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Abstract—Unprecedented video collection and sharing have
exacerbated privacy concerns and led to increasing interest in
privacy-preserving tools. A satisfactory video de-identification
tool should be able to remove sensitive identity information
from face videos while maintaining useful information for other
identity-agnostic tasks. Meanwhile, it is necessary to allow the
authority to inspect real identity when abnormal events are
detected. Existing methods only focus on the study of de-
identification, and lack the desired recovery ability when granting
permissions. Furthermore, they all process the videos frame
by frame, which hardly benefit from motion and inter-frame
information. In this paper, we propose a modular architecture
for reversible face video de-identification, called IdentityMask,
which leverages deep motion flow to avoid per-frame evaluation.
Our framework consists of two processes: the de-identification
process provides a protective mask for identity information, while
the recovery process can remove the protective mask if and only
if the right key is provided. To this end, a Protection Module and a
Recovery Module are built as two major functional modules, both
based on an identity disentanglement network and guided by a
crucial Motion Flow Module. An Affine Transformation Module
provides simple but reliable assistance. Extensive experiments
on a diverse natural video dataset (gender, ethnicity, age, etc.)
demonstrate the effectiveness of the proposed framework for
reversible face video de-identification.

Index Terms—Reversible video de-identification, privacy pro-
tection, security and forensics.

I. INTRODUCTION

The proliferation of smartphones and short-video platforms
has changed the way people create and consume video.
Ordinary individuals have become the primary producers and
consumers of video activities [1]. With the surge in the number
of online videos, the sensitive information (such as human
faces) contained in these videos has caused unprecedented
violations in the field of personal privacy protection [2].
New privacy laws and regulations begin to forbid the public
disclosure of personal sensitive information. However, since
the access and utilization of such videos are neither easy to
monitor nor to prevent, it is essential to grant users the option
to obfuscate themselves out of these videos.

Advanced computer vision technology and blooming online
social networks have greatly facilitated both daily social inter-
actions and face videos sharing [3]. While the media users are
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willing to guard their personal privacy, they are also eager to
enjoy the convenience of advanced identity-agnostic computer
vision applications. These applications do not need to identify
the people in the videos, for instance, face detection, face
reenactment, emotion analysis, action recognition and so on.
Therefore, maintaining the utility of identity-protected videos
to support existing identity-agnostic tasks and normal online
social use becomes a new and appealing topic. In addition, the
Internet is not an extrajudicial land. When an incident such
as a crime occurs, authorities should be able to examine the
original videos for forensics purposes.

Reversible face video de-identification is an effective solu-
tion to the aforementioned issues. But it is very challenging
to design a satisfactory technique to achieve this target. On
the one hand, it requires obfuscating the sensitive identity
information of the subject while minimizing distortion or
changes in other non-identity features [4]–[6], i.e., ensuring
visual similarity including appearance, posture, expression,
background information, etc. On the other hand, in the case
of “after-the-fact forensics”, it allows the authorized party to
fully restore the anonymous videos [7].

Existing face video privacy-preserving methods [4]–[6],
[8]–[12] only focus on the former aspect, and lack the restora-
tion ability, which does not meet the privacy requirements
of keeping pace with the times. Furthermore, these methods
process video frame by frame without considering the tem-
poral relationship between frames. This can easily make the
de-identified video flicker due to temporal inconsistency and
cause excessive computational overhead.

In order to overcome the above problems, in this paper,
we present a novel and effective reversible face video de-
identification modular framework guided by deep motion
flow, called IdentityMask. Our framework contains two main
functional modules (Protection Module and Recovery Module),
both of which are guided by the crucial Motion Flow Module,
while an Affine Transformation Module provides simple but
reliable assistance. Instead of per-frame processing, it lets
only the first affined frame go through the Protection/Recovery
Module, and calculates the deep motion flow between every
two adjacent frames via a motion flow generator. Then the
subsequent de-identified/recovered frames can be generated
based on the first protected/recovered frame by the guide of
the relative motion representation. All the synthesized videos
can be visually pleasing without flickering. Also, we design
a discrete key space where keys condition identity changes
to securely enable the recovery transformation only for the
authorized parties. Specifically, any video that the user wants
to obfuscate will be transformed into the de-identified one
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Fig. 1. Comparison between a vulnerable social media platform (left panel) and a IdentityMask protected social media platform (right panel) in maintaining
normal use, safeguarding legal supervision as well as handling malicious privacy intruders for stealing personal identity information.

with an assigned Ukey (a number that matches the user’s
UID). Then, given a de-identified video, the original video
can only be recovered if the correct key and the trained
recovery pipeline are provided. We further increase security as
follows: given an anonymized video, even the trained recovery
pipeline is stolen, if a wrong key is provided, it changes to
a new identity that is still different from the original one
(Fig. 1, “Wrong Key”), with a natural appearance. When
the framework is used in practical applications, the Ukey
can be a number defined according to the specific situation.
For example, specified by the user, distributed by the video
platform, and so on.

This paper is built upon our prior work [13] and [14] with
multiple improvements. Compared with [13], we add a recov-
ery process and achieve reversible face video de-identification,
which is more conducive to the establishment of orderly online
social networks. We also add Ukey to enable users to control
the de-identification process. The method in [14] works on still
images and cannot be directly applied to videos. While in this
paper, we use two specifically designed modules to process
videos. In addition, the reference identity in [14] is obtained by
randomly selecting k (during the experiment, we set k=3000)
different identities from the training set, which is inconvenient
and may cause legal disputes. We solve this shortcoming by
leveraging random seeds conditioned on Ukeys to generate
reference identities, which is more flexible and gets rid of the
need for auxiliary faces.

In summary, the main contributions of this paper are de-
scribed as follows:

• To the best of our knowledge, the proposed Identity-
Mask is the first method that can conduct reversible
de-identification for face videos. Our proactive defence
technique well addresses the growing concerns about
personal privacy protection during online video sharing.
On the one hand, the users can protect individual identity
with a certain Ukey (equivalent to a password) before
sharing. On the other hand, when the identity-protected
video is released, the authorized party can still obtain
the recovered video with the original identity through the
correct Ukey, while it is difficult for unauthorized parties
to infer the true identity.

• We introduce deep motion flow into video de-

identification tasks to avoid per-frame processing. We
show that the Motion Flow Module can provide important
guidance for IdentityMask pipeline to generate identity-
protected/identity-recovered videos, resulting in signifi-
cantly improved synthesis quality and reduced computa-
tional overhead.

• Experimental results on a diverse face video dataset
(gender, ethnicity, age, etc.) have demonstrated the effec-
tiveness of our proposed IdentityMask. In addition, we
introduce evaluation metrics designed for videos, which
are lacking in existing literature.

II. RELATED WORK

To our best knowledge, our work is unique and there is no
previous similar work to directly compare with. Nevertheless,
it is closely related to previous video de-identification work,
which can be classified into two categories according to the
application scenarios, as described below.

A. Face video de-identification

The face videos, such as vlogs, live-streaming sales,
speeches and interviews, are shot with human head and part
of the upper body as the main subject, and have become a
popularity in social media in recent years [15]–[17]. Therefore,
the corresponding de-identification research is emerging. We
classify these approaches into two categories.
Identity swapping-based methods. Replacing the identity
in a face video with someone else is a straightforward but
effective idea of de-identification. The “someone” here can
be either a real identity provider or a somehow synthesized
identity that doesn’t exist in reality. Generally, the latter is a
more thorough way of privacy protection.

Zhu et al. [12] applied deepfake technology to de-identify
medical examination videos by explicitly swapping the pa-
tients’ faces with open-source characters. However, such sim-
ple operation will lead to an extreme deterioration in visual
similarity, thus more skillful identity swapping-based methods
are proposed. With several pre-trained active appearance mod-
els (AAMs), Samarzija et al. [9] found the best fit model of the
original face, and swapped the face region with another face
taken from the training dataset. Meden et al. [10] replaced the
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TABLE I
A COMPARISON TO THE EXISTING FACE VIDEO DE-IDENTIFICATION METHODS

Gross,
[8]

Samarzija,
[9]

Meden,
[10]

Li,
[11]

Zhu,
[12]

Ren,
[4]

Gafni,
[5]

Maximov,
[6] ours

Without auxiliary faces yes no no no no yes no no yes
Demonstrated on a diverse video dataset

(gender, ethnicity, age, etc.) no no yes no no yes yes yes yes

Demonstrated on a diverse face video
dataset (gender, ethnicity, age, etc.) no no no no no no yes no yes

Without per-frame processing no no no no no no no no yes
Recover original face no no no no no no no no yes
Reference to a comparison with ours Fig. 5 Fig. 6 Fig. 5

original faces with surrogates generated from a small num-
ber of identities. Instead of synthesizing the surrogate faces
through simple pixel averaging, they used a convolutional
neural network (CNN) to generate artificial surrogates. Li et
al. [11] used a trained facial attribute transfer model (FATM)
to map the non-identity related facial attributes to the face
of donors, who were a small number (usually 2 to 3) of
consented subjects. Gafni et al. [5] utilized a multi-level face
descriptor to convert the identity of the original face to that of
the target face. Specifically, the removal of identity was done
via distancing the face descriptors of the output video from
those of the original image. Maximov et al. [6] removed the
identification characteristics of input people in the bottleneck
of the generator via a one-hot label which encoded the desired
identity, meanwhile they leveraged the input landmark images
with some original identity information left to preserve the
pose, thus the generated identity was a composition of both
the landmark identity and the desired identity.
Identity disentanglement-based methods. Although the for-
mer kind of methods have evolved to a stage with amazing
results, its reliance on auxiliary identities can make it difficult
to apply under increasingly stringent regulations. For example,
consent from the target identity provider should be obtained
regularly, which is kind of inconvenient.

Consequently, another pattern that deals with face video
de-identification through certain face models by training to
extract facial feature representations begins to rise. Once the
representations have been disentangled, a de-identified face
video can then be generated based on the new representations
originated in which the protected identity information has been
eliminated, reduced, or obfuscated. During this time, a new
virtual identity will generate. Our method follows this pattern.

Gross et al. [8] factorized input images into identity and
non-identity factors using a generative multi-factor model, and
then applied a de-identification algorithm on the combined
factorized data before using the bases of the multi-factor model
to reconstruct de-identified images. With the development of
deep neural network, deep face models can better undertake
the task of disentanglement. Ren et al. [4] employed a multi-
task extension of the generative adversarial network (GAN),
where a face anonymizer tried to minimize the identification
accuracy and an activity detector tried to maximize spatial
action detection performance.

We provide a comprehensive comparison between the pre-
vious face video de-identification methods and ours in Table I.

B. Surveillance video de-identification

Video surveillance systems have been omnipresent for a
considerable time, with large systems being deployed in
strategic places such as public transportation, airports, city
centers, or residential areas. In order to address the never-
ending concerns about personal privacy protection, a large
amount of targeted de-identification technologies have been
proposed. As the surveillance videos typically contain multiple
people (with full body) and complex surrounding environment,
these methods always attach great importance to efficient
face detection and tracking, and apply anonymization on the
segmented origins. Here we classify them into three categories.
Obfuscation-based methods. These methods achieve video
de-identification by obfuscating each frame’s privacy sensitive
region in some way. Specifically, Dufaux et al. [18] used
domain scrambling methods to achieve distortion. Schiff et
al. [19] employed solid ellipsoidal overlays, while minimized
the overlay area to maximize the remaining observable region
of the scene. Chen et al. [20] implemented an EMHI ap-
proach to obscure the entire body. Agrawal et al. [21] applied
the exponential blur of pixels in the voxel or line integral
convolution. Mrityunjay et al. [22] obscured the segmented
bounding box region by using Gaussian Blur of the pixels
and binarizing the intensity values. Ivasic-Kos et al. [23]
applied 2D Gaussian filtering to automatically obfuscate the
human body shape information. Blažević et al. [24] replaced
humans with rendered 3D human models. Ryoo et al. [25]
presented an inverse super resolution (ISR) paradigm that used
extreme low-resolution (e.g., 16×12) videos to achieve de-
identification and benefit activity recognition. Flouty et al. [26]
introduced a sliding window smoother for temporal smoothing
on the detections. [27] obfuscated the privacy-sensitive parts at
multiple privacy levels by using a random corruption matrix.
Kim et al. [28] fundamentally protected privacy by blurring
unwanted blocks in images, yet ensured that the robots could
understand the video for their perception. Wang et al. [29] used
a lensless coded aperture (CA) camera, which placed only a
coded aperture in front of an image sensor, the resulting CA
images would be visually unrecognizable and were difficult
to restore with high fidelity. Zhou et al. [1] proposed a
novel PsOP framework which was extendable to any potential
privacy-sensitive objects pixelation after leveraging pre-trained
detection networks as the backbone. Tu et al. [30] generated
bounding boxes to cover the regions of interest, then the pixels
inside bounding boxes could be modified to achieve a certain
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Fig. 2. The overall architecture of the proposed reversible face video de-identification method, IdentityMask. Our framework consists of two processes: the
de-identification process provides a protective mask for identity information, while the recovery process removes the protective mask if and only if the right
key is provided. The former relies on the Protection Module and the latter relies on the Recovery Module, both of which are guided by the crucial Motion
Flow Module, and are assisted by the simple but reliable Affine Transformation Module.

degree of content-obscuring to obscure the person-identifiable
contents.
Style transfer-based methods. Style transfer has also been
used to do de-identification. Winkler et al. [31] generated an
abstracted version of the security regions that showing only
outlines of persons. Erdélyi et al. [32] presented a resource-
aware cartooning privacy protection filter which converted raw
images into abstracted frames where the privacy revealing
details were removed. Brkić et al. [33] altered the appearance
of the segmented pedestrians through a neural art algorithm
that used the responses of a deep neural network to render
the pedestrian images in a different style. [34] proposed two
privacy protection schemes by using false colors on entire
images. PECAM [7] converted the real-world images (domain-
X) into the privacy-enhanced ones (domain-Y) through cartoon
style rendering.
Identity disentanglement-based methods. Recently, the de-
velopment of deep CNNs has also inspired new methods that
based on identity disentanglement [35]. Li et al. [36] devel-
oped an encoder-decoder network architecture which could
separately disentangled the facial feature representation into an
appearance code and an identification code. The anonymous
face was synthesized by recombining the original identity code
and another appearance code from the target set to protect the
individual privacy. Proença et al. [37] used a binary vector
labelling ID, gender, ethnicity, age and hairstyle predicted by
an attribute classifier to keep full control over the appearance
of the anonymous faces.

Especially, among all these video surveillance de-
identification methods, there exist five methods [7], [24], [27],
[34], [37] that are reversible and can recover the original scene.
Therefore, it is imperative to develop similar reversible de-

identification technology for face videos. These five technolo-
gies focus on the accurate recording of events in supervised
scenes, while little attention is paid to the generation of subtle
details due to the original low resolution. In contrast, we strive
to generate visual-pleasing facial details and maintain accurate
facial motion.

III. PRELIMINARIES OF PROBLEM FORMULATION

A reversible face video de-identification model generally
can be viewed as a combination of a complex function δ and
its inverse function δ−1. To be more specific, the function δ
maps a given face video V = (v1, v2, · · · , vn) (vi represents
the ith frame) to a de-identified video V ′ = (v′1, v

′
2, · · · , v′n),

aiming to conceal the real identity, and can be formulated as:

δ(V ) = V ′ (1)
s.t. : 1 ≤ i ≤ n, ID{vi} ≠ ID{v′i}.

After this, video V ′ can still be used normally, and when
given the right key, the function δ−1 can restore a video
Vr = (vr,1, vr,2, · · · , vr,n) with the original identity, but if the
key is wrong, the function δ−1 restores a visual-pleasing video
Vw = (vw,1, vw,2, · · · , vw,n) whose identity is different from
the original video’s identity. It can be formulated as follows:
when the right key is given:

δ−1(V ′) = Vr (2)
s.t. : 1 ≤ i ≤ n, ID{vr,i} = ID{vi};

and when the wrong key is given:

δ−1(V ′) = Vw (3)
s.t. : 1 ≤ i ≤ n, ID{vw,i} ≠ ID{vi}.
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TABLE II
NOTATIONS

superscript

t affined frame
p ID-protected frame
′ ID-protected frame with background
r ID-recovered frame

subscript r ID right recovered frame
w ID wrong recovered frame

model M motion flow generator
F fusion network

IV. DEEP MOTION FLOW GUIDED REVERSIBLE FACE
VIDEO DE-IDENTIFICATION

In this section, we propose a modular architecture, called
IdentityMask, to address the reversible face video de-
identification problem. From the perspective of realized func-
tion, IdentityMask includes two-directional mappings: a de-
identification process and a recovery process. When given
an original non-protected face video V , the de-identification
process aims to transform it into an identity-protected one
(V ′), whose identity change conditioned on the Ukey, and the
recovery process aims to transform the de-identified video V ′

into an identity-recovered one (Vr with right key or Vw with
wrong key). Fig. 2 illustrates the whole pipeline.

From the perspective of framework structure, IdentityMask
consists of two main functional modules: the identity protec-
tion module Protection Module and the identity restoration
module Recovery Module, both of which are guided by the
vital Motion Flow Module. With the simple but reliable assis-
tance of the Affine Transformation Module, IdentityMask ef-
ficiently achieves reversible de-identification. In the following
subsections, we first introduce the four modules respectively,
and then describe the entire IdentityMask pipeline.

A. Protection Module

We achieve de-identification by following the identity disen-
tanglement pattern. As shown in Fig. 4, when given an original
clean face frame vt1, we apply an identity encoder and an
attribute encoder to extract two disentangled representations
of the latent space, denoted as rid(v

t
1) and rattr(v

t
1). Among

them, the identity representation rid contains all the infor-
mation relevant to the identity which affects face verification
systems to judge whether it is the same person, and the
attribute representation rattr contains the rest of information
carried by the image which guarantees the visual similarity
(e.g. pose, expression, overall structure, background and so
on). Based on this, we firstly use the Ukey as a randomness
seed to generate a reference identity vector rrefer whose size
equals to rid(v

t
1), which is formulated as:

rrefer = RUkey, (4)

Here the Ukey is a number that uniquely represents the user’s
identity. Then, a component vector r⊥(v

t
1) that is orthogonal

to rid(v
t
1) in rrefer can be decomposed as follows:

r⊥(v
t
1) = rrefer − (rid(v

t
1) · rrefer) · rid(vt1), (5)

It allows us to create a new identity rnew(v
t
1) by rotating

rid(v
t
1) with a controllable parameter θ, and we denote it as:

rnew = rid(v
t
1) · cos θ + r⊥(v

t
1) · sin θ. (6)

Finally we synthesis the de-identified face vp,t1 with new iden-
tity representation rnew and original attribute representation
rattr(v

t
1) through a well-trained fusion network as follows:

vp,t1 = F(rnew, rattr(v
t
1)), (7)

B. Recovery Module

Given a de-identified face frame vp,t1 , our Recovery Module,
which is based on the same identity disentanglement network
structure as the Protection Module, can restore the original
frame with real identity if and only if the right key is provided.
To be more specific, we firstly imply the aforementioned iden-
tity and attribute encoders to extract its identity representation
rid(v

p,t
1 ) and attribute representation rattr(v

p,t
1 ), which has the

relationship as:

rid(v
p,t
1 ) = rnew, (8)

rattr(v
p,t
1 ) = rattr(v1).

Then when given the right key (i.e., R key, which we define
to be equal to the Ukey), the recovered identity embedding
rrid can be calculated as:

rrid =
rid(v

p,t
1 )−RR key · sin θ
cos θ −A · sin θ

, (9)

where

A =
cos2 θ − (rid(v1,p)−RR key · sin θ) · rid(vp,t1 )

sin θ · cos θ
, (10)

In fact, middle parameter A equals r′id·rrefer. Finally, the right
recovered image with original real identity can be obtained as:

vr,tr,1 = F(r′id, rattr(v1,p)), (11)

C. Motion Flow Module

The above Protection and Recovery Modules work well for
images, and it is straightforward to directly apply them to
videos in a frame by frame way. However, since both modules
rely on the disentanglement of latent convolutional features,
direct per-frame processing is time-consuming. Typically, the
flow estimation and feature propagation are much faster than
the computation of convolutional features [38], and consecu-
tive face video frames are highly similar, so we exploit the
similarity to reduce computational cost and achieve speedup.
Specifically, either the Protection Module or the Recovery
Module only processes the first frame, then we use a motion
flow generator to calculate the relative motion flow of every
two adjacent frames (see Fig. 3), which is denoted as:

M = (m1,m2, · · · ,mn−1), (12)

where mi (i ≤ n) denotes the relative motion flow that can
warp the processed (i.e., de-identified or recovered) ith frame
to the next (i+ 1)th frame.



6

…

anonymous 

first frame

(a) per-frame network (b) deep motion flow guided  IdentityMask

motion flow

…

Input video frame

Protected video frame

input video

Protected/recovered video

Protected/recovered 

first frame

Protect/Recovery

module

Protect 

module

First frame

Fig. 3. Illustration of (a) existing face video de-identification technologies
using per-frame network generation and (b) the proposed deep motion flow
guided reversible face video de-identification.

D. Affine Transformation Module

The position and pose of faces in online sharing videos
vary widely, which usually differ from the “standard” frontal
alignment that commonly used in large face datasets. However,
it is well-known that computing deep representations by using
a pre-trained CNN does have a restriction: the test image needs
to lie close to the image distribution trained by the CNN.
Otherwise, the latent optimization may fail to reproduce on the
test image, leading to poor feature maps. Therefore, directly
applying Protection Module or Recovery Module on the first
frame is invalid, and we design an affine transformation, which
can standardize and restore the distribution of the first frame.

To be specific, We calculate several keypoints of all faces
in the training datasets of Protection and Recovery Module,
compute the average and set it as the standard pattern (denoted
as PSTD). Every time before the first frame is input to the
Protection or Recovery Module, its keypoints (denoted as Pv1

or Pv′
1
) are firstly computed in the same way. Then these

keypoints are matched to the standard keypoint pattern PSTD

with an affine transformation, which is obtained by minimizing
the distortion between the two sets of points. Using this affine
transformation, we warp every pixel of the input first frame
face to the corresponding position of the average face. We
then copy the edge color to fill the warped image into the
same dimension as the input. More formally, we denote

T = Pv1℧⃗PSTD, T ′ = Pv′
1
℧⃗PSTD, (13)

where T represents the affine transform matrix and ℧⃗ denotes
the affine transformation between two point patterns. Besides,
we also need the inverse affine transformation to restore the
original face position, and it is formulated as:

T−1 = PSTD℧⃗Pv1 , T ′−1 = PSTD℧⃗Pv′
1
, (14)

where T−1 represents the inverse transform matrix.

E. The Entire IdentityMask Pipeline

Our pipeline consists of a de-identification process and a
recovery process (see Fig. 2).

The de-identification process takes the original clean video
V = (v1, v2, · · · , vn) as input. First of all, it is sent into
the Motion Flow Module, where the motion flow generator
generates the relative motion flow between every two adjacent
frames, which is formulated as:

M(V ) = (m1,m2, · · · ,mn−1). (15)

Based on this, the first frame v1 firstly enters the Affine
Transformation Module to generate the affine transform matrix
T and the inverse affine transform matrix T−1 (see Equ. (13)
and (14)). Then the image vt1 that lies in the “standard”
distribution is obtained via:

vt1 = v1 · T. (16)

This warped first frame vt1 is sent to the Protection Module,
through which the real identity is concealed and a new identity
rnew conditioned on the Ukey is generated. We denote

vp,t1 = F(rnew, rattr(v
t
1)). (17)

Next, the de-identified frame vp,t1 restores to the same layout as
the original input v1 through an inverse affine transformation:

vp1 = vp,t1 · T−1. (18)

In order to preserve the original background, a background
mask Mbg is generated by applying a black image M0 whose
dimension is the same as the input v1 through two affine
transformations, which is denoted as

Mbg = M0 · T · T−1. (19)

With the help of Mbg , we can get the de-identified first frame:

v′1 = vp,1 · (1−Mbg) + v1 ·Mbg. (20)

Finally, we can obtain the entire identity-protected video
V ′ = (v′1, v

′
2, · · · , v′n) on the basis of the successfully de-

identified first frame v′1 and the relative motion flow M(V ).
Specifically, for 1 < i ≤ n:

v′i = v′i−1 ⊛mi−1, (21)

where ⊛ denotes the inference of v′i with the former de-
identified frame v′i−1 and the relative motion flow mi−1.

The de-identification process is summarized in Algorithm
1. The recovery process is similar except that the Protection
Module is replaced by the Recovery Module, and is summa-
rized in Algorithm 2.

V. IMPLEMENTATION

In this section, we introduce the promising module instan-
tiations and their training process in more detail.

A. Identity Disentanglement Network Configuration

As mentioned in Sec. IV, both the Protection and the
Recovery Module are established on the condition of identity
disentanglement. Our identity disentanglement network con-
tains an identity encoder Eid, an attribute encoder Eattr and
a fusion network F , which are pre-trained as a whole on the
CelebA-HQ dataset [39].
Identity Encoder. As existing studies on face verification
and recognition have made arduous efforts in finding dis-
criminative face features for face identification, we employ
a pre-trained state-of-the-art face recognition model [40] as
our identity encoder. It can provide highly discriminative
features for identity verification to avoid training from scratch,
and has a clear geometric interpretation due to the exact
correspondence to the geodesic distance on the hypersphere.
Given an original face image X, the identity representation rid
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Fig. 4. The detailed architecture of the identity disentanglement network in the proposed Protection Module and Recovery Module with geometrical
interpretation of identity changes. Each point on the sphere represents one normalized feature. Different colors denote different identities.

Algorithm 1 De-identification process.
Input: Original non-protected video V = {vi}ni=1, Ukey.
Output: De-identified video V ′ = {v′i}

n
i=1.

1: Generate the relative motion flow M(V ) = {mi}n−1
i=1

2: Generate affine transform matrixes T in Equ. (13) and
T−1 in Equ. (14).

3: Generate background mask Mbg with black image M0:
Mbg = M0 · T · T−1.

4: while i = 1 do
5: vt1 = v1 · T.
6: Generate new identity embedding rnew with Ukey in

Equ. (6) and de-identify the affined first frame:
vtp,1 = F(rnew, rattr(v

t
1)).

7: Restore the original layout: vp1 = vp,t1 · T−1.
8: Generate de-identified first frame with preserved

background:
v′1 = vp1 · (1−Mbg) + v1 ·Mbg.

9: i = i + 1.
10: end while
11: for 1 < i ≤ n do
12: v′i = v′i−1 ⊛mi−1.
13: i = i + 1.
14: end for

is defined to be the last normalized feature vector before the
final FC layer, which is denoted as:

rid(X) = Eid(X). (22)

It is believed that all the embedding features rid are distributed
around each feature centre on a normalized 512-D hyper-
sphere [40]. Fig. 4 shows the feature distribution visualization
of identity changes. Each point on the sphere represents one
normalized feature. Different colors denote different identities.
Attribute Encoder. Attribute representation, which deter-
mines pose, expression, overall structure, background and so
on, intuitively carries more spatial information than identity.
Therefore, in order to preserve different level details, we
construct a U-Net-like structure with a depth of 8, and then
use the 8 feature maps generated from the U-Net decoder as
the attributes representations rattr. More formally, we denote

rattr(X) = Eattr(X) =
{
r1attr(X), r2attr(X), · · · , r8attr(X)

}
,

(23)
where rkatt(X) represents the k-th level feature map from the
U-Net decoder.

Algorithm 2 Recovery process.
Input: De-identified video V ′ = {v′i}

n
i=1, key.

Output: Right recovered video Vr = {vr,i}ni=1 or wrong
recovered video Vw = {vw,i}ni=1.

1: Generate the relative motion flow M(V ′) = {m′
i}

n−1
i=1

2: Generate affine transform matrixes T ′ in Equ. (13) and
T ′−1 in Equ. (14).

3: Generate background mask Mr
bg with black image M0:

Mr
bg = M0 · T ′ · T ′−1.

4: while i = 1 do
5: vp,t1 = v′1 · T.
6: if key is right then
7: Recover the right identity embedding rrid with

key in Equ. (9) and correctly restore the affined first frame:
vr,tr,1 = F(rrid, rattr(v

p,t
1 )).

8: Restore the original layout: vrr,1 = vr,tr,1 · T ′−1.
9: Generate right recovered first frame with preserved

background:
vr,1 = vrr,1 · (1−Mr

bg) + v′1 ·Mr
bg.

10: i = i + 1.
11: else
12: Recover a wrong identity embedding rwid with

key in Equ. (9) and wrongly restore the affined first frame:
vr,tw,1 = F(rwid, rattr(v

p,t
1 )).

13: Restore the original layout: vrw,1 = vr,tw,1 · T ′−1.
14: Generate wrong recovered first frame with

preserved background:
vw,1 = vrw,1 · (1−Mr

bg) + v′1 ·Mr
bg.

15: i = i + 1.
16: end if
17: end while
18: for 1 < i ≤ n do
19: vx,i = vx,i−1 ⊛m′

i−1, x ∈ {r, w} .
20: i = i + 1.
21: end for

Fusion Network. The fusion network F is required to im-
plement face reconstruction based on rid and rattr. Previous
research [41] has verified that direct feature concatenation
can easily lead to blurry results and is not expected to be
used. To solve this problem, the novel Adaptive Attentional
Denormalization (AAD) ResBlk [42] has been proposed to
improve feature integration in multiple levels. We integrate 8
cascaded AAD ResBlks to the body of our fusion network,
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TABLE III
NETWORK STRUCTURES OF IDENTITY ENCODER, ATTRIBUTE ENCODER AND FUSION NETWORK

Identity Encoder Attribute Encoder Fusion Network

model [40]

BilinearUpsample ×2 ConvTranspose 4×4,2,1 BN+LeakyRELU
Conv 4×4,2,1 BN+LeakyRELU CON ConvTranspose 4×4,2,1 BN+LeakyRELU AAD ResBlk(1024,1024) BilinearUpsample ×2
Conv 4×4,2,1 BN+LeakyRELU CON ConvTranspose 4×4,2,1 BN+LeakyRELU AAD ResBlk(1024,1024) BilinearUpsample ×2
Conv 4×4,2,1 BN+LeakyRELU CON ConvTranspose 4×4,2,1 BN+LeakyRELU AAD ResBlk(1024,1024) BilinearUpsample ×2
Conv 4×4,2,1 BN+LeakyRELU CON ConvTranspose 4×4,2,1 BN+LeakyRELU AAD ResBlk(1024,512) BilinearUpsample ×2
Conv 4×4,2,1 BN+LeakyRELU CON ConvTranspose 4×4,2,1 BN+LeakyRELU AAD ResBlk(512,256) BilinearUpsample ×2
Conv 4×4,2,1 BN+LeakyRELU CON ConvTranspose 4×4,2,1 BN+LeakyRELU AAD ResBlk(256,128) BilinearUpsample ×2
Conv 4×4,2,1 BN+LeakyRELU CON ConvTranspose 4×4,2,1 BN+LeakyRELU AAD ResBlk(128,64) BilinearUpsample ×2

AAD ResBlk(64,3) BilinearUpsample ×2
Conv 4×4,2,1 represents a Convolutional Layer with kernel size 4, stride 2 and padding 1. ConvTranspose 4×4,2,1 represents a Transposed Convolutional Layer with
kernel size 4, stride 2 and padding 1. CON represents feature map concatenating. AAD ResBlk (cin, cout) represents an AAD ResBlk with input and output channels

of cin and cout. All LeakyRELUs have α = 0.1.

in order to adjust the attention regions of rid and rattr, so
that they can harmoniously participate in synthesizing different
facial parts. And we can get the reconstructed face X ′ as:

X ′ = F (rid(X), rattr(X)). (24)

The whole training process is discussed in the following.
Training Process. We use the identity consistency loss Lid to
make sure the identity of the reconstructed face X̂ still keeps
the same:

Lid = 1− rid(X
′) · rid(X)

∥rid(X ′)∥2 · ∥rid(X)∥2
. (25)

Here cosine similarity is chosen because it best fits our angular
margin based Identity Encoder [40].

We also define the attributes consistency loss Lattr, which
can be formulated as

Lattr =
1

2

n∑
k=1

∥∥rkattr(X ′)− rkattr(X)
∥∥2
2
. (26)

This loss function has been proved to encourage the generated
images to be perceptually similar (but not identical) to the
target image [43]. We tried other methods (L1 distance, Huber
loss, and cosine similarity) to measure attributes similarity,
however, L2 distance performs best.

If the restored result X ′ is generated with the same rid and
rattr, it should be as similar to the original image as possible.
We set pixel-level L2 distance as the reconstruction loss:

Lrec =
1

2
∥X ′ −X∥22 . (27)

We take advantage of adversarial learning to train the
framework and introduce the adversarial loss Ladv to constrain
the generated results indistinguishable from real images. To
promote the image quality, it is necessary to expand the
perception range of the discriminator, so we adopt m multi-
scale discriminators [44] with hinge loss functions for different
resolution versions of the generated image.

Ladv(X
′
m, Xm) = log(D(Xm)) + log(1−D(X ′

m)). (28)

where Xm indicates the low-resolution image after m-th
downsampling.

The total loss function is the weighted sum of the above
losses, which can be formulated as:

Ltotal = Ladv + λattrLattr + λidLid + λrecLrec, (29)

where λatt, λid and λrec are the weight parameters for
balancing different terms.

In the training process, we use the Adam optimizer [45]
with momentum parameters β1 = 0, β2 = 0.999. The learning
rate is set to 4× 10−4. The parameters in Eq. (29) are set to
λatt = λrec = 10, λid = 5.

B. Other Implementation Details

In the Motion Flow Module, we employ a pre-trained
CNN [46] as our motion flow generator to model the relative
dense motion flow. In the Affine Transformation Module, we
calculate the 5 keypoints (left/right eye, leftmost/rightmost tip
of the mouth, and nose) of all faces in CelebA-HQ dataset by
[47], and compute the average as the standard point pattern.
Then the Umeyama algorithm [48] is utilized to calculate the
affine transform matrixes between two point patterns.

VI. EXPERIMENTS

A. Experimental Setup

Dataset. We choose the VoxCeleb dataset [49], which contains
22496 videos extracted from YouTube, to demonstrate the
effectiveness of our reversible face video de-identification
method. After preprocessing like [46], we obtain 12775 videos
with lengths varying from 64 to 1024 frames, which are resized
to 256 × 256 preserving the aspect ratio. For simplicity, we
use the ID number annotated in the dataset as Ukey and define
the right key as a number equal to the Ukey, while a random
number other than the Ukey is generated as the wrong key.
Comparison methods. To validate the effectiveness of the
proposed IdentityMask, we compare to three state-of-the-art
methods: ACTION [4], LIVE [5] and CIAGAN [6].
Evaluation Metrics. We evaluate the proposed IdentityMask
in terms of two metrics, as described below.
(1) Privacy metrics. We measure the cosine similarity of em-
bedding vectors from the generated and original face extracted
by pre-trained face recognition model, denoted as CSIM, to
evaluate the quality of identity protection and restoration. For
a fair comparison, we employ the well-known FaceNet identi-
fication model [50], which is excluded from our training model
and pre-trained on two public datasets (CASIA-Webface [51]
and VGGFace2 [52]) respectively.
(2) Utility metrics. With today’s advanced technology, ensur-
ing that the faces in a synthesised video can still be detected is
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Original

ACTION

CIAGAN

Ours

Fig. 5. Comparison of the de-identified faces between ACTION [4], CIAGAN [6] and our method on the VoxCeleb dataset.Videos are available at supplementary
material.

Original LIVE Ours

Fig. 6. Comparison of the de-identified faces between LIVE [5] and our method.

very trivial [53]. Therefore, instead of using the face detection
rate, we borrow several metrics which have been commonly
used in face swapping and face reenactment tasks. They are
designed exactly for videos to evaluate the utility performance.
Specifically, the L2 distances between pose and expression
vectors from the generated and original face extracted by an
open-sourced pose estimator [54] and a 3D facial model [55]
are calculated as pose (denoted as POSE) and expression
(denoted as EXP) similarity. The FID score is chosen to
evaluate the generation quality as it can measure the distance
between the generated distribution and the real distribution.
In addition, we evaluate whether the motion of the input
video is preserved by computing the average distance of facial
landmark keypoints [56] from the generated and original face,
which is denoted as AKD.

Unless otherwise specified, each metric is calculated inde-
pendently for each frame.

B. Comparison in De-identification

In this subsection, we compare our IdentityMask with state-
of-the-art face de-identification methods.

The qualitative comparison with ACTION [4] and CIAGAN
[6] is shown in Fig. 5, while the quantitative results are
shown in Table IV. It can be seen that the faces generated
by ACTION is too visually similar to the original faces,
which makes it easy for people to think that they are still
the same person, thus does not realize the identity protection
from human beings. Besides, incomprehensible artifacts and
blurs with light or dark bounding boxes often occur, resulting

TABLE IV
QUANTITATIVE COMPARISONS OF IDENTITY PROTECTION ON VOXCELEB.

THE BEST RESULTS ARE IN BOLD. ↑ MEANS HIGHER IS BETTER, AND ↓
MEANS LOWER IS BETTER

Method CSIM↓ POSE↓ EXP↓ FID↓ AKD↓
CASIA VGGFace2

ACTION 0.904 0.869 2.45 2.69 19.34 1.60
CIAGAN 0.520 0.507 14.69 8.23 31.50 4.16

Ours 0.518 0.503 2.45 2.64 18.70 1.58

in obvious video jitter. This makes it difficult to share the
generated videos online. In addition, the crucial CSIM value
is high, which implies that ACTION is vulnerable to the
identification of advanced face verification model.

We can see that the frames generated by CIAGAN can
maintain some basic face attributes as well as the rough head
orientation, but most of which are not visually similar to the
original. These de-identified faces can effectively hide the true
identity information from both human eyes and machines.
However, distortions and artifacts often occur. When the
characters perform large poses or expressions, there will even
be large deformation. These are very unfavorable to the video.
As can be seen from Table IV, its utility metrics deteriorate
significantly, which will make the synthesised videos hard to
meet the requirement for online sharing.

In contrast, our method produces more natural looking
images which achieve a great advantage in visual similarity to
the input frame with visually perceptible changes, and enables
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ID-recovered video (wrong key)

ID-recovered video (right key)

ID-protected video

original video 

Fig. 7. Qualitative results of our method about identity protection and identity recovery on the VoxCeleb dataset. Videos are available at supplementary
material.

Fig. 8. Qualitative results of identity recovery when given multiple wrong keys. The black background indicates the original videos, and the red background
indicates the wrong-recovered videos.

TABLE V
QUANTITATIVE EVALUATION WITH STATE-OF-THE-ART

METHODS ON LFW DATASETS

Method True Positive Rate↓

CASIA VGGFace2

Original 0.965 ± 0.016 0.986 ± 0.010
ACTION 0.696 ± 0.015 0.714 ± 0.014

LIVE 0.035 ± 0.011 0.038 ± 0.015
CIAGAN 0.019 ± 0.008 0.034 ± 0.015

Ours 0.017 ± 0.011 0.026 ± 0.014

de-identification for both human beings and machines. Further-
more, from Table IV, the lowest CSIM value indicates that our
method is superior to the compared method in protecting the
real identity. Meanwhile, the best performance under utility
metrics shows that our method also well preserves the non-
identity aspects of the original frame, i.e., pose, expression,
facial motion, and overall structure. So we can best ensure the
subsequent normal use of the de-identified faces.

A comparison with the work of LIVE [5] is given in Fig. 6.
Our results are at least visually as good as the original ones,
despite having to run on the cropped faces extracted from the
paper PDF.

To make the comparison more convincing and fairer, we
follow the evaluation protocol that has been used in [5] and
[6], which is conducted on the LFW benchmark. Specifically,
two FaceNet identification models (pre-trained on CASIA-
Webface and VGGFace2 respectively) are employed and the
main evaluation metric is the true acceptance rate. Table V
presents the results on de-identified LFW image pairs for a
given person, while the de-identification method is applied to
the second image of each pair. It can be seen that all methods

TABLE VI
QUANTITATIVE RESULTS OF IDENTITY RECOVERY ON VOXCELEB.

Method CSIM POSE↓ EXP↓ FID↓ AKD↓
CASIA VGGFace2

R key 0.961 0.959 1.62 1.59 8.50 1.34
W key 0.475 0.461 2.75 2.96 23.18 1.61

can significantly reduce the true positive rate. In particular,
our method achieves the best privacy protection.

C. Analysis in Identity Recovery

In this subsection, we evaluate our performance in identity
restoration. The effect of one original video being de-identified
and recovered respectively with the right and wrong key
(denoted as “R key” and “W key”) is presented in Fig. 7.
It can be seen that the identity-protected frames obtain a
new identity, while still maintain a high visual similarity
(i.e., appearance, pose, expression, and facial motion), which
ensures the rationality of subsequent use. Then the right key
can restore a video which is exactly similar to the original
video with the real identity, while the wrong key can restore
a realistic video with another new identity different from the
original identity. Moreover, each wrong key maps to a unique
identity. In this way, we provide security via ambiguity: even
if a privacy intruder guesses the correct key, it is extremely
difficult to know that without having access to any other
identity revealing meta-data, since each key—regardless of
whether it is correct or not—always leads to a different
realistic identity. In particular, the effect of being recovered
by multiple wrong keys is shown in Fig. 8.

The quantitative results of identity recovery are shown in
Table VI. It shows that after de-identification: 1) the original
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Fig. 9. Quantitative comparisons of the influence of different Motion Flow Module. The first row is the original frames. The rest rows demonstrate results
when using STD [46], AVD [57] and RLT [46]. Videos are available at supplementary material.

TABLE VII
QUANTITATIVE EXPERIMENTAL RESULTS OF RIGHT RECOVERY QUALITY

ON VOXCELEB

LPIPS↓ PSNR↑ SSIM↑ MAE↓

R key 0.077 25.492 0.875 0.036

TABLE VIII
QUANTITATIVE EVALUATION OF THE MOTION FLOW MODULE

Method CSIM↓ POSE↓ EXP↓ FID↓ AKD↓
CASIA VGGFace2

STD 0.522 0.513 2.45 2.62 20.96 1.59
AVD 0.520 0.507 2.53 2.78 22.11 1.61

RLT(ours) 0.518 0.503 2.45 2.64 18.70 1.58

identity can be recovered excellently with the correct key,
which is conducive to the supervision of network abnormal
events; 2) when given the wrong key, it is almost impossible to
restore the original identity; 3) whether the video is recovered
by the right or wrong key, its utility is always impressive.

To better evaluate the right recovery quality, we apply
LPIPS (Learned perceptual image patch similarity) distance
[58] to measure perceptual similarity, PSNR (Peak signal-to-
noise ratio) [59] and MAE (Mean absolute error) to measure
distortion at the pixel level, and SSIM (Structural similar-
ity) [60] to measure the structure similarity. The results in
Table VII demonstrate that the right recovered frames are
extremely similar to the original frames, which is consistent
with the intuitive expectation. To the best of our knowledge,
IdentityMask is the first work to achieve de-identified face
video restoration, so the above results are summarized as the
baseline for future research.

D. Model Analysis and Discussions

In this subsection, considering the de-identification pro-
cess V→V ′ and the recovery process V ′→V are symmet-
rical, while previous comparison methods can only do de-
identification, we take the former as the example.

1) Motion Flow Module Selection. We pick and compare
three state-of-the-art motion flow modeling methods: STD

TABLE IX
ABLATION STUDY OF THE PROPOSED IDENTITYMASK PIPELINE

Method CSIM↓ POSE↓ EXP↓ FID↓ AKD↓
CASIA VGGFace2

w/o AT 0.376 0.368 22.58 10.27 43.04 3.96
w/o MF 0.513 0.492 2.50 2.71 20.47 2.24

Ours 0.518 0.503 2.45 2.64 18.70 1.58

[46], RLT [46] and AVD [57]. STD computes the deep motion
flow between input and output video frame by frame. RLT
calculates the deep motion flow between every two adjacent
frames of the input video first and then applies this relative
dense motion flow to the first frame of the output video. AVD
also computes the deep motion flow between input and output
video frame by frame, except it disentangles the shape and
pose of objects in the region space and forces decoupling of
foreground from background. Different motion flow modeling
methods are suitable for different application scenarios. STD
directly transfers object shape from the input video into the
generated video, while the RLT requires that objects be in
the same pose in the first frame of the input and output
video, and the AVD is designed specifically for videos of
articulated objects. Since the face is exactly in the same
pose in the first frame of the input and synthesized video
in either de-identification process or recovery process, the
RLT is theoretically the best motion flow modeling method
for IdentityMask. Fig. 9 and Table VIII reveal the qualitative
and quantitative results of the influence of the Motion Flow
Module. We can see that if STD is used, the synthesized face
can retain a slightly more similar expression to the original
face than using RLT. However, the transfer of the original face
shape leads to a decline of privacy protection ability, while
lower FID and AKD values also indicate poorer generation
quality and motion flow modeling. In addition, the background
of the generated face has severe distortion. If AVD is used,
not only the eyes and mouth have obvious distortion, but also
all the quantitative metrics are worse than employing RLT.
Therefore, RLT is the best choice of our Motion Flow Module.

2) Ablation Study. We take two variants of the proposed
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Fig. 10. Ablation study of our method. The first row is the original frames, the second row to the fourth row shows the corresponding de-identified results
of w/o AT (the model without the Affine Transformation Module), w/o MF (the model without the Motion Flow Module) and the full model.
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Fig. 11. De-identified results with variant parameter θ values.

IdentityMask pipeline for ablation study in order to validate
effectiveness of Affine Transformation Module and Motion
Flow Module. Specifically, w/o AT indicates the variant with-
out the Affine Transformation Module, and w/o MF indicates
the variant without the Motion Flow Module, which means that
the input videos have to be processed frame by frame. We let
“ours” indicate the full model. Fig. 10 shows the qualitative
results and Table IX presents the quantitative comparison. It
can be seen that w/o AT generates a very casual face contour
and results in a substantial decline in data utility. This is
unacceptable for media users. As for w/o MF, although it
can protect identity slightly better than the full model, its
pose and expression are less similar to the original video.
Also, its image quality is poor, especially the preservation
of facial movements. These will render the synthesized video
unfavorable for subsequent identity-agnostic use. Therefore,
each module in our method is indispensable and only the full
model can achieve the most wonderful de-identified effects
without affecting the subsequent identity-agnostic use.

3) Parameter Selection. In this subsection, the performance
variation of de-identification with respect to the controllable
parameter θ is studied. We conduct a group of identity
protection experiments with respect to the parameter θ. During
the test, we randomly select 1000 videos from the VoxCeleb
dataset, and change θ from 0 to 90 for each video to synthesise
the corresponding de-identified videos. Fig. 11 shows the
qualitative results. It can be observed that with the increase
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Fig. 12. The performance variation of de-identification with respect to the
parameter θ. The x-axis indicates θ value and the y-axis indicates the metric
values.

of θ, the visual identity difference between the synthetic faces
and the original faces expands, while the identity-independent
attributes are still maintained. Here, both the privacy metrics
and the utility metrics are used to evaluate the overall identity
protection effect, and are shown in Fig. 12. It can be seen that
the degree of identity protection can be adjusted, accompanied
by utility variations. Considering the identity protection effect
and the utility performance comprehensively, we set θ to 60
for all other experiments.

4) Computational Overhead Analysis. We explore the con-
tribution of the Motion Flow Module to saving computa-
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Fig. 13. Comparison of computational overheads between ACTION [4],
CIAGAN [6] and our method on the VoxCeleb dataset.

tional overheads in de-identification tasks. We compare with
ACTION and CIAGAN on an NVIDIA GTX 1080 Ti, and
the results are shown in Fig. 13. We observe that when the
number of video frames is greater than 80, our method has a
lower computational complexity than ACTION, and when the
number of video frames is greater than 360, our method is less
computationally complex than CIAGAN. Since the complexity
of per frame processing is almost linear with the number of
frames, this advantage becomes more obvious as the number
of video frames increases. It demonstrates the superiority of
motion flow guided evaluation over per frame processing.

TABLE X
SECURITY ANALYSIS OF THE PROPOSED IDENTITYMASK

Method CViT [61] LRNet [62]

Fake video detection rate 74.8% 63.1%

5) Security Analysis. Previous experimental results have
shown that IdentityMask can generate realistic identity-
protected videos. However, we are worried about the potential
misuse. Once abused, even if the authority can obtain the
real identity through the recovery process, unpleasant effects
(such as fraud) in the dissemination process may have oc-
curred. Therefore, we apply two advanced deepfake detection
models, CViT [61] and LRNet [62], to examine the security
of IdentityMask. We calculate the proportion of de-identified
videos that are judged as fake, and name it as the fake video
detection rate. As shown in Table X, the probability of the
synthetic videos being judged as “deepfake” is relatively high,
which proves that our identity protection technology has good
security despite its state-of-the-art utility performance.

VII. CONCLUSIONS

In this paper, we have proposed a reversible face video
de-identification framework, IdentityMask, guided by deep
motion flow. Our framework consists of a de-identification
process and a recovery process. The former is able to conceal
the real identity with a visually similar appearance in a seam-
less way, and the latter aims to recover the original identity
only when given the right key. The proposed framework is the
first one suitable for reversible face video de-identification. It
presents a quality that surpasses the literature methods in the
de-identification task, and is impressive in the identity recovery
process. Besides, instead of existing per-frame processing, we

take advantage of motion flow to guide consecutive frames
generation, which alleviates the computational overhead and
improves the synthesis effect. Extensive experimental results
on a standard diverse dataset verify the effectiveness and
efficiency of our framework.

While our reversible face video de-identification results are
visibly convincing, additional improvements are possible. As
part of our future work, we plan to elaborate the mapping
function between Ukey and right key to further enhance the
security of identity protection.
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