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Abstract. We propose a graph neural network with self-attention and
multi-task learning (SaM-GNN) to leverage the full advantages of deep
learning for credit default risk prediction. Our approach incorporates
two parallel tasks based on shared intermediate vectors for input vector
reconstruction and credit default risk prediction, respectively. To better
leverage supervised data, we use self-attention layers for feature rep-
resentation of categorical and numeric data; we further link raw data
into a graph and use a graph convolution module to aggregate similar
information and cope with missing values during constructing interme-
diate vectors. Our method does not heavily rely on feature engineering
work and the experiments show our approach outperforms several types
of baseline methods; the intermediate vector obtained by our approach
also helps improve the performance of ensemble learning methods.

Keywords: Credit default risk prediction · Graph neural network · Self-
attention · Multi-task learning.

1 Introduction

Credit default risk refers to the possibility of a loss resulting from a borrower’s
failure to repay a loan or meet contractual obligations. It is a major concern
for any bank and financial institution in making loan decisions. Bad loans can
cause banks problems with their capital adequacy and, at worst, lead to default.
Bad loans also risk impairing the long-term economic growth and lead to greater
uncertainty and instability in the banking and financial systems. Therefore, it
is highly necessary to assess borrowers’ repayment abilities before authorizing a
loan, which calls for accurate credit default risk prediction.

Traditional risk assessment highly relies on experts with professional knowl-
edge and relevant experience to assess loan requests against specific business
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models and rules, which is labor-intensive and prone to personal bias. For exam-
ple, the widely adopted ‘5C principle’ [1] requires domain professionals to eval-
uate borrowers’ default risk by manually evaluating borrowers on five aspects:
character, capital, capacity, collateral and conditions. It helps to incorporate both
qualitative or quantitative measures in the ‘5C principle’; however, this makes
credit default risk assessment even more complicated and time-consuming.

The availability of big financial data related to personal and home credit
offers the opportunity for automating credit default risk assessment with predic-
tive models. Such models need to address several challenges for accurate credit
default risk prediction. First, it requires incorporating all sources of clues about
users’ backgrounds, credit histories, investments, etc., to make accurate predic-
tions. Second, there might be insufficient or incomplete information (e.g., non-
existence of credit histories) about certain users, making it necessary to leverage
the information about other users and past loans to improve the prediction
accuracy for those users. Until recently, the related research has been focus-
ing on traditional machine learning techniques, e.g., Support Vector Machine
(SVM) [10,23], decision tree [19], Random Forest (RF) [16], and XGBoost [14].
These models’ performance highly depends on the quality of feature engineering,
which requires high domain expertise to incorporate diverse sources and forms
of data.

Recently, deep learning has shown great potential in addressing the above
challenges, thanks to its capability to capture complex, non-linear relations from
massive data. It has proven successful in various domains, such as computer vi-
sion natural language processing, speech recognition, and recommendation sys-
tems [13]. However, there have been limited studies on credit default risk pre-
diction based on deep learning techniques. Moreover, the current studies cannot
effectively leverage multiple aspects of clues (e.g., heterogeneous information in
applicants’ profiles, relations among loan applications) to overcome the chal-
lenges posed by incomplete profiles and missing values, which greatly impair the
prediction accuracy [26]. To cover this knowledge gap, a loan application graph
can be designed based on raw application records. Thus, the similar neighbors
can be considered as the auxiliary information of the records contained missing
values for credit default risk prediction. As shown in Figure 1, we could construct
a loan application graph based on the similarity between each client’s historical
records first. Hence, the neighbors information can be introduced as the external
information to alleviate the missing values problem. And the credit default risk
of each record is able to be predicted via node classification techniques.

Overall, we propose a novel Graph neural network with Self-attention and
Multi-task learning (SaM-GNN), which comprehensively incorporates self-attention,
graph neural networks, and multitask learning for accurate credit default risk
prediction. In a nutshell, we make the following contributions in this paper:

– We construct an undirected graph for loan applications and combine self-
attention and graph convolution networks for representation learning in our
model. The self-attention mechanism enables effective feature representation,
and graph convolution networks allow for aggregating similar information via
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Fig. 1. Toy example. Each application record can be represented as the node in loan
application graph. And the credit default risk prediction task can be transformed into
the node classification task.

a graph structure to improve the model’s robustness to missing values in the
input.

– We design two parallel tasks for multi-task learning based on shared feature
representation: a decoder module for input reconstruction and a classification
module for credit default risk prediction. The two tasks are jointly trained
to optimize feature representation and prediction results simultaneously.

– We conducted experiments on two real-world credit default risk prediction
datasets. Our experimental results show a significant performance improve-
ment of our approach over state-of-the-art methods. Besides, the feature
representations of loan applications output by our approach helps improve
the performance of existing ensemble methods.

– We will make our data and code public, including detailed parameter con-
figurations for all the methods, to ensure reproducibility4.

The rest of the paper is organized as follows. Section 2 overviews existing
methods for credit default risk prediction. Section 3 introduces our self-attention
graph neural network for credit default prediction and multi-task training strat-
egy. Section 4 reports our experiments to evaluate our model on two real-world
datasets, and finally, Section 5 concludes the paper.

2 Related Work

There has been many studies based on single-model machine learning methods
like decision tree for credit default risk prediction in various contexts [3, 8, 19].
But until now, most existing machine learning techniques for credit default risk
prediction are based on ensemble models, which take either bagging and boosting
approaches. Bagging methods (e.g., Random Forest [4]) train multiple classifiers
simultaneously and then combine them to make the final prediction [18]. In con-
trast, boosting methods (e.g., XGBoost [6], LightGBM [11]) apply individual
models in a chain, where each model takes as input the result of the previous
model [14, 15]. As a typical model of bagging strategy, Random Forest selects

4 GitHub link has been anonymized for peer review and will be made public later.
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samples and attributes randomly to construct and integrate decision trees. Uddin
et al. [21] leverage Random Forest in micro-enterprises credit default risk model-
ing for accuracy and interpretability. Zhu et al. [25] conclude that Random Forest
has better accuracy than other machine learning methods like logistic regression,
decision trees, and SVM. Li et al. [15] use the XGBoost algorithm to identify cus-
tomers who do not pay back from good customers. Li et al. [14] further design a
stacking framework for XGBoost, SVM, and Random Forest for P2P default risk
prediction and experimentally show that the model fusion algorithm has better
adaptability and accuracy. Aleksandrova et al. [3] evaluate several popular ma-
chine learning algorithms for P2P credit scoring; they conclude that ensemble
classifiers (e.g., XGBoost, GBM, and Random Forest) outperform non-ensemble
models (e.g., logistic regression, decision tree, and multilayer perceptron). Dif-
fering from Aleksandrova’s conclusion, Coser et al. [8] point out that logistic
regression and Random Forest obtain the best results among various models for
default risk prediction.

There has been limited work on deep learning for credit default risk analy-
sis [9]. Wang et al. [22] use LSTM for P2P lending risk prediction, and Maria et
al. [26] build connections between borrowers based on their geographic locations
or economic activities and develop a multi-layer personalized PageRank model
for credit default risk prediction. Since there is limited historical lending data,
it is difficult to make an accurate prediction. Suryanto et al. [20] apply transfer
learning to alleviate the issue of insufficient historical data. In summary, existing
deep learning models rarely comprehensively use the full-spectrum multi-source,
heterogeneous data for risk assessment. And none of them establishes effective
approach to learning effective representations of loan applications or explicit con-
nections among the applications. They commonly face challenges in dealing with
incomplete profiles of applicants and missing information in loan applications.
In this regard, we apply self-attention with multi-task learning for application
record representation, and also consider graph neural network to capture the
connection among similar applications and alleviate the missing values problem.
To the best of our knowledge, we are the first to apply graph neural networks and
multi-task learning simultaneously to improve the robustness of credit default
risk prediction.

3 Proposed Method

Our proposed model (shown in Fig. 2) works as follows: it first generates em-
bedding of categorical data (e.g., gender, suite type, education) and applies self-
attention mechanism to the embedding and numeric data (e.g., income total
and goods price) for feature representation; Then, the resulting representations
are concatenated and updated via graph convolution constructed based on the
similarity between loan applications to alleviate the impact of missing values.
Finally, a decoder module and a classification module (consisting of multiple
fully connected layers) are jointly trained to generate feature representation and
simultaneously predict credit default risk.
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Fig. 2. The framework of SaM-GNN. A1×m
e . A1×n

n are categorical attributes and nu-
meric attributes, respectively, where m,n are the corresponding numbers. E is the
embedding size, and k = m×E+256. C and G are intermediate vectors before and af-
ter similar information aggregation via graph convolution block. Ṽ is the reconstructed
input, and ŷ is the predicted label.

3.1 Self-Attention Module

This module aims for generating feature representation for categorical and nu-
meric inputs. Let Xe = {xe0 , xe1 , ..., xem} be categorical attributes and Xn =
{xe0 , xe1 , ..., xen} be numeric attributes in the input. Suppose Ei ∈ R1×d is the
embedding of categorical attribute xei , where d is the embedding size. The fea-
ture representations of categorical attributes are as follows:


Qe = EeWq + bq

Ke = EeWk + bk

Ve = EeWv + bv

Attention(Qe,Ke,Ve) = softmax(
QeK

T
e√

dk
)Ve

(1)

where Ee ∈ Rm×d is the embedding of categorical attributes. Wq,Wk,Wv ∈
Rd×d and bq,bk,bv ∈ R1×d are learning weight matrices. 1/

√
dk is the scaling



6 Z. Li et al.

factor. Similarly, the feature representations of numeric attributes is as follows:
Qn = XnW

′
q + b′

q

Kn = XnW
′
k + b′k

Vn = XnW
′
v + b′v

Attention(Qn,Kn,Vn) = softmax(
QT

n ·Kn√
dk

)Vn
T

(2)

whereXn ∈ R1×n is the numerical attributes value after normalization.W′
q,W

′
k,W

′
v ∈

Rn×n and b′
q,b

′
k,b

′
v ∈ R1×n are learning weight matrices. 1/

√
dk is the scaling

factor.
We concatenate the representations of categorical attributes and numeric

attributes to construct the intermediate vector C ∈ R1×(m×d+n).

C =
m

||
i=0

Attention(Qei
,Kei

,Vei
)

||Attention(Qn,Kn,Vn)

(3)

where || represents concatenation operation.

3.2 Graph Convolution Module

We construct an undirected graph by regarding each loan application as a node
and adding weighted edges between nodes. Considering there are numerous at-
tributes in raw data, we first select a subset of attributes to decrease the compu-
tational complexity. And then for every pair of nodes, we add an edge between
them if they bear the same value on at least one attribute. We set the edge’s
weight to the number of attributes on which the two nodes share the same values.

To be specific, we define two thresholds, θm and θu, to select the attributes
to participate in the graph construction. We choose an attribute if and only if
1) the proportion of loan applications that have missing values on the attribute
in all the applications is smaller than θm and 2) the number of distinct values
for the attribute is fewer than θu. These two thresholds should be appropriately
configured to avoid it being excessively large (which introduces more noise) or
small (which limits the auxiliary information usable to guide graph construction).
We will study the impact of these thresholds in our experiments (Section 4.7).

Once the graph is constructed, we can apply graph convolution to aggregate
neighbors’ information and update the intermediate vector C [12]:

C(l+1) = ReLU(D̃− 1
2 ÃD̃− 1

2C(l)W(l)) (4)

where C(l+1) is the intermediate vector after l + 1 layers of graph convolution;
A ∈ RN×N is the adjacency matrix for graph G, Ã = A+ I, and D̃ii =

∑
j Ãij .

D̃ is the degree matrix of Ã; W is the learned weight. We denote the last layer
of graph convolution as C(L)

Finally, we define a λ to determine how much information to aggregate from
neighbors:

G = λC+ (1− λ)C(L) (5)
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where G is the final representation of the intermediate vector; C,C(L) are the
intermediate vector before and after graph convolution; λ is a learned parameter
that controls how much raw information to remember.

3.3 Decoder Module

The decoder module (shown in the top-left of Fig. 2) uses two fully connected
layers to reconstruct the input and to capture a better representation of raw
data.

Ṽ = ReLU(Wd2ReLU(Wd1G
T + d1

T) + d2
T) (6)

where Ṽ is the reconstructed inputs, Wd1 ,Wd2 ,d1,d2 are the weight matrix
for linear transformation.

3.4 Classification Module

The classification module uses fully connected layers to make predictions on
whether or not to authorize a loan or not (the top-right of Fig. 2 shows the
detailed specification of the module, e.g., the number of layers and the number of
neurons of each layer). Although the intermediate vectorG can capture semantic
information from raw data (based on a stack of layers in our framework), it
is prone to losing the shallow information in original data. To make up for
the information loss, we concatenate the original numeric input (i.e., a numeric
vector) and the intermediate vector as the combined input for predicting the
risk probability. The prediction result can be represented as:

ŷ = σ(MLP(G||An)) (7)

where σ denotes the sigmoid activation function.

3.5 Joint Learning

We apply a joint learning strategy for input vector reconstruction and credit
default risk prediction. The loss function includes mean square loss and cross-
entropy loss for the two learning tasks, respectively:

L =
1

|N |
∑
i∈N

(− α(yilogŷi + (1− yi)log(1− ŷi))

+ β
1

m+ n

m+n∑
j=1

(Vij − Ṽij)
2) + λ||Θ||2

(8)

where α, β ∈ [0, 1] balances the loss between the classification task and the
reconstruction task. yi = 1 indicates a positive case while yi = 0 indicates
otherwise. ŷi is the predicted probability, i.e., the network’s output after the
softmax layer. Vij, Ṽij represent the original and reconstructed input vectors,
respectively. Θ denotes the set of trainable parameters. The last term is L2
regularization to mitigate overfitting.
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4 Experiments

In this section, we report our experiments for evaluating our approach against
several competitive baselines. Besides, we provide a further evaluation of our
model under different configurations and parameter settings.

4.1 Datasets

We conduct experiments on two public datasets, which are representative of high-
dimensionality and high-volume features of credit default risk data, respectively.

– Home Credit Default Risk dataset5 covers various information about
applicants, such as family information, income and expenditure, credit records,
loan records, and repayment history. There are 307,511 train samples and
48,744 test samples, each having 477 numeric attributes and 55 categorical
attributes in the raw data. The ratio of positive to negative samples in the
train set is approximately 1:11. Values are missing for half of those attributes.
We randomly draw 10% of the train data as the validation set.

– Lending Club dataset6 contains millions of loan records with 151 at-
tributes from 2007 to 2018. Following previous work [3], we remove mean-
ingless attributes (e.g., URL, member id), together with those attributes
with more than 30% missing values, and then fill the remaining missing val-
ues with zeros. Each sample has 7 categorical attributes and 16 numeric
attributes after preprocessing. The ratio of positive to negative samples is
approximately 1:4. We use the most recent 10% records for testing and the
rest for training.

4.2 Baseline Methods and Evaluation Metric

We select several recent competitive methods, which reflect the state-of-the-art
research, to compare with our approach:

– Logistic Regression [17]: a simple and efficient linear model for binary
classification.

– Decision Tree [25]: a technique that classifies samples following an ordering
of attributes with a tree structure.

– Random Forest [17]: an ensemble learning method that trains a multitude
of decision trees and determines the label via majority voting.

– XGBoost [3]: a decision-tree-based ensemble machine learning algorithm
that uses a gradient boosting framework.

– Fully Connected Deep Network [3]: a network with fully connected
layers. We choose ReLU as the activation function and cross-entropy loss for
optimization.

5 https://www.kaggle.com/c/home-credit-default-risk/overview
6 https://www.kaggle.com/wordsforthewise/lending-club



Title Suppressed Due to Excessive Length 9

– Convolution Neural Network [24]: a network that feeds the concate-
nation of the representation of categorical data (obtained by convolution
operations) and numeric attributes to fully connected layers for making pre-
dictions.

– Wide & Deep Neural Network [7] applies a linear model to improve the
sparsity of categorical features and robustness of models via cross-product
feature transformations. For the deep module, a feed-forward neural network
is applied for feature representation, while the wide module is endeavored to
improve the memory of the network.

For SaM-GNN, we set the embedding size E = 5, α = 0.5, β = 0.5 for
the loss function. For graph construction, we set θm = 0.3 and θu = 20 for
attributes selection. The learning rate of the Adam optimizer is initialized to
0.001, which decays by 0.1 after every 50 epochs. Batch size and L2 penalty
are set to 500 and 10−5, respectively. For the classification module in SaM-
GNN, we apply cross-entropy loss, use ReLU as the activation function, and set
the dropout rate to 0.35 for all the fully connected layers except the last. The
number of neurons in the layers are 512, 256, 128, 64, 32, 2 for Home Credit
Default Risk dataset and 32, 16, 16, 2 for Lending Club dataset. More details
about parameter configurations of methods can be found in our public code
repository (see Section 1).

Following previous studies [2], we use Area under the ROC Curve (AUC)
as the evaluation metric to evaluate models’ performance. AUC has the charac-
teristic of signifying the probability that positive samples receive higher scores
than negative samples. Therefore, it can effectively reduce false alarms (or false
positive rate) and decrease potential financial loss, making it especially suitable
for the credit default risk prediction problem.

4.3 Comparisons with Baselines and Ablation Study

Table 1 shows the performance (with respect to AUC) of different methods.
Generally, deep neural networks and ensemble methods outperform traditional
models (Decision Tree, Logistic Regression), which has limited feature repre-
sentation ability for high-dimensional data, while Boosting methods (XGBoost)
outperform the Bagging method (Random Forest). Neural network-based mod-
els generally perform better than shallow models (traditional models, Bagging
method) thanks to their strong feature representation and non-linear learning
ability. Regarding Home Credit Default Risk dataset, SaM-GNN, outperform
all the other methods. XGBoost and Random Forest achieve a remarkable im-
proving after incorporating the intermediate vector generated by SaM-GNN,
demonstrating the effectiveness of SaM-GNN in improving existing methods.
As for Lending Club dataset, SaM-GNN and its variant without the Decoder
module achieve a significant improvement (over 26%) over most of the other
methods; they outperform the third-best method (i.e., XGBoost + Intermediate
Vector) by a large margin of 0.1 in AUC, which reconfirms the superiority of our
approach.
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Table 1. Performance (AUC) of different models. The best three results are highlighted
in boldface. ↑ and ↓ denote improvement and drop in performance, respectively. The
numbers besides up/down arrows indicate the percentages by which the models improve
their original versions.

Method Home Credit Lending Club

Logistic Regression 0.71739 0.69017
Decision Tree 0.72383 0.69925

Random Forest 0.74657 0.70380
XGBoost 0.76869 0.71616

Fully Connected Neural Network 0.76908 0.70448
Convolution Neural Network 0.77070 0.70961
Wide & Deep Neural Network 0.75824 0.70207

SaM-GNN 0.78605 0.96982
SaM-GNN w/o Decoder Module 0.77395 (↓ 1.54%) 0.96347 (↓ 0.65%)
SaM-GNN w/o Decoder & Graph Convolution 0.77026 (↓ 2.01%) 0.71253 (↓ 26.05%)

Random Forest + Intermediate Vector 0.75270 (↑ 0.82%) 0.86833 (↑ 23.38%)
XGBoost + Intermediate Vector 0.77289 (↑ 0.55%) 0.87326 (↑ 21.94%)

Our ablation study (based on comparisons between SaM-GNN and its vari-
ants, as shown in Table 1) demonstrates the effectiveness of considering the aux-
iliary information, i.e., similar credit application records, via graph convolution.
While the Decoder module avails SaM-GNN’s performance on Home Credit De-
fault Risk dataset, it does not significantly impact the performance on Lending
Club dataset—SaM-GNN obtains similar results regardless of whether it incor-
porates the Decoder module; this suggests the Decoder module is more effective
on challenging tasks than easy ones—the classification task on Lending Club
Dataset is not liable to overfit even without the Decoder module, given that the
dataset contains millions of loan records but only 23 attributes.

4.4 Impact of Sampling Methods

Our datasets have imbalanced distributions over classes, with the ratios of pos-
itive samples to negative samples being around 1:11 and 1:4 for Home Credit
Default Risk dataset and Lending Club dataset, respectively. Therefore, we test
the effectiveness of three sampling strategies [3] in overcoming the class imbal-
ance issue:

– Upsampling: Upsampling the positive samples and balance the data distri-
bution. Let δup as the desired ratio of the number of samples in the minority
class over the number of samples in the majority class after resampling.

– Downsampling: Downsampling the negative samples and balance the data
distribution. Let δdown as the ratio of the number of negative samples to the
original number after resampling.

– SMOTE [5]: Selecting k nearest neighbors in the feature space for the
minority class samples, drawing a line between the neighbors in the feature
space, and drawing a new sample at a point along that line. Let δsmote as
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Table 2. Performance (AUC) of SaM-GNN under different sampling strategies. δ is
the ratio of positive to negative samples after resampling. The best result under each
ratio setting is highlighted in boldface.

Dataset Home Credit Lending Club

Ratio (δ) 0.5 0.75 1.0 0.5 0.75 1.0

Upsamping 0.78665 0.78529 0.76584 0.96390 0.95482 0.95394
Downsampling 0.77398 0.77425 0.77825 0.93928 0.91154 0.89367
SMOTE 0.76134 0.76130 0.76307 0.93250 0.95238 0.94642

the desired ratio of the number of samples in the minority class over the
number of samples in the majority class after resampling.

Specifically, we study the performance of SaM-GNN under varying δ (the
ratio of positive to negative samples after resampling). Our results (Table 2)
suggest that among the three sampling methods, upsampling consistently results
in the best AUC on both datasets. Also, for both datasets, the performance
of sampling methods tends to fluctuate under varying values of the ratio (δ),
indicating the best configurations of δ should be determined empirically rather
than by following certain rules.

4.5 Impact of Vector-fusion Methods

Vector-fusion methods are for fusing the feature representations of categorical
and numeric inputs to construct the intermediate vector. We study the impact
of two commonly used vector-fusion methods, concatenation and mean-pooling,
on the performance of SaM-GNN.

Fig. 3. Performance (AUC) of SaM-GNN with different vector-fusion methods on Home
Credit Dataset and Lending Club Dataset.
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Our results (Figure 3) show that concatenation (i.e., what we use in SaM-
GNN) generally leads to better performance than mean-pooling—while both
methods result in similar results on Home Credit Default Risk dataset, concate-
nation consistently outperforms mean-pooling on Lending Club dataset. Mean-
pooling tends to favor larger embedding sizes, obtaining two out of the top-three
best results under embedding-size=50 and 100 on both datasets; this is because
larger embedding sizes help improve the network’s feature representation abil-
ity when mean-pooling is applied. In comparison, the optimal embedding size
for concatenation is more data-specific. More specifically, concatenation requires
smaller embedding sizes (e.g., 5, 15, 20) for the smaller dataset (Home Credit
Default Risk) yet larger embedding sizes (e.g., 20, 50, 100) for the larger dataset
(Lending Club) to deliver the best results. This makes sense as Lending Club
contains more training samples with lower-dimensionality, allowing for using a
‘wider’ neural network to improve performance without overfitting.

4.6 Impact of Multi-task Learning Parameters

We study the performance of our model (i.e., SaM-GNN without the graph
convolution module) under varying parameters for multi-task learning α and
β while keep the other hyperparameters the same as SaM-GNN, The results
on Home Credit Default Risk dataset (Table 3) show the AUC values above the
diagonal are generally greater than below, indicating it improves the performance
to force the network to pay more attention to obtaining a better intermediate
vector representation. We omit to show the results on Lending Club dataset, on
which the impact of multi-task learning is less evident.

Table 3. Performance (AUC) of SaM-GNN (without considering the graph convolution
module) under different parameter settings of multi-task learning on Home Credit
Default Risk dataset. The best result in each row/column is highlighted in boldface.

α
β

0.0 0.2 0.4 0.6 0.8 1.0

0.2 0.74548 0.76145 0.77629 0.76835 0.76600 0.75980
0.4 0.75684 0.76086 0.76550 0.76078 0.75654 0.76702
0.6 0.74604 0.75617 0.76626 0.77077 0.76352 0.76245
0.8 0.75136 0.75099 0.75422 0.76565 0.76814 0.76579
1.0 0.76426 0.77107 0.75140 0.76066 0.75738 0.77991

4.7 Impact of Graph Construction Parameters

We further study the impact of θm and θu, which affect attribute selection dur-
ing graph construction and, in turn, determine the final graph structure. To this
end, we test the performance of SaM-GNN (without the Decoder module) under
θu ∈ {20, 30, 50, 100, 200, 500, 1000} for Home Credit Default Risk dataset, θu ∈
{5, 10, 20, 30, 50} for Lending Club dataset, and θm ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.
Intuitively, the graph contains more edges under smaller values of θu and θm.
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Our results show our model favors denser graphs derived from the datasets—
SaM-GNN achieves the best AUC (0.78002 and 0.96652) under the smallest θu
values (20 and 5) for Home Credit Default Risk and Lending Club datasets,
respectively. θm has a slighter impact on the results when compared with θu. We
omit to show more details due to the limited space.

5 Conclusion

In this paper, we propose a self-attention graph neural network with multi-task
learning for credit default risk prediction. The network features self-attention and
graph convolution to represent heterogeneous data with missing values, along
with multi-task learning of classification and decoder modules for model train-
ing. Extensive experiments on two real credit default risk prediction datasets
demonstrate the superiority of our approach to existing models. Besides, feature
representations from our approach help improve the performance of Bagging and
Boosting methods.

References

1. Abrahams, C.R., Zhang, M.: Fair lending compliance: Intelligence and implications
for credit risk management. John Wiley & Sons (2008)

2. Addo, P.M., Guegan, D., Hassani, B.: Credit risk analysis using machine and deep
learning models. Risks 6(2), 38 (2018)

3. Aleksandrova, Y.: Comparing performance of machine learning algorithms for de-
fault risk prediction in peer to peer lending. TEM Journal 10(1), 133–143 (2021)

4. Breiman, L.: Random forests. Machine Learning archive 45(1), 5–32 (2001)
5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic mi-

nority over-sampling technique. Journal of artificial intelligence research 16, 321–
357 (2002)

6. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. pp.
785–794 (2016)

7. Cheng, H.T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., An-
derson, G., Corrado, G., Chai, W., Ispir, M., et al.: Wide & deep learning for
recommender systems. In: 1st workshop on deep learning for recommender sys-
tems. pp. 7–10 (2016)

8. Coser, A., Maer-Matei, M.M., Albu, C.: Predictive models for loan default risk as-
sessment. Economic Computation and Economic Cybernetics Studies and Research
53, 149–165 (2019)

9. Duan, J.: Financial system modeling using deep neural networks (dnns) for effective
risk assessment and prediction. Journal of The Franklin Institute-engineering and
Applied Mathematics 356(8), 4716–4731 (2019)

10. Huang, C.L., Chen, M.C., Wang, C.J.: Credit scoring with a data mining approach
based on support vector machines. Expert systems with applications 33(4), 847–
856 (2007)

11. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.: Light-
gbm: a highly efficient gradient boosting decision tree. In: 31st International Con-
ference on Neural Information Processing Systems. vol. 30, pp. 3149–3157 (2017)



14 Z. Li et al.

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444
(2015)

14. Li, G., Shi, Y., Zhang, Z.: P2p default risk prediction based on xgboost, svm
and rf fusion model. In: 1st International Conference on Business, Economics,
Management Science. pp. 470–475 (2019)

15. Li, Y.: Credit risk prediction based on machine learning methods. In: 14th In-
ternational Conference on Computer Science & Education. pp. 1011–1013. IEEE
(2019)

16. Malekipirbazari, M., Aksakalli, V.: Risk assessment in social lending via random
forests. Expert Systems with Applications 42(10), 4621–4631 (2015)

17. Qiu, Z., Li, Y., Ni, P., Li, G.: Credit risk scoring analysis based on machine learn-
ing models. In: 6th International Conference on Information Science and Control
Engineering (2019)

18. Schapire, R.E.: The strength of weak learnability. Machine Learning 5(2), 197–227
(1990)

19. Sohn, S.Y., Kim, J.W.: Decision tree-based technology credit scoring for start-up
firms: Korean case. Expert Systems with Applications 39(4), 4007–4012 (2012)

20. Suryanto, H., Guan, C., Voumard, A., Beydoun, G.: Transfer learning in credit risk.
In: Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. pp. 483–498 (2019)

21. Uddin, M.S., Chi, G., Al Janabi, M.A., Habib, T.: Leveraging random forest in
micro-enterprises credit risk modelling for accuracy and interpretability. Interna-
tional Journal of Finance & Economics (2020)

22. Wang, Y., Ni, X.S.: Risk prediction of peer-to-peer lending market by a lstm model
with macroeconomic factor. In: ACM Southeast Conference. pp. 181–187 (2020)

23. Wang, Y., Wang, S., Lai, K.K.: A new fuzzy support vector machine to evaluate
credit risk. IEEE Transactions on Fuzzy Systems 13(6), 820–831 (2005)

24. Zhou, X., Zhang, W., Jiang, Y.: Personal credit default prediction model based on
convolution neural network. Mathematical Problems in Engineering (2020)

25. Zhu, L., Qiu, D., Ergu, D., Ying, C., Liu, K.: A study on predicting loan default
based on the random forest algorithm. Procedia Computer Science 162, 503–513
(2019)
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