewicz, H. V. Poor and L. Hanzo, "RIS-aided Zero-
Forcing and Regularized Zero-Forcing Beamfoming in Integrated Information
and Energy Delivery". IEEE Transactions on Wireless Communications, 2021.
(Early Access)

Chapter 8
This chapter summarizes the works of this PhD dissertation and presents the future
research developments.
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1.4 Notation

In this section we describe our notation used in the following chapters.

Table 1.1 Notation

Notations Description

x Vector
X Matrix
x Vector variable
X Matrix variable
(.)∗ Conjugate operation
(.)T Transpose operation
(.)H Conjugate transpose operation
(.)−1 Inverse operation
tr(.) Trace operation
⟨X⟩ trace(X)
|.| det(.),log-determinate operation
Re Real part of a complex variable
Im Imaginary part of a complex variable
IN Identity matrix of size N ×N
OM×N Zero matrix of size M ×N
diag(.) A diagonal matrix of the size n× n
[X]2 XXH

⟨X, Y ⟩ trace(XHY )
||X||

√
trace(XHX)

E(.) Expectation opteration
X ≽ 0 X is positive semi-definite matrix
X ≻ 0 X is positive definite matrix
(X + (∗)H) (X + (X)H)
vec(X) Stack the columns of the matrix X into a single column
vec(AXB) (BT ⊗ A)vec(X),where ⊗ is the Kronecker product
x = (x1, . . . , xn)T ∈ Rn ex = (ex1 , . . . , exn)T ∈ Cn

∠x Argument of a complex number x
C(0, a) Circular Gaussian random variables



Chapter 2

Background

In this chapter, we briefly describe the improper Gaussian signaling. Then, the
optimization theory used in this dissertation is introduced.

2.1 Improper Gaussian signaling

In this section, we will briefly introduce proper Gaussian signal and improper Gaussian
signal. To analyze the second-order statistical properties of x = u + jv for x ∈ Cn,

and u, v ∈ R, integrating its imaginary and real parts a random vector z (z =
u
v

) is

considered. Its mathematical expectation value can be expressed as follows [28]:

µz = Ez =
Eu
Ev

 =
µu
µv

 , (2.1)

and the covariance matrix is then formulated as

Fzz = E(z − µz)(z − µz)T =
Fuu Fuv

F T
uv Fvv

 , (2.2)
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where Fuu = E(u−µu)(u−µu)T , Fuv = E(u−µu)(v−µv)T . The augmented expectation
of x can be expressed as:

µ
x

= Ex = Tµz =
µx
µ∗
x

 =
µu + jµv

µu − jµv

 , (2.3)

where x =
 x
x∗

 = Tµz, T =
I jI

I −jI

 ∈ C2n×2n. T represents the real to imaginary

transformation, the covariance matrix of x is formulated as:

F xx = E(x− µ
x
)(x− µ

x
)H = TFzzT

H =
Fxx F̃xx

F̃ ∗
xx F̃ ∗

xx

 = FH
xx, (2.4)

it can observed that Fxx = FH
xx and F̃xx = F T

xx:

Fxx = E(x− µx)(x− µx)H = Fuu + Fvv + j(F T
uv − Fuv) = FH

xx, (2.5)

F̃xx = E(x− µx)(x− µx)T = Fuu − Fuv + j(F T
uv + Fuv) = F T

xx. (2.6)

Furthermore, x is a proper Gaussian signal for F̃xx = 0, or x is a improper Gaussian
signal.

2.2 Optimization Theory

In this section, an overview of mathematical optimization and convex optimization are
introduced.

2.2.1 Mathematical Optimization

A mathematical optimization problem usually can be expressed as:

minimize f0(x)
s.t. fi(x) ≤ bi, i = 1, . . . ,m,

(2.7)
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where vector x = (x1, ..., xn) is the optimization variable of the optimization problem,
function f0 is the objective functions, the functions fi are constrain functions, and
(b1, ...bm) are the limits, or bounds for the constraints. The vector x∗ reaches its optimal
value or solution of (2.7) when f0 has the smallest value among all vectors satisfy the
constraints: for any z with f1(z) ≤ b1, ..., fm(z) ≤ bm, we have f0(z) ≤ f0(x∗) [29].

As an important example, if the objective and constraint functions f0, ..., fm are
linear and satisfy fi(αx+ βy) = αfi(x) + βfi(y) for x, y ∈ Rn, and α, β ∈ R, then the
optimization problem (2.7) is called a linear program. If the optimization problem is
not linear, it is called a nonlinear program.

The optimization problem (2.7) is called a linear optimization problem if the
objective and constraint functions (f0, ..., fm) are linear

fi(αx+ βy) = αfi(x) + βfi(y). (2.8)

for x, y ∈ Rn, and α, β ∈ R [30].

2.2.2 Convex Optimization

A convex optimization problem is a class of optimization problems in which the objective
and constraint functions are convex, which means they satisfy the inequality

fi(αx+ βy) ≤ αfi(x) + βfi(y). (2.9)

for x, y ∈ Rn, and α, β ∈ R [30].

Comparing (2.8) and (2.9), it can be observed that convexity is more general than
linearity: inequality replaces the more restrictive equality. Since any linear program
is therefore a special circumstance of convex optimization problem, we can consider
convex optimization to be a generalization of linear programming [29].

Fundamental definitions in convex optimization are given as follows
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Definition 1 [30] Let a, b be two points of Rn. The set of all x ∈ Rn of the form

x = (1− λ)a+ λb

= a+ λ(b− a), λ ∈ R (2.10)

is called the line through a and b. A subset M of Rn is callsed an affine set if it contains
every line through two points of it, i.e., if (1− λ)a+ λb ∈M for every a ∈M , b ∈M ,
and every λ ∈ R.

Definition 2 [30] Given two points a, b ∈ Rn, the set of all points x = (1− λ)a+ λb

such that 0 ≤ λ ≤ 1 is called the (closed) line segment between a and b and denoted by
[a, b]. A set C ⊂ Rn is called convex if it contains any line segment between two points
of it; in other words, if (1− λ)a+ λb ∈ C whenever a, b ∈ C, 0 ≤ λ ≤ 1.

Definition 3 [30] A function f(x) is convex, if x is on a convex domain C, for all
x, y ∈ C and 0 ≤ λ ≤ 1, it is true that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (2.11)

Definition 4 [30] A function f(x) is concave, if x is on a convex domain C, for all
x, y ∈ C and 0 ≤ λ ≤ 1, it is true that

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y). (2.12)

Definition 5 [30] To the problem min{f(x)|x ∈ D}, a point x∗ ∈ D such that

f(x∗) ≤ f(x), ∀x ∈ D, (2.13)

is called a global minimizer. A point x′ ∈ D such that there exists a neighborhood W
of x′ satisfying

f(x′) ≤ f(x), ∀x ∈ D ∩W, (2.14)

is called a local minimizer.
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A convex optimization problem is represented by

min f0(x)
s.t. fi(x) ≤ 0, i = 1, . . . ,m,

(2.15)

where fi(·), i = 0, . . . ,m are convex functions. The most important characteristics of
such a convex optimization problem are

• Any local minimizer of (2.15) is also its global minimizer;

• (2.15) is computationally tractable for very wide classes of convex functions fi(·)
is the sense there are algorithms of polynomial complexity for its computation.





Chapter 3

Optimization for Signal
Transmission and Reception in a
Macrocell of Heterogeneous
Uplinks and Downlinks

3.1 Introduction

The Internet-of-things (IoT) is characterized by massive wireless connectivity of low
latency, which means that the future wireless communication must be cost-efficient and
environment-friendly in accommodating a plethora of wireless downlinks and uplinks
over the same time slot within a constrained communication bandwidth [31]. One of
the first and perhaps the most natural answers is the full-duplexing (FD) exploitation,
which provides means for simultaneous signal transmission and reception (STR) over the
same frequency band/bandwidth by the same base station (BS) of co-located transmit
and receive antennas [32–34]. However, the FD exploitation suffers its self-interference
(SI) bottleneck as the interference to the receive signal from the transmit signal is
expected very strong [10, 35]. Even for microcells, it is impossible to control SI under
a level so that the FD-based STR is more spectral-efficient or energy-efficient than the
conventional half-duplexing (HD)-based transmission and reception, which transmit



20
Optimization for Signal Transmission and Reception in a Macrocell of Heterogeneous

Uplinks and Downlinks

and receive signal in two separated time-slots, even by using the advanced techniques
of signal processing [36–48]. Motivated by this unsolved issue of the FD exploitation,
and also originated from [14], where the information and energy are proposed to be
transferred separately over the same wireless channels within a time-slot instead of their
simultaneous transfer, it was suggested in [48, 12, 49] to use a fraction of a time-slot to
transmit signals to the relays and then the remaining complementary time-fraction to
forward the received signals at the relays to the destination end. Such time-fraction-wise
half-duplexing (HD) relaying is not only much easier implemented but is much better
than that using the FD-based relaying. Additionally, unlike FD-based relaying, which
must use a half of the relays’ antennas for receiving signals and another half of relays’
antennas for forwarding them, the time-fraction-wise HD relaying can use all available
antennas for receiving and then forwarding signals to enjoy multi-antenna diversity
in both signal transmission and reception. Time-fraction-wise based communication
is capable of improving the SISO system’s communication capacity [50, 51]. Another
approach to STR within a time-slot, which can also avoid the SI, is to transmit signal
and receive signal at the same time-slot using separated communication bandwidths,
i.e. the whole bandwidth is divided into two parts, one is used for signal transmission
and the remaining complementary one is used for signal reception. This bandwidth-
fraction-wise STR must still use a half of antennas for signal transmission and another
half of antennas for signal reception. Moreover, it can be practically implemented only
when the bandwidth parts are fixed beforehand.

The present chapter examines the three aforementioned approaches to serve a
macrocell of heterogeneous downlinks and uplinks within a time-slot. Under the FD-
based STR, the focus is to design the transmit beamformers at the BS and uplink users.
Under the time-fraction-wise STR, the focus is to jointly design the time-fraction-wise
beamformers at the BS and uplink users and time-fraction allocation, while the focus
under the bandwidth-fraction-wise STR is to jointly design the bandwidth-fraction-wise
beamformers at the BS and uplink users and bandwidth-fraction allocation. Motivated
by saving energy to control the negative impact of wireless communication in global
warming [22, 52], all these design problems aim to maximize the network energy-
efficiency (EE) under the quality-of-service (QoS) constraints for downlink and uplink
throughput. While the spectral efficiency (SE) of (microcell) FD transceivers has
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been considered previously (see e.g. [39] and references therein), its EE subject to the
downlink and uplink QoS constraints was not appropriately considered. This chapter
is the first work to consider STR over macrocell, which exploits time-fraction-wise
and bandwidth-fraction-wise beamforming. All the problems of beamforming design
are formulated as nonconcave objective function optimization subject to nonconvex
constraints, which are computationally challenging. Our further contributions are
developments of tailored path-following algorithms for their computation.

The rest of the chapter is organized as follows. Section II is devoted to the problem
of EE maximization under FD-based STR, where in the end the FD-based STR’s
drawbacks are analysed in depth. Sections III and IV then are devoted to the problem
of EE maximization under time-fraction-wise STR and bandwidth-fraction-wise STR,
which provide remedy means for the FD-based STR. Simulations are provided in
Section V to substantiate the analytical development of the previous sections, where
the SE of STR is also additionally revealed. The appendix provides some fundamental
inequalities used for deriving the equations in Sections II-IV.

3.2 FD-based STR

Fig. 3.1 FD-based STR system

Consider a macrocell of a BS serving d downlink single-antenna users termed by
DLj, j = 1, . . . , d, and u uplink single-antenna users termed by ULi, i = 1, . . . , u, as
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illustrated by Fig. 3.1. The BS is equipped with n antennas. Under the FD-based
STR, n1 antennas are used for signal transmission to serve the downlinks and other
n2 = n−n1 antennas are used for signal reception to serve the uplinks. Usually, n1 ≥ d

and n2 ≥ u are required for practical implementation. Let sd
j ∈ C with |sd

j | = 1 be
the information intended for DLj, which is beamformed by vvvj ∈ Cn1 before the BS’s
transmission. Let su

i ∈ C with |su
i | = 1 be the information ULi intends to send to the

BS, which is allocated by power ppp2
i before the uplinks’ transmission. For notational

convenience, define

vvv , {vvvj : j = 1, . . . , d},
ppp , {pppi : i = 1, . . . , u}, D = {1, . . . , d}.

The received signal at DLj is

yj , hHj,bsvvvjs
d
j︸ ︷︷ ︸

desired signal

+
∑

ℓ∈D\{j}
hHj,bsvvvℓs

d
ℓ︸ ︷︷ ︸

DL interference

+
u∑
i=1

hj,ipppis
u
i︸ ︷︷ ︸

UL interference

+nj, j = 1, . . . , d, (3.1)

where hj,bs ∈ Cn1 and hj,i ∈ C are the channels from the BS to DLj and from ULi to
DLj , respectively, and nj is the background white Gaussian noise with the variance σ2

d.

The throughput at DLj is

rd
j (vvv,ppp) , ln

(
1 + |λj(v

vvj)|2
ψj(vvv,ppp)

)
, (3.2)

where λj(vvvj) , hHj,bsvvvj, and ψj(vvv,ppp) ,
∑
ℓ∈D\{j} |hHj,bsvvvℓ|2 +∑u

i=1 ppp
2
i |hj,i|2 + σ2

d, which is
a convex quadratic function. At the same time, the received signal at the BS is

ybs ,
u∑
i=1

hbs,ipppis
u
i︸ ︷︷ ︸

desired signal

+HSI
d∑
j=1

vvvj s̃j︸ ︷︷ ︸
residual SI

+nbs (3.3)

=
[
hbs,1 hbs,2 . . . hbs,u

]


ppp1s
u
1

ppp2s
u
2

...

pppus
u
u

+ ñbs, (3.4)
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where hbs,i ∈ Cn2 is the channel vector from ULi to the BS, nbs is the background
white Gaussian noise with the variance σ2

bsIn2 . Furthermore, HSI ∈ Cn2×n1 is the
residual self-loop channel from the transmit antennas to the receive antennas at the
BS after all real-time cancelation in both analog and digital domains [53, 54]. s̃j

is the additive Gaussian noise with E [|s̃j|2] = σ2
SI and the SI level σ2

SI is the ratio
of the average SI powers before and after the SI cancelation process [55, 10, 53, 56].
The term ñbs , HSI ∑d

j=1 vvvj s̃j + nbs in (3.4) represents the self-loop interference plus
noise. By assuming that the entries of the self-loop channel HSI in (3.3) are treated as
independent circularly symmetric complex Gaussian random variables with zero mean
and unit variance, ñbs can be assumed white noise with the covariance

σ2
SI

d∑
j=1
||vvvj||2 + σ2

bs

 In2 , (3.5)

which only depends on the BS transmit power and thus cannot be mitigated by the
transmit beamformer vvv.

Make QR decomposition

[
hbs,1 hbs,2 . . . hbs,u

]
= QbsRbs ∈ Cn2×u, (3.6)

where Qbs ,
[
qbs,1 qbs,2 . . . qbs,n2

]
∈ Cn2×n2 is an unitary matrix and Rbs ∈ Cn2×u

is an upper rectangular matrix. It follows from (3.4) that

QH
bsybs = Rbs



ppp1s
u
1

ppp2s
u
2

...

pppus
u
u

+QH
bsñbs. (3.7)

Upon successive interference cancellation (SIC) decoding, the throughput of su
i at

the BS is

ru
i (vvv,pppi) = ln

(
1 + ppp2

i |Rbs(i, i)|2
ψbs(vvv)

)
, i = 1, . . . , u, (3.8)

where ψbs(vvv) , σ2
SI

∑
j∈D ||vvvj||2 + σ2

bs.
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Following e.g. [57], the consumed power P tot for the STR is modelled by the
following convex quadratic function

P tot(vvv,ppp) = ζP t(vvv,ppp) + PBS + PUE, (3.9)

where P t(vvv,ppp) ,
∑
j∈D
||vvvj||2 +

u∑
i=1

ppp2
i is the total transmit power of the BS and UEs, and

ζ is the reciprocal of drain efficiency of power amplifier, PBS and PUE are the circuit
power of the BS and UEs, respectively.

We consider the following design problem of downlink beamforming and uplink
power allocation to maximize the FD-based STR’s EE:

max
vvv,ppp

d∑
j=1

rd
j (vvv,ppp) +

u∑
i=1

ru
i (vvv,pppi)

P tot(vvv,ppp) (3.10a)

s.t.
d∑
j=1
||vvvj||2 ≤ Pmax

BS , (3.10b)

0 < pppi ≤
√
Pmax

UE , i = 1, . . . , u, (3.10c)

rd
j (vvv,ppp) ≥ rd, j = 1, . . . , d, (3.10d)

ru
i (vvv,pppi) ≥ ru, i = 1, . . . , u, (3.10e)

where (3.10b)-(3.10c) cap the transmit power constraints, while (3.10d)-(3.10e) cap
the QoS constraints for both downlink and uplink transmission because rd and ru are
throughput thresholds. Pmax

BS and Pmax
UE are the power budget for the BS and ULi,

respectively.

By changing variable if necessary one can replace |λj(vvvj)|2 by (λ̄j(vvvj))2 for λ̄j(vvvj) =
ℜ{λj(vvvj)} in (3.2), so

rd
j (vvv,ppp) = ln

(
1 + (λ̄j(vvvj))2

ψj(vvv,ppp)

)
,
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and the downlink QoS constraint (3.10d) is equivalent to the second-order cone (SOC)
constraint

λ̄j(vvvj) ≥
√
erd − 1

√
ψj(vvv,ppp)

=
√
erd − 1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
(hHj,bsvvvℓ)ℓ∈D\{j}

(pppi|hj,i|)ui=1

σd

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

, j = 1, . . . , d, (3.11)

while the uplink QoS constraint (3.10e) is also equivalent to the following SOC constraint

pppi|Rbs(i, i)| ≥
√
eru − 1

√
ψbs(vvv)

= σSI
√
eru − 1

∣∣∣∣∣∣
∣∣∣∣∣∣ (vvvi)

d
i=1

σbs/σSI

∣∣∣∣∣∣
∣∣∣∣∣∣
2

, i = 1, . . . , u. (3.12)

Therefore, the problem (3.10) is equivalent to the following convex constrained opti-
mization problem

max
vvv,ppp

Φ(vvv,ppp) ,

d∑
j=1

rd
j (vvv,ppp) +

u∑
i=1

ru
i (vvv,pppi)

P tot(vvv,ppp)
s.t. (3.10b), (3.10c), (3.11), (3.12), (3.13)

where the computational difficulty is concentrated at its objective function Φ(vvv,ppp),
which is not concave, making (3.13) a nonconvex problem. Usually, this objective is
handled by fractional programming. Let (v(κ), p(κ)) be a feasible point for (3.10) found
from the (κ − 1)th iteration. Then the so called Dinkelbach’s iteration [58] invokes
the following optimization problem to generate (v(κ+1), p(κ+1)) at the κ-th iteration:
(v(κ+1), p(κ+1)) at the κ-th iteration:

max
vvv,ppp

d∑
j=1

rd
j (vvv,ppp) +

u∑
i=1

ru
i (vvv,pppi)− Φ(v(κ), p(κ))P tot(vvv,ppp)

s.t. (3.10b), (3.10c), (3.11), (3.12). (3.14)
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However, this problem is still nonconvex and thus computationally intractable as the
first two terms in its objective function, which constitute the numerator of the objective
function Φ(vvv,ppp) in (3.13) are not concave. Our previous works [48, 59] have proposed to
optimize the fractional objective function f(vvv,ppp) in (3.12), avoiding the computational
intractable iteration (3.14). We now develop another path-following iterations, which
like (3.14) generate a sequence {f(v(κ), p(κ))} of improved values of the objective in
(3.12) but in contrast to (3.14) invoke a simple quadratic optimization problem at each
iteration and thus are very computationally efficient.

Applying the inequality (A.12) in the appendix for xxx = λ̄j(vvvj), yyy = ψd
j (vvv,ppp) and

x̄ = λ̄j(v(κ)
j ), ȳ = ψd

j (v(κ), p(κ)) yields

rd
j (vvv,ppp) ≥r

d,(κ)
j (vvv,ppp)

,ad,(κ)
j − bd,(κ)

j

 (λ̄j(v(κ)
j ))2

2λ̄j(v(κ)
j )λ̄j(vvvj)− (λ̄j(v(κ)

j ))2
+

ψd
j (vvv,ppp)

ψd
j (v(κ), p(κ))

)
, (3.15)

over the trust region

2λ̄j(v(κ)
j )λ̄j(vvvj)− (λ̄j(v(κ)

j ))2 > 0, j = 1, . . . , d, (3.16)

where 0 < a
d,(κ)
j , rd

j (v(κ), p(κ)) + 2bd,(κ)
j , and 0 < b

d,(κ)
j ,

(λ̄j(v(κ)
j ))2

ψd
j (v(κ),p(κ))+(λ̄j(v(κ)

j ))2 .

Analogously, applying the inequality (A.12) in the appendix for xxx = pppi|Rbs(i, i)|,
yyy = ψbs(vvv) and x̄ = p

(κ)
i |Rbs(i, i)|, ȳ = ψbs(v(κ)) yields

ru
i (vvv,pppi) ≥ r

u,(κ)
i (vvv,pppi)

, a
u,(κ)
i − bu,(κ)

i

 (p(κ)
i )2

2p(κ)
i pppi − (p(κ)

i )2
+ ψbs(vvv)
ψbs(v(κ))

 , (3.17)

over the trust region

2p(κ)
i pppi − (p(κ)

i )2 > 0, i = 1, . . . , u, (3.18)

where 0 < a
u,(κ)
i = ru

i (v(κ), p(κ)) + 2bu,(κ)
i and b

u,(κ)
i = (p(κ)

i |Rbs(i,i)|)2

ψbs(v(κ))+(p(κ)
i |Rbs(i,i)|)2 .
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To generate the next iterative point (v(κ+1), p(κ+1)) at the κth iteration, we solve
the following convex problem :

max
vvv,ppp

L(κ)(vvv,ppp) ,
d∑
j=1

r
d,(κ)
j (vvv,ppp) +

u∑
i=1

r
u,(κ)
i (vvv,pppi)− f(v(κ), p(κ))P tot(vvv,ppp)

s.t. (3.10b), (3.10c), (3.11), (3.12), (3.16), (3.18). (3.19)

Note that L(κ)(v(κ), p(κ)) = 0 so L(κ)(v(κ+1), p(κ+1)) > 0 because (v(κ+1), p(κ+1)) is
the optimal solution of (3.19). This means

d∑
j=1

r
d,(κ)
j (v(κ+1), p(κ+1)) +

u∑
i=1

r
u,(κ)
i (v(κ+1), p

(κ+1)
i )

−Φ(v(κ), p(κ))P tot(v(κ+1), p(κ+1)) > 0

⇔

d∑
j=1

rd
j (v(κ+1), p(κ+1)) +

u∑
i=1

ru
i (v(κ+1), p

(κ+1)
i )

P tot(v(κ+1), p(κ+1)) > Φ(v(κ), p(κ))

⇔ Φ(v(κ+1), p(κ+1)) > Φ(v(κ), p(κ)), (3.20)

i.e. (p(κ+1), v(κ+1)) can archive better results than (p(κ), v(κ)) for the nonconvex op-
timization problem (3.13). Then it is easy to show that the sequence {(p(κ), v(κ))}
converges at least to a locally optimal solution of (3.13)/(3.10) [60]. It has been shown
e.g. in [14] that such a locally optimal solution often turns out to be the global one.
A pseudo-code of the proposed iterative process is given by Algorithm 1.

Algorithm 1 Full-duplex EE Optimization Algorithm
1: Initialization: Set κ = 0. Calculate the initial point (v(0), p(0)) by:

minvvv,ppp
∑d
j=1 ||vvvj||2 +∑u

i=1 ppp
2
i subject to (3.10b), (3.10c), (3.11), (3.12).

2: Repeat: Generate the next feasible point (v(κ+1), p(κ+1)) for (3.10) by solving the
convex problem (3.19). Set κ := κ+ 1.

3: Output (v(κ), p(κ)).

Although Algorithm 1 provides means for efficient computation of the FD-based
STR’s EE optimization problem (3.10), one can see the following inherent drawbacks
of FD-based STR preventing it from achieving high EE or providing high QoS:
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• The DL throughput defined by (3.2) is UL interference-limited: the UL interfer-
ence in (3.1) can be strong and uncontrolled whenever there is a UL near to a
DL.

• The UL throughput defined by (3.8) is SI-limited: the SI in (3.3), which is
proportional to the BS transmit power as (3.5) shows, is very strong due to the
co-location of BS transmit and receive antennas. It is technologically impossible
to suppress it to the background noise level even for microcells with much weaker
transmit signals.

• Only n1 antennas are used for signal transmission and n2 antennas are used for
signal reception, restricting the number of served downlinks and uplinks up to n1

and n2 respectively.

The next two sections provide quite different STRs to resolve these drawbacks.

3.3 Time-fraction-wise STR

We now propose the first alternative approach, which not only resolves all the above
issues of (micro) FD-based STR but also works for macrocells. Still within a single
time slot, the BS uses n1 antennas to transmit signal during a fraction 0 < τττ < 1 of
the time-slot to serve DLs as illustrated by Fig. 3.2(a) and then users the remaining
n2 antennas in the remaining fraction 1− τττ to receive signal from ULs, who are kept
silent during the first τττ fraction, as illustrated by Fig. 3.2(b). Inter-link interference
and SI are thus completely avoided.

Moreover, as illustrated by Fig. 3.3, all n antennas can be used to transmit signal
during a fraction 0 < τττ < 1 of the time-slot to serve DLs, which are then switched in a
fraction ϵ of the time-slot to receive signal from ULs in the remaining fraction 1− ϵ−τττ .
Thus, the full number of antennas is utilized for transmission and reception with is no
inter-link interference and SI. We refer the first option as TF while the second option
as e-TF to distinguish them.
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(a)

(b)

Fig. 3.2 TF/BF STR system: (a) Signal transmit during a fraction τττ of time
slot/bandwdith; (b) Signal reception during the remaining fraction 1− τττ of time

slot/bandwidth

Now, let ṽvvj ∈ Cnt×d1 be the beamforming vector for DLj, so nt = n1 for TF while
nt = n for e-TF. For computational tractability, the power allocated to su

i is defined by
1/pppi instead of ppp2

i in the previous section.
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(a)

(b)

Fig. 3.3 e-TF STR system: (a) Signal transmit during a fraction τττ of time slot by all
antennas; (b) Signal reception during the remaining fraction η − τττ of time slot by the

same antennas

The received signal at DLU j is now:

ỹj , h̃Hj,bsṽvvjs
d
j︸ ︷︷ ︸

desired signal

+
∑

ℓ∈D\{j}
h̃Hj,bsṽvvℓs

d
ℓ︸ ︷︷ ︸

DL interference

+nj, j = 1, . . . , d, (3.21)

where h̃j,bs ∈ Cnt is the downlink channel from the BS to DLj.
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For ṽvv , {ṽvvj, j = 1, . . . , d}, the throughput at DLj is τττρd
j (ṽvv) with

ρd
j (ṽvv) , ln

(
1 + |λ̃j(ṽ

vvj)|2
φd
j (ṽvv)

)
, (3.22)

where λ̃j(ṽvvj) , h̃Hj,bsṽvvj and φd
j (ṽvv) ,

∑
ℓ∈D\{j}

|h̃Hj,bsṽvvℓ|2 + σ2
d.

The received signal at the BS is now

ỹbs ,
u∑
i=1

h̃bs,is
u
i /
√
pppi + ñbs, (3.23)

where h̃bs,i ∈ Cnr is the uplink channel from ULi to the BS (nr = n2 for TF and nr = n

for e-TF), and ñbs is the additive white Gaussian noise with variance σ2
bsInr . Again,

making QR decomposition

[
h̃bs,1 h̃bs,2 . . . h̃bs,u

]
= Q̃bsR̃bs

with an unitary matrix Q̃bs of size nr × nr and an upper rectangular matrix R̃bs of size
nr × u, the uplink throughput of su

i at the BS is (η − τττ)ρu
i (pppi) with η = 1 for TF and

η = 1− ϵ for e-FT, and

ρu
i (pppi) , ln

(
1 + |R̃bs(i, i)|2/σ2

bspppi
)
. (3.24)

For ppp , {pppi, i = 1, . . . , u}, instead of (3.9), the consumed power is modelled as

P tot(ṽvv,ppp, τττ) = ζP t
i (ṽvv,ppp, τττ) + PBS + PUE, (3.25)

where P t
i (ṽvv,ppp, τττ) , τττ

d∑
j=1
||ṽvvj||2 + (η − τττ)

u∑
i=1

1/pppi is the total transmit power of the

BS and UEs, which is no longer a convex function. The time-fraction-wise (TF-wise)
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STR’s EE optimization problem is now formulated as

max
0<τττ<1,̃vvv,ppp

τττ
d∑
j=1

ρd
j (ṽvv) + (η − τττ)

u∑
i=1

ρu
i (pppi)

P tot(ṽvv,ppp, τττ) s.t. (3.26a)

τττ
d∑
j=1
||ṽvvj||2 ≤ Pmax

BS , (3.26b)

(η − τττ)/pppi ≤ Pmax
UE , i = 1, . . . , u, (3.26c)

τττρd
j (ṽvv) ≥ rd, j = 1, . . . , d, (3.26d)

(η − τττ)ρu
i (pppi) ≥ ru, i = 1, . . . , u, (3.26e)

||ṽvvj||2 ≤ Pmax
D , j = 1, . . . , d, (3.26f)

1/Pmax
U ≤ pppi, i = 1, . . . , u, (3.26g)

where (3.26f) and (3.26g) caps the physical limit of transmit power rates for the BS
and ULs. Compared to the EE optimization problem (3.13) for the FD-based STR, the
problem (3.26) is more computationally difficult because not only the objective function
in (3.26) exhibits a more complex structure but all constraints (3.26b)-(3.26e) are no
longer computationally tractable because the presence of variable τττ . By introducing
the variable θθθ = (θθθ1, θθθ2), which satisfies the convex constraint

τττ ≥ 1/θθθ1 > 0, η − τττ ≥ 1/θθθ2 > 0, (3.27)

the problem (3.26) is equivalently expressed by

max
τττ ,θθθ,̃vvv,ppp

Φ̃(ṽvv,ppp,θθθ) ,

d∑
j=1

ρd
j (ṽvv)/θθθ1 +

u∑
i=1

ρu
i (pppi)/θθθ2

P̃ tot(ṽvv,xxx,θθθ)
(3.28a)

s.t.(3.26f), (3.26g), (3.27),
d∑
j=1
||ṽvvj||2 ≤ Pmax

BS θθθ1, (3.28b)

1/pppi ≤ Pmax
UE θθθ2, i = 1, . . . , u, (3.28c)

ρd
j (ṽvv) ≥ θθθ1rd, j = 1, . . . , d, (3.28d)

ρu
i (pppi) ≥ θθθ2ru, i = 1, . . . , u, (3.28e)
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for

P̃ tot(ṽvv,xxx,θθθ) , ζ

 d∑
j=1

||ṽvvj||2

θθθ1
+

u∑
i=1

1
xxxiθθθ2

+ PBS + UPUE, (3.29)

which becomes a convex function. Note that the constraints and (3.26f), (3.26g),
(3.27), (3.28b), and (3.28c) in (3.28) are now convex, while the constraints (3.28d) and
(3.28e) are nonconvex. Let (ṽ(κ), p(κ), θ(κ)) be a feasible point for (3.28) found from the
(κ− 1)th iteration.

Applying the inequalities (A.12) and (A.11) for xxx = λ̃j(ṽvvj), yyy = φd
j (ṽvv), ttt = θθθ1 and

x̄ = λ̃j(ṽ(κ)
j ), ȳ = φd

j (ṽ(κ)), t̄ = θ
(κ)
1 yields

ρd
j (ṽvv) ≥ ρd,(κ)(ṽvv)

, ã
d,(κ)
j − b̃d,(κ)

j (
|λ̃j(ṽ(κ)

j )|2

2ℜ{(λ̃j(ṽ(κ)
j ))∗λ̃j(ṽvvj)} − |λ̃j(ṽ(κ)

j )|2
+

φd
j (ṽvv)

φd
j (ṽ(κ))) (3.30)

and

ρd
j (ṽvv)
θθθ1

≥ f̃
d,(κ)
j (ṽvv, θθθ1)

, ˜̃ad,(κ)
j − ˜̃bd,(κ)

j (
|λ̃j(ṽ(κ)

j )|2

2ℜ{(λ̃j(ṽ(κ)
j ))∗λ̃j(ṽvvj)} − |λ̃j(ṽ(κ)

j )|2
+

φd
j (ṽvv)

φd
j (ṽ(κ)))

−˜̃cd,(κ)
j θθθ1 (3.31)

over the trust region

2ℜ{(λ̃j(ṽ(κ)
j ))∗λ̃j(ṽvvj)} − |λ̃j(ṽ(κ)

j )|2 > 0, j = 1, . . . , d, (3.32)

where

0 < ã
d,(κ)
j = ρd

j (ṽ(κ)) + 2b̃d,(κ)
j , 0 < b̃

d,(κ)
j =

|λ̃j(ṽ(κ)
j )|2

φd
j (ṽ(κ)) + |λ̃j(ṽ(κ)

j )|2
,
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and

0 < ˜̃ad,(κ)
j = 2

ρd
j (ṽ(κ))
θ

(κ)
1

+ 2˜̃bd,(κ)
j ,

0 < ˜̃bd,(κ)
j =

|λ̃j(ṽ(κ)
j )|2

(φd
j (ṽ(κ)) + |λ̃j(ṽ(κ)

j )|2)θ(κ)
1
,

0 < ˜̃cd,(κ)
j =

ρd
j (ṽ(κ))
(θ(κ)

1 )2
.

The nonconvex constraint (3.28d) is innerly approximated by the following convex
constraint

ρd,(κ)(ṽvv) ≥ θθθ1rd, j = 1, . . . , d, (3.33)

i.e. any feasible point for (3.33) is also feasible for (3.28d).

Applying the inequalities (A.4) and (A.3) in the appendix for xxx = pppiσ
2
bs/|R̃bs(i, i)|2,

ttt = θθθ2, and x̄ = p
(κ)
i σ2

bs/|R̃bs(i, i)|2, t̄ = θ
(κ)
2 yields

ρu
i (pppi) ≥ ρ

u,(κ)
i (pppi) , a

u,(κ)
i − bu,(κ)

i

pppi

p
(κ)
i

(3.34)

and

ρu
i (pppi)
θθθ2

≥ f̃
u,(κ)
i (pppi, θθθ2) , ã

u,(κ)
i − b̃u,(κ)

i

pppi

p
(κ)
i

− c̃u,(κ)
i θθθ2, (3.35)

where

0 < a
u,(κ)
i = ρu

i (p
(κ)
i ) + b

u,(κ)
i , b

u,(κ)
i = |R̃bs(i, i)|2

p
(κ)
i σ2

bs + |R̃bs(i, i)|2
, (3.36)

and

0 < ã
u,(κ)
i = 2ρ

u
i (p

(κ)
i )

θ
(κ)
2

+ b̃
u,(κ)
i ,

b̃
u,(κ)
i = |R̃bs(i, i)|2

(p(κ)
i σ2

bs + |R̃bs(i, i)|2)θ(κ)
2
,

c̃
u,(κ)
i = ρu

i (p
(κ)
i )

(θ(κ)
2 )2

.
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The nonconvex constraint (3.28e) is innerly approximated by the following convex
constraint

ρ
u,(κ)
i (pppi) ≥ θθθ2ru, i = 1, . . . , u. (3.37)

To generate the next feasible point (ṽ(κ+1), p(κ+1), θ(κ+1)) at the κth iteration, we solve
the following convex problem t:

max
ṽvv,ppp,θθθ,τττ

L̃(κ)(ṽvv,ppp,θθθ) ,
d∑
j=1

f̃
d,(κ)
j (ṽvv, θθθ1) +

u∑
i=1

f̃
u,(κ)
i (xxxi, θθθ2)− Φ̃(ṽ(κ), x(κ), θ(κ))P̃ tot(ṽvv,ppp,θθθ)

s.t.(3.26f), (3.26g), (3.27), (3.28b), (3.32), (3.33), (3.37). (3.38)

Note that any feasible point for the convex problem (3.38) is also feasible for the
nonconvex problem (3.28). Also, L̃(κ)(ṽ(κ), p(κ), θ(κ)) = 0 so L̃(κ)(ṽ(κ+1), p(κ+1), θ(κ+1)) >
0 at the optimal solution of (3.38) as far as (ṽ(κ), p(κ), θ(κ)) ̸= (ṽ(κ+1), p(κ+1), θ(κ+1)).
Like (3.20),we then have

Φ̃(ṽ(κ+1), p(κ+1), θ(κ+1)) > Φ̃(ṽ(κ), p(κ), θ(κ)), (3.39)

i.e. (ṽ(κ+1), p(κ+1), θ(κ+1)) is a better feasible for (3.28) than (ṽ(κ), p(κ), θ(κ)). As such,
the sequence {(ṽ(κ), p(κ), θ(κ))} converges at least to a locally optimal solution of (3.28).

It is important to locate a feasible point (ṽ(0), p(0), θ(0)) for (3.28) for initialization
as follows: under fixed τ (0) and (θ(0)

1 , θ
(0)
2 ) = (1/τ (0), 1/(η− τ (0))), by changing variable

if necessary one can replace |λ̃j(ṽvvj)|2 by (λ̄j(ṽvvj))2 for λ̄j(ṽvvj) = ℜ{λ̃j(ṽvvj)} in (3.22), so

ρd
j (ṽvv) = ln

(
1 + (λ̄j(ṽvvj))2

φj(ṽvv)

)
,

and (3.26d) is equivalent to the SOC constraint

λ̄j(ṽvvj) ≥
√
erd/τ (0) − 1

√
φj(ṽvv)

=
√
erd/τ (0) − 1

∣∣∣∣∣∣
∣∣∣∣∣∣(h̃

H
j,bsṽvvℓ)ℓ∈D\{j}

σd

∣∣∣∣∣∣
∣∣∣∣∣∣
2

, j = 1, . . . , d,
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while (3.26e) is also equivalent to the following linear constraint

|R̃bs(i, i)| ≥ pppi
√
eru/(η−τ (0)) − 1σbs, i = 1, . . . , u. (3.40)

We then solve the following convex problem to generate (ṽ(0), p(0))

min
ṽvv,ppp

d∑
j=1
||ṽvvj||2 +

u∑
i=1

1
pppi

s.t. (3.40), (3.40), (3.41a)

d∑
j=1
||ṽvvj||2 ≤

Pmax
BS
τ (0) , ||ṽvvj||

2 ≤ Pmax
D , j = 1, . . . , d, (3.41b)

1 ≤ Pmax
UE

η − τ (0)pppi, 1/P
max
U ≤ pppi, i = 1, . . . , u. (3.41c)

Algorithm 2 summarizes our proposed computational procedure for solving (3.28).

Algorithm 2 TF-wise EE Optimization Algorithm
1: Set κ = 0. For a fixed 0 < τ (0) < 1 solve (3.41) for a feasible point (ṽ(0), p(0)) for

(3.26) and then set θ(0)
1 = 1/τ (0) and θ

(0)
2 = 1/(η − τ (0)).

2: Repeat: Generate the next feasible point (ṽ(k), p(κ), θ(κ)) for (3.28) by solving the
convex problem (3.38). Set κ := κ+ 1.

3: Output (ṽ(k), p(κ), θ(κ)) and τ (κ) = 1/θ(κ)
1 as the optimal solution of (3.26).

3.4 Bandwidth-fraction-wise STR

Instead of time-fraction allocation for serving uplinks and downlinks, we now consider a
bandwidth allocation for their service, i.e. a portion 0 < τττ < 1 of the whole normalized
bandwidth is allocated to the downlink service, the portion ϵ for guarding and the
remaining complementary portion (η−τττ ) with η = 1−ϵ is allocated to the uplink service.
Unlike two approaches presented in the previous section, this bandwidth-fraction-wise
STR can be practically implemented only when the portion τ is determined and fixed
beforehand. In simulation, we also provide numerical for τ = 1/2, i.e. a half of the
bandwidth is used for serving the uplinks and another half of the bandwidth is used
for serving downlinks.
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As in (3.1), let hj,bs ∈ Cn1 be the channel vector from the BS to DLj and vvvj be the
beamformer for the information sd

j intended for DLj. The received signal at DLj is

ŷj , hHj,bsvvvjs
d
j︸ ︷︷ ︸

desired signal

+
∑

ℓ∈D\{j}
hHj,bsvvvℓs

d
ℓ︸ ︷︷ ︸

DL interference

+nj(τττ), j = 1, . . . , d, (3.42)

where nj(τττ ) is the additive white circularly symmetric complex Gaussian noise with the
variance τττσ2

d. Unlike (3.1), the received signal yj is now free from the UL interference
as the BS’s broadcast and ULs’ transmit are implemented in orthogonal frequency
bands.

The throughput at DLj is τττϕd
j (vvv, τττ) with

ϕd
j (vvv, τττ) , ln

(
1 + |λ̃j(v

vvj)|2
υj(vvv, τττ)

)
, (3.43)

where λ̃j(vvvj) , hHj,bsṽvvj as in (3.2), and υj(vvv, τττ) , ∑
ℓ∈D\{j} |hHj,bsvvvℓ|2 + τττσ2

d.

As in (3.4), let hbs,i ∈ Cn2 be the channel vector from ULi to the BS, and su
i be the

information ULi intends to send to the BS. The received signal at the BS is

ŷbs ,
u∑
i=1

hbs,i
√
pppis

u
i + nbs(τττ), (3.44)

where pppi is the ULi’ transmit power, and nbs(τττ ) is the additive white circularly symmetric
Gaussian noise with variance (η − τττ)σ2

bsIN2 . The achievable uplink throughput for su
i

at the BS is (η − τττ)ϕu
i (pppi, τττ) with

ϕu
i (ppp, τττ) , ln

(
1 + pppi|R̃bs(i, i)|2

(η − τττ)σ2
bs

)
. (3.45)

The consumed power P tot is modelled by the following convex quadratic function

P tot(vvv,ppp) = ζP t
i (vvv,ppp) + PBS + UPUE, (3.46)

where P t(vvv,ppp) ,
d∑
j=1
||vvvj||2 +

u∑
i=1

pppi.
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The bandwidth-fraction-wise (BF-wise) STR’s EE optimization problem is formu-
lated as

max
0<τττ<1,vvv,ppp

Φ̂(vvv,ppp, τττ) ,

τττ
d∑
j=1

ϕd
j (vvv, τττ) + (η − τττ)

u∑
i=1

ϕu
i (pppi, τττ)

P tot(vvv,ppp) s.t. (3.47a)

d∑
j=1
||vvvj||2 ≤ Pmax

BS , (3.47b)

pppi ≤ Pmax
UE , i = 1, . . . , u, (3.47c)

τττϕd
j (vvv, τττ) ≥ rd, j = 1, . . . , d, (3.47d)

(η − τττ)ϕu
i (pppi, τττ) ≥ ru, i = 1, . . . , u, (3.47e)

which a nonconvex problem as the objective function is nonconcave while the downlink
and uplink QoS constraints (3.47d) and (3.47e) are nonconvex. Like the computa-
tional approach presented in the previous sections, we now develop a lower-bounding
concave approximation for the numerator of its objective function and inner convex
approximations for its nonconvex constraints.

Let (v(κ), p(κ), τ (κ)) be a feasible point for (3.47) at (κ− 1)th iteration. Applying
the inequalities (A.12) and (A.13) for

ϕd
j (vvv, τττ) ≥ ϕ

d,(κ)
j (vvv, τττ)

, â
d,(κ)
j −b̂d,(κ)

j

 |λ̃j(v(κ)
j )|2

2ℜ{(λ̃j(v(κ)
j ))∗λ̃j(vvvj)}−|λ̃j(v(κ)

j )|2
+ υj(vvv, τττ)
υj(v(κ), τ (κ))

)
,(3.48)

and

τττϕd
j (vvv, τττ) ≥ f̂

d,(κ)
j (vvv, τττ)ˆ̂ad,(κ)

j − ˆ̂
b

d,(κ)
j

 |λ̃j(v(κ)
j )|2

2ℜ{(λ̃j(v(κ)
j ))∗λ̃j(vvvj)} − |λ̃j(v(κ)

j )|2

+ υj(vvv, τττ)
υj(v(κ), τ (κ))

)
−

ˆ̂cd,(κ)
j

τττ
, (3.49)
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over the trust region (3.32), where

0 < â
d,(κ)
j = ϕd

j (v(κ), τ (κ)) + 2b̂d,(κ)
j , 0 < b̂

d,(κ)
j =

|λ̃j(v(κ)
j )|2

υj(v(κ), τ (κ)) + |λ̃j(v(κ)
j )|2

, (3.50)

and

0 < ˆ̂ad,(κ)
j = 2τ (κ)ϕd

j (v(κ), τ (κ)) + 2ˆ̂
b

d,(κ)
j ,

0 < ˆ̂
b

d,(κ)
j =

τ (κ)|λ̃j(v(κ)
j )|2

υj(v(κ), τ (κ)) + |λ̃j(v(κ)
j )|2

,

0 < ˆ̂cd,(κ)
j = (τ (κ))2ϕd

j (v(κ), τ (κ)).

Applying the inequalities (A.7) and (A.10) in the appendix for xxx = pppi|R̃bs(i, i)|2,
yyy = (η − τττ)σ2

bs and x̄ = p
(κ)
i |R̃bs(i, i)|2, ȳ = (η − τ (κ))σ2

bs yields

ϕu
i (ppp, τττ) ≥ ϕ

u,(κ)
i (ppp, τττ)

, â
u,(κ)
i − b̂u,(κ)

i

p(κ)
i

pppi
+ η − τττ
η − τ (κ)

 , (3.51)

and

(η − τττ)ϕu
i (ppp, τττ) ≥ f̂

u,(κ)
i (ppp, τττ)

, ˆ̂au,(κ)
i − ˆ̂

b
u,(κ)
i

p(κ)
i

pppi
+ η − τττ
η − τ (κ)

− ˆ̂cu,(κ)
i

η − τττ
, (3.52)

where

0 < â
u,(κ)
i = ϕu

i (p(κ), τ (κ)) + 2b̂u,(κ)
i , 0 < b̂

u,(κ)
i = p

(κ)
i |R̃bs(i, i)|2

(η − τ (κ))σ2
bs + p

(κ)
i |R̃bs(i, i)|2

, (3.53)

and

0 < ˆ̂au,(κ)
i = 2(η − τ (κ))ϕu

i (p(κ), τ (κ)) + 2ˆ̂
b

u,(κ)
i ,

0 < ˆ̂
b

u,(κ)
i = (η − τ (κ))p(κ)

i |R̃bs(i, i)|2

(η − τ (κ))σ2
bs + p

(κ)
i |R̃bs(i, i)|2

,
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0 < ˆ̂cu,(κ)
i = (η − τ (κ))2ϕu

i (p(κ), τ (κ)).

We thus solve the following convex problem to generate the next feasible point
(v(κ+1), p(κ+1), τ (κ+1)) for (3.47):

max
0<τττ<1,vvv,ppp

L̂(κ)(vvv,ppp, τττ) ,
d∑
j=1

f̂
d,(κ)
j (vvv, τττ) +

u∑
i=1

f̂
u,(κ)
i (ppp, τττ)− Φ̂(v(κ), p(κ), τ (κ))P tot(vvv,ppp)

s.t. (3.32), (3.47b), (3.47c), (3.54a)

ϕ
d,(κ)
j (vvv, τττ) ≥ rd/τττ , j = 1, . . . , d, (3.54b)

ϕ
u,(κ)
i (pppi, τττ) ≥ ru/(η − τττ), i = 1, . . . , u, (3.54c)

where by (3.49) and (3.52), a lower-bounding concave expression for the numerator of
the objective function in (3.47a) is provided by the first two terms in (3.54a), while by
(3.48) and (3.51) the convex constraints (3.54b) and (3.54c) provides an inner convex
expression for the nonconvex constraint (3.47d) and (3.47e), respectively. Similarly to
(3.39), it is easy to show that

Φ̂(v(κ+1), p(κ+1), τ (κ+1)) > Φ̂(v(κ), p(κ), τ (κ)),

as far as (v(κ+1), p(κ+1), τ (κ+1)) ̸= (v(κ), p(κ), τ (κ)), i.e. (v(κ+1), p(κ+1), τ (κ+1)) is a better
feasible point than (v(κ), p(κ), τ (κ)) for the nonconvex optimization problem (3.47). The
sequence {(v(κ), p(κ), τ (κ))} thus converges at least to a locally optimal solution of
(3.47).

To locate an initial feasible point (v(0), p(0), τ (0)) for (3.47) we fix τ (0) and replace
|λ̃j(vvvj)|2 by (λ̄j(vvvj))2 for λ̄j(vvvj) = ℜ{λ̃j(vvvj)} in (3.43), to make

ϕd
j (vvv, τττ) = ln

(
1 + (λ̄j(vvvj))2

vj(vvv, τττ)

)
,
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so the nonconvex downlink QoS constraint (3.47d) is equivalent to the SOC constraint

λ̄j(vvvj) ≥
√
er

min
j /τ (0) − 1

√
vj(vvv, τττ)

=
√
er

min
j /τ (0) − 1

∣∣∣∣∣∣
∣∣∣∣∣∣(h

H
j,bsvvvℓ)ℓ∈D\{j}

τ0σd

∣∣∣∣∣∣
∣∣∣∣∣∣
2

, (3.55)

while the nonconvex uplink QoS constraint (3.47e) is also equivalent to the following
SOC constraint

√
pppi|R̃bs(i, i)| ≥

√
er

min
bs /(η−τ (0)) − 1

√
(η − τ (0))σbs, i = 1, . . . , u.

We then solve the convex problem

min
vvv,ppp

d∑
j=1
||vvvj||2 +

u∑
i=1

pppi s.t. (3.47b), (3.47c), (3.55), (3.56) (3.56)

to obtain a feasible point (v(0), p(0), τ (0)) for (3.47).

Algorithm 3 summarizes our proposed computational procedure for solving (3.47).

Algorithm 3 BF-wise EE Optimization Algorithm
1: Set κ = 0. For a fixed 0 < τ (0) < 1 solve (3.56) for a feasible point (v(0), p(0), τ (0))

for (3.47).
2: Repeat Generate the next feasible point (v(κ+1), p(κ+1), τ (κ+1)) for (3.47) by solving

the convex problem (3.54). Set κ := κ+ 1.
3: Output (v(κ+1), p(κ+1), τ (κ+1)).

3.5 Numerical Results

The data of wireless communications in a macrocell environment is used to weight the
pros and con of the proposed STRs. Table I taken from [61] lists important parameters
used in all simulations. The number of served downlink users and uplink users are
d = u = n/2, which also means n1 = n2 = n/2. For e-FT and FB, set ϵ = 0.1. 1 The

1According [62], the one time slot is 0.667ms and the antennas switching time is 0.02ms while the
guard band is also about 10% of the available bandwidth.
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channel vector between the BS and an user follows the line for sight (LOS) path loss
model as 10−PLLOS/20h̃ with PLLOS = 103.4 + 24.2 log10 δ1, where the entries of h̃ are
independent circularly-symmetric Gaussian random variables with zero means and
unit variance and δ1 (km) is their distance. The interfering channel from an UL to
a DL follows the non-line-of-sight (NLOS) path loss model as 10−PLNLOS/20h̃uu with
PLNLOS = 131.1 + 42.8 log10 δ2, where h̃uu is circular-symmetric random variable with
zero means and unit variance, and δ2 is their distance. If not specially specified, DL
and UL users are uniformly distributed in the cell so that δ1 = 0.25 km and δ2 = 0.1
km, respectively.

Table 3.1 Simulation Parameters

Parameter Value
Carrier frequency 2 GHz
System bandwidth 10 MHz

Maximum BS transmit power (Pmax
BS ) 46 dBm

Maximum user transmit power (Pmax
UE ) 23 dBm

Dynamic circuit power of the BS (PBS
c ) 6.31 W

Static circuit power of the BS (PBS
s ) 0.5012 W

Dynamic circuit power of a UE (PUE
c ) 4.417 W

Static circuit power of the UEs (PUE
s ) 0.1 W

Noise power density -174dBm/Hz

The tolerance for the algorithm convergence is set to 10−4. In arriving at the final
figures, the results of 1000 Monte-Carlo runs are averaged.

3.5.1 Spectral efficiency in terms of max-min throughput

Although the chapter is mainly focused on EE optimization subject to downlink and
uplink QoS constraints, it is still of interest to know how the spectral efficiency of the
three STRs by considering the following max-min throughput optimization problem

max
vvv,ppp

min{ min
j=1,...,d

rd
j (vvv,ppp), min

i=1,...,u
ru
i (vvv,pppi)} s.t. (3.10b), (3.10c) (3.57)
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for the FD-based STR, and

max
0<τττ<1,̃vvv,ppp

min{ min
j=1,...,d

τττρd
j (ṽvv), min

i=1,...,u
(η − τττ)ρu

i (pppi)}

s.t. (3.26b), (3.26c), (3.26f), (3.26g) (3.58)

for the TF-wise STR, and

max
0<τττ<1,vvv,ppp

min{ min
j=1,...,d

τττ
d∑
j=1

ϕd
j (vvv, τττ), min

i=1,...,u
(η − τττ)ϕu

i (pppi, τττ)}s.t.(3.47b), (3.47c), (3.59)

for the BF-wise STR. Obviously, these nonsmooth nonconvex optimization problems
can be solved by the Algorithms that are similar to Algorithms 1-3, which at the κth
iteration compute the following convex problem

max
vvv,ppp

min{ min
j=1,...,d

r
d,(κ)
j (vvv,ppp), min

i=1,...,u
r

u,(κ)
i (vvv,pppi)}

s.t. (3.10b), (3.10c), (3.16), (3.18), (3.60)

with r
d,(κ)
j and r

u,(κ)
i defined from (3.15) and (3.17) to generate a better feasible point

(v(κ+1), p(κ+1)) for (3.57), and

max
ṽvv,ppp,θθθ,τττ

min{ min
j=1,...,d

f̃
d,(κ)
j (ṽvv, θθθ1), min

i=1,...,u
f̃

u,(κ)
i (xxxi, θθθ2)}

s.t. (3.26f), (3.26g), (3.27), (3.28b), (3.32), (3.61)

with f̃
d,(κ)
j and f̃

u,(κ)
i defined from (3.31) and (3.35) to generate a better feasible point

(v(κ+1), p(κ+1), θ(κ+1), τ (κ+1)) for (3.58), and

max
0<τττ<1,vvv,ppp

min{ min
j=1,...,d

f̂
d,(κ)
j (vvv, τττ), min

i=1,...,u
f̂

u,(κ)
i (ppp, τττ)}s.t. (3.32), (3.47b), (3.47c) (3.62)

with f̂
d,(κ)
j and f̂

u,(κ)
i defined from (3.49) and (3.52) to generate a better feasible point

(v(κ+1), p(κ+1), τ (κ+1)) for (3.59).

Fig. 3.4 plots the achievable minimum throughput under different n. Only the
achievable max-min throughput of the FD based STR is severely downgraded when
the SI σ2

SI increases, which is especially low for the practical range [−120,−90] dB
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of σ2
SI . Both TF and BF outperform FD for σ2

SI ≥ −110 dB. At σ2
SI = −90 dB, the

achievable minimum throughput by the formers is actually twice of that achievable
by the latter. The gap is wider by increasing the number of transmit antennas, which
leads to more downlink interference to uplinks under FD.
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Fig. 3.4 Achievable minimum DLU and ULU
throughput vs SI σ2

SI

Fig. 3.5 shows the effectiveness of the optimal time fraction as e-TF clearly
outperforms the half-duplex (HD) TDD, which use all n antennas and (1 − η)/2
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fraction of the time slot for each downlink and uplink service. It also shows the benefit
of employing all antennas for both downlink and uplink services, as TF is not only
consistently outperformed by e-TF but it is also outperformed by HD TDD with n ≥ 6.
It is not surprised that the HD FDD, which allocates (1− η)/2 bandwidth’ portion for
each downlink and uplink service, is the worst performer.
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Fig. 3.5 Achievable minimum DLU and ULU throughput vs BS antennas number Nt

Table 3.2 provides the rounded average number of iterations for the results in
Fig. 3.4, which particularly shows that all the three algorithms converge within 25
iterations.

Table 3.2 The rounded average number of iterations for implementing the
max-min-throughput Algorithms

n = 2 n = 4 n = 6 n = 12
FD-based STR(δ2

SI = −140dB) 6 8 10 14
FD-based STR(δ2

SI = −130dB) 7 9 11 15
FD-based STR(δ2

SI = −120dB) 7 10 15 16
FD-based STR(δ2

SI = −110dB) 8 11 17 17
FD-based STR(δ2

SI = −100dB) 10 12 18 20
FD-based STR(δ2

SI = −90dB) 11 12 21 22
TF-wise STR 5 7 12 12

e-TF-wise STR 6 7 11 12
BF-wise STR 4 10 12 16
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Furthermore, to examine the impact of UL users to DL users in the FD-based STR
we also simulate the following scenario: DL users are still uniformly distributed over
the macrocell but there is one UL user in proximity of each DL user. Table 3.3 shows
the achievable minimum throughput by the FD-based STRs for n = 6, which is very
sensitive to the distance δ2 between a DL user and its nearest UL user. The ratio of
that between that achieved for δ2 = 0.05 km and that achieved for δ2 = 0.005 km is
more than ten and increases as the SI σ2

SI increases.

Table 3.3 Achievable minimum throughput of FD-based STR (bps/Hz) under different
δ2 and σ2

SI

δ2
SI

δ2 0.05 km 0.03 km 0.01 km 0.005 km

−140 dB 3.1125 2.3542 0.9213 0.3214
−130 dB 2.0376 1.6678 0.5033 0.2392
−120 dB 1.4424 0.9874 0.1779 0.0884
−110 dB 0.8431 0.4879 0.0621 0.0297
−100 dB 0.4101 0.1892 0.0203 0.0096
−90 dB 0.1740 0.0676 0.0065 0.0031

3.5.2 EE optimization

The downlink and uplink throughput thresholds for the QoS are set as rd = 0.4 bps/Hz
and ru = 1 bps/Hz, while the circuit power at the BS and ULs are PBS = nPBS

c +PBS
s W

and PUE = uPUE
c + PUE

s W, and the drain efficiency of power amplifier is ζ = 20%[63].

Fig. 3.6 shows the achievable EE by Algorithms 1-3 under various numbers (n)
of BS antennas. As expected, the achievable EE by the FD-based STR is quickly
dropped when the SI level σ2

SI raises up. At σ2
SI = −90 dB, the achievable EE by the

latter becomes double of that by the former. TF and e-TF are seen more efficient than
BF. Furthermore, e-TF outperforms TF thanks to its its exploitation of all available
antennas for its STR. As it happens to the spectral efficiency, using more antennas
in serving more users makes the FD’s EE deteriorated but improves the EE of other
STRs. They perform similarly at low SI level σ2

SI ∈ [−140,−120] dB but the FD is
quickly outperformed by others for σ2

SI ≥ −110 dB.
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Fig. 3.6 Achievable EE by three STRs

The rounded average number of algorithm iterations to output Fig. 3.6 is given
by Table 3.4. All the proposed algorithms are seen convergent within 45 iterations.
Compared to Table 3.2, a few more iterations are needed, which are quite expected
because the EE optimization problem is seen more complex than the spectral efficiency
optimization problem. Both Algorithms 2 and 3 exploit well the fractional structure of
the objective function without its direct approximation. All the percentage number in
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the tables represent the probability of obtaining a valid result in all Monte-Carlo runs.
The success percentage of the FD-based STR is extremely low for σ2

SI ∈ [−100,−90] dB
as it hardly provides the required QoS. In contrast, the other STRs always perform well
with hundred percentage of success as they can avoid the FD inherent self-interference.

Table 3.4 The rounded average number of iterations for the convergence of Algorithms
1-3

n = 2 n = 4 n = 6 n = 12
FD-based STR (σ2

SI = −140 dB) 16 (100%) 19 (100%) 16 (100%) 27 (100%)
FD-based STR (σ2

SI = −130 dB) 17 (100%) 20 (100%) 22 (100%) 22 (100%)
FD-based STR (σ2

SI = −120 dB) 19 (99%) 23 (100%) 27 (94%) 34 (100%)
FD-based STR (σ2

SI = −110 dB) 20 (99%) 28 (96%) 34 (88%) 40 (75%)
FD-based STR (σ2

SI = −100 dB) 22 (66%) 35 (75%) 35 (69%) 38 (50%)
FD-based STR (σ2

SI = −90 dB) 25 (2%) 35 (17%) 38 (3%) 44 (6%)
TF-wise STR 14 (100%) 11 (100%) 10 (100%) 10 (100%)

e-TF-wise STR 12 (100%) 9 (100%) 10 (100%) 9 (100%)
BF-wise STR 19 (100%) 10 (100%) 22 (100%) 18 (100%)

e-TF-wise STR (double users) 13 (100%) 11 (100%) 12 (100%) 11 (100%)

3.5.3 EE in serving doubled number of users

Until now, the e-TF and HD-TDD are purposely allowed to serve n/2 downlink users
and n/2 uplink users to accommodate comparison with other STRs. Table 3.5 provides
their achievable spectral efficiency and EE in serving double numbers of both downlink
and uplink users (n downlink users and n uplink users). The rounded averaged number
of iterations to output the EE of e-TF is given by the last row of Table 3.4. It is
reasonable to expect that their achievable EE is higher compared to that achievable by
serving n/2 donwlink users and n/2 uplink users under the same power constraints.

3.6 Conclusions

The chapter has proposed three possible techniques for implementing heterogeneous
macrocell downlink and uplink communications within one time-slot, which are the
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Table 3.5 Achievable spectral efficiency (SE) in terms of achieved minimum throughput
(bps/Hz) and EE (bps/Hz/W) in serving double users vs BS antennas number n

n = 2 n = 4 n = 6 n = 12
e-TF STR’s SE 7.6310 6.9935 6.7696 6.7040
HD TDD’s SE 6.3821 5.9489 5.8242 5.5425
e-TF STR’s EE 1.0232 1.0996 1.1352 1.1996
HD TDD’s EE 0.9393 0.9964 0.9996 1.0711

FD-based STR, fraction-time-wise STR, and bandwidth-fraction-wise STR. The three
optimization algorithms have been developed to compute the energy efficiency by joint
downlink beamforming and uplink power allocation under these STRs. As expected,
the FD hardly suitable as its inherent self-interference is not expected to be suppressed
to the level for proper implementation. Being free from the mutual interference between
downlinks and uplinks, other two techniques have been shown to be effective for STR.
Especially, the fraction-time-wise STR is very efficient and can serve many more
downlinks and uplinks as it can exploit the full number of the BS antennas for STR.
Both the fraction-time base STR and fraction-bandwidth STR for multi-cell result in
separated down-link multi-cell systems and uplink multi-cell systems, so they can be
used in realistic cellular networks.





Chapter 4

Improper Gaussian Signaling for
Integrated Data and Energy
Networking

4.1 Introduction

The Internet-of-things (IoT) further broadens the challenges imposed on wireless
communications by demanding wireless access for not only information but also for
energy [64]. An access point may provide an information service or energy service, or
both. In terms of base stations (BSs), it is expected that they are able to transfer
not only information but also energy, requiring both high information throughput and
substantial harvested energy. In fact, signal processing conceived for high information
throughput aims for mitigating the interference at the receiver end, whilst interference
actually can be beneficial for harvesting energy.

At the time of writing, there are two popular techniques of transfering information
and energy over the same wireless medium within a time slot. The first one is the
so-called simultaneous wireless information and power transfer (SWIPT) [65–69], which
splits the received signal into two components, namely one for energy-harvesting (EH)
and one for information decoding (ID) either by power splitting or time-switching (TS).
Its practical implementation requires a sophisticated variable power-splitter [67]. From
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a signal processing perspective, it would be counterproductive to design a common
beamformer to optimize the conflicting targets of information and energy beamforming
at the same time. The second approach is the so-called time-fraction-based information
and power transfer (TFIPT) relying on separate fractions of the time-slot [40, 70, 71],1

which may be conveniently implemented in practice and it is capable of outperforming
SWIPT. Under this approach, the EH is improved by energy beamformers, while the
information throughput is improved by information beamformers.

To improve the information throughput, which suffers from the network’s ambition
to provide EH service, we may invoke non-orthogonal multiple access (NOMA) (see e.g.
[72, 73]), in order to compensate for the EH-induced throughput loss, when supporting
multiple users. It was also shown in [73] that NOMA-based TFIPT outperforms
its SWIPT counterpart. Since the main factor limiting the network throughput is
multi-user interference, under NOMA the users of better channel conditions access
and decode the information intended for users of poorer channel conditions to subtract
it from their received signal before decoding their own information. However, this
procedure degrades the secrecy of the users of poorer channel conditions. Moreover,
the information throughput gain by NOMA is only substantial enough when the users
channel conditions are strongly differentiated. Otherwise, conventional orthogonal
multi-access (OMA) is still preferred in terms of both its information throughput and
user secrecy.

Proper Gaussian signaling (PGS) relies on proper signals is popular owing to its
ease of analysis and design, but it requires the multi-user interference (MUI) to be
completely suppressed [74]. This requirement may be eliminated by Improper Gaussian
signaling (IGS) [75, 76], which was shown to exhibit supremacy over PGS in diverse
practical scenarios, for example in single-input single-output (SISO) networks [77–84]
or in MIMO interference networks [85–89] of multiple unicast transmitter-receiver pairs,
as well as in broadcast networks [90–92] and in cognitive networks [93–95] relying on
PGS for the primary users and IGS for the secondary users. Most recently, NOMA-PGS
and NOMA-IGS was designed for multi-user multi-cell networks in [96]. In contrast
to proper Gaussian signals having arbitrary covariance, improper Gaussian signals
are characterized by the so-called augmented covariance of double size associated

1One should not confuse this with SWIPT, which splits the received signal using time-switching.
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with a special structure involving its covariance and pseudo-covariance [75]. As such,
in contrast to PGSs which are generated by linearly beamforming proper Gaussian
sources, IGSs are generated by the widely linear beamforming of Gaussian sources,
which are determined by a pair of correlated beamforming vectors. The design of
beamforming vectors for IGS is more complex than for PGS not only because it involves
twice the number of decision variables, but more importantly, the throughput functions
are log-determinant log det(.) even for multi-input single output (MISO) networks.
Hence their optimization problem is facing large challenging on commutating than that
the optimization of the logarithmic PGS throughput. However, as mentioned above,
NOMA PGS requires additional processing at the users of better channel conditions
to decode the information intended for the users of poorer channel conditions, and
thus jeopardizes the secrecy of weaker users. By contrast, IGS improves the users’
throughput without the above-mentioned extra NOMA-processing at the receiver end.

Against the above background, this chapter proposes IGS for energy-harvesting
aided networks with the following main contributions:

• We conceive and generate improper Gaussian signals by applying widely linear
beamforming to proper Gaussian sources to improve the information throughput
subject to EH constraints. The corresponding beamforming optimization problem
becomes nonconvex, which involves log determinant functions, and thus it is
computationally challenging. Hence a path-following computational procedure is
proposed for this nonconvex problem, which iterates between improved feasible
points and converges at least to a locally optimal solution.

• Additionally, we then develop a simplified IGS (s-IGS), which still improves the
information throughput by applying linear beamforming to improper Gaussian
sources. The resultant reduced-complexity beamforming optimization problem is
then solved by a new path-following procedure.

• The simulation results provided demonstrate that both IGS and s-IGS outperform
NOMA PGS. Hence,the information throughput can be improved without any
additional signal processing at the user end and yet the user secrecy is preserved.
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The chapter is organized as follows. Beamforming optimization problems for IGS and
s-IGS are addressed in Sections II and Section III, respectively, while the simulations
demonstrating their advantage over NOMA are provided in Section IV. Section V
concludes the chapter, which is followed by the Appendix. The Appendix develops new
fundamental matrix inequalities, which were used for developing the path-following
algorithms in Sections II and III.

4.2 System Model for improper Gaussian signal

processing

Fig. 4.1 illustrates the downlink (DL) of a N cells system, where the all the BSs
are equipped with Nt-transmit antennas (TAs) serving multiple single-antenna-aided
users. In the i-th cell, there are K energy-harvesting (EH) users (EU) indexed by
(i, e1), . . . , (i, eK), who harvest energy transferred by the BS through the wireless
channels and thus have to be located sufficiently near to their BS. There are M

information-receiving users (IUs) indexed by (i, d1), . . . , (i, dM ), who receive and decode
information transmitted by the BS through the wireless DL channels. Note that there
is a potential overlap between the sets of EUs and IUs, whenever there are users, who
receive both energy and information from the BS through the same wireless channels.
Then

SE , {(s, eℓ) : s = 1, . . . , N ; ℓ = 1, . . . , K}

and
SI , {(s, dℓ) : s = 1, . . . , N ; ℓ = 1, . . . ,M}

respectively represent the set of EUs and IUs. Under time-fraction-based information
and energy transfer [40, 70, 71], we use the specific fraction of time 0 < 1/t1 < 1 for
power delivery, and use the remaining fraction of 0 < 1/t2 < 1 is used for information
transmit. Let hs,i,ej

∈ C1×Nt be the channel spanning from the BS s to the EU (i, ej),
xEs,eℓ

= vvvs,eℓ
s̃s,eℓ
∈ CNt×1 be the beamformed energy signal intended for the EU (s, eℓ),

where vvvs,eℓ
∈ CNt×1 is the energy beamformer and s̃s,eℓ

∈ C is the energy symbol
with E(|s̃s,eℓ

|2) = 1. All s̃s,eℓ
, s = 1, . . . , N ; ℓ = 1, . . . , K are independent. The signal
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Fig. 4.1 Multi-cell energy-harvesting aided system

received by the EU (i, ej) is

yi,ej
=

∑
(s,eℓ)∈SE

hs,i,ej
xEs,eℓ

+ ni,ej
, (4.1)

where ni,ej
∈ C is the background noise, which is proper Gaussian with zero mean and

variance σ2. Given the energy conversion efficiency 0 < ζ < 1, the energy harvested by
the EU (i, ej) ∈ SE is (1/t1)ζE(|yi,ej

|2), which is2

(1/t1)ζπi,ej
(vvvSE

), (4.2)

where
πi,ej

(vvvSE
) =

K∑
ℓ=1
|hi,i,ej

vvvi,eℓ
|2. (4.3)

In (4.3), the energy of the background noise ni,ej
and the interference from the BSs of

the other cells are low for EH and thus are ignored.

Let ni,dj
∈ C be the background noise at IU (i, dj), which is proper Gaussian with

zero mean and variance σ2. For the information transfer during the remaining 1/t2

2The RF-to-harvested energy conversion function is in practice non-linear. However, there is no
generally agreed accurate function at the time of writing. Hence, to avoid obfuscating the salient
IGS-related trends, we have opted for this simple linear model.
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fraction of time, the signal received by the IU (i, dj) is

yi,dj
=

∑
(s,dℓ)∈SI

hs,i,dj
xIs,dℓ

+ ni,dj
, (4.4)

where in general, the beamformed information signal intended for the IU (s, dℓ) is
denoted as xIs,dℓ

∈ CNt×1 in (4.4), which is improper Gaussian, i.e. E
(
(xIs,dℓ

)2
)

≠ 0,
and it is generated by widely linear beamforming of a normalized proper Gaussian
source ss,dℓ

(E(|ss,dℓ
|2) = 1 and E((ss,dℓ

)2) = 0) as [96]

xIs,dℓ
= www1,s,dℓ

ss,dℓ
+www2,s,dℓ

s∗
s,dℓ

(4.5)

with the aid of the beamformers www1,s,dℓ
∈ CNt×1 and www2,s,dℓ

∈ CNt×1. Then, the signal
received in (4.4) at the IU (i, dj) is rewritten as

yi,dj
=

∑
(s,dℓ)∈SI

hs,i,dj
(www1,s,dℓ

ss,dℓ
+www2,s,dℓ

s∗
s,dℓ

) + ni,dj
. (4.6)

By writing

(xIs,dℓ
)∗ =

[
www∗

2,s,dℓ
www∗

1,s,dℓ

] ss,dℓ

s∗
s,dℓ


and defining wwws,dℓ

= {wwwj,s,dℓ
, j = 1, 2}, we can express the augmented equation of (4.6)

as

ȳi,dj
,

yi,dj

y∗
i,dj


=

∑
(s,dℓ)∈SI

hs,i,dj
www1,s,dℓ

hs,i,dj
www2,s,dℓ

h∗
s,i,dj

www∗
2,s,dℓ

h∗
s,i,dj

www∗
1,s,dℓ

 ss,dℓ

s∗
s,dℓ

+
ni,dj

n∗
i,dj


= Λi,i,dj

(wwwi,dj
)b̄si,dj

+
∑

(s,dℓ)∈SI\{i,dj}
Λs,i,dj

(wwws,dℓ
)b̄ss,dℓ

+ n̄i,dj
(4.7)

for

Λs,i,dj
(wwws,dℓ

) ,
hs,i,dj

www1,s,dℓ
hs,i,dj

www2,s,dℓ

h∗
s,i,dj

www∗
2,s,dℓ

h∗
s,i,dj

www∗
1,s,dℓ

 , (4.8)
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which represents a linear mapping from C(2Nt)×1 to C2×2, and

b̄ss,dℓ
,

ss,dℓ

s∗
s,dℓ

 ∈ C2, n̄i,dj
,

ni,dj

n∗
i,dj

 ∈ C2. (4.9)

It may be readily shown that

E{[b̄si,dℓ
]2} = I2,E{[n̄i,dj

]2} = σ2I2, (4.10)

and
E{[Λs,i,dj

(wwws,dℓ
)b̄si,dj

]2} = [Λs,i,dj
(wwws,dℓ

)]2. (4.11)

The throughput at the IU (i, dj) expressed in nats/sec/Hz is given by the mutual
information (MI) between ȳi,dj

and s̄i,dj
computed as [97]

1
2t2

ri,dj
(wwwSI

) (4.12)

for

ri,dj
(wwwSI

) = ln
∣∣∣∣∣∣I2 + [Λi,i,dj

(wwwi,dj
)]2
(
Ψi,dj

(wwwSI
)
)−1

∣∣∣∣∣∣, (4.13)

and
Ψi,dj

(wwwSI
) ,

∑
(s,dℓ)∈SI\{(i,dj)}

[Λs,i,dj
(wwws,dℓ

)]2 + σ2I2. (4.14)
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Based on (4.2) and (4.12), we consider the following problem of max-min throughput
optimization

max
vvvSE

,wwwSI
,t=(t1,t2)T ∈R2

+,γ
γ s.t. (4.15a)

ri,dj
(wwwSI

) ≥ 2γt2, (i, dj) ∈ SI , (4.15b)

πi,ej
(vvvSE

) ≥ emin

ζ
t1, (i, ej) ∈ SE, (4.15c)

1
t1

+ 1
t2
≤ 1, (4.15d)

1
t1

K∑
j=1
||vvvi,ej

||2 +
∑M
j=1 ||wwwi,dj

||2

t2
≤ P, i = 1, . . . , N, (4.15e)

||vvvi,ej
||2 ≤ P, (i, ej) ∈ SE; ||wwwi,dj

||2 ≤ P , (i, dj) ∈ SI , (4.15f)

where P is the power budget granted for each BS and we have

||wwwi,dj
||2 = ||www1,i,dj

||2 + ||www2,i,dj
||2,

which is the power of the widely linear beamformer in (4.5). Note that by (4.15b), γ

in (4.15a) represents min(i,dj)∈SI
(1/2t2)ri,dj

(wwwSI
), i.e. it is the minimal value among

the IUs’ throughput (1/2t2)ri,dj
(wwwSI

), (i, dj) ∈ SI . Furthermore, emin in (4.15c) is the
threshold of EH, so the constraint (4.15c) sets the threshold in serving the EUs. The
constraint (4.15d) restricts the fractional-time-based implementation within a single
time slot, and (4.15e) is a typical sum-power constraint, while (4.15f) is the physical
transmission power constraint. The last three constraints (4.15d)-(4.15f) in (4.15) are
convex.

The problem (4.15) is nonconvex because the pair of constraints (4.15b) and (4.15c)
representing the information throughput and EH power are nonconvex. To develop
a path-following algorithm for its computation, which improves its feasible value in
each iteration, we have to develop an inner convex approximation of these nonconvex
constraints.

Let (v(κ)
SE
, w

(κ)
SI
, t(κ), γ(κ)) be the feasible point for (4.15) found from the (κ− 1)th

iteration.
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To obtain an inner convex approximation of (4.15b) we have to derive a concave
upper bounding function approximation of its left-hand-side (LHS) and a convex lower
bounding function approximation of its right-hand-side (RHS). Applying the inequality
(A.15) in the Appendix yields the following concave upper bounding approximation of
the LHS of (4.15b):

ri,dj
(wwwSI

) ≥ a
(κ)
i,dj

+ 2⟨B(κ)
i,dj

Λi,i,dj
(wwwi,dj

)⟩ − ⟨C(κ)
i,dj
, [Λi,i,dj

(wwwi,dj
)]2 + Ψi,dj

(wwwSI
)⟩

= a
(κ)
i,dj
− σ2⟨C(κ)

i,dj
⟩+ 2⟨B(κ)

i,dj
Λi,i,dj

(wwwi,dj
)⟩ − ⟨C(κ)

i,dj
,

∑
(s,dℓ)∈SI

[Λs,i,dj
(wwws,dℓ

)]2⟩

= a
(κ)
i,dj
− σ2⟨C(κ)

i,dj
⟩+ 2⟨B(κ)

i,dj
Λi,i,dj

(wwwi,dj
)⟩

−
∑

(s,dℓ)∈SI

⟨ΛH
s,i,dj

(wwws,dℓ
)C(κ)

i,dj
Λs,i,dj

(wwws,dℓ
)⟩

= a
(κ)
i,dj
− σ2⟨C(κ)

i,dj
⟩+ 2⟨B(κ)

i,dj
Λi,i,dj

(wwwi,dj
)⟩ −

∑
(s,dℓ)∈S

||(C(κ)
i,dj

)1/2Λs,i,dj
(wwws,dℓ

)||2F

, r
(κ)
i,dj

(wwwSI
),

where we have

a
(κ)
i,dj

= ri,dj
(w(κ)

SI
)− ⟨[Λi,i,dj

(w(κ)
i,dj

)]2
(
Ψi,dj

(w(κ)
SI

)
)−1
⟩, (4.16a)

B
(κ)
i,dj

= (Λi,i,dj
(w(κ)

i,dj
))H

(
Ψi,dj

(w(κ)
SI

)
)−1

, (4.16b)

0 ≼ C
(κ)
i,dj

=
(
Ψi,dj

(w(κ)
SI

)
)−1
−
(
[Λi,i,dj

(w(κ)
i,dj

)]2 + Ψi,dj
(w(κ)

SI
)
)−1

. (4.16c)

Meanwhile, the RHS of (4.15b) is upper bounded as follows:

2γt2 ≤
γ(κ)t

(κ)
2

2

(
γ

γ(κ) + t2

t
(κ)
2

)2

. (4.17)

Using (4.16) and (4.17), the nonconvex constraint (4.15b) is innerly approximated by
the following convex constraint in the sense that any feasible point for the latter is
also feasible for the former:

r
(κ)
i,dj

(wwwS) ≥ γ(κ)t
(κ)
2

2

(
γ

γ(κ) + t2

t
(κ)
2

)2

, (i, dj) ∈ SI . (4.18)
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From (4.3), the LHS of (4.15c) is seen to be convex quadratic, hence the nonconvex
constraint (4.15c) is said to be reverse convex and can be innerly approximated by a
convex constraint by linearizing its LHS at v(κ)

Se
[30]

K∑
ℓ=1

[2ℜ{(v(κ)
i,eℓ

)HhHi,i,ej
hi,i,ej

vvvi,eℓ
} − |hi,i,ej

v
(κ)
i,eℓ
|2] ≥ emin

ζ
t1, (i, ej) ∈ SE, (4.19)

which was used in the previous treatises of [40, 70, 71] handling EH constraints.

We solve the following convex problem at its κth iteration, which provides a
feasible value for (4.15),the next feasible point (v(κ+1)

SE
, w

(κ+1)
SI

, t(κ+1), γ(κ+1)) for (4.15)
is generated by:

max
vvvSE

,wwwSI
,t=(t1,t2)T ∈R2

+,γ
γ s.t. (4.15d)− (4.15f), (4.18), (4.19). (4.20)

This convex problem involves nv = NNt(K + 2M) + 3 decision variables and mc =
1 +N(K +M + 1) quadratic constraints, hence its computational complexity is [98]

O(m2.5
c (n2

v +mc)). (4.21)

Note that we have γ(κ+1) > γ(κ) as long as (v(κ+1)
SE

, w
(κ+1)
SI

, t(κ+1), γ(κ+1)) ̸= (v(κ)
SE
, w

(κ)
SI
,

t(κ), γ(κ)), because they respectively are the optimal solution and a feasible point for
(4.20). This means that (v(κ+1)

SE
, w

(κ+1)
SI

, t(κ+1), γ(κ+1)) is a better feasible point than
(v(κ)

SE
, w

(κ)
SI
, t(κ), γ(κ)) for (4.15). As such, the sequence {(v(κ)

SE
, w

(κ)
SI
, t(κ), γ(κ))} of feasible

points for (4.15) converges at least to a point satisfying the Karush-Kuh-Tucker (KKT)
condition of optimality [60]. Our previous result (see e.g. [71]) shows that such a point
often turns out to be the globally optimal solution of (4.15).

It is important to locate a feasible point (v(0)
SE
, w

(0)
SI
, t(0), γ(0)) for (4.15) for initializing

the path-following procedure. Let us fix t(0) = (t(0)
1 , t

(0)
2 ) and good γ(0) and randomly
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generate (v(0)
SE
, w

(0)
SI

) feasible for (4.15e)-(4.15f). Then iterate as follows

max
vvvSE

,wwwSI
,η

η s.t. (4.15f) (4.22a)

r
(κ)
i,dj

(wwwSI
) ≥ 2γ(0)t

(0)
2 η, (i, dj) ∈ SI , (4.22b)

K∑
ℓ=1

[2ℜ{(v(κ)
i,eℓ

)Hhi,i,ej
hHi,i,ej

vvvi,eℓ
} − |hHi,i,ej

v
(κ)
i,eℓ
|2] ≥ emin

ζ
t
(0)
1 η, (i, ej) ∈ SE, (4.22c)

1
t
(0)
1

K∑
j=1
||vvvi,ej

||2 +
∑M
j=1 ||wwwi,dj

||2

2t(0)
2

≤ P, i = 1, . . . , N, (4.22d)

until reaching η ≥ 1 at (v(0)
SE
, w

(0)
SI

) in order to guarantee that (t(0), γ(0)η, w
(κ)
SI
, v

(κ)
SE

) is
feasible for (4.15).

Algorithm 4 represents the formal pseudo code of the above computational proce-
dure.

Algorithm 4 IGS algorithm for (4.15)
1: Initialization: Set κ := 0 and iterate (4.22) for finding a good initial feasible

point (v(0)
SE
, w

(0)
SI
,t(0)) for (4.15)

2: Repeat until (4.15) is reached: Generate the feasible point (v(κ+1)
SE

, w
(κ+1)
SI

, t(κ+1))
for (4.15) by solving the convex optimization problem (4.20); Reset κ := κ+ 1.

3: Output t = t(κ), vvvSE
= v

(κ)
SE

, and wwwSE
= w

(κ)
SE

.

4.3 Simplified improper Gaussian signaling

In (4.5), the improper Gaussian signal xIs,dℓ
is generated as a widely linear transform

of a proper Gaussian source ss,dℓ
. By contrast, in this section, the improper Gaussian

signal xIs,dℓ
in (4.4) is generated as a linear transform of an improper Gaussian source

as follows
xIs,dℓ

= wwws,dℓ
ss,dℓ

,wwws,dℓ
∈ CNt×1, (4.23)
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where ss,dℓ
is a normalized improper Gaussian random variable (E(|ss,dℓ

|2) = 1), which
is fully characterized by the augmented covariance defined in [75]:

Ps,dℓ
=

E(|ss,dℓ
|2) E(s2

s,dℓ
)

(E(s2
s,dℓ

))∗ E(|ss,dℓ
|2)



= E


ss,dℓ

s∗
s,dℓ

 ss,dℓ

s∗
s,dℓ

H


=
 1 qs,dℓ

q∗
s,dℓ

1

 (4.24)

with qs,dℓ
∈ C satisfying the following convex quadratic constraint to make it qualified

as a pseudo-covariance of ss,dℓ

|qs,dℓ
|2 < 1, (s, dℓ) ∈ SI , (4.25)

which makes Ps,dℓ
positive definite. Note that qs,dℓ

= 0 in (4.24) means E(s2
s,dℓ

) = 0,
i.e. ss,dℓ

becomes proper.

By taking the square root according to

P1/2
s,dℓ

=
αs,dℓ

βs,dℓ

β∗
s,dℓ

αs,dℓ

 ≽ 0,

in conjunction with

αs,dℓ
=

(1 +
√

1− |qs,dℓ
|2)1/2

√
2

,

βs,dℓ
= qs,dℓ√

2(1 +
√

1− |qs,dℓ
|2)1/2

,

it can be readily shown that

ss,dℓ
= αs,dℓ

s̃s,dℓ
+ βs,dℓ

s̃∗
s,dℓ

for a normalized proper Gaussian s̃s,dℓ
. Therefore (4.23) can be written in the widely

linear form
xIs,dℓ

= wwws,dℓ
αs,dℓ

s̃s,dℓ
+wwws,dℓ

βs,dℓ
s̃∗
s,dℓ
, (4.26)
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which a particular class of (4.5) associated with

www1,s,dℓ
= αs,dℓ

wwws,dℓ
& www2,s,dℓ

= βs,dℓ
wwws,dℓ

. (4.27)

The advantage of (4.23) over (4.5) is that for each (s, dℓ), the former involves only
Nt + 1 complex decision variables for information beamforming (wwws,dℓ

of dimension
Nt plus the complex variable qs,dℓ

), while the latter involves 2Nt complex decision
variables (wwwj,dℓ

, j = 1, 2, each of dimension Nt).

For the information transfer during the remaining 1/t2 fractional time, the signal
(4.4) received at the IU (i, dj) is now specified as

yi,dj
=

∑
(s,dℓ)∈SI

hs,i,dj
wwws,dℓ

ss,dℓ
+ ni,dj

. (4.28)

By writing down its augmented form:

yi,dj

y∗
i,dj

 =
∑

(s,dℓ)∈SI

Ls,i,dj
(wwws,dℓ

)
ss,dℓ

s∗
s,dℓ

+
ni,dj

n∗
i,dj

 , (4.29)

for

Ls,i,dj
(wwws,dℓ

) ,
hs,i,dj

wwws,dℓ
0

0 h∗
s,i,dj

www∗
s,dℓ

 ∈ C2×2,

which is a linear operator from CNt×1 to C2×2, we can readily determine the augmented
covariance of the signal of interest in (4.28) as

Φi,dj
(wwwi,dj

,qi,dj
) = Li,i,dj

(wwwi,dj
)Pi,dj

LHi,i,dj
(wwwi,dj

) (4.30)

and interference-plus-noise of (4.28) can be expressed in augmented covariance form as

Γi,dj
(wwwSI

,qSI
) =

∑
(s,dℓ)∈SI\(i,dj)

Ls,i,dj
(wwws,dℓ

)Ps,dℓ
LHs,i,dj

(wwws,dℓ
) + σ2I2. (4.31)

The information throughput at user (i, dj) is then expressed as [74]

1
2t2

ri,dj
(wwwSI

,qSI
), (4.32)
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where

ri,dj
(wwwSI

,qSI
) = ln

∣∣∣∣I2 + Φi,dj
(wwwi,dj

,qi,dj
)
(
Γi,dj

(wwwSI
,qSI

)
)−1

∣∣∣∣ . (4.33)

With xIs,dℓ
defined by (4.23), the problem of max-min information throughput opti-

mization subject to the EUs’ harvested energy and power constraints is formulated as
follows instead of (4.15):

max
t=(t1,t2)∈R2

+,vvvSE
,wwwSI

,qSI
,γ

γ s.t. (4.15c), (4.15d), (4.25), (4.34a)

ri,dj
(wwwSI

,qSI
) ≥ 2γt2, (i, dj) ∈ SI , (4.34b)∑K

j=1 ||vvvi,ej
||2

t1
+
∑M
j=1 ||wwwi,dj

||2

t2
≤ P, i = 1, . . . , N, (4.34c)

||vvvi,ej
||2 ≤ Pmax, (i, ej) ∈ SE, (4.34d)

||wwwi,dj
||2 ≤ Pmax, (i, dj) ∈ SI , (4.34e)

where (4.34b) is the counterpart of (4.15b) for maximizing the IUs’ minimal throughput,
while (4.34c) and (4.34d)-(4.34e) correspond to the power constraints (4.15e) and (4.15f),
respectively. In (4.34), the constraint (4.25) is obviously convex, and the constraints
(4.15c), (4.34c) and (4.34d)-(4.34e) are also convex just like their counterparts in (4.15).

The nonconvex constraint (4.34b) involves much fewer decision variables than
its counterpart (4.15b) but the former also contains many crossed terms between
beamformers and pseudo-covariances that require a different approximation technique.

Let (t(κ), γ(κ), w
(κ)
SI
, v

(κ)
SE
, q

(κ)
SI

) be the feasible point for (4.34) found from the (κ−1)th
iteration. The nonconvex constraint (4.15d) in (4.34a) is innerly approximated by
the convex constraint (4.19). However, we still have to develop an inner convex
approximation of the nonconvex constraint (4.34b).

4.3.1 Path-following iteration

Use the equivalent representation

ri,dj
(wwwSI

,qSI
) = fi,dj

(wwwi,dj
,Pi,dj

) + gi,dj
(wwwSI

,qSI
), (4.35)
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in conjunction with

fi,dj
(wwwi,dj

,Pi,dj
) , ln

∣∣∣Φi,dj
(wwwi,dj

,qi,dj
)
∣∣∣ = 2 ln |hi,i,dj

wwwi,dj
|2 + ln |Pi,dj

|, (4.36)

and

gi,dj
(wwwSI

,qSI
) , ln

∣∣∣∣(Φi,dj
(wwwi,dj

,qi,dj
)
)−1

+
(
Γi,dj

(wwwSI
,qSI

)
)−1

∣∣∣∣ . (4.37)

Using the inequality (A.18) yields

fi,dj
(wwwi,dj

,Pi,dj
) ≥

fi,dj
(w(κ)

i,dj
, P

(κ)
i,dj

) + 4−
2|hi,i,dj

w
(κ)
i,dj
|2

|hi,i,dj
wwwi,dj
|2
− ⟨P (κ)

i,dj
,P−1

i,dj
⟩ ≥

fi,dj
(w(κ)

i,dj
, P

(κ)
i,dj

) + 4− ⟨P (κ)
i,dj
,P−1

i,dj
⟩

−
2|hi,i,dj

w
(κ)
i,dj
|2

2ℜ{(w(κ)
i,dj

)Hhi,i,dj
hi,i,dj

wwwi,dj
} − |hi,i,dj

w
(κ)
i,dj
|2

,

f
(κ)
i,dj

(wwwi,dj
,Pi,dj

) (4.38)

over the trust region

2ℜ{(w(κ)
i,dj

)HhHi,i,dj
hi,i,dj

wwwi,dj
} − |hi,i,dj

w
(κ)
i,dj
|2 > 0. (4.39)

Furthermore, using the inequality (A.17) in the Appendix yields

gi,dj
(wwwSI

,qSI
) ≥

gi,dj
(w(κ)

SI
, q

(κ)
SI

) + 2− ⟨B(κ)
i,dj
,Φi,dj

(wwwi,dj
,qi,dj

)⟩ − ⟨C(κ)
i,dj
,Γi,dj

(wwwSI
,qSI

)⟩ =

gi,dj
(w(κ)

SI
, q

(κ)
SI

) + 2− σ2⟨C(κ)
i,dj
⟩ −

∑
(s,dℓ)∈SI

⟨[χi,dj ,s,dℓ
(wwws,dℓ

)]2,Ps,dℓ
⟩, (4.40)

where

0 ≺ B
(κ)
i,dj

,
(
Φi,dj

(w(κ)
i,dj
, q

(κ)
i,dj

)
)−1
−
(
Φi,dj

(w(κ)
i,dj
, q

(κ)
i,dj

) + Γi,dj
(w(κ)

SI
, q

(κ)
SI

)
)−1

,

0 ≺ C
(κ)
i,dj

,
(
Γi,dj

(w(κ)
SI
, q

(κ)
SI

)
)−1
−
(
Φi,dj

(w(κ)
i,dj
, q

(κ)
i,dj

) + Γi,dj
(w(κ)

SI
, q

(κ)
SI

)
)−1

,
(4.41)
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and
χi,dj ,i,dj

(wwwi,dj
) , L∗

i,i,dj
(wwwi,dj

)(B(κ)
i,dj

)1/2,

χi,dj ,s,dℓ
(wwws,dℓ

) = L∗
s,i,dj

(wwws,dℓ
)(C(κ)

i,dj
)1/2, (s, dℓ) ∈ SI \ (i, dj).

(4.42)

Let us introduce the positive definite matrix variables Xi,dj ,s,dℓ
of size 2× 2 satisfying

the semi-definite constraints of

[
χi,dj ,s,dℓ

(wwws,dℓ
)
]2
≼ Xi,dj ,s,dℓ

, (s, dℓ) ∈ SI (4.43)

⇔

 Xi,dj ,s,dℓ
χi,dj ,s,dℓ

(wwws,dℓ
)(

χi,dj ,s,dℓ
(wwws,dℓ

)
)H

I2

 ≽ 0, (s, dℓ) ∈ SI . (4.44)

Then, by using the inequality (A.18), we arrive at:

⟨[χi,dj ,s,dℓ
(wwws,dℓ

)]2,Ps,dℓ
⟩ ≤

⟨Xi,dj ,s,dℓ
,Ps,dℓ

⟩ ≤
1
4 ||(X

(κ)
i,dj ,s,dℓ

)−1/2
(
Xi,dj ,s,dℓ

P
(κ)
s,dℓ

+ X
(κ)
i,dj ,s,dℓ

Ps,dℓ

)
(P (κ)

s,dℓ
)−1/2||2, (s, dℓ) ∈ SI , (4.45)

for

X
(κ)
i,dj ,s,dℓ

=
[
χi,dj ,s,dℓ

(w(κ)
s,dℓ

)
]2
, (s, dℓ) ∈ SI . (4.46)

Hence,
gi,dj

(wwwSI
,qSI

) ≥ g
(κ)
i,dj

(XSI
,qSI

) (4.47)

for

g
(κ)
i,dj

(XSI
,qSI

) , −1
4

∑
(s,dℓ)∈SI

||(X(κ)
i,dj ,s,dℓ

)−1/2
(
Xi,dj ,s,dℓ

P
(κ)
s,dℓ

+X(κ)
i,dj ,s,dℓ

Ps,dℓ

)
(P (κ)

s,dℓ
)−1/2||2F + gi,dj

(w(κ)
SI
, q

(κ)
SI

) + 2. (4.48)
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To generate the next iterative point (t(κ+1), γ(κ+1), w
(κ+1)
SI

, v
(κ+1)
SE

, q
(κ+1)
S ) at the κth

iteration, we solve the following convex optimization problem t

max
t,wwwSI

,qSI
,vvvSE

,γ,XSI

γ s.t. (4.15d), (4.19), (4.25), (4.34c),

(4.34d)− (4.34e), (4.39), (4.44), (4.49a)

f
(κ)
i,dj

(wwwi,dj
,Pi,dj

) + g
(κ)
i,dj

(XSI
,qSI

) ≥ γ(κ)t
(κ)
2

2

(
γ

γ(κ) + t2

t
(κ)
2

)2

, (i, dj) ∈ SI , (4.49b)

The computational complexity of this convex problem is (4.21) is determined by
nv = 3 +N [M(N + t+ 1 + 3M) +K] and mc = 1 +N(2K + 4M + 1).

Note by observing (4.38) and (4.47) that the LHS of (4.49b) is a concave lower
bounding approximation of the LHS of (4.34b), while by (4.17), the RHS of (4.49b)
is a convex upper-bounding approximation of the RHS of (4.34b). Hence in fact
the convex constraint (4.49b) is an inner approximation of the nonconvex constrain-
t (4.34b). The convex problem (4.49) is then seen as an inner approximation of
the nonconvex problem (4.34). Then γ(κ+1) > γ(κ) as far as γ(κ+1) ̸= γ(κ) because
(t(κ+1), γ(κ+1), w

(κ+1)
SI

, v
(κ+1)
SE

, q
(κ+1)
S ) and (t(κ), γ(κ), w

(κ)
SI
, v

(κ)
SE
, q

(κ)
SI

) are the optimal solu-
tion and a feasible point for (4.49). As such, the sequence {(t(κ), γ(κ), w

(κ)
SI
, v

(κ)
SE
, q

(κ)
SI

)}
generated by (4.49) is of improved feasible points for the nonconvex problem (4.34)
and it converges at least to a point satisfying the KKT condition of optimality [60].

4.3.2 Alternating descent iteration

One can see that the function ri,dj
(wwwSI

,qSI
) defined by (4.33) is complex. We therefore

develop an alternating procedure for its more efficient computation.

Alternating optimization in wwwS

By fixing qSI
= q

(κ)
SI

, we address the problem

max
t,wwwSI

,vvvSE
,γ

γ s.t. (4.15c), (4.15d), (4.34c), (4.34d)− (4.34e), (4.50a)

ri,dj
(wwwSI

, q
(κ)
SI

) ≥ 2γt2, (i, dj) ∈ SI . (4.50b)
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Using the inequality (A.15) in the Appendix yields

ri,dj
(wwwSI

, q
(κ)
SI

) ≥

ri,dj
(w(κ)

SI
, q

(κ)
SI

)− ⟨Φi,dj
(w(κ)

i,dj
, q

(κ)
i,dj

),
(
Γi,dj

(w(κ)
SI
, q

(κ)
SI

)
)−1
⟩

+2ℜ{⟨Li,i,dj
(wwwi,dj

)P (κ)
i,dj
LHi,i,dj

(w(κ)
i,dj

)×
(
Γi,dj

(w(κ)
SI
, q

(κ)
SI

)
)−1
⟩}

−⟨
(
Γi,dj

(w(κ)
SI
, q

(κ)
SI

)
)−1
−
(
Φi,dj

(w(κ)
i,dj
, q

(κ)
i,dj

) + Γi,dj
(w(κ)

SI
, q

(κ)
SI

)
)−1

,

Φi,dj
(wwwi,dj

, q
(κ)
i,dj

) + Γi,dj
(wwwSI

, q
(κ)
SI

)⟩ ,

r̃
(κ)
i,dj

(wwwSI
). (4.51)

To generate the next feasible point (t(κ+1), γ̄(κ+1), w
(κ+1)
SI

, v
(κ+1)
SE

) for (4.34), we solve the
following convex problem for:

max
t,wwwSI

,vvvSE
,γ

γ s.t. (4.15c), (4.19), (4.34c), (4.34d)− (4.34e), (4.52a)

r̃
(κ)
i,dj

(wwwSI
) ≥ γ(κ)t

(κ)
2

2

(
γ

γ(κ) + t2

t
(κ)
2

)2

, (i, dj) ∈ SI . (4.52b)

The computational complexity of this convex problem is (4.21) determined by nv =
3 +NNt(M +K) and mc = N(3K + 2M + 1).

Since the convex constraint (4.52b) is an inner approximation of the nonconvex
constraint (4.50b), the convex problem (4.52) is seen as an inner approximation of the
nonconvex problem (4.50). We then have

γ̄(κ+1) ≥ γ(κ), (4.53)

because they are the optimal and a feasible value for (4.52).

Alternating optimization in qSI

By fixing (t,wwwSI
, vvvSE

) = (t(κ+1), w
(κ+1)
SI

, v
(κ+1)
SE

), we address the problem

max
qSI

,γ
γ s.t. (4.25), (4.54a)

ri,dj
(w(κ+1)

SI
,qSI

) ≥ 2γt(κ+1)
2 , (i, dj) ∈ SI . (4.54b)
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Using the inequality (A.16) in the Appendix yields

ri,dj
(w(κ+1)

SI
,qSI

) ≥

ri,dj
(w(κ+1)

SI
, q

(κ)
SI

) + 4− ⟨
(
Γi,dj

(w(κ+1)
SI

, q
(κ)
SI

)
)−1

,Γi,dj
(w(κ+1)

SI
,qSI

)⟩

−⟨Φi,dj
(w(κ+1)

i,dj
, q

(κ)
i,dj

) + Γi,dj
(w(κ+1)

SI
, q

(κ)
SI

),(
Φi,dj

(w(κ+1)
i,dj

,qi,dj
) + Γi,dj

(w(κ+1)
SI

,qSI
)
)−1
⟩ ,

r̂
(κ)
i,dj

(qSI
). (4.55)

To generate the next feasible point (q(κ+1)
S , γ(κ+1)) for (4.34), we then solve the following

convex optimization problem:

max
qSI

,γ
γ s.t. (4.25),

r̂
(κ)
i,dj

(qSI
) ≥ 2γt

(κ+1)
2 , (i, dj) ∈ SI . (4.56)

The computational complexity of this convex problem is (4.21) determined by nv =
1 +NM and mc = 3NM .

Note that we have γ(κ+1) > γ̄(κ+1) ≥ γ(κ) provided that γ(κ+1) > γ̄(κ+1), hence the
sequence {(t(κ), γ(κ), w

(κ)
SI
, v

(κ)
SE
, q

(κ)
SI

)} is of feasible points for the nonconvex problem
(4.34), which converges to a feasible point satisfying the KKT conditions for one of
two variable sets (t, vvvSE

,wwwSI
) and qSI

, when the other is held fixed.

4.3.3 Generating a good feasible point for (4.34)

It is important to generate a good feasible point for (4.34). For this we fix t(0) to
satisfy (4.15d) and q(0)

SI
(for instance q(0)

s,dℓ
≡ 0.2) and reasonable γ(0). We then randomly

generate w(0)
SI

and v
(0)
SE

satisfying the convex constraints (4.34c)-(4.34e). Let us set

P
(κ)
i,dj
≡

 1 q
(0)
i,dj

(q(0)
i,dj

)∗ 1

 .
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We then iterate

max
vvvSE

,wwwSI
,η

η s.t. (4.22d), (4.34d)− (4.34e), (4.57a)

r̃
(κ)
i,dj

(wwwSI
) ≥ 2γ0t

(0)
2 η, (i, dj) ∈ SI , (4.57b)∑K

j=1 ||vvvi,ej
||2

t
(0)
1

+
∑M
j=1 ||wwwi,dj

||2

t
(0)
2

≤ P, i = 1, . . . , N, (4.57c)

until we have η ≥ 1 for guaranteeing that (t(0), γ(0)η, w
(κ)
SI
, v

(κ)
SE
, q

(κ)
SI

) is feasible for
(4.34).

4.3.4 Algorithm

For optimizing a trade-off between the convergence speed and the solution optimality
we propose Algorithm 5, which uses the alternating optimization until its convergence
and then switches to the path-following optimization in order to converge at least to a
locally optimal solution.

Algorithm 5 s-IGS algorithm for (4.34)

1: Initialization: Fix q
(0)
SI

. Set κ := 0 and then iterate (4.57) for finding a good
initial feasible point (v(0)

SE
, w

(0)
SI
, t(0)) for (4.34)

2: Repeat until (4.34) is reached: Generate the feasible point (v(κ+1)
SE

, w
(κ+1)
SI

, t(κ+1))
for (4.34) by solving the convex optimization problems (4.52) and (4.56) of alter-
nating optimization to ; Reset κ := κ+ 1.

3: Repeat until convergence of the objective in (4.34): Solve the convex opti-
mization problem (4.49) of path-following optimization to generate the feasible
point (v(κ+1)

SE
, w

(κ+1)
SI

, t(κ+1)) for (4.34); Reset κ := κ+ 1.
4: Output t = t(κ), vvvSE

= v
(κ)
SE

, and wwwSI
= w

(κ)
SI

.

4.4 Performance results

In all our simulations we consider networks of three cells (N = 3). The channel
spanning from a BS to a user at a distance of d meters is expressed as

√
10−σPL/10h̃,

where σPL = 30 + 10β log10(d) is the path-loss in dB, and h̃ is the Rician fading channel
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gain associated with a Rician factor of 10 dB for the EUs served by that BS only.
Otherwise, h̃ is the normalized Rayleigh fading channel gain. The path-loss exponent β
is set to 3 for the Rician channels and to 2 for the Rayleigh channels. The power of the
signal received by the UEs must exceed the threshold of −21 dBm with 13 nm CMOS
technology [67] to facilitate EH. We set emin = −20 dBm, ζ = 0.5, P = 35 dBm. The
bandwidth is set to B = 20 MHz, the power spectral density of noise is −174 dBm/Hz.

4.4.1 NOMA favored scenario
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Fig. 4.2 NOMA favored scenario

Fig. 4.2 illustrates a scenario, where K EUs (i, ej), j = 1, . . . , K also act as the
first K IUs. The other K IUs (i, dK+j), j = 1, . . . , K in each cells are distributed near
the cell boundary. Those IUs which are located near the cell-boundary, are not only in
poorer channel conditions than the IUs (i, dj), j = 1, . . . , K but are then subject to
intercell-interference. By bringing about the differentiated channel conditions between
the near IUs (i, dj), j = 1, . . . , K and far IUs (i, dK+j), j = 1, . . . , K, such scenario
favours NOMA, helping it to perform better than the conventional OMA. Both NOMA
and OMA use proper Gaussian signal for carrying information, i.e. qs,dℓ

≡ 0 in (4.24)
so the information signal xIs,dℓ

defined by (4.23) or (4.5) for www2,s,dℓ
≡ 0 is generated by

linearly beamforming of a normalized proper Gaussian source ss,dℓ
. Under OMA, each

IU (i, dj), j = 1, . . . , 2K decodes its own information si,dj
while under NOMA each
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pair of IUs (i, dj) and (i, dK+j), j = 1, . . . , K decode the information si,dK+j
for the IU

(i, dK+j) and then the IU (i, dj) subtracts si,dK+j
from its interference in decoding its

own information si,dj
.

Fig. 4.3 characterizes the convergence behaviour of the proposed Algorithms for
Nt = 6 and K = 3, i.e. each BS is equipped with Nt = 6 DL TAs and there are a
total of 27 users served by the network. The NOMA PGS algorithm [73] converges
rapidly as a benefit of the efficient approximation of the logarithmic functions. The
convergence rate of the IGS and s-IGS algorithms is similar, but the computational
complexity of the latter is significantly lower.
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Fig. 4.3 Convergence for IGS, s-IGS and NOMA algorithms

Fig. 4.4 plots the achievable minimum throughput under different numbers Nt

of DL TAs for K = 2 (18 users in total) and K = 3 (27 users in total). Both the
IGS and s-IGS outperform NOMA [73]. IGS outperforms s-IGS since the latter is
a particular class of the former. All of them still benefit from the spatial diversity
associated with the number Nt of BS TAs. This figure also shows the efficiency of the
time fraction optimization as IGS, s-IGS and NOMA outperform their counter parts
IGS (t1 = t2 = 2), s-IGS(t1 = t2 = 2) and NOMA (t1 = t2 = 2), respectively, which
use the half of the time-slot for power transfer and the remaining half for information
transfer.
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Fig. 4.4 Achievable minimum throughput vs number Nt: (a) K = 2 (18 users); (b)
K = 3 (27 users)

We now examine the achievable minimum throughput upon varying the BS transmit
power budget P in Fig. 4.5 under (Nt, K) = (6, 3). Both the IGS and s-IGA exploit
the available transmit power much better than NOMA since the latter cannot use
the total affordable power budget because its achievable minimum throughput is not
sensitive to P ≥ 33 dBm. By contrast, by employing additional beamformers www2,s,dℓ

for the conjugate proper Gaussian information source s∗
s,dℓ

in (4.5) or optimizing the
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pseudo-covariance qs,dℓ
in (4.24), IGS allows the total power budget be exploited for

improving its throughput. Naturally, beyond a certain threshold, namely P = 41 dBm
in Fig. 4.5, its performance also becomes saturated. This should not be a surprise for
interference-limited networks.
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Fig. 4.5 Achievable minimum throughput vs BS transmit power budget P

Fig. 4.6 portrays the users’ max-min throughput under (Nt, K) = (6, 3) upon
varying the EH threshold emin to show the impact of the latter imposed on the former.
As expected, the increase of the latter degrades the performance of the former.

Table 4.1 provides the rounded average number of iterations required required for
the convergence of the three algorithms for K = 3 under different number of BS TAs
Nt. For lower Nt the feasibility set becomes narrower, which forces all algorithms to
converge slower.

Table 4.1 The rounded average number of iterations for the
convergence under NOMA favored scenario

Nt = 4 Nt = 5 Nt = 6 Nt = 7
IGS 30 31 20 20
S-IGS 25 28 31 18
NOMA 24 22 15 18
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Fig. 4.6 Achievable minimum throughput vs BS transmit power budget P

4.4.2 General scenario

Fig. 4.7 illustrates a general scenario, where M IUs are located outside the EH zone,
hence they cannot act as EUs. The IUs’ channel conditions are not differentiated,
therefore NOMA is inefficient. We thus compare IGS and s-IGS to the conventional
PGS orthogonal multiple access (OMA), in which IU decodes its own message only.
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Fig. 4.7 OMA favored scenario
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Fig 4.8 shows the achievable minimum throughput for IGS, s-IGS and PGS OMA
for different values of Nt. There are K = 2 EUs and M = 4 IUs for simulating
Fig. 4.8(a), and K = 3 EUs and M = 6 IUs for simulating Fig. 4.8(b). As expected,
IGS is the best performer, followed by s-IGS, while PGS OMA is the worst performer.
Similarly to Fig. 4.4, this figure also includes the performance of IGS, s-IGS and PGS
OMA at t1 = t2 = 2 to show the efficiency of the time fraction optimization.
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Fig. 4.8 Achievable minimum throughput vs BS antennas number Nt: (a)
(K,M) = (2, 4); (b) (K,M) = (3, 6)
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Fig. 4.9 provides the achievable minimum throughput for varying values of the BS
transmit power budget P . All three algorithms are capable of exploiting the affordable
power budget to compensate for the increased distance from the BS to the IUs that
makes the pathloss higher.
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Fig. 4.9 Achievable minimum throughput vs BS transmit power budget P

Finally, Table 4.2 provides the rounded average number of iterations for the con-
vergence of IGS, s-IGS and PGS OMA for (K,M) = (3, 6) and different values of Nt.

Table 4.2 The rounded average number of iterations for the
convergence under general scenario

Nt = 4 Nt = 5 Nt = 6 Nt = 7
IGS 17 16 19 18
S-IGS 16 20 21 19
PGS OMA 6 8 10 11

4.5 Conclusions

We have applied improper Gaussian signaling (IGS), in both general format and a
particular format (s-IGS), for improving the information throughput of a multi-cell
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energy-harvesting enabled network, which aims for transferring both information and
energy over the same wireless channels within a time slot. In contrast to NOMA, which
improves the network throughput by allowing the users of better channel condition
to access and decode the information of the users of poorer channel condition, IGS
is capable of improving the network throughput more substantially than NOMA,
maintaining the users’ secrecy under OMA. Although the problem of max-min infor-
mation user throughput subject to the EH thresholds and power budget is much more
computationally challenging than its NOMA counterpart, the chapter has developed
path-following algorithms for its computation, which converge at least to a locally
optimal solution. The numerical examples provided for networks serving 18 users and
27 users have confirmed the advantages of IGS over NOMA and OMA proper Gaussian
signaling.



Chapter 5

Joint Design of Reconfigurable
Intelligent Surfaces and Transmit
Beamforming under Proper and
Improper Gaussian Signaling

5.1 Introduction

The next-generation networks aim to increase 1000-fold in the average data rate,
100× improvement in the edge rate (worst data rate that a user can reasonably
expect), and at least 100× decrease in energy consumption and cost compared to that
offered by presently commercialized ones [99]. Though recently proposed technologies,
e.g., massive multiple-input multiple-output (MIMO) and millimeter wave (mmWave)
communication systems, have the potential to meet data rate requirements [21], they fail
to address the target of low energy consumption and hardware cost [100]. Particularly,
efficient communication by these technologies require large number of costly and power-
hungry radio frequency (RF) chains (depending on the number of antennas), where
each comprises several active components. Therefore, researchers are still hunting
for an energy efficient as well as spectral efficient solution to assist the realization of
futuristic networks [101, 22].
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Recently, the use of reconfigurable intelligent surface (RIS) has been identified as a
low-energy consumption and spectral efficient solution [64, 102, 6]. RIS is a planar array
of a large number of low-cost and nearly-passive reflecting elements with reconfigurable
parameters. Each reflecting element on RIS can introduce an independent phase shift
on the incident electromagnetic wave (from the acesss points (AP) or transmitter)
[103]. The phase shifts induced by the passive elements can be programmed to ensure
that reflected signals from the RIS elements coherently add, together or also with other
direct-path signals, if available, at the user end [102, 104, 105]. More importantly, RIS
can be installed in such places such as buildings which block the direct transmission
from the AP to its users [106]. RIS technology is quite different with several distinct
positives when compared with the other existing technologies such as backscatter
communication [107, 108], amplify-and forward (AF) relaying, and intelligent surface
based massive MIMO [109]. A detailed comparison among these technologies is provided
in [6, 110]. The work [23] shows that a particular RIS-aided MIMO system can achieve
the same rate performance as that achieved by massive MIMO system without using
RIS, but the former option is energy-and cost-efficient with significantly reduced active
antennas/RF chains.

Naturally, RIS-aided systems need to be optimized in terms of transmit beamform-
ers and RIS reflecting coefficients for delivering high rates. Optimization of RIS-aided
systems looks computationally intractable because of two reasons: (i) both rate and
transmit power become very complex functions in the beamformers and RIS reflect-
ing coefficients; (ii) The RIS reflecting coefficients are constrained by the nonconvex
unit-modulus constraint (UMC). Alternating optimization between the beamformers
and the RIS reflecting coefficients is often applied. Each round of alternating opti-
mization consists of optimization in the beamformers with the reflecting coefficients
held fixed and optimization in the reflecting coefficients with the beamformers held
fixed. These optimization problems are still nonconvex and thus still computationally
challenging. The authors in [64] and [111] use general-purpose gradient/projected
gradient algorithms for their computation, which do not necessarily converge. The
authors in [23] reformulate alternating optimization in the reflecting coefficients as a
matrix rank-one constrained optimization problem. The matrix rank-one constraint is
then dropped for convex relaxation. The reader is also referred to [112] for computa-



5.1 Introduction 81

tional efficiency of this convex relaxation. At each round of alternating optimization,
the objective function is replaced by a surrogate function in [113–115], and then the
nonconvex unit-modulus constraint on the reflecting coefficients is relaxed to the con-
vex bounded-by-unit-modulus constraint for alternating optimization in the reflecting
coefficients, while the minimum-mean-square-error (MMSE) algorithm is used for
alternating optimization in the beamformers. Alternating optimization does not seem
to be computationally efficient if each round still invokes two nonconvex problems,
which are still computationally challenging. Theoretically, its found solution is not even
locally optimal as it is only optimal in one set of variables with other set of variables
held fixed.

It should be emphasized that all the aforementioned works are based on the con-
ventional proper Gaussian signaling (PGS), which is induced by linearly beamforming
proper Gaussian source. Recently, it has been shown e.g. in [90, 91, 88, 92, 96, 116–118]
that improper Gaussian signaling (IGS), which is induced by widely linearly beam-
forming proper Gaussian source [75], outperforms PGS clearly in interference-limited
networks. Under PGS, the transmit signal is still proper Gaussian and completely
characterized by its covariance. In contrast, the transmit signal under IGS is improper
Gaussian and is characterized by the so-called augmented covariance of double size
with a special structure, which involves both the covariance and the pseudo-covariance
information [75]. As such, in contrast to PGS, which is induced by single beamformers,
IGS is induced by pairs of correlated beamformers. The design of beamforming vectors
for IGS is more complex than for PGS because it involves twice the number of decision
variables, and more importantly, the rate functions are log-determinant log det(.) even
for multi-input single output (MISO) networks. Their optimization is much more
computationally challenging than that for PGS, which involves logarithmic functions
only.

Against the above background, this chapter investigates the joint design of transmit
beamformers and RIS reflecting coefficient in networks of a multiple antenna array AP
serving multiple single-antenna users with the aid of an RIS, under both PGS and IGS.
The contributions of the chapter are following:



82
Joint Design of Reconfigurable Intelligent Surfaces and Transmit Beamforming under

Proper and Improper Gaussian Signaling

• Under PGS, based on the exactly penalized optimization reformulation, which
incorporates the computationally intractable unit-modulus constraint on the
reflecting coefficients into the optimization objective, we develop an algorithm of
low computational complexity, each iteration of which invokes up to two convex
problems. Moreover, it rapidly converges at least to a locally optimal solution.

• This is the first work to use IGS for RIS-aided communication networks. Again,
based on the exactly penalized optimization reformulation, we develop another
algorithm of low computational complexity, which rapidly converges at least to a
locally optimal solution.

• IGS bases algorithms clearly outperforms PGS bases algorithms in severely
interference-limited scenarios when the number of transmit antennas is less than
the number of served users.

The chapter is organized as follows. The joint design of beamformers and RIS reflecting
coefficients to maximize the worst users’ rate under PGS and RIS are addressed in
Sections II and Section III, respectively. The simulations to demonstrate the advantage
of RIS over PGS are provided in Section IV, which is followed by Section V for
concluding the chapter. The Appendix provides fundamental matrix inequalities, which
were used for developing the algorithms in Sections II and III.

5.2 Proper Gaussian signaling

Consider a RIS-aided network as illustrated by Fig. 5.1, where a RIS of N reflecting
units assists the downlink from an M -antenna array AP to K single-antenna users
(UEs). Let x be the transmit signal from the AP. The received signal at UE k can be
expressed as

yk =
(√

βAP-RIS

√
βRIS-khr,kR1/2

RIS-kΘΘΘHAR +
√
βAP-kha,k

)
x+ nk, (5.1)

where
√
βAP-RIS and

√
βRIS-k model the path-loss and large-scale fading of the AP-

to-RIS link and from the RIS-to-UE k link, respectively [119, 111],
√
βAP-k models

the path-loss and large-scale fading of the direct path between the AP and the UE
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Fig. 5.1 System model

k, HAR ∈ CN×M is the line-of-sight (LoS) channel matrix between the AP and RIS,
hr,k ∈ C1×N and ha,k ∈ C1×M ,1 respectively, denote the small-scale fading channels
from the RIS and the AP to UE k, RRIS-k ∈ CN×N represents the spatial correlation
matrix for the RIS elements with respect to the user k [111, 120], nk ∈ C(0, σ) is the
background noise at UE k, and for θθθ , (θ1, . . . , θN) ∈ CN with

|θn| = 1, n = 1, . . . , N, (5.2)

which denotes the vector of the RIS’s reflecting-coefficients, the matrix of reflection-
coefficients of the RIS is

ΘΘΘ =


θ1 0 . . . 0
0 θ2 . . . 0
0 0 . . . θN

 ∈ CN×N .

Since the RIS is usually deployed on the facade of high-rise building [106] and the AP
is usually deployed at a certain height it is justified to assume LoS communication
between the AP and RIS [111]. The communication channel between the AP and UEs

1In Section IV, we also consider particular cases of no direct path between the AP and UEs, i.e.
ha,k ≡ 0
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ha,k is non-LOS (NLoS) and thus modeled by Rayleigh fading, while the presence of
LoS link is assumed between the RIS and UEs and thus the corresponding channel
hr,k is modeled by Rician fading [121]. The NLoS communication between the AP and
UEs motivates the use of an RIS to support the transmission. To focus on the design
of beamforming vectors and reflection-coefficients of the RIS, the chapter assumes that
the channel state information is perfectly available at the AP, which is responsible
for calculating the reflection-coefficients of the RIS and feeding them back to the RIS
controller through dedicated control channels. This assumption is in line with the
existing relevant research in the literature [113–115]. Under this assumption, the results
of the chapter will represent an upper bound on the practical achievable performance.

Let sk ∈ C(0, 1) be the information intended for UE k. Under PGS, the proper
Gaussian source sk is linearly beamformed by the beamformer wwwk ∈ CM . Therefore,
the transmit signal x, which is given by

x =
K∑
k=1

wwwksk, (5.3)

is also proper Gaussian. Using (5.3), the equation (5.1) is written by

yk = Hk(θθθ)
K∑
k=1

wwwksk + nk, (5.4)

for
Hk(θθθ) ,

√
βAP-RIS

√
βRIS-khr,kR1/2

RIS-kΘΘΘHAR +
√
βAP-kha,k ∈ C1×M . (5.5)

Let www , {wwwk, k ∈ K}. Based on the signal-to-interference-plus-noise (SINR) defined by

ρk(θθθ,www) , |Hk(θθθ)wwwk|2∑
j∈K\{k} |Hk(θθθ)wwwj|2 + σ

, (5.6)

the rate in nats at UE k is calculated by

rk(θθθ,www) = ln (1 + ρk(θθθ,www)) . (5.7)
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Given a power budget P , the max-min rate optimization problem can be formulated
as

max
θθθ,www

min
k=1,...,K

rk(θθθ,www) s.t. (5.2), (5.8a)
K∑
k=1
||wwwk||2 ≤ P, (5.8b)

which is equivalent to max-min SINR optimization:

max
θθθ,www

f(θθθ,www) , min
k=1,...,K

ρk(θθθ,www) s.t. (5.2), (5.8b). (5.9)

This optimization problem is nonconvex because its objective function is nonconcave
and the unit-modulus constraint (UMC) (5.2) is obviously nonconvex. To the authors’
best knowledge, there is no efficient method to handle the UMC (5.2), which is often
relaxed to the convex bounded-by-unit-modulus constraint

|θn|2 ≤ 1, n = 1, . . . , N. (5.10)

The existing works use alternating optimization to address (5.8). Let (θ(κ), w(κ)) be
a feasible point for (5.8) that is found from the (k − 1)-th round. The n-th round
aims to solve the following alternating optimization problem in www to generate the next
iterative point w(κ+1):

max
www

f(θ(κ),www) s.t. (5.8b). (5.11)

and then aims to solve the following alternating optimization problem in θθθ to generate
the next iterative point θ(κ+1):

max
θθθ

f(θθθ, w(κ+1)) s.t. (5.2), (5.12)

It should be noted that the SINR ρk defined by (5.6) is a quotient of two functions,
which are separately convex quadratic in θθθ and www, so both (5.11) and the unit-modulus-
relaxed problem

max
θθθ

f(θθθ, w(κ)) s.t. (5.10), (5.13)

can be efficiently computed by the algorithms of [71, 70].
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In [113], the objective is replaced by a surrogate function at each round so the
alternating optimization in www is a convex problem, and by relaxing the UMC (5.2) by
(5.10), the alternating optimization in θθθ is also a convex problem.

The authors in [23] consider the following problem of power minimization subject
to the SINR constraints

min
θθθ,www

K∑
k=1
||wwwk||2 s.t. (5.2), ρk(θθθ,www) ≥ γ, k ∈ K, (5.14)

for a given γ > 0. The alternating optimization inwww to generate w(κ+1) is equivalent to a
second-order cone problem of convex programming [122]. The alternating optimization
in θθθ to generate θ(κ+1) is the feasibility problem

(5.2), ρk(θθθ, w(κ+1)) ≥ γ, k ∈ K. (5.15)

The authors use the auxiliary matrix variable Θ̃ ,

Θ θθθ

θθθH 1

 ∈ C(N+1)×(N+1), Θ ∈ CN×N ,

which must satisfy the semi-definite constraint Θ̃ ≽ 0 and linear constraints Θ̃(n, n) = 1,
n ∈ N and the matrix rank-one constraint

rank(Θ̃) = 1. (5.16)

This matrix rank-one constraint is then dropped to have a convex relaxation for the
feasibility problem (5.15). Obviously, θ(κ) is already feasible for (5.15), so it is not clear
for what one needs to consider (5.15) and how to judge which of feasible points for
(5.15) is preferred. The number of decision variables in the convex relaxed problem
is N(2N + 3)/2, which is quickly grown in N . For instance, it is already 2575 for
N = 50, hiking the computational complexity O((N(2N + 2)/2)3) of convex solvers.
The reader is also referred to [112] for capacity of convex relaxation-based approaches
in locating the needed matrix-rank one solution. After all, like [113], the convergence
of the alternating procedure in [23] is not guaranteed.

We now propose a quite different approach for addressing the max-min SINR
optimization problem (5.9). Note that the UMC (5.2) is equivalent to the convex
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constraint (5.10) plus the constraint

N ≤
N∑
n=1
|θn|2, (5.17)

which is reverse convex [30]. Indeed, (5.10) implies ∑N
n=1 |θn|2 ≤ N , which together

with (5.17) yield ∑N
n=1 |θn|2 = N that is possible if and only if (5.2) is fulfilled. It is

obvious that (5.17) is the same as

1
N
− 1∑N

n=1 |θn|2
≥ 0, (5.18)

and the equality sign in (5.18) forces the UMC (5.2). This means

1
N
− 1∑N

n=1 |θn|2
(5.19)

can be used a measure for satisfaction of the UCM (5.2). Like [123–125], instead
of handling the nonconvex constraint (5.18) we minimize the measure (5.19) for its
satisfaction by incorporating it in the optimization objective, leading to the following
exactly penalized optimization problem

max
θθθ,www

g(θθθ,www) ,
[
f(θθθ,www) + µ

(
1
N
− 1∑N

n=1 |θn|2

)]
s.t. (5.8b), (5.10), (5.20)

where µ > 0 is the penalty parameter.2 For µ sufficiently large, (5.9) and (5.20) have
the same optimal solution [126]. Later, we will show how µ is chosen before hand.

Although all constraints in (5.20) are convex, (5.20) is still a difficult nonconvex
problem as its objective remains to be nonconcave. We now develop iterative processes
for its computation.

Let (w(κ), θ(κ)) be the feasible point for (5.20) that is found from the (κ − 1)-th
round.

2Since the constraints (5.8b) and (5.8b) are already convex, there is no need to incorporate them
in the optimization objective.
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5.2.1 Alternating descent round

In alternating descent, we generate the next iterative point w(κ+1) with θθθ held fixed at
w(κ) and then the next iterative point θ(κ+1) is generated with www held fixed at w(κ+1).

Beamforming descent iteration

To generate w(κ+1) we do not solve (5.11) but we seek w(κ+1) such that f(θ(κ), w(κ+1)) >
f(θ(κ), w(κ)).

Using the inequality (A.21) in the appendix A yields

ρk(θ(κ),www) ≥ ρ
(κ)
k (www)

, 2ℜ{b(κ)
k wwwk} − c(κ)

k

∑
j∈K\{k}

|Hk(θ(κ))wwwj|2 − σc(κ)
k , (5.21)

with

b
(κ)
k ,

(w(κ)
k )H(Hk(θ(κ)))HHk(θ(κ))

y
(κ)
k

, 0 < c
(κ)
k ,

|Hk(θ(κ))w(κ)
k |2

(y(κ)
k )2

,

0 < y
(κ)
k ,

∑
j∈K\{k}

|Hk(θ(κ))w(κ)
j |2 + σ.

The function ρ(κ)
k (www) is seen quadratic concave, which matches with ρk(θ(κ),www) at w(κ).

The computational complexity of the problem is O ((MK)3) [98, p. 4]. To generate
w(κ+1) at the κ-th iteration, we solve :

max
www

f (κ)(www) , min
k=1,...,K

ρ
(κ)
k (www) s.t. (5.8b), (5.22)

where f (κ) is concave [30]. Note that

f (κ)(w(κ+1)) > f (κ)(w(κ))

if w(κ+1) ̸= w(κ). Therefore,

f(θ(κ), w(κ+1)) ≥ f (κ)(w(κ+1)) > f (κ)(w(κ)) = f(θ(κ), w(κ)). (5.23)
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Phase descent iteration

We seek the next iterative point θ(κ+1) such that g(θ(κ+1), w(κ+1)) > g(θ(κ), w(κ+1)).

Using the inequality (A.21) in the appendix A yields

ρk(θθθ, w(κ+1)) ≥ ρ̃
(κ)
k (θθθ)

, 2ℜ{b̃(κ)
k Hk(θθθ)w(κ+1)

k } − c̃(κ)
k

∑
j∈K\{k}

|Hk(θθθ)w(κ+1)
j |2 − σc̃(κ)

k (5.24)

with

b̃
(κ)
k ,

(w(κ+1)
k )H(Hk(θ(κ)))H

y
(κ+1)
k

, 0 < c̃
(κ)
k ,

|Hk(θ(κ))w(κ+1)
k |2

(y(κ+1)
k )2

,

0 < y
(κ+1)
k ,

∑
j∈K\{k}

|Hk(θ(κ))w(κ+1)
j |2 + σ,

and

1∑N
n=1 |θn|2

≤ ι(κ)(θθθ) , 1∑N
n=1(2ℜ{(θ

(κ)
n )∗θn} − |θ(κ)

n |2)
(5.25)

over the trust region
N∑
n=1

(2ℜ{(θ(κ)
n )∗θn} − |θ(κ)

n |2) > 0. (5.26)

The computational complexity of the optimization problem is O ((N)3(N + 1)) [98,
p. 4]. To generate θ(κ+1) at the κ-th iteration, we solve:

max
θθθ

g(κ)(θθθ) ,
[

min
k=1,...,K

ρ̃
(κ)
k (θθθ) + µ

( 1
N
− ι(κ)(θθθ)

)]
s.t. (5.10), (5.26), (5.27)

which is convex because its objective function is concave. Note that g(θθθ, w(κ+1)) ≥
g(κ)(θθθ), and g(θ(κ), w(κ+1)) = g(κ)(θ(κ)), so, by using a similar argument to that for
proving (5.53), we can show that

g(θ(κ+1), w(κ+1)) > g(θ(κ), w(κ+1)), (5.28)

as far as θ(κ+1) ̸= θ(κ).
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Convergence

It follows from (5.24) and (5.28) that

g(θ(κ+1), w(κ+1)) > g(θ(κ), w(κ)), (5.29)

and as such the sequence {(θ(κ), w(κ))} converges to a point (θ̄, w̄) such that θ̄ (w̄, resp.)
is a locally optimal solution of (5.20) with www (θθθ, resp.) held fixed at w̄ (θ̄, resp.).

5.2.2 Path-following iteration

Using the inequality (A.20) in the appendix A yields

ρk(θθθ,www) ≥ a
(κ)
k −

b
(κ)
k

|Hk(θθθ)wwwk|2
− c(κ)

k

∑
j∈K\{k}

|Hk(θθθ)wwwj|2 (5.30)

where

a
(κ)
k ,

3|Hk(θ(κ))w(κ)
k |2

y
(κ)
k

, 0 < b
(κ)
k ,

|Hk(θ(κ))w(κ)
k |4

y
(κ)
k

, 0 < c
(κ)
k ,

|Hk(θ(κ))w(κ)
k |2

(y(κ)
k )2

0 < y
(κ)
k ,

∑
j∈K\{k}

|Hk(θ(κ))w(κ)
j |2 + σ.

We have

∑
j∈K\{k}

|Hk(θθθ)wwwj|2 = ⟨[HH
k (θθθ)]2,

∑
j∈K\{k}

[wwwj]2⟩ ≤ ⟨Xk,
∑

j∈K\{k}
Yj⟩, (5.31)

for the Hermitian symmetric matrix variables Xk, k ∈ K and Yj , j ∈ K of size M ×M
satisfying the semi-definite (convex) constraints

Xk ≽ [HH
k (θθθ)]2 ⇔

 Xk HH
k (θθθ)

Hk(θθθ) 1

 ≽ 0, (5.32)

Yj ≽ [wwwj]2, j ∈ K ⇔
Yj wwwj

wwwHj 1

 ≽ 0. (5.33)
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For X
(κ)
k (t) , [HH

k (θ(κ))]2 + tIM , and Y
(κ)
k (t) = [w(κ)

k ]2 + tIM , while Y
(κ)

\k (t) ,∑
j∈K\{k}[w

(κ)
j ]2 + tIM , for k ∈ K, using the inequality (A.19) in the appendix A

yields

⟨Xk,
∑

j∈K\{k}
Yj⟩ = ⟨Xk + ϵIM ,

∑
j∈K\{k}

Yj + ϵIM⟩ − ϵ⟨Xk +
∑

j∈K\{k}
Yj⟩ − ϵ2M

≤ 1
2

[
||
(
X

(κ)
k (ϵ)

)−1/2
(Xk + ϵIM)

(
Y

(κ)
\k (ϵ)

)1/2
||2

+||
(
X

(κ)
k (ϵ)

)1/2
 ∑
j∈K\{k}

Yj + ϵIM

(Y (κ)
\k (ϵ)

)−1/2
||2


−ϵ⟨Xk +
∑

j∈K\{k}
Yj⟩ − ϵ2M

, g
(κ)
k (www,Xk,Y), (5.34)

for X , {Xk, k ∈ K} and Y , {Yj, j ∈ K}, and ϵ > 0.

Next, in the appendix B, we show that the nonconvex constraint

|Hk(θθθ)wwwk|2 ≥ zk, (5.35)

is innerly approximated by the semi-definite constraint
(Hk(θ(κ))Y (κ)

k (η)HHk (θθθ) + (∗)H
)
− zk − η⟨Xk⟩ ∗

Y
(κ)
k (η)HHk (θ(κ)) [w(κ)

k (wwwk)H + (∗)H ]− [w(κ)
k ]2 + ηIM

 ≽ 0

(5.36)
for η > 0, i.e. each feasible point for (5.36) is also feasible for (5.35).

It follows from (5.30), (5.34) and (5.36) that

ρk(θθθ,www) ≥ ρ(κ)
k (θθθ,www, zk,Xk,Y) , a

(κ)
k −

b
(κ)
k

zk
− c(κ)g

(κ)
k (www,Xk,Y). (5.37)

for the scalar variable zk satisfying the semi-definite constraint (5.36) and the linear constraint

zk > 0. (5.38)

For g(κ)
p (θθθ,www, z,X,Y) , mink=1,...,K ρ

(κ)
k (θθθ,www, zk,Xk,Y) + µ

(
1
N − ι

(κ)(θθθ)
)
, at the κ-th itera-

tion we solve the following convex problem of computational complexity O
(
(2KM2 +KM+K
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+N)3(4K +N + 2)
)

[98, p. 4] to generate (θ(κ+1), w(κ+1), z(κ+1), X(κ+1), Y (κ+1)):

max
θθθ,www,z,X,Y

g(κ)
p (θθθ,www, z,X,Y) s.t. (5.8b), (5.10), (5.26), (5.32), (5.33), (5.38), (5.36).(5.39)

For z(κ)
k = [w(κ)

k ]2 and z(κ) = {z(κ)
k , k ∈ K}, it is true that

g(κ)
p (θ(κ+1), w(κ+1), z(κ+1), X(κ+1), Y (κ+1)) > g(κ)

p (θ(κ), w(κ), z(κ), X(κ), Y (κ))

because (θ(κ+1), w(κ+1), z(κ+1), X(κ+1), Y (κ+1)) and (θ(κ), w(κ), z(κ), X(κ), Y (κ)) are respective-
ly the optimal solution and a feasible point for (5.39). Also, under (5.26), (5.32), (5.33),
(5.38), (5.36), g(θθθ,www) ≥ g(κ)

p (θθθ,www, z,X,Y), and g(θ(κ), w(κ)) = g
(κ)
p (θ(κ), w(κ), z(κ), X(κ), Y (κ)).

Therefore, like (5.24), it is easy to show (5.29) but the sequence {(θ(κ), w(κ))} of improved
feasible points for the nonconvex problem (5.7) converges at least to a locally optimal solution
of (5.7) [71].

5.2.3 Initialization and penalty parameter

We address the following optimization problem

max
θθθ,www

f(θθθ,www) s.t. (5.10), (5.8b) (5.40)

by Algorithm 6, which is based on the above described alternating descent iterations.

Suppose that (w(0), θ(0)) is the found solution of (5.40) with the optimal value γ(0). Then
determine µ by

µ = γ(0)

1∑N

n=1 |θ(0)
n |2
− 1

N

. (5.41)

to make the values of the objective function and penalty term in (5.20) of similar magnitudes
[127].

Algorithm 6 PGS initializing algorithm
1: Initialization: Randomly generate (θ(0), w(0)) satisfying the convex constraints

(5.8b) and (5.47b). Set κ = 0.
2: Repeat until convergence of the objective in (5.40): Solve the con-

vex problem (5.22) to generate w(κ+1) and then solve the convex problem
maxθθθ mink=1,...,K ρ̃

(κ)
k (θθθ) s.t. (5.10) to generate θ(κ+1). Reset κ := κ+ 1.

3: Output (w(κ), θ(κ)) and reset (w(0), θ(0))← (w(κ), θ(κ)).
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5.2.4 Two-phase Algorithm

Observe from (5.22) and (5.27) for the proposed alternating descent procedure and (5.39) for
the proposed path-following procedure that the latter is much more computationally costly
than the latter. Therefore, we propose Algorithm 7 to exploit the computational efficiency of
the alternating descent procedure and the solution optimality of the path-following procedure.

Algorithm 7 Two-phase PGS algorithm
1: Alternating descent phase: repeat until (5.20) is reached: Generate w(κ+1)

by solving the convex problem (5.22) and then generate θ(κ+1) by solving the convex
problem (5.27); Reset κ := κ+ 1.

2: Path-following phase: repeat until (5.20) is reached: Generate
(w(κ+1), θ(κ+1)) by solving the convex problem (5.39); Reset κ := κ+ 1.

3: Output (w(κ), θ(κ)).

5.3 Improper Gaussian signaling

In (5.3), the proper Gaussian sources sk are linearly beamformed by the beamformer wwwk so
the transmit signal x is proper Gaussian too. In this section, the proper Gaussian sources sk
are widely linearly beamformed by a pair of two beamformers www1,k ∈ CM and www2,k ∈ CM as
[75] [

www1,k www2,k

] sk
s∗
k

 , (5.42)

making the transmit signal

x =
K∑
k=1

(www1,ksk +www2,ks
∗
k), (5.43)

improper Gaussian. The equation (5.1) is written by

yk = Hk(θθθ)
K∑
k=1

(www1,ksk +www2,ks
∗
k) + nk. (5.44)
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Write the augmented equation for (5.44) as
yk
y∗
k

 =

H(θθθ) 0
0 H∗(θθθ)

 K∑
k=1

www1,k www2,k

www∗
2,k www∗

1,k

sk
s∗
k

+

nk
n∗
k


= Λk(θθθ)

K∑
k=1

Wks̄k + n̄k, (5.45)

for Λk(θθθ) ,

Hk(θθθ) 0
0 H∗

k(θθθ)

 ∈ C2×(2M), and Wk ,

www1,k www2,k

www∗
2,k www∗

1,k

 ∈ C2M×2, which are linear

mappings, and s̄k ,

sk
s∗
k

 ∈ C2, n̄k ,

nk
n∗
k

 ∈ C2.

For www , {(www1,k,www2,k) k ∈ K}, the rate at UE k is calculated by (1/2)rk(θθθ,www) [74] with

rk(θθθ,www) = ln

∣∣∣∣∣∣∣I2 + [Λk(θθθ)Wk]2
 ∑
j∈K\{k}

[Λk(θθθ)Wj ]2 + σI2

−1
∣∣∣∣∣∣∣ (5.46)

For the particular class www2,k ≡ 0, i.e. x in (5.43) is proper Gaussian, a straight calculation
yields

rk(θθθ,www) = 2 ln

1 + |Hk(θθθ)www1,k|2
 ∑
j∈K\{k}

|Hk(θθθ)www1,j |2 + σ

−1
 ,

so (1/2)rk(θθθ,www) is the known PGS rate (5.7).

Given a power budget P , the max-min rate optimization problem under IGS is thus
formulated as

max
θθθ,www

min
k=1,...,K

1
2rk(θ

θθ,www) s.t. (5.2), (5.47a)

K∑
k=1

(||www1,k||2 + ||www2,k||2) ≤ P, (5.47b)

which is equivalent to

max
θθθ,www

Φ(θθθ,www) , min
k=1,...,K

rk(θθθ,www) s.t. (5.2), (5.47b). (5.48)

Like (5.20), we address (5.48) via its exact penalized problem

max
θθθ,www

Ψ(θθθ,www) ,
[
Φ(θθθ,www) + µ

(
1
N
− 1∑N

n=1 |θn|2

)]
s.t. (5.10), (5.47b), (5.49)
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where µ > 0 is the penalty parameter. Unlike its PGS counterpart (5.20), which involves
a single beamformer for each user, the problem (5.49) involves a pairs of correlated beam-
formers www1,k and www2,k. More importantly, the problem (5.49) is an log-determinant function
optimization and thus is much more computationally challenging than its PGS counterpart
(5.20) of fractional function optimization. Particularly, the Algorithms 6 and 7 for PGS
cannot be extended for the case of IGS. Nevertheless, we are still able to propose alternating
descent and path-following iterations tailored for its computation.

5.3.1 Alternating descent round

Beamforming descent iteration

We seek w(κ+1) such that Φ(θ(κ), w(κ+1)) > Φ(θ(κ), w(κ)).

By using the inequality (A.15) in the appendix A, we obtain a concave quadratic lower
bounding function approximation of rk(θ(κ),www) as

rk(θ(κ),www) ≥ r
(κ)
k (www) , a

(κ)
k + 2ℜ{⟨B(κ)

k Wk⟩} − ⟨C
(κ)
k ,

∑
j∈K

[Λk(θ(κ))Wj ]2⟩, (5.50)

with
a

(κ)
k , rk(θ(κ), w(κ))− ⟨[Λk(θ(κ))W (κ)

k ]2(Y (κ)
k )−1⟩ − σ⟨C(κ)

k ⟩,
B

(κ)
k , (W (κ)

k )H(Λk(θ(κ)))H(Y (κ)
k )−1Λk(θ(κ)),

0 ≺ C(κ)
k , (Y (κ)

k )−1 −
(
Y

(κ)
k + [Λk(θ(κ))W (κ)

k ]2
)−1

,

0 ≺ Y (κ)
k ,

∑
j∈K\{k}[Λk(θ(κ))W (κ)

j ]2 + σI2.

The computational complexity of the optimization problem isO
(
(2MK)3) [98, p. 4]. To

generate w(κ+1), we solve the following convex problem of at the κ-th iteration:

max
www

min
k=1,...,K

r
(κ)
k (www) s.t. (5.47b), (5.51)

which like (5.22) gives
Φ(θ(κ), w(κ+1)) > Φ(θ(κ), w(κ)) (5.52)

as far as w(κ+1) ̸= w(κ).
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Phase descent iteration

We seek w(κ+1) such that Ψ(θ(κ+1), w(κ+1)) > Ψ(θ(κ), w(κ+1)).

By using the inequality (A.15) in the appendix A, we obtain a concave quadratic lower
bounding function approximation of rk(θθθ, w(κ+1)) as

rk(θθθ, w(κ+1)) ≥ r̃
(κ)
k (θθθ)

, ã
(κ)
k + 2ℜ{⟨B̃(κ)

k Λk(θθθ)W (κ+1)
k ⟩} − ⟨C̃(κ)

k ,
∑
j∈K

[Λk(θθθ)W (κ+1)
j ]2⟩ (5.53)

with
ã

(κ)
,
rk(θ(κ), w(κ+1))− ⟨[Λk(θ(κ))W (κ+1)

k ]2(Y (κ+1)
k )−1⟩ − σ⟨C̃(κ)

k ⟩,
B̃

(κ)
k , (W (κ+1)

k )H(Λk(θ(κ)))H(Y (κ+1)
k )−1,

0 ≺ C̃(κ)
k , (Y (κ+1)

k )−1 −
(
Y

(κ+1)
k + [Λk(θ(κ))W (κ+1)

k ]2
)−1

,

0 ≺ Y (κ+1)
k ,

∑
j∈K\{k}[Λk(θ(κ))W (κ+1)

j ]2 + σI2.

Accordingly, we solve the following convex problem has the computational complexity of
O
(
N3(N + 1)

)
[98, p. 4]. To generate θ(κ+1) at the κ-th iteration we solve:

max
θθθ

[
min

k=1,...,K
r̃

(κ)
k (θθθ) + µ

( 1
N
− ι(κ)(θθθ)

)]
s.t. (5.10), (5.26), (5.54)

where ι(κ)(θθθ) is recalled from (5.25).

Like (5.28), we can easily show that

Ψ(θ(κ+1), w(κ+1)) > Ψ(θ(κ), w(κ+1)), (5.55)

as far as θ(κ+1) ̸= θ(κ).

5.3.2 Path-following round

Decompose rk(θθθ,www) = ψk(θθθ,www) + ϕk(θθθ,www), for ψk(θθθ,www) , ln
∣∣[Λk(θθθ)Wk]2

∣∣, and

ϕk(θθθ,www) , ln

∣∣∣∣∣∣∣[Λk(θθθ)Wk]−2 +

 ∑
j∈K\{k}

[Λk(θθθ)Wj ]2 + σI2

−1
∣∣∣∣∣∣∣ .
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Using the inequalities (A.17) in the appendix A yields

ϕk(θθθ,www) ≥ a
(κ)
k − ⟨B

(κ)
k , [Λk(θθθ)Wk]2⟩ − ⟨C(κ)

k ,
∑

j∈K\{k}
[Λk(θθθ)Wj ]2⟩

= a
(κ)
k − ⟨Λ

H
k (θθθ)B(κ)

k Λk(θθθ), [Wk]2⟩ − ⟨ΛHk (θθθ)C(κ)
k Λk(θθθ),

∑
j∈K\{k}

[Wj ]2⟩

≥ a
(κ)
k − ⟨X1k,Yk⟩ − ⟨X2,k,

∑
j∈K\{k}

Yj⟩ (5.56)

for the newly introduced Hermitian symmetric matrix variables X1,k and X2,k, k ∈ K and
Yj , j ∈ K of size (2M)× (2M) satisfying the semi-definite constraints

X1,k ≽ ΛHk (θθθ)B(κ)
k Λk(θθθ)⇔

 X1,k ΛHk (θθθ)(B(κ)
k )1/2

(B(κ)
k )1/2Λk(θθθ) I2

 ≽ 0, (5.57)

and

X2,k ≽ ΛHk (θθθ)C(κ)
k Λk(θθθ)⇔

 X2,k ΛHk (θθθ)(C(κ)
k )1/2

(C(κ)
k )1/2Λk(θθθ) I2

 ≽ 0, (5.58)

and

Yj ≽ [Wj ]2,⇔

 Yj Wj

WH
j I2

 ≽ 0, (5.59)

under the definitions

a
(κ)
k , ϕk(θ(κ), w(κ)) + 2− σ⟨C(κ)

kj ⟩ (j ̸= k),

0 ≼ B(κ)
k ,

(
[Λk(θ(κ))W (κ)

k ]2
)−1
−

∑
j∈K

[Λk(θ(κ))W (κ)
j ]2 + σI2

−1

,

0 ≼ C(κ)
k ,

 ∑
j∈K\{k}

[Λk(θ(κ))W (κ)
j ]2 + σI2

−1

−

∑
j∈K

[Λk(θ(κ))W (κ)
j ]2 + σI2

−1

,

and X
(κ)
1,k , ΛHk (θ(κ))B(κ)

k Λk(θ(κ)), and X
(κ)
2,k , ΛHk (θ(κ))C(κ)

k Λk(θ(κ)).
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Furthermore, using the inequality (A.19) in the appendix A yields

RHS of (5.56) = a
(κ)
k − ⟨X1k + ϵI2M ,Yk + ϵI2M ⟩ − ⟨X2,k + ϵI2M ,

∑
j∈K\{k}

Yj + ϵI2M ⟩

+ϵ
∑
j∈K
⟨Yj⟩+ ϵ⟨X1k + X2k⟩+ 2Mϵ2

≥ a
(κ)
k −

1
2 ||
(
X

(κ)
1,k (ϵ)

)−1/2
(X1k + ϵI2M )

(
Y

(κ)
k (ϵ)

)1/2
||2

−1
2 ||
(
X

(κ)
1,k (ϵ)

)1/2
(Yk + ϵI2M )

(
Y

(κ)
k (ϵ)

)−1/2
||2

−1
2 ||
(
X

(κ)
2,k (ϵ)

)−1/2
(X2,k + ϵI2M )

(
Y

(κ)
\k (ϵ)

)1/2
||2

−1
2 ||
(
X

(κ)
2,k (ϵ)

)1/2
 ∑
j∈K\{k}

Yj + ϵI2M

(Y (κ)
\k (ϵ)

)−1/2
||2

+ϵ
∑
j∈K
⟨Yj⟩+ ϵ⟨X1k + X2k⟩+ 2Mϵ2

, ϕ
(κ)
k (θθθ,X1,k,X2,k,Y), (5.60)

forX(κ)
i,k (t) , X

(κ)
i,k +tI2M , i ∈ {1, 2}, Y (κ)

k (t) , [W (κ)
k ]2+tI2M , and Y (κ)

\k (t) ,∑
j∈K\{k}[W (κ)

j ]2+
tI2M .

Next, similarly to (5.36), the nonconvex constraint

[Λk(θθθ)Wk]2 ≽ Zk, (5.61)

for the newly introduced Hermitian symmetric matrix variable Zk of size 2×, is innerly
approximated by the following semi-definite constraint

Λk(θ(κ))Y (κ)
k (η)ΛHk (θθθ) + (∗)H ∗

Y
(κ)
k (η)ΛHk (θ(κ)) [W (κ)

k (Wk)H + (∗)H ] + ηI2M

 ≽

Zk + ηQk 02×(2M)

0(2M)×2 [W (κ)
k ]2

 Zk Λk(θθθ)
ΛHk (θθθ) I2M

 ≽ 0, (5.62a)

for η > 0 and the slack Hermitian symmetric matrix variable Qk of size 2× 2.

The inequality (5.62) together with the inequality (A.18) in the appendix A yield

ψk(θθθ,www) ≥ ψ
(κ)
k (θθθ,Zk)

, ψk(θ(κ), w(κ))− ⟨[Λk(θ(κ))W (κ)
k ]2, (Zk)−1⟩ (5.63)
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under the trust region
Zk ≻ 0. (5.64)

Thus, we solve the following convex problem of inner approximation of (5.49) with compu-
tational complexity O

(
(12KM2 + 2KM + 4K +N)3(5K +N + 2)

)
[98, p. 4] to generate

(θ(κ+1), w(κ+1)) at the κ-th iteration:

max
θθθ,www,X,Y,Z

[
min

k=1,...,K
[ϕ(κ)
k (θθθ,X1,k,X2,k,Y) + ψ

(κ)
k (θθθ,Zk)] + µ

( 1
N
− ι(κ)(θθθ)

)]
s.t. (5.10), (5.26), (5.47b), (5.57), (5.58), (5.59), (5.62), (5.64), (5.65)

where ι(κ)(θθθ) is recalled from (5.25).

5.3.3 Initialization and penalty parameter

We use Algorithm 8 for computing

max
θθθ,www

Φ(θθθ,www) s.t. (5.47b), (5.10) (5.66)

Suppose that (w(0), θ(0)) is the found solution of (5.66) with the optimal value γ(0). Then
determine µ by (5.41). It is noteworthy that the optimal solution www1,k and www2,k from
Algorithm 8 are not the complex conjugate of each other.

Algorithm 8 IGS initializing algorithm
1: Initialization: Randomly generate (θ(0), w(0)) satisfying the convex constraints

(5.8b) and (5.47b). Set κ = 0.
2: Repeat until convergence of the objective in (5.66): Solve the con-

vex problem (5.51) to generate w(κ+1) and then solve the convex problem
maxθθθ mink=1,...,K r̃

(κ)
k (θθθ) s.t. (5.47b) to generate θ(κ+1). Reset κ := κ+ 1.

3: Output (w(κ), θ(κ)) and reset (w(0), θ(0))← (w(κ), θ(κ)).

5.3.4 Two-phase Algorithm

We propose 9, which like Algorithm 7 consists of two phases to exploit the computational
efficiency of the alternating descent procedure and the solution optimality of the path-following
procedure.
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Algorithm 9 Two-phase IGS algorithm
1: Alternating descent phase: repeat until (5.49) is reached: Generate w(κ+1)

by solving the convex problem (5.51) and then solve the convex problem (5.54) to
generate θ(κ+1); Reset κ := κ+ 1.

2: Path-following phase: repeat until (5.49) is reached: Generate
(w(κ+1), θ(κ+1)) by solving the convex problem (5.65); Reset κ := κ+ 1.

3: Output (w(κ), θ(κ)).

5.4 Performance results

The performance of our proposed algorithms is examined in this section. The large scale
fading coefficients, βAP-RIS, βRIS-k, and βAP-k, in (5.5), are modeled as [121, 111]

βAP-RIS = GAP +GRIS − 35.9− 22 log10(dAP-RIS) (in dB), (5.67a)

βRIS-k = GRIS − 33.05− 30 log10(dRIS-k) (in dB), (5.67b)

βAP-k = GAP − 33.05− 36.7 log10(dAP-k) (in dB), (5.67c)

where GAP = 5 dBi and GRIS = 5 dBi denote the antenna gain of the AP and the gain of the
elements of RIS, respectively [121, 111], dAP-RIS, dRIS-k, and dAP-k are the distances between
the AP and RIS, the RIS and UE k, and the AP and UE k, respectively. The full-rank
AP-to-RIS LoS channel matrix is defined as [HAR]n,m = ejπ((n−1) sin θ̄n sin φ̄n+(m−1) sin θn sinφn),
where θn and φn are uniformly distributed as θn ∼ U(0, π) and φn ∼ U(0, 2π), respectively,
and θ̄n = π−θn and φ̄n = π+φn [111]. The normalized small-scale fading channel ha,k follows
Rayleigh distribution while the small-scale fading channel gain hr,k follow Rician distribution
with a Rician K-factor of 3. The spatial correlation matrix is given as [RRIS-k]n,n′ =
ejπ(n−n′) sin φ̃k sin θ̃k , where φ̃k and θ̃ represent the azimuth and elevation angle for UE k,
respectively. The noise power is set to σ = −114 dBm, i.e., noise power spectral density
= −174 dBm/Hz and transmission bandwidth = 1 MHz.

Considering the system model setup in Fig. 5.1 and let us use (x, y, z) to denote the
coordinates (placement) of the AP, RIS and UEs, the AP is deployed at (40, 0, 25), the RIS is
deployed at (0, 60, 40), and K = 10 UEs are randomly placed in 120m× 120m right-hand-side
of the obstacles and RIS. The following results have been plotted to analyze the performance
of our proposed algorithms, where the tolerance level for the convergence of algorithms is set
to 10−3.
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• PSG-RIS : This result simulates the performance of PGS algorithm. Particularly, the
proposed Alg. 1 is simulated for initialization and proposed Alg. 2 is simulated during
optimization phase.

• IGS-RIS : This result simulates the performance of IGS algorithm. Particularly, the
proposed Alg. 3 is simulated for initialization and proposed Alg. 4 is simulated during
optimization phase.

• PGS-RIS with random θ: This result simulates the performance of PGS algorithm
without phase optimization, i.e., it assumes random phase coefficients θ at the RIS.
This result demonstrates the gain achieved by the proposed PGS-RIS algorithm, which
assumes joint phase optimization with beamforming design.

• IGS-RIS with random θ: This result simulates the performance of IGS algorithm by
assuming random phase coefficients θ at the RIS. This result demonstrates the gain
achieved by the proposed IGS-RIS algorithm, which assumes joint phase optimization
with beamforming design.

• PGS without RIS This result simulates the performance of PGS algorithm in the
absence of RIS. This result demonstrates the advantage of deploying RIS.

• PGS without RIS This result simulates the performance of IGS algorithm in the absence
of RIS. This result demonstrates the advantage of deploying RIS.

Fig. 5.2 plots the convergence of the proposed algorithms with P = 20 dBm, M = 9
AP-antennas, and N = 100 RIS elements. Fig. 5.2 assumes the presence of the direct path
between the AP and the UEs. It can be seen from Fig. 5.2 that all the algorithms converges
rapidly within a few iterations (15-30). As expected, the PGS based algorithms converge
faster than the IGS based algorithms because the latter need to handle more optimization
variables. Fig. 5.3 plots the achievable max-min rate versus the number of antennas at
the AP, M , with P = 20 dBm and N = 100 RIS elements. The results have been plotted
for the side-range of AP-antennas M = {7, 8, 9, 10, 11} to consider all three situations; (i)
M < K, (ii) M = K, and (iii) M > K, where K = 10 is the number of UEs as described
previously. Fig. 5.3 shows that the proposed IGS-RIS algorithm outperforms the "IGS
without RIS" and "IGS-RIS with random θθθ". The performance margin increases when the
value of M increases. Fig. 5.3 indicates that "IGS without RIS" and "IGS-RIS with random
θθθ" yield similar performance which provides an important insight that there is no advantage
of deploying RIS unless RIS reflection coefficients are optimized. Fig. 5.3 also plots the
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Fig. 5.2 Convergence with P = 20 dBm, M = 9 AP-antennas, and N = 100 RIS
elements.
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Fig. 5.3 Achievable max-min throughput versus the number of antennas at the AP, M ,
with P = 20 dBm and N = 100 RIS elements.

performance of the proposed PGS-RIS algorithm which outperforms the "PGS without RIS"
and "PGS-RIS with random θθθ". Fig. 5.3 also shows that the performance of PGS-RIS
performance gets closer to that of IGS-RIS for M > K, i.e., M = 11 AP-antennas.

Fig. 5.4 plots the achievable max-min rate versus the transmit power budget at the AP,
P , with M = 9 AP-antennas and N = 100 RIS elements. As expected, the performance of
the proposed IGS-RIS and PGS-RIS algorithms improve with the increase in the available



5.4 Performance results 103

14 16 18 20
2.5

3

3.5

4

4.5

5

IGS-RIS
IGS-RIS with random 
IGS without RIS
PGS-RIS
PGS-RIS with random 
PGS without RIS

Fig. 5.4 Achievable max-min throughput versus the transmit power budget at the AP,
P , with M = 9 AP-antennas and N = 100 RIS elements.

power budget. Fig. 5.4 also shows the advantage of the proposed IGS-RIS over "IGS without
RIS" and "IGS-RIS with random θθθ" while the latter two yield similar performance. Similarly,
Fig. 5.4 shows the performance gain of the proposed PGS-RIS over "PGS without RIS" and
"PGS-RIS with random θθθ".
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Fig. 5.5 Achievable max-min throughput versus the number of RIS elements, N , with
M = 9 AP-antennas and P = 20 dBm.

Fig. 5.5 plots the achievable max-min rate versus the number of RIS elements, N , with
M = 9 AP-antennas and P = 20 dBm. In Fig. 5.5, N = 0 implies IGS or PGS without RIS
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Fig. 5.6 Under the setup in Remark 1, achievable max-min throughput versus the
number of antennas at the AP with P = 20 dBm and N = 100 RIS elements.

deployment. Fig. 5.5 shows that only the performance of the proposed algorithm IGS-RIS
algorithm improves with the increase in the number of RIS elements. Fig. 5.5 shows that
the proposed IGS-RIS algorithm clearly outperforms the "IGS-RIS with random θθθ" and
the performance margin increases with the increase in N . Similarly, Fig. 5.5 shows the
performance gain of the proposed PGS-RIS over "PGS-RIS with random θθθ". Fig. 5.5 clearly
shows the advantage of employing IGS over PGS.
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Fig. 5.7 A simulation setup with the blockage of the direct path between the AP and
the UEs. The results for this setup are shown in Figs. 5.8-5.10.
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Fig. 5.8 Assuming blockage of direct path between AP and UEs ha,k ≡ 0, achievable
max-min throughput versus the number of antennas at the AP, M , with P = 26 dBm

and N = 60 RIS elements.

Remark 1 In this chapter, we consider more or less a practical RIS in the diffuse scattering
regime with the size of each its meta-surface of the order of the radio wavelength [110]. The
product of the two path-losses in the AP-RIS-UE reflected link (see (5.1)) attenuates it very
much (see [121] for analysis in details). Both PGS-RIS and IGS-RIS can achieve much more
significant gains in the anomalous reflection regime with the size of each RIS meta surface
of ten times larger than the radio wavelength [110]. The path-loss of the reflected path then
follows the model which is inversely proportional to sum of the two distances of AP-RIS
and RIS-AP links [6], making the AP-RIS-UE reflected link in much better condition. For
illustrative purpose, Fig. 5.6 plots the achievable max-min rate vs the number of antennas
at AP for βAP-RISβRIS-k in (5.1) modelled by βAP-RIS-k = GAP − 33.05− 30 log10(dAP-RIS +
dRIS-k) (in dB).

Next, we consider another scenario of equally important practice as illustrated by Fig.
5.7, where there is the blockage of direct signal path between the AP and the multiple UEs,
i.e. ha,k ≡ 0 in (5.1) and (5.5). The path-loss βAP-RIS and βRIS-k are defined by (5.67a)
and (5.67b). For simulation under this scenario, we can consider slightly smaller distances
between AP and the UEs since there is no direct path availability. So under the scenario
in Fig. 5.7, the AP is deployed at (20, 0, 25), the RIS is deployed at (0, 30, 40), and K = 10
UEs are randomly placed in 60m× 60m right-hand-side of the obstacles and RIS.
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Fig. 5.9 Assuming blockage of direct path between AP and UEs ha,k ≡ 0, achievable
max-min throughput versus transmit power budget at the AP, P , with M = 8

AP-antennas and N = 60 RIS elements.

Fig. 5.8 plots the achievable max-min rate versus the number of antennas at the AP
with P = 26 dBm and N = 60 RIS elements. Fig. 5.8 clearly shows that the proposed
IGS-RIS algorithm outperforms the "IGS-RIS with random θ" and similarly the proposed
PGS-RIS algorithm outperforms the "PGS-RIS with random θ". It clearly demonstrates
the gain achieved by the proposed algorithms, which consider joint phase optimization with
beamforming design over beamforming design alone (random phase selection). Fig. 5.8
also shows the advantage of employing IGS over PGS. Similar trend with superiority of the
proposed IGS-RIS algorithm can be observed in Figs. 5.9 and 5.10, which plot achievable
max-min rate versus the transmit power budget at the AP and the number of RIS elements,
respectively. The above results also show that www1,k andwww2,k are not one the complex conjugate
of the other in IGS-RIS.

Computational experience

To speed up the convergence of Algorithms 7 and 9, at the κ-th round, define

N (κ) , {n ∈ N , {1, . . . , N} : |θ(κ)
n |2 ≥ 1− ϵtol} (5.68)
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Fig. 5.10 Assuming blockage of direct path between AP and UEs ha,k ≡ 0, achievable
max-min throughput versus the number of RIS elements, N , with M = 8 AP-antennas

and P = 26 dBm.

for a given tolerance ϵtol. Then, replace the trust region constraint (5.26) in (5.27), (5.39),
(5.54), and (5.65) by the following constraints

∑
n∈N \N (κ)

(2ℜ{(θ(κ)
n )∗θn} − |θ(κ)

n |2) > 0, (5.69)

2ℜ{(θ(κ)
n )∗θn} − |θ(κ)

n |2 ≥ 1− ϵtol, n ∈ N (κ), (5.70)

to control the convergence of individual |θn|, n ∈ N to one.

Table 5.1 and Table 5.2 provides the rounded average number of rounds in obtaining the
numerical results in Fig. 5.3 (with the direct path between the AP and the UEs) and Fig.
5.8 (without direct path between the AP and the UEs). In most cases, the second phase of
Algorithm 7 and Algorithm 9 takes a couple of iterations to confirm the optimality of the
solution found from the first phase. In general, IGS Algorithms 8 and 9 need more rounds
than that needed for PGS Algorithms 6 and 7 because optimization of logarithm-determinant
functions with IGS is much more computationally challenging than that of logarithmic
functions with PGS.
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Table 5.1 The rounded average number of rounds for implementing Algorithms 6-9 in
obtaining Fig. 5.3 (direct path between the AP and the UEs)

M = 7 M = 8 M = 9 M = 10 M = 11
IGS-RIS 36 33 32 34 30

IGS-RIS with random θθθ 35 31 39 36 33
IGS without RIS 34 33 37 37 37

PGS-RIS 13 14 16 14 14
PGS-RIS with random θθθ 16 17 24 23 20

PGS without RIS 15 17 24 23 20

Table 5.2 The rounded average number of rounds for implementing Algorithms 6-9 in
obtaining Fig.5.8 (without direct path between the AP and the UEs)

M = 7 M = 8 M = 9 M = 10 M = 11
IGS-RIS 53 55 55 56 55
PGS-RIS 41 43 46 49 49

IGS-RIS with random θθθ 15 15 16 16 16
PGS-RIS with random θθθ 6 6 6 6 6

5.5 Conclusions

The chapter has considered a network of an multiple-antenna array acess points (AP) serving
multiple single-antenna users (UEs) with the assistance of a reconfigured intelligent surface
(RIS), under both proper Gaussian signaling (PGS) and improper Gaussian signaling (IGS)
with and without direct channels from the AP to UEs. The problem of jointly designing
the RIS’s reflecting coefficients and transmit beamformers to maximize the users’ worst
rate subject to the transmit power constraint has been addressed. Namely, the chapter has
developed algorithms of low computational complexity, which converge at least to a locally
optimal solution. The provided simulations have shown the clear advantage of IGS over
PGS, and of RIS-aided links over RIS-less links. Their extensions to similar problems for
multiple-antenna users are under current study.



Chapter 6

Maximizing the Geometric Mean of
User-Rates to Improve
Rate-Fairness: Proper vs.
Improper Gaussian Signaling

6.1 Introduction

The spectral efficiency optimization of wireless networks is often carried out by sum rate
(SR) maximization, thanks to the computational tractability of the latter when relying on
beamforming [39, 128]. However, by its nature, SR maximization has the deficiency of
allocating a large fraction of the sum-rate to a few users having good channel conditions,
while leaving the rest of the users with almost zero rates. Furthermore, the SR performance
is typically improved with more users involved because there are more flexible choices for the
users’ channels [129]. The spectral efficiency is thus addressed more appropriately via either
SR maximization under specific quality-of-service (QoS) constraints for users’ minimum
rate, or by max-min user-rate optimization, but their computation is quite demanding
[39, 130–132, 128].

Reconfigurable intelligent surfaces (RISs) [103] are constructed by a planar array of
programmable reflecting elements (PREs), which have recently been introduced for improving
the energy and spectral efficiencies of future wireless networks (6G) [64, 102, 106, 133],
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the coverage, reliability and the average achievable rate of UAV communication systems
[134–136] and the outage probability and bit error rate (BER) of indoor mixed dual-hop
VLC/RF systems [137]. Moreover, channel estimation and physical layer security for RIS-
aided networks have been studied recently [138–141]. A typical RIS-aided system consists of
a base station (BS) and a RIS for beneficially reflecting the incident electromagnetic waves
from the BS to multi-target directions, where the spectral efficiency may be improved by the
joint design of the transmit beamformer at the BS and RIS PREs [7]. The joint design is
often based on alternating optimization between the beamformer and PREs. Thus, compared
to the design of stand-alone transmit beamformers, the new challenge is the optimization
of the PREs with the beamformer weights fixed, which is computationally challenging due
to the nonconvex unit-modulus constraint (UMC) imposed on the PREs. In [64] and [111],
general-purpose gradient/projected gradient algorithms were used, which do not necessarily
converge. By contrast to either convex relaxation relying on dropping the matrix-rank of
one constraint or on relaxing the UMC to the convex bounded-by-unit-modulus constraint
were used in [23, 142–145] for mitigating the computational challenge. Except for the works
[23] and [145], which particularly considered the problem of transmit power minimization
subject to signal-to-interference-plus-noise ratio (SINR) constraints, all the following treatises
[64, 111, 142–144] considered the problem of SR maximization. The authors of [142–144]
applied convex relaxation not only to the UMC but also to the SR objective function. It
should be noted that alternating optimization between two sets of decision variables is only
efficient, when the optimization within each set with the other set held fixed is computationally
tractable. However that is not the case for the problems considered in all these papers because
both the optimization of the beamformers with the PREs held fixed and that of the PREs
with the beamformer weights held fixed present difficult nonconvex problems. In the end, the
convergence of alternating optimization-based algorithms to a locally optimal solution is not
guaranteed. Our recent work [146] has been the first one that addressed the spectral efficiency
of RIS-aided communication via max-min user-rate optimization. Instead of alternating
optimization, we proposed an alternating descent at the first stage and then a joint descent
at the second stage to confirm the optimality of the solutions computed. While the descent
iterations in the beamformers generate a sequence of better feasible points, the descent
iterations in the PREs generate a sequence of better infeasible points, which converges to a
feasible point. Moreover, it has been also shown in [146] that using widely linear beamformers
for facilitating improper Gaussian signaling (IGS) improves the users’ max-min rate.

Against the above background, this chapter offers the following contributions:
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• We consider the problem of maximizing the geometric mean (GM) of users’ rates for
allocating the rates to all users in an equitable manner. We use the users’ rate deviation
(RD) from their mean and the ratio of the users’ maximal and minimal rates (RR) as
the main criterion to judge the users’ rate balance, which are 0 and 1, respectively,
when all users are granted the same rate. The smaller these values are, the fairer the
users’ rate allocation becomes (more balanced).

• As this problem of GM maximization is computationally intractable, we address it
via the min-max joint design of beamforming weights and RIS PREs. To eliminate
the UMC of the RIS PREs, we use the polar form of unit-modulus complex numbers
that allows each descent iteration of the RIS coefficient calculation to be based on the
closed-form solution of an unconstrained nonconvex problem in the PREs’ arguments.
Each descent iteration of the beamformer weights and the PREs’ arguments are also
based on the closed-form solutions of convex problems. Thus, the proposed alternating
descent method is purely based on closed forms and hence it is computationally efficient.

• Like in [146], here we also use improper Gaussian signaling (IGS) in the BS signal
transmission, which has been shown to substantially improve the users’ max-min rates
(see e.g. [88, 92, 96, 116, 147]) thanks to its ability to mitigate the severe interferences
in interference-limited systems. The performance gap between IGS and conventional
proper Gaussian signaling (PGS) becomes substantially wider under more severe
interference regimes. To elaborate a little further, IGS is not useful in interference-free
regimes such as that of zero-forcing beamforming, which forces all interferences to zero.
The interference scenario of SR maximization under PGS is unique in the sense that
those users who were allocated zero-rate impose no interference on the other users.
As a result, SR maximization under PGS exhibit a high RD and near-infinite RR.
Our finding is that compared to PGS, IGS does not improve the system’s SR but it
results in much lower RD and RR as a benefit of having no users with zero rate. Hence
SR maximization becomes a practically feasible option while providing the users with
beneficial rate-fairness.

The chapter is organized as follows. The joint design of beamformer weights and PREs
to maximize the GM of users’ rates by tractable computation both under PGS and IGS
is addressed in Section II and III, respectively. Their performances are evaluated by the
simulations in Section IV, while Section V concludes the chapter.
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6.2 Proper Gaussian signaling

RIS 
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UE

1
UE

RIS controller

Fig. 6.1 System model

We consider the RIS-aided communication system illustrated by Fig. 6.1, where a RIS
of N reflecting units supports the downlink spanning from an M -antenna array BS to K
single-antenna users (UEs) k ∈ K , {1, . . . ,K}. Since the RIS is typically deployed on the
facade of high-rise buildings and the AP is also usually at a certain elevated height [106], it
is justified to assume a LoS link between the AP and RIS, LoS communication between the
RIS and UEs, and NLoS propagation between the AP and UEs. Accordingly, the channels
spanning from the BS and the RIS to UE k and from the BS to the RIS are modelled by
h̃B-k =

√
βB-khB-k ∈ C1×M , h̃R-k =

√
βR-khR-k ∈ C1×N , and H̃B-R =

√
βB-RHB-R ∈ CN×M ,

where
√
βB-k,

√
βR-k, and

√
βB-R model the path-loss and large-scale fading of the BS-to-UE

k link, the RIS-to-UE k link, and the BS-to-RIS link, respectively [119, 111], while hR-k and
HB-R are modelled by Rician fading for modeling the line-of-sight (LoS) channels between the
RIS and the UEs as well as between the BS and the RIS [121]. Furthermore, hB-k is modelled
by Rayleigh fading in the face of non-LoS (NLoS) channels between the BS and the UEs.
Like many other papers on RIS-aided communication networks, we assume having perfect
channel state information, which can be obtained from channel estimation [138, 64, 23].

Set sk ∈ C(0, 1) as the information symbol for UE k, which is beamformed by wwwk ∈ CM .
The signal x transmited from the BS is

x =
∑
k∈K

wwwksk. (6.1)
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The signal received at UE k can be expressed as

yk =
(
h̃R-kR1/2

R-kdiag(eθθθ)H̃B-R + h̃B-k
)
x+ nk (6.2)

= Hk(θθθ)
∑
k∈K

wwwksk + nk, (6.3)

for

Hk(θθθ) , h̃BR-kdiag(eθθθ)HB-R + h̃B-k ∈ C1×M , (6.4)

with
h̃BR-k ,

√
βB-R

√
βR-khR-kR1/2

R-k ∈ C1×N , (6.5)

where RR-k ∈ CN×N represents the spatial correlation matrix of the RIS elements with
respect to user k [111, 120], nk ∈ C(0, σ) is the background noise at UE k, and diag(eθθθ) in
(6.2) for θθθ = (θθθ1, . . . , θθθN )T ∈ [0, 2π]N represents the matrix of PREs.

Let www , {wwwk, k ∈ K}. The rate in nats/sec at UE k is

rk(www,θθθ) = ln
(

1 + |Hk(θθθ)wwwk|2∑
j∈K\{k} |Hk(θθθ)wwwj |2 + σ

)
. (6.6)

We consider the following problem of jointly designing the beamformers’ weight set www and
the PREs θθθ to maximize the GM of users’ rates:

max
www,θθθ

(
K∏
k=1

rk(www,θθθ)
)1/K

s.t. (6.7a)

K∑
k=1
||wwwk||2 ≤ P, (6.7b)

where (6.7b) sets the transmit power constraint within a given power budget P . It is plausible
that this problem is equivalent to the following one:

min
www,θθθ

f (r1(www,θθθ) , . . . , rK(www,θθθ)) , 1(∏K
k=1 rk(www,θθθ)

)1/K s.t.(6.7b). (6.8)

The function f(r1(www,θθθ), . . . , rK(www,θθθ)) is the composition of the convex function f(r1, . . . , rK) =
1/(∏K

k=1 rk)1/K and the non-convex functions rk(www,θθθ), k = 1, . . . ,K.
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Let (w(κ), θ(κ)) be a feasible point for (6.8) that is found from the (κ−1)-st round. We note
that the linearized function of f (r1(www,θθθ), . . . , rK(www,θθθ)) at

(
r1(w(κ), θ(κ)), . . . , rK(w(κ), θ(κ))

)
is

2f
(
r1(w(κ), θ(κ)), . . . , rK(w(κ), θ(κ))

)
− f(r1(w(κ), θ(κ))

, . . . , rK(w(κ), θ(κ))) 1
K

K∑
k=1

rk(www,θθθ)
rk(w(κ), θ(κ))

. (6.9)

Since we have f
(
r1(w(κ), θ(κ)), . . . , rK(w(κ), θ(κ))

)
> 0, we can use steepest descent op-

timization for the convex function f(r1, . . . , rK) for generating the next feasible point
(w(κ+1), θ(κ+1)):

max
www,θθθ

1
K

K∑
k=1

rk(www,θθθ)
rk(w(κ), θ(κ))

f(r1(w(κ), θ(κ)), . . . , rK(w(κ), θ(κ))) s.t. (6.7b), (6.10)

which is equivalent to the following problem:

max
www,θθθ

f (κ)(www,θθθ) ,
K∑
k=1

γ
(κ)
k rk(www,θθθ) s.t. (6.7b), (6.11)

for

γ
(κ)
k ,

f
(
r1(w(κ), θ(κ)), . . . , rK(w(κ), θ(κ))

)
rk(w(κ), θ(κ))

, k = 1, . . . ,K. (6.12)

6.2.1 Beamforming descent iteration

To generate w(κ+1) we seek w(κ+1), so that the following holds:

f (κ)(w(κ+1), θ(κ)) > f (κ)(w(κ), θ(κ)). (6.13)

Using the inequality (A.15) for V = Hk(θ(κ))wwwk, Y = ∑
j∈K\{k} |Hk(θ(κ))wwwj |2 + σ, and

V̄ = Hk(θ(κ))w(κ)
k , Ȳ = y

(κ)
k ,

∑
j∈K\{k} |Hk(θ(κ))w(κ)

j |2 + σ, yields

rk(www, θ(κ)) ≥ r
(κ)
k (www)

, a
(κ)
k + 2ℜ{⟨b(κ)

k ,wwwk⟩} − c
(κ)
k

K∑
j=1
|Hk(θ(κ))wwwj |2, (6.14)
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with

a
(κ)
k , rk(w(κ), θ(κ))− |Hk(θ(κ))w(κ)

k |
2/y

(κ)
k − σc

(κ)
k , b

(κ)
k , HHk (θ(κ))Hk(θ(κ))w(κ)

k /y
(κ)
k ,

and

0 < c
(κ)
k , |Hk(θ(κ))w(κ)

k |
2/
[
y

(κ)
k

(
y

(κ)
k + |Hk(θ(κ))w(κ)

k |
2
)]
.

The function r(κ)
k (www) is seen to be concave quadratic, which matches with r

(κ)
k (www, θ(κ)) at

w(κ). We solve the following convex problem at the κ-th iteration to generate w(κ+1):

max
www

f
(κ)
b (www) s.t. (6.7b), (6.15)

where

f
(κ)
b (www) ,

K∑
k=1

γ
(κ)
k r

(κ)
k (www)

=
K∑
k=1

γ
(κ)
k a

(κ)
k + 2

K∑
k=1
ℜ{⟨γ(κ)

k b
(κ)
k ,wwwk⟩} −

K∑
k=1

(wwwk)HΨ(κ)wwwk (6.16)

with

0 ≼ Ψ(κ) ,
K∑
j=1

γ
(κ)
j c

(κ)
j H

H
j (θ(κ))Hj(θ(κ)).

By using the Lagrangian multiplier method, we obtain the following closed-form solution of
(6.15)1

w
(κ+1)
k =


(Ψ(κ))−1γ

(κ)
k b

(κ)
k if

K∑
k=1
||(Ψ(κ))−1γ

(κ)
k b

(κ)
k ||

2 ≤ P(
Ψ(κ) + µIM

)
−1γ

(κ)
k b

(κ)
k otherwise,

(6.17)

where µ > 0 is chosen by bisection such that

K∑
k=1
||
(
Ψ(κ) + µIM

)−1
γ

(κ)
k b

(κ)
k ||

2 = P.

1 (Ψ(κ))−1 is understood as the pseudo-inversion when Ψ(κ) ≽ 0
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6.2.2 Programmable reflecting elements’ descent iteration

We seek the next iterative point θ(κ+1) such that

f (κ)(w(κ+1), θ(κ+1)) > f (κ)(w(κ+1), θ(κ)). (6.18)

Using the inequality (A.15) for

V = Hk(θθθ)w(κ+1)
k ,Y =

∑
j∈K\{k}

|Hk(θθθ)w(κ+1)
j |2 + σ,

and

V̄ = Hk(θ(κ))w(κ+1)
k , Ȳ = y

(κ+1)
k ,

∑
j∈K\{k}

|Hk(θ(κ))w(κ+1)
j |2 + σ,

yields

rk(w(κ+1), θθθ) ≥ r̃
(κ)
k (θθθ)

,
2ℜ{(w(κ+1)

k )HHHk (θ(κ))Hk(θθθ)w(κ+1)
k }

y
(κ+1)
k

+ ã
(κ)
k −c̃

(κ)
k

K∑
j=1
|Hk(θθθ)w(κ+1)

j |2,(6.19)

with

ã
(κ)
k , rk(w(κ+1), θ(κ))− ρk(w(κ+1), θ(κ))− σc̃(κ)

k ,

and

0 < c̃
(κ)
k , |Hk(θ(κ))w(κ+1)

k |2/
[
y

(κ+1)
k

(
y

(κ+1)
k +|Hk(θ(κ))w(κ+1)

k |2
)]
.

Let us define Υn as the matrix of size N×N having only zero entries, except for its (n, n)-entry,
which is 1, to express

diag(eθθθ) =
N∑
n=1

eθθθnΥn.
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We then use (6.4) to arrive at:

(w(κ+1)
k )HHHk (θ(κ))Hk(θθθ)w(κ+1)

k =

(w(κ+1)
k )HHHk (θ(κ))

[̃
hBR-kdiag(eθθθ)HB-R+h̃B-k

]
w

(κ+1)
k =

(w(κ+1)
k )HHHk (θ(κ))h̃B-kw

(κ+1)
k + (w(κ+1)

k )HHHk (θ(κ))h̃BR-kdiag(eθθθ)HB-Rw
(κ+1)
k =

(w(κ+1)
k )HHHk (θ(κ))h̃B-kw

(κ+1)
k +

N∑
n=1

(w(κ+1)
k )HHHk (θ(κ))h̃BR-kΥnHB-Rw

(κ+1)
k eθθθn =

α
(κ)
k +

N∑
n=1

b̃
(κ)
k (n)eθn , (6.20)

with

α
(κ)
k , (w(κ+1)

k )HHHk (θ(κ))h̃B-kw
(κ+1)
k ,

and2

b̃
(κ)
k (n) = (w(κ+1)

k )HHHk (θ(κ))h̃BR-kΥnHB-Rw
(κ+1)
k , n = 1, . . . N.

To expound further, we have:

|Hk(θθθ)w(κ+1)
j |2 =

∣∣∣(h̃BR-kdiag(eθθθ)HB-R+h̃B-k
)
w

(κ+1)
j

∣∣∣2
=

∣∣∣h̃BR-kdiag(eθθθ)HB-Rw
(κ+1)
j

∣∣∣2 + |h̃B-kw
(κ+1)
j |2

+2ℜ{(w(κ+1)
j )H

(
h̃B-k

)H
h̃BR-kdiag(eθθθ)HB-Rw

(κ+1)
j }

=
∣∣∣h̃BR-kdiag(eθθθ)HB-Rw

(κ+1)
j

∣∣∣2 + |h̃B-kw
(κ+1)
j |2

+2ℜ{
N∑
n=1

(w(κ+1)
j )H

(
h̃B-k

)H
h̃BR-kΥnHB-Rw

(κ+1)
j eθθθn}. (6.21)

Furthermore,

h̃BR-kdiag(eθθθ)HB-Rw
(κ+1)
j = h̃BR-k

(
N∑
n=1

eθθθnΥn

)
HB-Rw

(κ+1)
j =

N∑
n=1

α
(κ+1)
k,j (n)eθn , (6.22)

for α(κ+1)
k,j (n) = h̃BR-kΥnHB-Rw

(κ+1)
j , n = 1, . . . , N .

2In what follows b(i) is the i-th entry of b and [A](i, i) is the i-th diagonal entry of A, and [A]∗(i, i)
is the complex conjugate of [A](i, i)
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Based on (6.19), (6.20), (6.21), and (6.22), we obtain

r̃
(κ)
k (θθθ) = ã

(κ+1)
k + 2ℜ{

N∑
n=1

b̃
(κ)
k (n)eθn} − c̃(κ)

k

K∑
j=1

∣∣∣∣∣
N∑
n=1

α
(κ+1)
k,j (n)eθθθn

∣∣∣∣∣
2

= ã
(κ+1)
k + 2ℜ{

N∑
n=1

b̃
(κ)
k (n)eθn} − c̃(κ)

k

K∑
j=1

(eθθθ)HΦ(κ+1)
k,j eθθθ, (6.23)

where

ã
(κ+1)
k , ã

(κ)
k + 2ℜ{α(κ)

k }/y
(κ+1)
k − c̃(κ)

k

N∑
j=1
|h̃B-kw

(κ+1)
j |2,

b̃
(κ+1)
k (n) , b̃

(κ)
k (n)/y(κ+1)

k − c̃(κ)
k

K∑
j=1

(w(κ+1)
j )H

(
h̃B-k

)H
h̃BR-kΥnHB-Rw

(κ+1)
j ,

and

Φ(κ+1)
k,j (n,m) = (α(κ+1)

k,j (n))∗α
(κ+1)
k,j (m), n = 1, . . . , N ;m = 1, . . . , N.

Note that Φ(κ+1)
k,j ≽ 0. Therefore,

f (κ)
c (θθθ) ,

K∑
k=1

γ
(κ)
k r̃

(κ)
k (θθθ)

= ã(κ+1) + 2ℜ{
N∑
n=1

b̃(κ+1)(n)eθn} − (eθθθ)HΦ(κ+1)eθθθ, (6.24)

for

ã(κ+1) ,
K∑
k=1

γ
(κ)
k ã

(κ+1)
k , b̃(κ+1)(n) ,

K∑
k=1

γ
(κ)
k b̃

(κ+1)
k (n), n = 1, . . . , N,

and

0 ≼ Φ(κ+1) ,
K∑
k=1

N∑
j=1

γ
(κ)
k c̃

(κ)
k Φ(κ+1)

k,j .

We use the following problem at the κ-th iteration to generate θ(κ+1):

max
θθθ

f (κ)
c (θθθ). (6.25)
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Following [148], we have (6.26).

f (κ)
c (θθθ) = ã(κ+1) + 2ℜ{

N∑
n=1

b̃(κ+1)(n)eθn} − (eθθθ)H(Φ(κ+1) − λmax(Φ(κ+1))IN )eθθθ

−λmax(Φ(κ+1))(eθθθ)HINeθθθ

= ã(κ+1) + 2ℜ{
N∑
n=1

b̃(κ+1)(n)eθn} − (eθθθ)H(Φ(κ+1) − λmax(Φ(κ+1))IN )eθθθ

−λmax(Φ(κ+1))N

≥ f̃ (κ)
c (θθθ)

, ã(κ+1) + 2ℜ{
N∑
n=1

b̃(κ+1)(n)eθn} − [2ℜ{(eθ(κ))H(Φ(κ+1) − λmax(Φ(κ+1))IN )eθθθ}

−(eθ(κ))H(Φ(κ+1) − λmax(Φ(κ+1))IN )eθ(κ) ]− λmax(Φ(κ+1))N

= ã(κ+1) + 2ℜ{
N∑
n=1

(b̃(κ+1)(n)−
N∑
m=1

e−θ(κ)
m Φ(κ+1)(m,n) + λmax(Φ(κ+1))e−θ(κ)

n )eθn}

−(eθ(κ))HΦ(κ+1)eθ
(κ) − 2λmax(Φ(κ+1))N. (6.26)

We thus solve the following problem at the κ-th iteration to generate θ(κ+1):

max
θθθ

f̃ (κ)
c (θθθ), (6.27)

where the function f̃ (κ)
c (θθθ) is an affine function of eθθθ. By noting that ℜ{ceθn} = |c| cos(∠c+

θn) and thus it is maximized at θn = −∠c, we obtain the closed-form solution of (6.27) as3

θ(κ+1)
n = −∠(b̃(κ+1)(n)−

N∑
m=1

e−θ(κ)
m Φ(κ+1)(m,n)

+λmax(Φ(κ+1))e−θ(κ)
n ), n = 1, . . . , N. (6.28)

It follows from (6.26) that f (κ)(w(κ+1), θ(κ+1)) ≥ f
(κ)
c (θ(κ+1)) ≥ f̃

(κ)
c (θ(κ+1)) > f̃

(κ)
c (θ(κ)) =

f
(κ)
c (θ(κ)) = f (κ)(w(κ+1), θ(κ)), confirming (6.18), so θ(κ+1) is a better feasible point than θ(κ).

3[(Φ(κ+1) − µIN )eθ(κ) ](n) is the n-th entry of (Φ(κ+1) − µIN )eθ(κ)
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6.2.3 Proper Gaussian Signaling Geometric Mean Rate Opti-

mization

Algorithm 10 provides the pseudo-code for the proposed computational procedure of steepest
descent for computing (6.9) as the iterations (6.17) and (6.28) seek a descent direction by
seeking a better feasible point for the nonconvex problem (6.10) instead of seeking its optimal
solution for reducing the computational load with guaranteed convergence, as it is often done
in the context of the Frank-and-Wolfe method [149]. Of course, one can still seek the optimal
solution of (6.10) for the steepest descent by iterating (6.17) and (6.28) many times, because
according to [146], this kind of alternating descent iterations often converge to at least a
locally optimal solution of (6.10). The global optimality can not be proved theoretically, but
we found that it is globally optimal in many cases.

To the best of our knowledge, there is no the conventional descent algorithm, because the
conception of descent descent algorithms is a research branch in computational optimization
and what make descent algorithms different is the specific way they choose their a descent
directions. Hence, our descent directions are completely new and rather different from the
popular steepest descent techniques. Furthermore, all other exiting algorithms, which solve
convex problems and iteratively at a high complexity are very sensitive to the problem sizes.
However, our algorithms iterate using closed- form expressions, hence their complexity is low.

Algorithm 10 PGS GM descent algorithm
1: Initialization: Set κ = 0. Randomly generate (w(0), θ(0)) satisfying the constraint

(6.7b) and define γ(0) by (6.12).
2: Repeat until (5.8) is reached: Generate w(κ+1) by (6.17) and θ(κ+1) by (6.28).

Reset κ← κ+ 1.
3: Output (w(κ), θ(κ)) and rates rk(w(κ), θ(κ)), k = 1, . . . , K with their GM(∏K

k=1 rk(w(κ), θ(κ))
)1/K

.

6.3 Improper Gaussian signaling

In (6.1), the proper Gaussian sources sk are linearly beamformed by the beamformers wwwk,
hence the transmit signal x is also proper Gaussian, i.e. E(xxT ) = ∑

k∈Kwwwk(wwwk)TE[(sk)2]0.
In this section, the proper Gaussian sources sk are widely linearly beamformed by the pairs
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of beamformers www1,k ∈ CM and www2,k ∈ CM as in [75]

[
www1,k www2,k

] sk
s∗
k

 , (6.29)

resulting in the transmit signal

x =
K∑
k=1

(www1,ksk +www2,ks
∗
k), (6.30)

and for improper Gaussian, as

E(xxT ) =
K∑
k=1

(www1,kwww
T
2,k +www2,kwww

T
1,k)E(|sk|2) ̸= 0.

The equation (6.2) of the received signal at UE k becomes:

yk = Hk(θθθ)
K∑
k=1

(www1,ksk +www2,ks
∗
k) + nk. (6.31)

We augment (6.31) as
yk
y∗
k

 =

Hk(θθθ) 0
0 H∗

k(θθθ)

 K∑
k=1

www1,k www2,k

www∗
2,k www∗

1,k

sk
s∗
k

+

nk
n∗
k


= Λk(θθθ)

K∑
k=1

Wks̄k + n̄k, (6.32)

for the linear mappings

Λk(θθθ) ,

Hk(θθθ) 0
0 H∗

k(θθθ)

 ∈ C2×(2M),Wk ,

www1,k www2,k

www∗
2,k www∗

1,k

 ∈ C2M×2,

and

s̄k ,

sk
s∗
k

 ∈ C2, n̄k ,

nk
n∗
k

 ∈ C2.
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For www , {wwwk ,

www1,k

www2,k

 ∈ C2M : k ∈ K}, the rate at UE k is calculated by (1/2)rk(www,θθθ) [74]

with

rk(www,θθθ) = ln

∣∣∣∣∣∣∣I2 + [Λk(θθθ)Wk]2
 ∑
j∈K\{k}

[Λk(θθθ)Wj ]2 + σI2

−1
∣∣∣∣∣∣∣ . (6.33)

For the particular class of www2,k ≡ 0, i.e. when x in (6.30) is proper Gaussian, it may be shown
that

rk(www,θθθ) = 2 ln
(
1 + |Hk(θθθ)www1,k|2/(

∑
j∈K\{k} |Hk(θθθ)www1,j |2 + σ)

)
,

hence (1/2)rk(www,θθθ) is the known rate (6.6).

Like (6.8), the problem of maximizing the GM for users’ rates corresponding IGS is thus
formulated as

min
www,θθθ

f (r1(www,θθθ) ,. . ., rK(www,θθθ)), 1(∏K
k=1 rk(www,θθθ)

)1/K (6.34a)

s.t.
K∑
k=1

(||www1,k||2 + ||www2,k||2) ≤ P. (6.34b)

Let (w(κ), θ(κ)) be a feasible point for (6.34) that is found from the (κ−1)-st round. Like (6.11),
we use the following steepest descent optimization for the convex function f(r1, . . . , rK) =
1/(∏K

k=1 rk)1/K to generate the next feasible point (w(κ+1), θ(κ+1)):

max
www,θθθ

F (κ)(www,θθθ) ,
K∑
k=1

γ
(κ)
k rk(www,θθθ) s.t. (6.34b) (6.35)

where

γ
(κ)
k ,

f
(
r1(w(κ), θ(κ)), . . . , rK(w(κ), θ(κ))

)
rk(w(κ), θ(κ))

, k = 1, . . . ,K. (6.36)
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Another way of defining the UEs’ rates is through the equivalent composite real system for
(6.31):

ỹk ,

ℜ{yk}
ℑ{yk}


=

ℜ{Hk(θθθ)} −ℑ{Hk(θθθ)}
ℑ{Hk(θθθ)} ℜ{Hk(θθθ)}


×

K∑
j=1

ℜ{www1,j}+ ℜ{www2,j} −ℑ{www1,j}+ ℑ{www2,j}
ℑ{www1,j}+ ℑ{www2,j} ℜ{www1,j} − ℜ{www2,j}

ℜ{sj}
ℑ{sj}

+

ℜ{nk}
ℑ{nk}


= H̄k(θθθ)

K∑
j=1

Vj s̃j + ñk, (6.37)

where we have:

H̄k(θθθ) ,

ℜ{Hk(θθθ)} −ℑ{Hk(θθθ)}
ℑ{Hk(θθθ)} ℜ{Hk(θθθ)}

 , s̃j ,
ℜ{sj}
ℑ{sj}

 , (6.38)

Vj ,

vvv11
j vvv12

j

vvv21
j vvv22

j

 , ñk =

ℜ{nk}
ℑ{nk}

 , (6.39)

under the following transformation:
ℜ{www1,j}+ ℜ{www2,j} −ℑ{www1,j}+ ℑ{www2,j}
ℑ{www1,j}+ ℑ{www2,j} ℜ{www1,j} − ℜ{www2,j}

 = Vj . (6.40)

This transform is indeed legitimate, since its inverse is given by
ℜ{www1,j} ℑ{www1,j}
ℜ{www2,j} ℑ{www2,j}

 = 1
2

vvv11
j + vvv22

j vvv21
j − vvv12

j

vvv11
j − vvv22

j vvv21
j + vvv12

j

 . (6.41)

Furthermore, we have:

||wwwj ||2 = 1
2

2∑
i=1

2∑
ℓ=1
||vvviℓj ||2, (6.42)

hence the power constraint (6.34b) for www is transferred to the following constraint

K∑
j=1
||vvvj ||2 ≤ 2P (6.43)
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for

vvvj , vec(Vj) =


vvv11
j

vvv21
j

vvv12
j

vvv22
j

 . (6.44)

For vvv , {vvvj , j ∈ K}, the problem (6.35) is equivalent to the problem

max
vvv,θθθ

F̃ (κ)(vvv,θθθ) ,
K∑
k=1

γ
(κ)
k r̃k(vvv,θθθ) s.t. (6.43) (6.45)

with

r̃k(vvv,θθθ) = ln

∣∣∣∣∣∣∣I2 + [H̄k(θθθ)Vk]2
 ∑
j∈K\{k}

[H̄k(θθθ)Vj ]2 + σI2

−1
∣∣∣∣∣∣∣ . (6.46)

We propose the following alternating descent iterations at the κ-th round to generate a better
feasible point (w(κ+1), θ(κ+1)).

6.3.1 Widely linear beamforming descent iteration

We seek w(κ+1) such that

F (κ)(w(κ+1), θ(κ)) > F (κ)(w(κ), θ(κ)). (6.47)

Upon using (6.40) to define

V
(κ)
j ,

ℜ{w(κ)
1,j }+ ℜ{w(κ)

2,j } −ℑ{w
(κ)
1,j }+ ℑ{w(κ)

2,j }
ℑ{w(κ)

1,j }+ ℑ{w(κ)
2,j } ℜ{w(κ)

1,j } − ℜ{w
(κ)
2,j }

 (6.48)

we have v(κ)
j , vec(V (κ)

j ).

By using the inequality (A.15) for

V = H̄k(θ(κ))Vk,

Y =
∑

j∈K\{k}
[H̄k(θ(κ))Vj ]2 + σI2,
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and

V̄ = H̄k(θ(κ))V (κ)
k ,

Ȳ = Y
(κ)
k ,

∑
j∈K\{k}

[H̄k(θ(κ))V (κ)
j ]2 + σI2 ≽ 0,

we obtain the following concave quadratic lower bounding function approximation of r̃k(θ(κ), vvv):

r̃k(vvv, θ(κ)) ≥ r̃(κ)
k (vvv) , a

(κ)
k + 2⟨B(κ)

k Vk⟩ − ⟨C
(κ)
k ,

∑
j∈K

[H̄k(θ(κ))Vj ]2⟩, (6.49)

with

a
(κ)
k , r̃k(v(κ), θ(κ))− ⟨[H̄k(θ(κ))V (κ)

k ]2(Y (κ)
k )−1⟩ − σ⟨C(κ)

k ⟩,

B
(κ)
k , (V (κ)

k )H(H̄k(θ(κ)))t(Y (κ)
k )−1 × H̄k(θ(κ),

and

0 ≺ C(κ)
k , (Y (κ)

k )−1 −
(
Y

(κ)
k + [H̄k(θ(κ))V (κ)

k ]2
)−1

.

Note that ⟨B(κ)
k Vk⟩ = ⟨vec((B(κ)

k )T ), vvvk⟩, and

⟨C(κ)
k , [H̄k(θ(κ))Vj ]2⟩ = ||vec

(
(C(κ)

k )1/2H̄k(θ(κ))Vj

)
||2

= ||
(
I2 ⊗ ((C(κ)

k )1/2H̄k(θ(κ)))
)

vec(Vj)||2

= vecT (Vj)
[
I2 ⊗

(
H̄Tk (θ(κ))C(κ)

k H̄k(θ(κ))
)]

vec(Vj)
= vvvTj Q

(κ)
k vvvj

for Q(κ)
k , I2 ⊗

(
H̄Tk (θ(κ))C(κ)

k H̄k(θ(κ))
)
.

Thus,we have

K∑
k=1

γ
(κ)
k r̃

(κ)
k (www) =

K∑
k=1

γ
(κ)
k a

(κ)
k +2

K∑
k=1
⟨γ(κ)
k vec((B(κ)

k )T ), vvvk⟩+
K∑
k=1

K∑
j=1

vvvTj (γ(κ)
k Q

(κ)
k )vvvj

=
K∑
k=1

γ
(κ)
k a

(κ)
k +2

K∑
k=1
⟨γ(κ)
k vec((B(κ)

k )T ),vvvk⟩+
K∑
k=1

vvvTk

K∑
j=1

γ
(κ)
j Q

(κ)
j

vvvk.
(6.50)
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We solve the following convex problem at the κ-th iteration to generate v(κ+1):

max
www

K∑
k=1

γ
(κ)
k r̃

(κ)
k (www) s.t. (6.43), (6.51)

which similarly to (6.15) gives

F̃ (κ)(v(κ+1), θ(κ)) > F̃ (κ)(v(κ), θ(κ)) (6.52)

as far as v(κ+1) ̸= v(κ).

Like (6.15), the problem (6.51) admits the following closed-form solution

v
(κ+1)
k =



(∑K
j=1 γ

(κ)
j Q

(κ)
j

)−1
γ

(κ)
k vec((B(κ)

k )T )

if
K∑
k=1
||

 K∑
j=1

γ
(κ)
j Q

(κ)
j

−1

γ
(κ)
k vec((B(κ)

k )T )||2 ≤ 2P
(∑K

j=1 γ
(κ)
j Q

(κ)
j + µIM

)−1
γ

(κ)
k vec((B(κ)

k )T ) otherwise,

(6.53)

where µ > 0 is found by bisection such that

K∑
k=1
||

 K∑
j=1

γ
(κ)
j Q

(κ)
j + µIM

−1

γ
(κ)
k vec((B(κ)

k )T )||2 = 2P.

By reconstructing viℓ,(κ+1)
j , i = 1, 2 and ℓ = 1, 2, from v

(κ+1)
j we use (6.41) to determine

w
(κ+1)
1,j and w

(κ+1)
2,j :

ℜ{w(κ+1)
1,j } ℑ{w(κ+1)

1,j }
ℜ{w(κ+1)

1,j } ℑ{w(κ+1)
1,j }

 = 1
2

v11,(κ+1)
j + v

22,(κ+1)
j v

21,(κ+1)
j − v12,(κ+1)

j

v
11,(κ+1)
j − v22,(κ+1)

j v
21,(κ+1)
j + v

12,(κ+1)
j

 , (6.54)

which results in (6.47).

6.3.2 Programmable reflecting elements’ descent iteration

We seek θ(κ+1) such that

F (κ)(w(κ+1), θ(κ+1)) > F (κ)(w(κ+1), θ(κ)). (6.55)
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By using the inequality (A.15) for

V = Λk(θθθ)W (κ+1)
k ,Y =

∑
j∈K\{k}

[Λk(θθθ)W (κ+1)
j ]2 + σI2,

and

V̄ = Λk(θ(κ))W (κ+1)
k , Ȳ = Y

(κ+1)
k ,

∑
j∈K\{k}

[Λk(θ(κ))W (κ+1)
j ]2 + σI2 ≽ 0,

we obtain the following concave quadratic lower bounding function approximation of rk(w(κ+1), θθθ):

rk(w(κ+1), θθθ) ≥ r̃
(κ)
k (θθθ)

, ã
(κ)
1k + 2ℜ{⟨B̃(κ)

k Λk(θθθ)W (κ+1)
k ⟩} − ⟨C̃(κ)

k ,
∑
j∈K

[Λk(θθθ)W (κ+1)
j ]2⟩

= ã
(κ)
1k + 2ℜ{⟨B̃(κ)

k Λk(θθθ)W (κ+1)
k ⟩} − ⟨C̃(κ)

k ,Λk(θθθ)W(κ+1)
k (Λk(θθθ))H⟩,

(6.56)

with

ã
(κ)
1k , rk(w(κ+1), θ(κ))− ⟨[Λk(θ(κ))W (κ+1)

k ]2(Y (κ+1)
k )−1⟩ − σ⟨C̃(κ)

k ⟩,

B̃
(κ)
k , (W (κ+1)

k )H(Λk(θ(κ)))H(Y (κ+1)
k )−1 ∈ C2×2,

0 ≺ C̃(κ)
k , (Y (κ+1)

k )−1 −
(
Y

(κ+1)
k + [Λk(θ(κ))W (κ+1)

k ]2
)−1
∈ C2×2,

and

0 ≺ W(κ+1)
k ,

∑
j∈K

[W (κ+1)
j ]2.

For

HB-k ,

 h̃B-k 01×M

01×M h̃∗
B-k

 ,
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we can write

Λk(θθθ) =

HB-k +

h̃BR-kdiag(eθθθ)HB-R 01×M

01×M h̃∗
R-kdiag(e−θθθ)H∗

B-R

 =

HB-k +
N∑
n=1

h̃BR-kΨnHB-R 01×M

01×M 01×M

 eθn +

01×M 01×M

01×M h̃∗
R-kΨnH

∗
B-R

 e−θn

 =

HB-k +
N∑
n=1

[
Γneθn + Ξne−θn

]
, (6.57)

with

Γn ,

h̃BR-kΨnHB-R 01×M

01×M 01×M

 , n = 1, . . . , N,

Ξn ,

01×M 01×M

01×M h̃∗
R-kΨnH

∗
B-R

 , n = 1, . . . , N. (6.58)

By using the identity
ℜ{ab∗} = ℜ{a∗b} ∀ a ∈ C, b ∈ C, (6.59)

we arrive at:

ℜ{⟨B̃(κ)
k Λk(θθθ)W (κ+1)

k ⟩} = ã
(κ)
2k + ℜ{

N∑
n=1

(b̂(κ)
1k (n)eθn + b̂

(κ)
2k (n)e−θn)}

= ã
(κ)
2k + ℜ{

N∑
n=1

b̃
(κ)
2k (n)eθn}, (6.60)

for

ã
(κ)
2k , ℜ{⟨B̃(κ)

k HB-kW
(κ+1)
k ⟩},

b̂
(κ)
1k (n) , ⟨B̃(κ)

k ΓnW (κ+1)
k ⟩,

b̂
(κ)
2k (n) , ⟨B̃(κ)

k ΞnW (κ+1)
k ⟩,

and

b̃
(κ)
2k (n) = b̂

(κ)
1k (n) + (b̂(κ)

2k )∗(n), n = 1, . . . , N.
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Furthermore,

⟨C̃(κ)
k ,Λk(θθθ)W(κ+1)

k ΛHk (θθθ)⟩ =

⟨C̃(κ)
k ,

[
N∑
n=1

(
Γneθn + Ξne−eθn

)
+HB-k

]
W(κ+1)
k

[
N∑
n=1

(
ΓHn e−θn + ΞHn eθn

)
+HHB-k

]
⟩ =

⟨C̃(κ)
k ,HB-kW

(κ+1)
k HHB-k⟩+ 2ℜ{⟨C̃(κ)

k ,HB-kW
(κ+1)
k

N∑
n=1

(
ΓHn e−θn + ΞHn eθn

)
}

+⟨C̃(κ)
k ,

[
N∑
n=1

(
Γneθn + Ξne−θn

)]
W(κ+1)
k

[
N∑
n=1

(
ΓHn e−θn + ΞHn eθn

)]
⟩ =

⟨C̃(κ)
k ,HB-kW

(κ+1)
k HHB-k⟩

+2ℜ{
N∑
n=1

(
⟨C̃(κ)

k ,HB-kW
(κ+1)
k ΓHn ⟩∗ + ⟨C̃(κ)

k ,HB-kW
(κ+1)
k ΞHn ⟩

)
eθn}

+
N∑
n=1

N∑
m=1
⟨C̃(κ)

k ,ΓnW(κ+1)
k ΓHm⟩eθne−θm +

N∑
n=1

N∑
m=1
⟨C̃(κ)

k ,ΓnW(κ+1)
k ΞHm⟩eθne−θm

+
N∑
n=1

N∑
m=1
⟨C̃(κ)

k ,ΞnW(κ+1)
k ΓHm⟩e−θne−θm +

N∑
n=1

N∑
m=1
⟨C̃(κ)

k ,ΞnW(κ+1)
k ΞHm⟩e−θne−θm =

ã
(κ)
3k + 2ℜ{

N∑
n=1

b̃
(κ)
3k (n)eθn⟩}+ (eθθθ)HQ(κ)

22,ke
θθθ + (eθθθ)TQ(κ)

12,ke
θθθ + (eθθθ)H(Q(κ)

12,k)
∗e−θθθ

+(eθθθ)HQ(κ)
11,ke

θθθ, (6.61)

where

ã
(κ)
3k , ⟨C̃(κ)

k ,HB-kW
(κ+1)
k HHB-k⟩,

b̃
(κ)
3k (n) , ⟨C̃(κ)

k ,HB-kW
(κ+1)
k ΓHn ⟩∗ + ⟨C̃(κ)

k ,HB-kW
(κ+1)
k ΞHn ⟩,

Q(κ)
11,k(n,m) = ⟨C̃(κ)

k ,ΞnW(κ+1)
k ΞHm⟩,

Q(κ)
22,k(n,m) = ⟨C̃(κ)

k ,ΓmW(κ+1)
k ΓHn ⟩,

Q(κ)
12,k(n,m) = ⟨C̃(κ)

k ,ΓnW(κ+1)
k ΞHm⟩, n = 1, . . . , N ;m = 1, . . . , N.

Let us define

Q(κ)
22,k +Q(κ)

11,k = QR,(κ)
2,k + QI,(κ)

2,k ,

QR,(κ)
2,k ∈ RN×N ,QI,(κ)

2,k ∈ RN×N ,
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(eθθθ)H(Q(κ)
22,k +Q(κ)

11,k)eθθθ =
[
cosθθθ
sinθθθ

]T QR,(κ)
2,k −QI,(κ)

2,k
QI,(κ)

2,k QR,(κ)
2,k

 [cosθθθ
sinθθθ

]
, (6.62)

(eθθθ)TQ(κ)
12,ke

θθθ + (eθθθ)H(Q(κ)
12,k)∗e−θθθ =[

cosθθθ
sinθθθ

]T QR,(κ)
1,k + (QR,(κ)

1,k )T −QI,(κ)
1,k − (QI,(κ)

1,k )T
−QI,(κ)

1,k − (QI,(κ)
1,k )T −QR,(κ)

1,k − (QR,(κ)
1,k )T

 [cosθθθ
sinθθθ

]
, (6.63)

where the matrix QR,(κ)
2,k is symmetric, while the matrix QI,(κ)

2,k is skew-symmetric because
the matrix Q(κ)

22,k +Q(κ)
11,k is Hermitian symmetric, and

Q(κ)
12,k = QR,(κ)

1,k + QI,(κ)
1,k ,QR,(κ)

1,k ∈ RN×N ,QI,(κ)
1,k ∈ RN×N .

Upon recalling that eθθθ = cosθθθ +  sinθθθ, we have (6.62) and (6.63), whose proof is given
in the Appendix.

Therefore, we have (6.64) for

Q(κ)
k,R , QR,(κ)

2,k +QR,(κ)
1,k + (QR,(κ)

1,k )T ,

Q(κ)
k,C , −QI,(κ)

2,k −Q
I,(κ)
1,k − (QI,(κ)

1,k )T ,

Q(κ)
k,I , Q

R,(κ)
2,k −QR,(κ)

1,k − (QR,(κ)
1,k )T .

Combining (6.56), (6.60), (6.61), and (6.64) yields

γ
(κ)
k r̃(κ)(w(κ+1), θθθ) = ã

(κ)
k + 2ℜ{

N∑
n=1

b̃
(κ)
k (n)eθn} −

cosθθθ
sinθθθ

T Q(κ)
k

cosθθθ
sinθθθ

 (6.65)

with

ã
(κ)
k = γ

(κ)
k

(
ã

(κ)
1k + 2ã(κ)

2k − ã
(κ)
3k

)
,

b̃
(κ)
k (n) = γ

(κ)
k

(
b̃

(κ)
2k (n)− b̃(κ)

3k (n)
)
, n = 1, . . . , N,

Q(κ)
k = γ

(κ)
k

 Q(κ)
k,R Q(κ)

k,C

(Q(κ)
k,C)T Q(κ)

k,I

 .
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(eθθθ)H(Q(κ)
22,k +Q(κ)

11,k)eθθθ + (eθθθ)TQ(κ)
12,ke

θθθ + (eθθθ)H(Q(κ)
12,k)∗e−θθθ =[

cosθθθ
sinθθθ

]T  Q(κ)
k,R Q(κ)

k,C

(Q(κ)
k,C)T Q(κ)

k,I

 [cosθθθ
sinθθθ

]
(6.64)

Therefore, we have:

F (κ)(w(κ+1), θθθ, γ(κ)) ≥ F (κ)
c (θθθ)

, ã(κ) + 2ℜ{
N∑
n=1

b̃(κ)(n)eθn} −

cosθθθ
sinθθθ

T Q(κ)

cosθθθ
sinθθθ

 (6.66)

for

ã(κ) =
K∑
k=1

ã
(κ)
k ,

b̃(κ)(n) =
K∑
k=1

b̃
(κ)
k (n), n = 1, . . . , N,

and

Q(κ) =
K∑
k=1
Q(κ)
k =

 Q(κ)
R Q(κ)

C

(Q(κ)
C )T Q(κ)

I

 ,
with

Q(κ)
R =

K∑
k=1
Q(κ)
k,R,Q

(κ)
C =

K∑
k=1
Q(κ)
k,C ,Q

(κ)
I =

K∑
k=1
Q(κ)
k,I .

Furthermore, we have (6.67). Now, using the formula

αR,(κ)(n) cosθθθn + αI,(κ)(n) sinθθθn = ℜ{β(n)eθθθn}
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F (κ)
c (θθθ) = ã(κ) + 2ℜ{

N∑
n=1

b̃(κ)(n)eθn⟩} −
[
cosθθθ
sinθθθ

]T (
Q(κ) − λmax(Q(κ))I2N

) [cosθθθ
sinθθθ

]
−λmax(Q(κ))N

≥ ã(κ) + 2ℜ{
N∑
n=1

b̃(κ)(n)eθn⟩} − 2
[
cos θ(κ)

sin θ(κ)

]T (
Q(κ) − λmax(Q(κ))I2N

) [cosθθθ
sinθθθ

]

+
[
cos θ(κ)

sin θ(κ)

]T (
Q(κ) − λmax(Q(κ))I2N

) [cos θ(κ)

sin θ(κ)

]
− λmax(Q(κ))N

= ˜̃a(κ) + 2ℜ{
N∑
n=1

b̃(κ)(n)eθn⟩} − 2
N∑
n=1

(
αR,(κ)(n) cosθθθn + αI,(κ)(n) sinθθθn

)
, F̃ (κ)

c (θθθ), (6.67)

with

˜̃a(κ) = ã(κ) −
[
cos θ(κ)

sin θ(κ)

]T
Q(κ)

[
cos θ(κ)

sin θ(κ)

]
− 2λmax(Q(κ))N,

αR,(κ) = (θR,(κ))T
(
Q(κ)
R − λmax(Q(κ))IN

)
+ (θI,(κ))T (Q(κ)

C )T ∈ R1×N ,

αI,(κ) = (θR,(κ))T (Q(κ)
C ) + (θI,(κ))T

(
Q(κ)
I − λmax(Q(κ))IN

)
∈ R1×N .

for β(n) =
√

(αR,(κ)(n))2 + (αI,(κ)(n))2e−γ(n) , where γ(n) is such that [cos γ(n), sin γ(n)] =

[αR,(κ)(n), αI,(κ)(n)]/
√

[αR,(κ)(n)]2 + [αI,(κ)(n)]2, we can rewrite (6.67) by

F̃ (κ)
c (θθθ) = ˜̃a(κ) + 2ℜ{

N∑
n=1

b̃(κ)(n)eθn⟩} − 2
N∑
n=1
ℜ{β(n)eθθθn}

= ˜̃a(κ) + 2
N∑
n=1
ℜ{
(
b̃(κ)(n)− β(n)

)
eθθθn}. (6.68)

Accordingly, we solve the following convex problem at the κ-th iteration to generate θ(κ+1):

max
θθθ

F̃ (κ)
c (θθθ). (6.69)

Like (6.28), its optimal solution is given in closed-form by

θ(κ+1)
n = −∠

(
b̃(κ)(n)− β(n)

)
, n = 1, . . . , N. (6.70)
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It follows from (6.67) that F (κ)(w(κ+1), θ(κ+1)) ≥ F (κ)
c (θ(κ+1)) ≥ F̃ (κ)

c (θ(κ+1)) > F̃
(κ)
c (θ(κ)) =

F
(κ)
c (θ(κ)) = F (κ)(w(κ+1), θ(κ)), confirming (6.55), so θ(κ+1) is a better feasible point than
θ(κ).

6.3.3 Improper Gaussian Signaling Geometric Mean Rate Op-

timization

All other exiting algorithms, which solve convex problems and iteratively at a high complexity
are very sensitive to the problem sizes. However, our algorithms iterate using closed-form
expressions, hence their complexity is low. Algorithm 11 provides the pseudo-code for the
proposed computational procedure for the solution of (6.35).

Algorithm 11 IGS GM descent algorithm
1: Initialization: Set κ = 0. Randomly generate (θ(0), w(0)) satisfying the constraint

(6.34b) and then define γ(0) by (6.12).
2: Repeat until (5.48) is reached: Generate w(κ+1) by (6.53)- (6.54) and θ(κ+1) by

(6.70). Reset κ← κ+ 1.
3: Output (w(κ), θ(κ)) and the rates rk(w(κ), θ(κ)), k = 1, . . . , K with their GM

(∏K
k=1 rk(w(κ), θ(κ)))1/K .

6.4 Numerical examples

This section evaluates the efficiency of the proposed algorithms by numerical examples.
Table 6.1 provides the numerical values of the main parameters taken from [121, 111] for
numerical characterization. Furthermore, the elements of the BS-to-RIS LoS channel matrix
are generated by [HB-R]n,m = ejπ((n−1) sin θ̄n sin φ̄n+(m−1) sin eθn sinφn), where eθn and φn are
uniformly distributed as eθn ∼ U(0, π) and φn ∼ U(0, 2π), respectively, and θ̄n = π − θn and
φ̄n = π + φn [111]. The normalized small-scale fading channel hB-k spanning from the BS to
UE k follows the classic Rayleigh distribution, while the small-scale fading channel gain hR-k

of the RIS to UE k obeys Rician distribution with a K-factor of 3. The spatial correlation
matrix is given by [RR-k]n,n′ = ejπ(n−n′) sin φ̃k sin θ̃k , where φ̃k and θ̃ are the azimuth and
elevation angle for UE k, respectively. Unless otherwise stated, P = 20dBm and N = 100 are
used. The results are multiplied by log2 e to convert the unit nats/sec into the unit bps/Hz.
The convergence tolerance of the proposed algorithms is set to 10−3. For computational
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stability, γ(κ)
k in (6.12) is scaled as

γ
(κ)
k →

γ
(κ)
k

minj=1,...,K γ
(κ)
j

, k = 1, . . . ,K. (6.71)

Table 6.1 Major parameters setup

Parameter Numerical value
BS-to-RIS path-loss in (5.5) GBS +GRIS − 35.9− 22 log10(dB-R) (in dB)
RIS-to-UE path-loss in (5.5) GRIS − 33.05− 30 log10(dR-k) (in dB)
BS-to-UE Path-loss in (5.5) GBS − 33.05− 36.7 log10(dB-k) (in dB)
Antenna gain GBS and GRIS 5 dBi
Bandwidth 1MHz
Noise power density −174 dBm/Hz

For the setup of Fig. 6.1 the BS and the RIS are deployed at the coordinates of (40, 0, 25)
and (0, 60, 40) in the three-dimensional (3D) space, while K = 10 UEs are randomly placed
in a (120m× 120m) area right of the BS and RIS. In what follows, we refer to SR-PGS and
SR-IGS as the SR under PGS and IGS, which are achieved by iterating (6.17) and (6.28),
and (6.53) and (6.54) with γ

(κ)
k ≡ 1. Their stand-alone counter-parts dispensing with the

RIS are referred by SR-PGS w/t RIS and SR-IGS w/t RIS, which are achieved by iterating
(6.17) and and (6.53) with γ

(κ)
k ≡ 1 in the corresponding stand-alone models. Another pair

of counter-parts labelled by SR-PGS-RIS w. random θ and SR-IGS-RIS w. random θ represent
the SR with the PREs randomly selected, which correspond to iterating (6.17) and (6.53)
under a fixed θ(κ) = θ̄ with γ

(κ)
k ≡ 1. Finally, GM-PGS-RIS and GM-IGS-RIS represent to the

achievable GMs under PGS and IGS, which are computed by Algorithm 10 and 11.

Fig. 6.2 plots the SR performance versus the number M of antennas at the BS. The
SR-PGS and SR-IGS are only slightly better than their counter-parts SR-IGS w/t RIS and
SR-PGS, because the direct channel h̃B-k spanning from the BS to UE k is much stronger
than the reflected channel h̃R-kR1/2

R-k(eθθθ)H̃B-R. The performance margin becomes wider with
M increased. Furthermore, SR-PGS approaches SR-IGS for M ≥ K in Fig. 6.2.

Next, Fig. 6.3 portrays a rate distribution pattern for (M,N,P ) = (9, 100, P = 20dBm).
Observe in the figure that only GM-IGS and GM-PGS are capable of avoiding the assignment
of zero rate, hence demonstrating its superiority.

To substantiate this fact, Table 6.2 provides the average number of zero-rate users (ZR-
UEs) for the optimization schemes considered under different number of antennas M . For
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Fig. 6.3 Rate distribution for M = 9.

SR-IGS and SR-PGS, the number of ZR-UEs increases when M is reduced. SR-PGS results in
more ZR-UEs than SR-IGS, while there are no ZR-UEs in GM-IGS and GM-PGS, confirming
that both of them are beneficial in providing the adequate rates to all users.

Furthermore, we also examine the resultant ratio of the minimum rate and maximum
rate (min-rate/max-rate) and the resultant rate-variance of these schemes versus the number
of antennas, M . Fig. 6.4 shows that both GM-PGS and GM-IGS produce min-rate/max-rates
that are substantially higher than that of SR-PGS and SR-IGS. SR-IGS produces higher
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Table 6.2 The average number of ZR-UEs versus M

Number of antennas SR-IGS SR-PGS GM-IGS GM-PGS
M = 7 0.33 3.13 0 0
M = 8 0.23 2.37 0 0
M = 9 0.17 1.64 0 0
M = 10 0 1.10 0 0
M = 11 0 0.72 0 0

min-rate/max-rates than SR-PGS does. Fig. 6.4 also shows the min-rate/max-rate of SR-PGS
remains zero for M < K since there are always some ZR-UEs. Furthermore, upon increasing
the number of AP antennas, both the min-rate and the max-rate both are improved due to
the increased benefit of spatial diversity, but the value of min-rate /max-rate is not necessary
a monotonic function of the number of AP antennas. In Fig. 6.5, the rate variance of SR-PGS
is seen to be twice of that by its IGS counter SR-IGS at M = 7. The discrepancy becomes
narrower upon increasing M and it is closer to zero for M = 11. The rate-variances are
beneficially reduced by the GM-maximization based schemes GM-IGS and GM-PGS. Both
Fig. 6.4 and Fig. 6.5 indicate the advantages of IGS over PGS both in terms of SR and GM
maximization. Fig. 6.6 shows the GM rates. As expected, GM-IGS and GM-PGS produce
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Fig. 6.4 Min-rate/max-rate for the different number of antennas M .

much better GM rate than that of SR-IGS and SR-PGS. Note that GM-PGS has better GM
rates than GM-IGS for M > K due to the well-known capability of PGS to mitigate the
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Fig. 6.5 Rate-variance for the different of antennas M .

multi-user interference, when the number of transmit antennas is higher than the number of
users.
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Fig. 6.6 GM for the different number of antennas M .

We also consider another scenario as illustrated by Fig. 6.7, where the direct signal
path between the BS and users is blocked, i.e. we have hB-k ≡ 0 in (6.2) and (6.4). The
distances between the BS and users becomes slightly smaller upon deploying the BS at the
coordinates (20, 0, 25) and the RIS at the coordinates (0, 30, 40). In this scenario, K = 10
UEs are randomly placed in a (60m× 60m) area right of the BS and RIS.
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Fig. 6.7 System model

Fig. 6.8 portrays the SR versus M , where SR-IGS outperforms SR-PGS. Furthermore,
both the former and the latter substantially outperform their counter-parts SR-IGS w. random
θ and SR-PGS w. random θ operating without an RIS.
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Fig. 6.8 SR for the different number of antennas M .

Similarly to Fig. 6.3, Fig. 6.9 shows a typical user rate distribution, where both the GM
maximization based GM-IGS and GM-PGS schemes assign more transmit power to the users
having worse channel conditions for achieving fair rate distributions.

Table 6.3 shows the average number of ZR-UEs versus M , demonstrating that the number
of ZR-UEs for both SR-IGS and SR-PGS is higher than 3, with that of SR-PGS having higher
than that of SR-IGS. As expected, there are no ZR-UEs for GM-IGS and GM-PGS.
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Fig. 6.9 User rate distribution for M = 9.

Table 6.3 The average number of ZR-UEs versus the number of antennas M

Number of antennas SR-IGS SR-PGS GM-IGS GM-PGS
M = 7 3.97 5.40 0 0
M = 8 3.63 4.79 0 0
M = 9 3.20 5.61 0 0
M = 10 3.30 4.13 0 0
M = 11 3.11 3.82 0 0

Fig. 6.10 and Fig. 6.11 plot the min-rate/max-rate and rate-variance versus M , respec-
tively. The min-rate/max-rate of SR-IGS and SR-PGS remains zero for the practical range
of M ∈ {7, . . . , 11}. Furthermore, GM-IGS has a better performance than GM-PGS . Fig.
6.11 shows that the rate variance is substantially improved by the GM-based maximization,
where GM-IGS results in much better rate variance than GM-PGS. The advantage of GM rate
maximization based IGS becomes quite convincing.

Finally, Fig. 6.12 plots the GM rate versus M , which remains zero for both SR-IGS and
SR-PGS for M ∈ {7, . . . , 11}, because there are ZR-UEs. The performance of GM-PGS gets
closer to that of GM-IGS for M ≥ K. The advantage of rates GM maximization based IGS is
well justified in above results.
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Fig. 6.11 Rate-variance for the different number of antennas M .

6.5 Conclusions

We proposed to maximize the geometric mean (GM) of the users’ rates for the sake of
maintaining a uniform quality-of-service for the downlink users of an RIS-aid communication
network. The computationally intractable unit modulus constraint imposed on the pro-
grammable reflecting coefficients has been eliminated by directly optimizing their argument.
The problem of maximizing the users’ GM rate has been solved by the proposed alternat-
ing descent iterations leading to a closed-form solution for the associated convex problems
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and thus it is computationally efficient. The numerical examples provided have shown a
substantially improved rate-fairness amongst the users.





Chapter 7

RIS-aided Zero-Forcing and
Regularized Zero-Forcing
Beamfoming in Integrated
Information and Energy Delivery

7.1 Introduction

Jointly supporting both wireless information and power transfer networking poses challenging
problems in signal processing for communication (see e.g. [150] and references therein). For
information and energy delivery over a single time slot, simultaneous wireless information
and power transfer (SWIPT) apportions the power of the signals received by the users for
energy-harvesting (EH) and information detection (ID). In the context, the EH performance
is dependent on the power of the received signal, by contrast, the ID performance is critically
dependent on the signal-to-interference-plus-noise ratio (SINR). The popular SWIPT systems
have primarily used conjugate beamforming (CB) to deliver sufficient energy for EH [5], even
though this limits the ID performance due to the multi-user interference (MUI) imposed. By
contrast, zero-forcing beamforming (ZFB)completely eliminates the MUI, but it is less efficient
for SWIPT. To circumvent these drawbacks, it has been proposed to convey information
and energy over the same time slot by transmitting information and energy in separate
fractions of the time-slot. Termed as transmit time-switching (transmit-TS), it has been
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shown to outperform SWIPT due to its ability to support individual energy beamforming
for EH and information beamforming for ID (see e.g. [14, 151, 152, 147]). As a benefit,
transmit-TS enables CB for EH and ZFB or regularized zero-forcing beamforming (RZFB)
for ID [153, 131][147].

A reconfigurable intelligent surface (RIS) is a planar array of "nearly-passive" reflecting
elements, which can beneficially manipulate the reflected signals by programming its reflection
coefficients [103]. By strategically installing a RIS in places such as building facades so
that it can have a line-of-sight (LoS) path from both the users and a base station (BS),
the RIS facilitates reliable communication when there are no direct links between them
[64, 102, 106, 133]. A challenging problem in signal processing for these RIS-aided networks
is to jointly design the BS’s transmit beamformers and the RIS’s programmable reflecting
coefficients (PRCs) to maximizing the sum throughput [64, 154, 142, 143] or the users’
minimum throughput [146]. The joint design of power allocation for ZFB and PRCs to
maximize the sum throughput subject to individual user throughput constraints has been
considered in [64]. While the alternating power allocation optimization with the PRCs held
fixed is simple, the alternating optimization in PRCs with the power allocation held fixed is
very challenging since the user throughput becomes a complex function due to the matrix
inversion involved in ZFB. As a result, the convergence behavior of the general purpose
gradient descent algorithm used in [64] is unknown. Thus, the expected computational
tractability of the ZFB design could not be achieved. The authors of [115] and [13] considered
some RIS-aided SWIPT scenarios which require that the BS, the RIS and the energy users
(EUs) must be located within a small cell radius of about 10m, however the reflected signal
by the RIS after undergoing the associated double path-loss becomes quite weak compared
to that coming directly from the BS to the EUs, which erodes the benefit of the RIS in EH.

Against the above background, this chapter offers the following contributions.

• We reveal that as a benefit of the transmit-TS technique, the joint optimization of
power allocations (for ZFB) and PRCs may be simplified to optimizing the PRCs only,
because the power allocation for ZFB can be easily determined. Instead of iterating
by relying on convex problems or using deep Q-learning methods to handle the unit-
modulus constraint on the PRCs which incur much higher computational complexity
[7, 146, 155], we use the polar form of unit-modulus complex numbers that allows
each descent iteration of the RIS coefficient calculation to be based on computational
efficient closed-form expressions for the solution of concave trigonometric function
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optimization [30]. Accordingly, we develop efficient computational procedures, which
are based on closed-form expressions for its computation;

• Similarly, we also show that the joint optimization of power allocations (for RZFB)
and PRCs can be decomposed into the separate optimization of power allocations (for
RZFB) and optimization of PRCs. Accordingly, we develop efficient computational
procedures for PRC optimization, which are still based on closed-form expressions. A
computational procedure is also proposed for power allocations optimization, which
involves a convex quadratic problem at each iteration;

• Furthermore, we develop a new RZFB for improving the throughput of IUs. Our
simulations show that the IUs’ throughput using the new RZFB is 15% - 25% higher
than that obtained by the existing RZFB in the challenging rank-deficient scenario,
when the BS only has a few antennas for serving more IUs;

• We consider a practical scenario of RIS-aided integrated information and energy
deliveries to both information users (IUs) and energy users (EUs). By adopting the
aforementioned transmit-TS approach, we harness CB for delivering energy to EUs,
and RIS-aided ZFB/RZFB/new RZFB for delivering information to IUs. Naturally,
the PRCs are still separately optimized in this joint design problem. We then develop
efficient computational procedures for solving the problem of maximizing the IUs’
minimum throughput subject to a constraint on the quality-of-energy-service (QoES)
in terms of the EUs’ harvested energy thresholds.

The rest of the chapter is organized as follows. Section II and Section III are respectively de-
voted to PRC optimization for ZFB and RZFB with its applications to RIS-aided information
and energy delivery studied in Section IV and V. A new RZFB is also introduced in Section
V. Section VI provides simulations to support the technical developments of the previous
sections. Section VII concludes the chapter. The Appendix provides several inequalities that
are frequently used in the technical sections. The flow chart of chapter organization can be
seen in Fig. 7.1.
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Fig. 7.1 Chapter organization.

7.2 RIS-aided zero-forcing beamforming optimiza-

tion

Consider a RIS-aided network, which is illustrated by Fig. 7.2 with a RIS of N reflecting units
to assist the downlink from an M -antenna base station (BS) to K single-antenna information
users (IUs) k ∈ K , {1, . . . ,K} because there is no direct signal path between the former and
the latter.1 The channel spanning from the BS to the RIS is H̃B−R ,

√
βB−RHB−R ∈ CN×M ,

where
√
βB−R models the path-loss and large-scale fading of LoS and the entries of HB−R

are C(0, 1), modelling small-scale fading. Analogously, the channel spanning from the RIS to
IU k is h̃R−k =

√
βR−kh̄R−k ∈ C1×N , where

√
βR−k represents the large-scale fading, while

h̄R−k denotes the small-scale fading having elements of C(0, 1). Like in many other papers
on RIS-aided communication networks, we assume perfect channel state information, which
can be obtained by channel estimation [138, 13, 7].

1According to [146, 156], the networks throughput is hardly improved by RIS’s, when there are
direct paths from the BS to the IUs.
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Fig. 7.2 Scenario setup with the blockage of the direct path between the BS and the
IUs.

Let θθθ , (θθθ1, . . . , θθθN ) ∈ [0, 2π]N and

eθθθ , (eθθθ1 , . . . , eθθθN )T ∈ CN ,

which is a complex-vector function of the variable θθθ. We also define the diagonal complex-
matrix function of the variable eθθθ as

diag[eθθθ] = diag{eθθθ1 , . . . , eθθθN } ∈ CN×N

representing the matrix of RIS reflection-coefficients.

The received signal at IU k is

yk = hB−k(eθθθ)xI + nk, (7.1)

where nk ∈ C(0, σ) is the background noise, and

hB−k(θθθ) , h̃R−kR
1/2
RIS−kdiag[eθθθ]H̃B−R ∈ C1×M , (7.2)

which is the composite channel spanning from the BS to IU k.
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In (7.2), RRIS−k ∈ CN×N represents the spatial correlation matrix of the RIS elements
with respect to IU k [154]. For

y ,


y1

. . .

yK

 ∈ CK , n̄ ,


n1

. . .

nK

 ∈ CK ,

and

H(eθθθ) ,


hB−1(eθθθ)

. . .

hB−K(eθθθ)

 = HRdiag[eθθθ]H̃B−R =
N∑
n=1

eθnHn ∈ CK×M

with

Hn , HRΨnH̃B−R ∈ CK×M , HR ,


h̃R−1R

1/2
RIS−1

. . .

h̃R−KR
1/2
RIS−K

 ∈ CK×N ,

where Ψn is a matrix of size N ×N with all-zero entries, excepts Ψn(n, n) = 1.

We can write

y = H(eθθθ)xI + n̄. (7.3)

Now, for K ≤M we consider the ZFB, under which the BS transmits

xI = HH(eθθθ)
(
[H(eθθθ)]2

)−1
diag[pppk]k=1,...,Ks, (7.4)

where s = (s1, . . . , sK)T , sk ∈ C(0, 1) is the information intended for the IUs having the
power of ppp = (ppp1, . . . , pppK)T . Then Equation (7.3) becomes

y = H(eθθθ)HH(eθθθ)
(
[H(eθθθ)]2

)−1
diag[pppk]k=1,...,Ks+ n̄

= [H(eθθθ)]2
(
[H(eθθθ)]2

)−1
diag[pppk]k=1,...,Ks+ n̄

= diag[pppk]k=1,...,Ks+ n̄ (7.5)

simplifying (7.1) to

yk = pppksk + n̄k. (7.6)
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The throughput for sk is
ln(1 + ppp2

k/σ), (7.7)

and the transmit power is

E(||xI ||2) = ⟨HH(eθθθ)
(
[H(eθθθ)]2

)−1
diag[ppp2

k]k=1,...,K
(
[H(eθθθ)]2

)−1
H(eθθθ)⟩ (7.8)

= ⟨diag[ppp2
k]k=1,...,K

(
[H(eθθθ)]2

)−1
⟩. (7.9)

For the IUs’ max-min throughput optimization is employed, which aims for maximizing the
users’ worst-case (minimal) throughput, where we have pppk ≡ ppp0

2(ln(1 +ppp2
k/σ) ≡ ln(1 +ppp2

0/σ).
Then by (7.9), the transmit power is ppp2

0⟨
(
[H(eθθθ)]2

)−1
⟩, and the max-min IU throughput

optimization under transmit power budget P can be expressed as

max
ppp0,θθθ

ln(1 + ppp2
0/σ) s.t. ppp2

0⟨
(
[H(eθθθ)]2

)−1
⟩ ≤ P (7.10)

⇔ max
θθθ

P/⟨
(
[H(eθθθ)]2

)−1
⟩ (7.11)

⇔ min
θθθ
f(eθθθ) , ⟨

(
H(eθθθ)HH(eθθθ)

)−1
⟩. (7.12)

In fact, it follows from the power constraint in (7.10) that ppp2
0 ≤ P/⟨

(
[H(eθθθ)]2

)−1
⟩. Hence

the problem (7.10) is actually max ln(1 + P/(σ⟨
(
[H(eθθθ)]2

)−1
)), which is the same as (7.11).

Since only the denominator of the fractional objective function in (7.11) is dependent on θθθ,
its maximization is equivalent to the minimization of its denominator, which is (7.12).

The rest of this section is devoted to the detailed portrayal of our algorithms conceived for
computing (7.12), which is very challenging because its objective function is highly nonlinear
and computationally intractable.

2From (7.7), the users’ worst-case throughput is mink=1,...,K ln(1 + ppp2
k/σ), which is maximized at

ln(1 + ppp2
1/σ) = ln(1 + ppp2

2/σ) = · · · = ln(1 + ppp2
K/σ) ⇔ pppk ≡ ppp0
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7.2.1 Step descent algorithm

Let θ(κ) be a point found during the (κ− 1)-st iteration. The linearized function of f at eθ(κ)

is

3f(eθ(κ))− 2ℜ{⟨[HH(eθ(κ))
(
[H(eθ(κ))]2

)−2
H(eθθθ)⟩} =

3f(eθ(κ))− 2
N∑
n=1
ℜ{eθn⟨HH(eθ(κ))A(κ)Hn⟩}, (7.13)

for
A(κ) ,

(
[H(eθ(κ))]2

)−2
. (7.14)

We seek a step descent by addressing the following problem

max
θθθ

N∑
n=1
ℜ{eθn⟨HH(eθ(κ))A(κ)Hn⟩}, (7.15)

which is decomposed into N independent problems:

max
θθθn

ℜ{eθn⟨HH(eθ(κ))A(κ)Hn⟩}, n = 1, . . . , N,

each of which admits the closed-form solution

θ̃(κ+1)
n = −∠⟨HH(eθ(κ))A(κ)Hn⟩, n = 1, . . . , N. (7.16)

We may then choose θ(κ+1) according to one of the following rules:

• The simplest one
θ(κ+1) = θ̃(κ+1). (7.17)

• Considering ψ(κ) , θ̃(κ+1) − θ(κ) as a step descent, we update θ(κ+1) according to the
so-called Barzilai-Borwein (BB) step size of [157] in (7.18) and (7.19):

θ(κ+1) = θ(κ) + |⟨ψ
(κ), ψ(κ) − ψ(κ−1)⟩|
||ψ(κ) − ψ(κ−1)||2

ψ(κ) (7.18)

= θ(κ) + |⟨θ̃
(κ+1) − θ(κ), θ̃(κ+1) − θ(κ)−θ̃(κ)+θ(κ−1)⟩|
||θ̃(κ+1) − θ(κ)−θ̃(κ)+θ(κ−1)||2

(θ̃(κ+1) − θ(κ)).

(7.19)
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• Considering ψ(κ) , eθ̃
(κ+1) − eθ(κ) we update θ(κ+1) according to (7.20) and (7.21):

θ(κ+1) = ∠

(
eθ

(κ) + |⟨ψ
(κ), ψ(κ) − ψ(κ−1)⟩|
||ψ(κ) − ψ(κ−1)||2

ψ(κ)
)

(7.20)

= ∠

(
eθ

(κ) + |⟨e
θ̃(κ+1) − eθ(κ)

, eθ̃
(κ+1) − eθ̃(κ) − eθ̃(κ) + eθ

(κ−1)⟩|
||eθ̃(κ+1) − eθ̃(κ) − eθ̃(κ) + eθ

(κ−1) ||2

(eθ̃(κ+1) − eθ(κ))
)
. (7.21)

We will refer this as the projective Barzilai-Borwein (PBB) step size.

Algorithm 12 provides the pseudo-code for the procedure iterating (7.17) or (7.19), or
(7.21) in order to arrive at the computational solution of (7.12). The reader is referred to
[157] for the rationale behind them in locating better feasible points, which are suitable
for unconstrained optimization only. There is an explicit update of the incumbent point
in Algorithm 12 because the updating rules (7.17)-(7.21) do not enhance that θ(κ) is the
incumbent. Somewhat surprisingly, the performance of Algorithm 12 was found to be
indifferent with using any of three aforementioned rules.

Algorithm 12 ZFB step descent algorithm for (7.12)
1: Initialization: Initial θ(0) and set θopt = θ(0) and γopt = f(θopt) as the incumbent

RIS and value.
2: Repeat until convergence of θ(κ): Generate θ̃(κ+1) by (7.16). Then generate
θ(κ+1) either by (7.17) or (7.19), or (7.21). If f(θ(κ+1)) < γopt, set θopt = θ(κ+1) and
γopt = f(θ(κ+1)). Set κ := κ+ 1.

3: Output θopt and γopt.

7.2.2 Full step descent algorithms

We express f in (7.12) as:

f(eθθθ) = α||eθθθ||2 −
(
α||eθθθ||2 − ⟨

(
[H(eθθθ)]2

)−1
⟩
)

(7.22)

= αN − g(eθθθ), (7.23)

where α > 0 is chosen for ensuring that the function

g(eθθθ) , α||eθθθ||2 − ⟨
(
[H(eθθθ)]2

)−1
⟩
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is convex in eθθθ. The problem (7.12) is equivalent to the following problem of unconstrained
concave optimization [30]3

max
θθθ

g(eθθθ). (7.24)

Following [158–160] we will develop a local Frank-and-Wolf (FW) feasible direction algorithm
for solving this problem as it bypasses the line search to give as a full step size of length 1.
Moreover, this kind of FW algorithm has proved to be very efficient in practice [161]. To this
end, let θ(κ) be a point found during the (κ− 1)-st iteration. Note that as g is convex, its
linearized function provides its lower bound formulated as:

g(eθθθ) ≥ α

(
2ℜ{

N∑
n=1

eθne−θ(κ)
n } −N

)
− 3⟨

(
[H(eθ(κ))]2

)−1
⟩

+2ℜ{
N∑
n=1

eθn⟨HH(eθ(κ))A(κ)Hn⟩} (7.25)

= −αN − 3⟨
(
[H(eθ(κ))]2

)−1
⟩+ 2

N∑
n=1
ℜ{eθn

(
αe−θ(κ)

n + ⟨HH(eθ(κ))A(κ)Hn⟩
)
}

, g(κ)(eθθθ), (7.26)

where A(κ) is defined in (7.14). For finding the FW feasible direction, we solve the following
problem at the κ-th iteration to generate θ(κ+1)

max
θθθ

2
N∑
n=1
ℜ{eθn

(
αe−θ(κ)

n + ⟨HH(eθ(κ))A(κ)Hn⟩
)
}, (7.27)

which admits the following closed-form solution similar to (7.16):

θ(κ+1)
n = −∠

(
αe−θ(κ)

n + ⟨HH(eθ(κ))A(κ)Hn⟩
)
, n = 1, . . . , N. (7.28)

We can readily show that

g(eθ(κ+1)) ≥ g(κ)(eθ(κ+1)) > g(κ)(eθ(κ)) = g(eθ(κ)), (7.29)

so θ(κ+1) is a better point than θ(κ), i.e. 1 = arg max0≤ννν≤1 g(e(θ(κ)+ννν(θ(κ+1)−θ(κ)))), so the full
step size of length one is achieved. 4 The associated pseudo-code is provided by Algorithm
13, which iterates incumbent points bypassing any line search. In contrast to Algorithm 12,

3(7.24) is equivalent to minθθθ(−g(eθθθ), where −g(eθθθ) is a concave function
4Obviously, the step size is not full whenever arg max0≤ννν≤1 g(e(θ(κ)+ννν(θ(κ+1)−θ(κ)))) < 1
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the convergence of Algorithm 13 to at least a locally optimal solution of (7.24) can be readily
proved [161].

Remark. To efficiently find a reasonable α in (7.22), we rely on the following procedure.
Initialize the procedure by using a sufficiently large α(0), solve (7.27) and update α(κ+1) =
α(κ)/10 until not arrive at g(eθ(κ+1)) ≤ g(eθ(κ)).

We also propose an alternative full step descent procedure for (7.12) by addressing the
following problem of perturbed optimization:

min
θθθ
fα(eθθθ) , ⟨

(
[H(eθθθ)]2 + αIK

)−1
⟩ (7.30)

for a sufficient small α > 0. Using the matrix inverse formula (7.31) of (see e.g. [162]):

(
[H(eθθθ)]2 + αIK

)−1
= α−1IK − α−2H(eθθθ)

(
IM + α−1[HH(eθθθ)]2

)−1
HH(eθθθ)

= α−1IK − α−1H(eθθθ)
(
αIM +HH(eθθθ)H(eθθθ)

)−1
HH(eθθθ),(7.31)

the problem in (7.30) may be shown to be equivalent to

max
θθθ

gα(eθθθ) , ⟨H(eθθθ)
(
αIM + [HH(eθθθ)]2

)−1
HH(eθθθ)⟩. (7.32)

Again, let θ(κ) be a point found during the (κ − 1)-st iteration. Exploiting the inequality
(A.25) in the Appendix yields (7.33):

gα(eθθθ) ≥ −α⟨[HH(eθ(κ))]2[Ψ(κ)]2⟩+ 2ℜ{⟨H(eθθθ)Ψ(κ)HH(eθ(κ))⟩}

−⟨[HH(eθθθ)]2[Ψ(κ)HH(eθ(κ))]2⟩

= a(κ) + 2ℜ{
N∑
n=1

eθnb(κ)(n)}+ (eθθθ)HC(κ)eθθθ

≥ a(κ) + 2ℜ
{

N∑
n=1

eθn

(
b(κ)(n)−

N∑
m=1

e−θ(κ)
m C(κ)(m,n) + λmax(C(κ))e−θ(κ)

n

)}
−(eθ(κ))HC(κ)eθ

(κ) − 2λmax(C(κ))N

, g(κ)
α (eθθθ), (7.33)
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Ψ(κ) =
(
αIM+[HH(eθ(κ))]2

)−1
,

a(κ) , −α⟨[HH(eθ(κ))]2[Ψ(κ)]2⟩,

b(κ)(n) , ⟨HnΨ(κ)HH(eθ(κ))⟩, n ∈ N ,

and

C(κ)(n,m) , ⟨HHn Hm[Ψ(κ)HH(eθ(κ))]2⟩, (n,m) ∈ N ×N ,

while λmax(C(κ)) is the maximum eigenvalue of C(κ), which is positive because the matrix C(κ)

is positive definite.

We thus solve the following problem to generate θ(κ+1)

max
θθθ

g(κ)
α (eθθθ), (7.34)

which admits the following closed-form solution similar to (7.16):

θ(κ+1)
n = −∠

(
b(κ)(n)−

N∑
m=1

e−θ(κ)
m C(κ)(m,n) + λmax(C(κ))e−θ(κ)

n

)
, n ∈ N . (7.35)

Similarly to (7.29), we can readily show that gα(eθ(κ+1)) > gα(eθ(κ)) as far as θ(κ+1) ̸= θ(κ),
so (7.35) provides full step size update. A compact presentation of (7.34) is also included in
Algorithm 13.

Before concluding this section, observe that after designing θopt, the throughput of all
IUs is defined with the aid of (7.7) and (7.9) as

ln
(

1 + P

σ⟨
(
[H(eθopt)]2

)−1⟩

)
. (7.36)

Algorithm 13 ZFB full step descent algorithm
1: Initialization: Initial θ(0).
2: Repeat until convergence of θ(κ): Generate θ(κ+1) by (7.28) or (7.35). Set
κ := κ+ 1.

3: Output θopt = θ(κ).
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7.3 RIS-aided regularized zero-forcing beamform-

ing optimization

Now, whenever we have K > M , the matrix H(eθθθ)HH(eθθθ) becomes singular and it cannot
be inverted. Hence we cannot use the ZFB of (7.4). Instead, we consider RZFB, under which
the BS transmits

xI = HH(eθθθ)
(
[H(eθθθ)]2 + αIK

)−1
diag[pppk]k=1,...,Ks

=
(
[HH(eθθθ)]2 + αIM

)−1
HH(eθθθ)diag[pppk]k=1,...,Ks. (7.37)

The Equation (7.3) may be rewritten as

y = H(eθθθ)
(
[HH(eθθθ)]2 + αIM

)−1
HH(eθθθ)diag[pppk]Kk=1s+ n̄. (7.38)

Thanks to the regularization of the ill-posed part only, we can design θθθ separately, because
the capability of RZFB actually depends on the matrix H(eθθθ)

(
[HH(eθθθ)]2 + αIM

)−1
HH(eθθθ)

in (7.38). Note that we have:
 IK H(eθθθ)
HH(eθθθ) [HH(eθθθ)]2 + αIM

 ≽

 IK H(eθθθ)
HH(eθθθ) [HH(eθθθ)]2


=

 IK

HH(eθθθ)

 [IK H(eθθθ)
]

≽ 0.

Upon using the Shur complement (see e.g. [162]), we arrive at:

IK ≽ H(eθθθ)
(
[HH(eθθθ)]2 + αIM

)−1
HH(eθθθ). (7.39)

It is plausible that the more similar the matrix in the right hand side (RHS) to the identity
matrix in the left hand side (LHS), the better RZFB performs. Define an ellipsoid in CK :

E(θθθ) , {x ∈ CK : xHH(eθθθ)
(
[HH(eθθθ)]2 + αIM

)−1
HH(eθθθ)x ≤ 1}. (7.40)

The matrix inequality (7.39) shows that E(θθθ) always contains the unit sphere:

E(θθθ) ⊃ U , {x ∈ CK : ||x||2 ≤ 1}. (7.41)
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The rest of this section is devoted to the optimization of θθθ based on optimizing the shape of
E(θθθ).

7.3.1 Trace-maximization based algorithm

We aim to minimize the surface of E(θθθ), i.e. we aim to maximize the trace of the right hand
size (RHS) of (7.39) [163]. As such, the problem is the same as (7.32), thus it may be solved
by Alg. 13. We repeat it here as Algorithm 14 to emphasize that it is specifically tailored for
RZFB.

Algorithm 14 RZF full step descent algorithm for trace maximization (7.32)
1: Initialization: Initial θ(0).
2: Repeat until convergence of θ(κ): Generate θ(κ+1) by (7.35). Set κ := κ+ 1.
3: Output θopt.

7.3.2 Determinant-maximization algorithms

We aim to minimize the volume of the set E(θθθ) \ U , which is equivalent to the problem [163]:

min
θθθ
|IK −H(eθθθ)

(
[HH(eθθθ)]2 + αIM

)−1
HH(eθθθ)| (7.42)

⇔ max
θθθ

φ(eθθθ) , ln |IK + 1
α

[H(eθθθ)]2|, (7.43)

because according to the matrix inversion formula, we have

IK −H(eθθθ)
(
[HH(eθθθ)]2 + αIM

)−1
HH(eθθθ) =

(
IK + 1

α
[H(eθθθ)]2

)−1
.

The problem (7.43) is equivalent to

max
θθθ

ϕ(eθθθ) , ln |αIK + [H(eθθθ)]2|. (7.44)

As always, let θ(κ) be a point found during the (κ− 1)-st iteration.
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Step descent algorithm

The linearization of the function ϕ at θ(κ) is formulated as:

ϕ(eθ(κ))− ⟨A(κ)[H(eθ(κ))]2⟩+ ⟨A(κ)[H(eθθθ)]2⟩, (7.45)

for
A(κ) ,

(
αIK + [H(eθ(κ))]2

)−1
. (7.46)

Thus, for A(κ) defined by (7.46) we address the problem (7.13) and then (7.15) to generate
the descent direction θ(κ+1) given by (7.16) as per Algorithm 15, which has to update the
incumbent point with the convergence not granted.

Algorithm 15 RZFB step descent algorithm for maximizing the log determinant
(7.44)

1: Initialization: Initial θ(0) and set θopt = θ(0) and ηopt = ϕ(θopt) as the incumbent
RIS and value.

2: Repeat: For A(κ) in (7.46), generate θ(κ+1) by (7.16). If ϕ(θ(κ+1)) < ηopt, set
θopt = θ(κ+1) and ηopt = ϕ(θ(κ+1)). Set κ := κ+ 1.

3: Output θopt and ηopt.

Full step descent algorithm

We also can use the inequality (A.15) to address (7.43) as (7.47):

φ(eθθθ) ≥ φ(eθ(κ))− ||H(eθ(κ))||2 + 1
α

[
2ℜ{H(eθθθ)HH(eθ(κ))}

−⟨H(eθ(κ))(αIm + [HH(eθ(κ))]2)−1HH(eθ(κ)), [H(eθθθ)]2⟩
]

= a(κ) + 1
α

[
2ℜ{H(eθθθ)HH(eθ(κ))} − ⟨[Ψ(κ)H(eθθθ)]2⟩

]
= a(κ) + 1

α

[
2ℜ{

N∑
n=1

eθnb(κ)(n)} − (eθθθ)HC(κ)eθθθ
]

≥ a(κ) + 1
α

[
2ℜ
{

N∑
n=1

eθn

(
b(κ)(n)−

N∑
m=1

e−θ(κ)
m C(κ)(m,n) + λmax(C(κ))e−θ(κ)

n

)}
−(eθ(κ))HC(κ)eθ

(κ) − 2λmax(C(κ))N
]

, φ(κ)(eθθθ),
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a(κ) , φ(eθ(κ))− ||H(eθ(κ))||2,

Ψ(κ) , (αIm + [HH(eθ(κ))]2)−1/2HH(eθ(κ)),

b(κ)(n) , ⟨HnHH(eθ(κ))⟩, n ∈ N ,

C(κ)(n,m) , ⟨HmHHn [(Ψ(κ))H ]2⟩, (n,m) ∈ N ×N ,

and λmax(C(κ)) is the maximum eigenvalue of C(κ), which is positive because the matrix C(κ)

is positive definite.

To generate a better point θ(κ+1), we thus solve the following problem:

max
θθθ

φ(κ)(eθθθ), (7.47)

which admits the following closed-form solution similar to (7.16):

θ(κ+1)
n = −∠

(
b(κ)(n)−

N∑
m=1

e−θ(κ)
m C(κ)(m,n) + λmax(C(κ))e−θ(κ)

n

)
, n ∈ N . (7.48)

Algorithm 16 RZF full step descent algorithm for maximizing the log determinant
(7.44)

1: Initialization: Initial θ(0).
2: Repeat: Generate a better point θ(κ+1) by (7.48). Set κ := κ+ 1.
3: Output θopt = θ(κ).

Before concluding this section, let us mention that after designing θopt, we insert it into
(7.38) to consider the problem of power allocation pppk, k = 1, . . . ,K for max-min users rate
optimization. However, we will treat it as a particular case of the problems in the next
section.

7.4 ZFB Applications to RIS-aided integrated data

and energy delivery

Now, in addition to IUs we consider a scenario with the BS serving also KE EUs eℓ,
ℓ ∈ KE , {1, . . . ,KE}, which are located near the BS to harvest energy from the BS. We
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employ the transmit-TS technique, under which the first time-slot fraction 1/t1 is used for
energy delivery and the second time-slot fraction 1/t2 is used for information delivery.
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Fig. 7.3 Scenario setup for integrated data and energy networking.

7.4.1 Energy delivery during 1/t1

Let us assume that the LoS channel spanning from the BS to EU eℓ is h̃B−eℓ
,
√
βEB−eℓ

hB−eℓ
∈

C1×M , where
√
βEB−eℓ

models both the path-loss and the large-scale fading of the LoS
component, where the entries of hB−eℓ

are C(0, 1), to modelling the small-scale fading.

The signal received at EU eℓ is

yeℓ
= h̃B−eℓ

xE , (7.49)

where xE ∈ CM is the transmitted signal carrying the energy. Note that in (7.49) we ignore
the background noise, as its power is negligible for EH. Inspired by [147], conjugate energy
beamforming is used, so we have

xE =
KE∑
ℓ=1

h̃HB−eℓ

√
xxxℓδℓ,
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where δℓ ∈ C(0, 1), which is the energy symbol. The power of the transmit energy signal is

πE(xxx) =
KE∑
ℓ=1
||h̃B−eℓ

||2xxxℓ.

The energy harvested by EU eℓ during 1/t1 is ζπℓ(xxx) with

πℓ(xxx) ,
∑KE
ℓ′=1 |⟨h̃B−eℓ

, h̃B−eℓ′ ⟩|2xxxℓ′
t1

, (7.50)

while ζ is the efficiency of energy conversion, which is set to 0.5 in this chapter.

7.4.2 Information transmission during 1/t2

The information transmission is implemented during the time-slot fraction 1/t2, with the
signal received at IU k given by Equation (7.1), while the corresponding multi-input multi-
output (MIMO) equation is given by (7.3). Since the specific design of PRCs has no impact
on the EH performance, we insert θopt found in the previous sections into the equation (7.1)
and (7.3) and also into (7.4) and (7.37) for ZFB or RZF beamforming, respectively. When
the ZF beamformer of(7.4) is used in conjunction with pppk ≡ ppp0, the throughput at IU k is
expressed according to (7.7) as

r0(ppp0) = ln
(
1 + ppp2

0/σ
)
, (7.51)

and the power used for information transmission according to (7.9) is given by

azfppp
2
0 (7.52)

for
azf , ⟨

(
[H(eθopt)]2

)−1
⟩. (7.53)
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7.4.3 Optimal energy and ZF information beamforming

Here we consider the IUs’ max-min throughput optimization problem subject to the QoES in
terms of the EUs’ harvested energy rate formulated as:

max
ppp0,xxx∈RKE

+ ,γ,t=(t1,t2)T ∈R2
+

γ s.t. (7.54a)

πE(xxx)
t1

+ azfppp
2
0

t2
≤ P, (7.54b)

πE(xxx) ≤ 3P, azfppp2
0 ≤ 3P, (7.54c)

1
t1

+ 1
t2
≤ 1, (7.54d)

KE∑
ℓ′=1
|⟨h̃B−eℓ

h̃HB−eℓ′ ⟩|
2xxxℓ′ ≥ t1emin/ζ, ℓ ∈ KE , (7.54e)

r0(ppp0) ≥ γt2, (7.54f)

where emin is the harvested energy threshold. The slack variable γ is introduced in (7.54a)
and (7.54f) to reflect the IUs’ minimal throughput; (7.54b) is the total transmit power
constraint under a given budget P and (7.54c) is a physical transmission constraint; (7.54d)
restricts the energy and information transfer to a specific time slot, and (7.54e) represents
the energy constraint of EUs in terms of their minimal required energy, which in fact reflects
the following constraint:

πℓ(xxx) ≥ emin/ζ, ℓ ∈ KE , (7.55)

with πℓ(xxx) defined in (7.50).

In the problem (7.54), the constraints (7.54c)-(7.54e) are convex but the constraints
(7.54b) and (7.54f) are not, making (7.54) a nonconvex problem. We now develop inner
convex approximations for these nonconvex constraints to propose a path-following algorithm
for computing (7.54).

Let the feasible point for (7.54) (p(κ)
0 , x(κ), t(κ), γ(κ)) is found from the (κ− 1)-st iteration.

Then upon the following inequality

πE(xxx) ≤ π(κ)
E (xxx) , 1

2

(
π2
E(xxx)

πE(x(κ))
+ πE(x(κ))

)
, (7.56)
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the nonconvex constraint (7.54b) is innerly approximated by

π
(κ)
E (xxx)
t1

+ azfppp
2
0

t2
≤ P. (7.57)

Using the inequality (A.26) yields the following concave quadratic minorant of r0(ppp0) in the
LHS of (7.54f):5

r
(κ)
0 (ppp0) , r

(κ)
0 (p(κ)

0 )− (p(κ)
0 )2

σ
+ 2p

(κ)
0
σ
ppp0 −

(p(κ)
0 )2

σ
(
(p(κ)

0 )2 + σ
) (ppp2

0 + σ
)
. (7.58)

Meanwhile, the RHS of (7.54f) is upper bounded as follows:

γt2 ≤
γ(κ)t

(κ)
2

4

(
γ

γ(κ) + t2

t
(κ)
2

)2

. (7.59)

The nonconvex constraint (7.54f) is thus innerly approximated by the following convex
quadratic constraint

r
(κ)
0 (ppp0) ≥ γ(κ)t

(κ)
2

4

(
γ

γ(κ) + t2

t
(κ)
2

)2

. (7.60)

To generate the next feasible point (p(κ+1)
0 , x(κ+1), t(κ+1), γ(κ+1)) for (7.54), we then solve the

following convex optimization problem:

max
ppp0,xxx,γ,t=(t1,t2)T ∈R2

+

γ s.t. (7.54c), (7.54d), (7.54e), (7.57), (7.60). (7.61)

As this convex problem involves mc = KE + 3 decision variables and nv = 5 quadratic
constraints, its computational complexity is on the order of [98]

O[m2.5
c (n2

v +mc)]. (7.62)

As (p(κ+1)
0 , x(κ+1), t(κ+1), γ(κ+1)) is the optimal solution of (7.61), while (p(κ+1)

0 , x(κ), t(κ), γ(κ))
is its feasible point, it follows that

γ(κ+1) > γ(κ), (7.63)

provided that (p(κ+1)
0 , x(κ+1), t(κ+1), γ(κ+1)) ̸= (p(κ)

0 , x(κ), t(κ), γ(κ)), i.e. (p(κ+1)
0 , x(κ+1), t(κ+1), γ(κ+1))

is a better feasible point than (p(κ)
0 , x(κ), t(κ), γ(κ)). The sequence {(p(κ)

0 , x(κ), t(κ), γ(κ))} of
improved feasible points for (7.54) converges at least to a locally optimal solution of (7.54).

5r0(ppp0) ≥ r(κ)
0 (ppp0)
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As analyzed in [14], this locally optimal solution often turns out to be the globally optimal
one. Algorithm 17 provides the pseudo-code for the procedure iterating (7.61).

Algorithm 17 ZF Path-following algorithm for (7.54)

1: Initialization: Randomly generate a feasible point (p(0)
0 , x(0), t(0), γ(0)) for (7.54).

Set κ = 0.
2: Repeat: Generate (p(κ+1)

0 , x(κ+1), t(κ+1), γ(κ+1)) by solving the convex problem
(7.61). Set κ := κ+ 1.

3: Output (p(κ)
0 , x(κ), t(κ), γ(κ)).

7.5 RZFB applications to RIS-aided integrated da-

ta and energy delivery

7.5.1 The conventional RZFB

When the RZFB (7.37) is used, Equation (7.38) becomes

yk = h̄B−kH̄rz
K∑
j=1

h̄HB−jpppjsj + n̄k (7.64)

=
K∑
j=1

h̄kjpppjsj + n̄k, (7.65)

for
H̄rz ,

(
HH(θopt)H(θopt) + αIM

)−1

h̄B−j , hB−j(θopt), j = 1, . . . ,K.
(7.66)

and
h̄kj , h̄B−kH̄rzh̄HB−j . (7.67)

The throughput at IU k is expressed as:

rk(ppp) = ln

1 + |h̄kk|2ppp2
k

 K∑
j ̸=k
|h̄kj |2ppp2

j + σ

−1
 . (7.68)
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The transmit power apportioned for information delivery is

πI(ppp) ,
K∑
j=1
||H̄rzh̄HB−j ||2ppp2

j . (7.69)

Thus we consider the following problem of the IUs’ max-min throughput optimization subject
to the QoES in terms of the EUs’ harvested energy thresholds:

max
ppp,xxx,γ,t=(t1,t2)T ∈R2

+

γ s.t. (7.54d), (7.54e), (7.70a)

πE(xxx)
t1

+ πI(ppp)
t2
≤ P, (7.70b)

πE(xxx) ≤ 3P, πI(ppp) ≤ 3P, (7.70c)

rk(ppp) ≥ γt2, k ∈ K, (7.70d)

where like their counterparts in (7.54), γ in (7.70a) and (7.70d) is a slack variable to express
the IUs minimal throughput, (7.70b) and (7.70c) are respectively the total power transmit
constraint under the budget P and a physical transmission constraint, while as before, (7.54d)
restricts the energy and information transfer within a time slot, and (7.54e) is the energy
constraint of EUs in terms of their minimal required energy.

To propose a path-following algorithm for computing (7.70), we have to develop inner
approximations for its nonconvex constraints (7.70b) and (7.70d).

Let (p(κ), x(κ), t(κ), γ(κ)) be the feasible point found from the (κ−1)-st iteration for (7.70).
Based on the inequality (7.56), the nonconvex constraint (7.70b) is innerly approximated by

π
(κ)
E (xxx)
t1

+ πI(ppp)
t2
≤ P. (7.71)

Using the inequality (A.26) yields the following concave quadratic minorant of rk(P) in the
LHS of (7.70d):

r
(k)
k (P) , ˜̃a(κ) + 2˜̃b(κ)pppk − ˜̃c(κ)

K∑
j=1
|h̄kj |2ppp2

j , (7.72)

where
˜̃a(κ)
k = rk(p(κ))− |h̄kk|2(p(κ)

k )2
(∑

j ̸=k |h̄kj |2(p(κ)
j )2 + σ

)−1
− σ˜̃c(κ)

k ,

˜̃b(κ)
k = |h̄kk|2p(κ)

k

(∑
j ̸=k |h̄kj |2(p(κ)

j )2 + σ
)−1

,

˜̃c(κ)
k =

(∑
j ̸=k |h̄kj |2(p(κ)

j )2 + σ
)−1
−
(∑K

j=1 |h̄kj |2(p(κ)
j )2 + σ

)−1
.
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By (7.59) and (7.72), the nonconvex constraint (7.70d) is innerly approximated by the
following convex quadratic constraint

r
(k)
k (ppp) ≥ γ(κ)t

(κ)
2

4

(
γ

γ(κ) + t2

t
(κ)
2

)2

, k ∈ K. (7.73)

To generate the next feasible point (p(κ+1), x(κ+1), t(κ+1), γ(κ+1)) for (7.70), we then solve the
following convex optimization problem :

max
ppp,xxx,γ,t=(t1,t2)T ∈R2

+

γ s.t. (7.54d), (7.54e), (7.70c), (7.71), (7.73). (7.74)

The computational complexity order of this convex problem is given by (7.62) where we
have nv = K + KE + 3 and mc = K + 4. As (p(κ+1), x(κ+1), t(κ+1), γ(κ+1)) is the optimal
solution of (7.74) while (p(κ+1), x(κ), t(κ), γ(κ)) is its feasible point, (7.63) is satisfied, provided
that (p(κ+1), x(κ+1), t(κ+1), γ(κ+1)) ̸= (p(κ), x(κ), t(κ), γ(κ)), i.e. (p(κ+1), x(κ+1), t(κ+1), γ(κ+1))
is a better feasible point than (p(κ), x(κ), t(κ), γ(κ)). Algorithm 18 provides the pseudo-code
for solving (7.70) by iterating the convex problem (7.74).

Algorithm 18 Conventional RZF Path-following algorithm for (7.70)
1: Initialization: Randomly generate a feasible point (p(0), x(0), t(0), γ(0)) for (7.70).

Set κ = 0.
2: Repeat: Generate (p(κ+1), x(κ+1), t(κ+1), γ(κ+1)) by solving the convex problem

(7.74). Set κ := κ+ 1.
3: Output (p(κ), x(κ), t(κ), γ(κ)).

7.5.2 New RZFB

Instead of (7.37), let us now design the transmit signal as

xI = H̄rz
K∑
j=1

h̄HB−j [ppp1,jsj + ppp2,js
∗
j ] (7.75)

with ppp1,j ∈ C and ppp2,j ∈ C, so instead of (7.65) the received signal by IU k is

yk =
K∑
j=1

h̄kj [ppp1,jsj + ppp2,js
∗
j ] + n̄k. (7.76)
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While xI defined by (7.37) is a proper Gaussian random variable with E((xI)2) = 0, that
defined by (7.75) is an improper Gaussian random variable [75] with E((xI)2) ̸= 0. The
augmented form of (7.76) is

ȳk =
K∑
k=1

H̄kjV (pppj)s̄j + n̄Ak , (7.77)

where

ȳk ,

yk
y∗
k

 , H̄kj =

h̄kj 0
0 h̄∗

kj

 , s̄j ,
sj
s∗
j

 , n̄Ak ,

n̄k
n̄∗
k

 ,
and

V (pppj) ,

ppp1,j ppp2,j

ppp∗
2,j ppp∗

1,j

 , pppj , (ppp1,j , ppp2,j).

The throughput of IU k is 1
2ρk(ppp) [97] with

ρk(ppp) , ln

∣∣∣∣∣∣∣I2 + [H̄kkV (pppk)]2
 K∑
j ̸=k

[H̄kjV (pppj)]2 + σI2

−1
∣∣∣∣∣∣∣ .

The transmit power apportioned for information delivery is

π̃I(ppp) ,
K∑
j=1
||H̄rzh̄HB−j

[
ppp1,j ppp2,j

]
||2. (7.78)

Thus we consider the following problem of the IUs’ max-min rate optimization subject to the
QoES in terms of the EUs’ harvested energy thresholds corresponding to (7.70):

max
ppp,xxx,γ,t=(t1,t2)T ∈R2

+

γ s.t. (7.54d), (7.54e), (7.79a)

πE(xxx)
t1

+ π̃I(ppp)
t2
≤ P, (7.79b)

πE(xxx) ≤ 3P, π̃I(ppp) ≤ 3P, (7.79c)

ρk(ppp) ≥ 2γt2, k ∈ K. (7.79d)

where like their counterparts in (7.70), the slack variable γ is introduced in (7.79a) and
(7.79d) to express the IUs’ minimal throughput, (7.79b) and (7.79c) are respectively the
total power transmit constraint under the budget P and a physical transmission constraint,
while as before, (7.54d) restricts the energy and information transfer within a time slot, and
(7.54e) is the energy constraint of EUs in terms of their minimal required energy. To propose
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a path-following algorithm for computing (7.79), we have to develop inner approximations
for its nonconvex constraints (7.79b) and (7.79d).

Let (p(κ), x(κ), t(κ), γ(κ)) be a feasible point for (7.70) that is found from the (κ − 1)-st
iteration.

Using inequality (A.26) yields

ρk(ppp) ≥ a
(κ)
k + 2ℜ{⟨V H(p(κ)

k )H̄H
kk(B

(κ)
k )−1H̄kkV (pppk)⟩} −

K∑
j=1
||(C(κ))1/2H̄kjV (pppj)||2

, ρ
(k)
k (P), (7.80)

where
a

(κ)
k , rk(p(κ))− ⟨[H̄kkV (p(κ)

k )]2(B(κ)
k )−1⟩ − σ⟨C(κ)

k ⟩,
B

(κ)
k ,

∑K
j ̸=k[H̄kjV (p(κ)

j )]2 + σI2,

C
(κ)
k , (B(κ)

k )−1 −
(
B

(κ)
k + [H̄kkV (p(κ)

k )]2
)−1

.

To generate the next better feasible point
(
p(κ+1), x(κ+1)

)
for (7.79), we then solve the

following convex problem:

max
ppp,xxx,γ,t=(t1,t2)T ∈R2

+

γ s.t. (7.54d), (7.54e), (7.71), (7.79b), (7.79c), (7.81a)

ρ
(k)
k (ppp) ≥ γ(κ)t

(κ)
2

2

(
γ

γ(κ) + t2

t
(κ)
2

)2

. (7.81b)

The computational complexity order of this convex problem is given by (7.62) for nv =
2K +KE + 3 and mc = K + 4. The pseudo-code for iterating (7.81) for computing (7.79) is
provided by Algorithm 19.

Algorithm 19 New RZF Path-following algorithm for (7.79)
1: Initialization: Randomly generate a feasible point (p(0), x(0), t(0), γ(0)) for (7.79).

Set κ = 0.
2: Repeat until convergence of γ(κ): Generate (p(κ+1), x(κ+1), t(κ+1), γ(κ+1)) by

solving the convex problem (7.81). Set κ := κ+ 1.
3: Output (p(κ), x(κ), t(κ), γ(κ)).
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7.5.3 Notices on RZFB for information delivery only

When KE = 0, i.e. there are no EUs, we use the whole time-slot for information transfer.
Hence we have t2 = 1, i.e. the problems (7.70) and (7.79) are respectively reduced to

max
ppp

min
k=1,...,K

rk(ppp) s.t. πI(ppp) ≤ P, (7.82)

and
max
ppp

min
k=1,...,K

ρk(ppp) s.t. π̃I(ppp) ≤ P. (7.83)

Algorithms 18 and 19 are directly adjusted for their computation. The pseudo-code is
provided by Algorithm 20.

Algorithm 20 Path-following algorithm for (7.82)/(7.83)
1: Initialization: Randomly generate a initial point for the optimization problem.
p(0) for (7.82)/(7.83). Set κ = 0.

2: Repeat: Generate p(κ+1) by solving the convex problem
maxppp mink=1,...,K r

(κ)
k (ppp) s.t. πI(ppp) ≤ P (for computing (7.82)) and

maxppp mink=1,...,K ρ
(κ)
k (ppp) s.t. π̃I(ppp) ≤ P (for computing (7.83)) Set κ := κ+ 1.

3: Output p(κ).

7.6 Numerical examples

In this section, the performance of our proposed algorithms is investigated . The elements of
the BS-to-RIS LoS channel matrix are generated by [HB−R]n,m = ejπ((n−1) sin θ̄n sin φ̄n+(m−1) sin eθn sinφn),
where eθn and φn are uniformly distributed as eθn ∼ U(0, π) and φn ∼ U(0, 2π), respectively,
and θ̄n = π − θn and φ̄n = π + φn [154]. The normalized small-scale fading channel hB−eℓ

spanning from the BS to EU ℓ and h̄R−k of the RIS to IU k obeys Rician distribution with a
K-factor of 3 for modeling the LoS channels. The large scale fading coefficients, βB−R, βR−k,
and βEB−eℓ

, are modeled as [154, 147]

βB−R = GBS +GRIS − 35.9− 22 log10(dB−R) (in dB), (7.84a)

βR−k = GRIS − 33.05− 30 log10(dRIS−k) (in dB), (7.84b)

βEB−eℓ
= GBS − 30− 20 log10(dB−eℓ) (in dB), (7.84c)
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where GBS = 5 dBi and GRIS = 5 dBi denote the antenna gain of the BS and the RIS
gain, respectively, while dB−R, dRIS−k, and dB−eℓ are the distances between the BS and
RIS, the RIS and IU k, and the BS and EU ℓ, respectively. The signal reflected by the
RIS can be ignored for EUs, since βB−RβR−k ≪ βEB−eℓ

. The spatial correlation matrix is
given by [RRIS−k]n,n′ = ejπ(n−n′) sin φ̃k sin θ̃k , where φ̃k and θ̃ are the azimuth and elevation
angle for IU k, respectively. Unless otherwise stated, K = 10, KE = 3, e0 = −20 dBm and
N = 100 are used. The results are multiplied by log2 e to convert units of nats/sec into
units of bps/Hz. The convergence tolerance of the proposed algorithms is set to 10−3. All
simulations implemented on a Core i7-10875H 2.30GHz processor.

We use the 3D coordinates (x, y, z) to locate all the objects concerned . The BS is at
(20, 0, 10), the RIS is at (0, 30, 40).

7.6.1 RIS-aided information delivery

There are K = 10 IUs, which are randomly placed in a 60m× 60m area RHS of the obstacle
and the RIS. Unless stated otherwise, the transmit power of P = 25 dBm is used. The
performance of Algorithm 12 is not sensitive to which step size from Eqaution (7.17), (7.19)
and (7.21) is used. In the simulated figures, Alg 2A and Alg 2B refer to the performance of
the full step descent algorithm 13 based on iterating (7.28) and (7.35), respectively. Alg 3, Alg
4 and Alg 5 respectively refer to the performance of Algorithm 14 for the trace-maximization
(7.32), Algorithm 15 and Algorithm 16 for the log determinant maximization (7.44). ZFB
random θ and RZFB random θ respectively refer to the performance of ZFB and RZFB
under random PRCs.

Fig. 7.4 and Fig. 7.5 plot the achievable minimum throughput versus the number of BS
antennas, M under ZFB and RZFB, respectively.

Regarding ZFB for M > K, Fig. 7.4 reveals that Algorithm 13A outperforms Algorithm
13B, and the latter outperforms Algorithm 12, showing that the concave optimization
reformulation (7.23) is the best option for computing (7.12), while Algorithm 12 of common
purpose step descent is inefficient. Furthermore, the average running time for Algorithm 12,
Algorithm 13A and Algorithm 13B are 0.24s, 0.06s and 7.96s under N = 100, respectively.

Regarding RZFB for M > K, Fig. 7.5 shows that Algorithm 14 achieves the best
performance, i.e. the trace-maximization (7.32) has a more beneficial impact on the IUs’
throughput than the log determinant maximization (7.44). It is not surprising to see that
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Algorithm 16 outperforms Algorithm 15 because the former iterates the incumbent points,
while the latter simply provides a way to locate a beneficial direction.

The worst performance is attained by ZFB random θ and RZFB random θ in all figures
which is a clear indication that the PRC optimization is absolutely necessary upon using RIS.
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Fig. 7.4 Achievable minimum throughput vs the number of BS antennas M under ZF.
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Fig. 7.5 Achievable minimum throughput vs the number of BS antenna M under RZF.
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7.6.2 RIS-aided information and energy delivery

Next, we consider the problem of RIS-aided information and energy delivery by the network
of Fig. 7.3 with KE = 3 EUs randomly placed within a radius of 10m from the BS.

Alg 1-PGS, Alg 2A-PGS, Alg 2B-PGS and ZFB random θ-PGS refer to the performance
of Algorithm 12, Algorithm 13A, Algorithm 13B, and ZFB random θ. Alg 3-PGS, Alg 4-PGS,
Alg 5-PGS, and RZFB random θ-PGS refer to the performance of Algorithm 14, Algorithm
15, Algorithm 16, and RZFB random θ under RZFB (7.37), while Alg 3-IGS, Alg 4-IGS and
Alg 5-IGS refer to the performance of Algorithm 14, Algorithm 15, Algorithm 16 under the
new RZFB (7.75).

The transmit power of P = 31 dBm is set in Fig. 7.7-Fig. 7.9 and Fig. 7.11, but P = 35
dBm is set in Fig. 7.10 due to the relative small numbers of BS antennas.

Fig. 7.6 and Fig. 7.7 plot the minimum achievable IU throughput versus the number M
of BS antennas under ZFB and RZFB, respectively. In Fig. 7.6, Alg 2A-PGS outperforms
Alg 1-PGS and Alg 2B-PGS, Alg 2B-PGS outperforms Alg 1-PGS. Furthermore, all the
proposed algorithms outperform ZFB random θ-PGS. As expected, Figures 7.5 and 7.7
exhibit similar trend. Fig. 7.6 and Fig. 7.7 also confirm the gain achieved by optimizing the
PRCs. Furthermore, all algorithms in Fig. 7.4, Fig. 7.5, Fig. 7.6 and Fig. 7.7 benefit from
the spatial diversity, which is commensurate with the number BS antennas.
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Fig. 7.6 Achievable minimum throughput vs the number of BS antennas M under ZF.
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Fig. 7.7 Achievable minimum throughput vs the number of BS antennas M under
RZF.

In Fig. 7.8, we now examine the minimum achievable IU throughput upon varying the
BS transmit power budget P under RZFB for M = 10 . As excepted, the IUs’ minimum
throughput increases upon increasing the available power budget because more power can be
used for information delivery. Naturally, beyond a certain threshold, namely P = 40 dBm in
Fig. 7.8, Alg 3’s performance becomes saturated because the network is interference-limited.
Fig. 7.8 also shows the gap between Algorithm 16 and RZFB under random θ, which is quite
narrow for P ≥ 34 dBm because the beneficial impact of the RIS is reduced, when the power
budget is increased.

Fig. 7.9 plots the achievable minimum IU throughput for M = 10 under RZF versus
the number N of RIS reflecting elements, showing that the performance is improved upon
increasing N .

Fig. 7.10 and Fig. 7.11 allow us to compare the performance achieved by the RZFB (7.75)
and the new RZFB (7.81). Fig. 7.10 plots the achievable minimum IU throughput versus the
number M of BS antennas, clearly showing that Alg 3-IGS outperforms its counterpart Alg
3-PGS. Similarly, Alg 4-IGS and Alg 5-IGS outperform their counterparts Alg 4-PGS and
Alg 5-PGS. Fig. 7.11, which plots the achievable minimum IU throughput for K = M + 1,
follow the same trend as Fig. 7.10: Alg 3-IGS , Alg 4-IGS and Alg 5-IGS outperform their
counterparts Alg 3-PGS, Alg 4-PGS and Alg 5-PGS, respectively. The advantage of the new
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Fig. 7.8 Achievable minimum throughput for M = 10 under RZF vs the BS transmit
power P .
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Fig. 7.9 Achievable minimum throughput for M = 10 with energy harvesting under
RZF vs RIS for N reflecting elements.

RZFB over the conventional RZFB is also confirmed. Furthermore, Algorithm 15 benefits to
a lesser extent from the new RZFB than Algorithm 14 and Algorithm 16.

Finally, Table 7.1 provides the average number of required iterations for the convex
optimization part of the algorithms’ convergence in simulating Fig. 9. The average single
iteration time is 3.02s and 4.83s for the PGS based and IGS based algorithms, respectively.
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Fig. 7.10 Achievable minimum throughput under RZF vs the number of BS antennas
M .
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Fig. 7.11 Achievable minimum throughput under RZF for K = M + 1 BS antennas.

All the algorithms only need 30% of the maximum number of iterations to reach 80% of their
optimal values.
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Table 7.1 The average number of iterations required for the algorithm’s convergence

M = 5 M = 6 M = 7 M = 8 M = 9
Alg 3-PGS 15 14 14 10 9
Alg 4-PGS 10 9 8 8 8
Alg 5-PGS 17 16 17 14 11
Alg 3-IGS 17 16 17 14 13
Alg 4-IGS 17 15 15 15 11
Alg 5-IGS 23 21 23 17 12

7.7 Conclusions

We have considered a network in which a multi-antenna aided BS and an RIS support multiple
IUs and EUs. To facilitate computational tractability while aiming for the maximum possible
information and energy throughput, conjugate beamforming has been used for delivering
energy, while zero-forcing or regularized zero-forcing beamforming has been used for delivering
information under the transmit-TS framework, where energy and information are separately
delivered during different time-slot fractions. The problem of jointly designing the RIS PRCs
and the power allocation of the beamformers for maximizing the minimum IU throughput
subject to QoES in terms of the harvested energy thresholds at the EUs end has been
addressed. It has been shown that this joint design can be decomposed into separate designs
of the RIS PRCs and of the power allocation of the IUs’ beamforming. We have developed
several efficient algorithms for these designs. A new regularized zero-forcing beamforming
method has also been conceived for improving the IUs’ throughput, which can improve the
IUs’ throughput significantly, especially in the regime of low numbers of BS antennas.





Chapter 8

Conclusions and Future Work

8.1 Conclusions

At present, the global revolution in industry is accelerating, internet of things (IoT) , artificial
Intelligence (AI), virtual reality/enhanced reality (VR/AR), three-dimensional media and
other new-generation technologies are widely used, which puts forward higher requirements
in wireless communication. In the thesis, aiming at the quality of service, we developed low
complexity optimization algorithms on STR, EH and RIS-aided communication network.
The work of this dissertation is summarized as follows:

1) In uplink and downlink transmission communication, beamforming optimizations
based on time-fraction-based allocation and bandwidth allocation are proposed in Chapter
3. By joint optimization of the beamforming and time fraction (bandwithd allocation), the
self-interference in full-duplex communication can be eliminated, and the energy efficiency and
specturm efficiency can be improved compared with traditional full-duplex and half-duplex
communication.

2) For the multi-cell and multi-user energy harvesting scenarios, we developed IGS based
beamforming optimization algorithms in Chapter 4. Aiming at the problem of more variables
and higher complexity in the algorithm of IGS, a s-IGS algorithm is proposed, and the
corresponding optimization algorithm is developed, has lower complexity. Compared with the
traditional PGS based optimization algorithms, the proposed algorithm can obtain higher
users’ maximum throughput, and the security of the information can be protected.
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3) In Chapter 5, PGS and IGS based joint optimization algorithms of the beamforming and
RIS elements’ phase in RIS-aided communication scenario are developed, and the algorithm
complexity is analyzed. A new method to represent the unit-modulus constraint is proposed.
The simulation results demonstrate the superior of IGS and the proposed algorithms.

4) In order to overcome the problem of high algorithm complexity in the RIS-aided com-
munication, closed-form solution based algorithms are developed in Chapter 6. Furthermore,
to ensure the users’ achievable minimum throughput, the GM rate is used as the object
function which takes the edge users’ throughput and the sum rate into account. PGS based
algorithms and IGS based algorithms are compared in the simulation section, the simulation
results show IGS based algorithms have better GM rate while the PGS based algorithms
have better time cost.

5) Finally, in Chapter 7, EH networks and RIS-aided communication are considered at
the same time. By time-fraction-based allocation, the interference cause by EH users to
IU users is eliminated. A joint optimization for information beamforming, energy transfer
beamforming and time allocation is developed. In the simulation section, the conclusion
that RIS cannot help energy harvesting is confirmed, however, RIS still can improve the IUs’
throughput in the RIS-aided EH network.

8.2 Future work

Interesting directions for future work are presented in the following.

• In Chapter 3, the communication system is under proper Gaussian signaling, in
the future, we think it is possible to use improper Gaussian signaling instead of the
conventional proper Gaussian signaling in STR which might achieve better performance.

• In Chapter 4, the exploitation of IGS in massive multi-input multi-output energy-
harvesting enabled networks is under current study.

• In Chapter 5, the future research direction is to consider channel estimation and solve
the joint design of RIS’s reflecting coefficients and transmit beamformers in the presence
of channel estimation errors.



8.2 Future work 179

• In Chapter 6, extension of the GM maximization-based approach to multi-carrier
communication is under our current study. Its extension to the quantized RIS-aided
communication is also interesting and deserves a separate study in our future research.

• In Chapter 7, indoor scenarios for RIS-aided EH network is an interesting direction for
future research.





Appendix A

Fundamental Inequalities

The following result [48] is used.

Theorem 1 The following inequality holds true
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The right-hand-side (RHS) of (A.1) agrees with the left-hand-side (LHS) at (x̄, ȳ, t̄).

A particular case of (A.1) is
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and
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Another inequality
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follows from the convexity of the function xxx/ttt =
√
xxx

2
/ttt on

√
xxx and ttt.

Substituting xxx→ 1/xxx and x̄→ 1/x̄ in (A.1) and (A.2) lead to
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(ȳ + x̄)t̄(2−
x̄

xxx
− yyy

ȳ
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and
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As a particular case of (A.6) and (A.7) it is
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and
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By substituting xxx→ ||xxx||2 and x̄→ ||x̄||2 with xxx ∈ Cn and x̄ ∈ Cn in (A.6), (A.7), and
(A.10) and using the inequality

||xxx||2 ≥ 2ℜ{x̄Hxxx} − ||x̄||2 ∀ xxx ∈ Cn, x̄ ∈ Cn
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and
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over the trust region
2ℜ{x̄Hxxx} − ||x̄||2 > 0. (A.14)

The following inequalities hold true for matrices of dimension 2× 2 [39] and [164]:
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)−1
,Y⟩ (A.17)

∀ X ≻ 0,Y ≻ 0 & X̄ ≻ 0, Ȳ ≻ 0,
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and

log |X| ≥ log |X̄|+ 2− ⟨X̄, (X)−1⟩∀ X ≻ 0 & X̄ ≻ 0.

Theorem 2 The following inequalities hold true for all X ≻ 0, Y ≻ 0 and X̄ ≻ 0, Ȳ ≻ 0
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that yields
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The following results of [48] are used
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The following matrix inequality holds true for all matrices Y ≻ 0, Ȳ ≻ 0 and X and X̄

of appropriate dimension [165, Appendix C]

XYXH ≽ X̄ȲXH + XȲ X̄H − X̄ȲY−1Ȳ X̄H . (A.22)

Using the inequality (A.22) in the appendix A yields (A.23).
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Therefore, the nonconvex constraint (5.35) is innerly approximated by the constraint

RHS of (A.23) ≥ zk, (A.24)
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The latest inequality is equivalent to (5.36) by the Shur’s complement.

The following inequality follows from the fact that the function ⟨[V]2Y−1⟩ is convex for
the the matrix variable V and positive matrix variable Y [165]:

⟨[V]2Y−1⟩ ≥ 2ℜ{⟨V̄ H Ȳ −1V} − ⟨[V̄ ]2Ȳ −1YȲ −1⟩, (A.25)

for all V, V̄ , and positive definite Y and Ȳ of an appropriate dimension.

The following inequalities were obtained in [39]:
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for σ > 0 and vvv ∈ R, v̄ ∈ R.
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Proof of (6.62) and (6.63)
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1,k + QI,(κ)
1,k

)
(cosθθθ +  sinθθθ)}

= 2
(
(cosθθθ)TQR,(κ)

1,k cosθθθ − (cosθθθ)TQI,(κ)
1,k sinθθθ −(sinθθθ)TQR,(κ)

1,k sinθθθ − (sinθθθ)TQI,(κ)
1,k cosθθθ

)
= RHS of (6.63),

proving (6.63).
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