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Abstract: Research on the immune system and cancer has led to the development of new medicines
that enable the former to attack cancer cells. Drugs that specifically target and destroy cancer cells are
on the horizon; there are also drugs that use specific signals to stop cancer cells multiplying. Machine
learning algorithms can significantly support and increase the rate of research on complicated diseases
to help find new remedies. One area of medical study that could greatly benefit from machine learning
algorithms is the exploration of cancer genomes and the discovery of the best treatment protocols for
different subtypes of the disease. However, developing a new drug is time-consuming, complicated,
dangerous, and costly. Traditional drug production can take up to 15 years, costing over USD 1 billion.
Therefore, computer-aided drug design (CADD) has emerged as a powerful and promising technology
to develop quicker, cheaper, and more efficient designs. Many new technologies and methods have
been introduced to enhance drug development productivity and analytical methodologies, and they
have become a crucial part of many drug discovery programs; many scanning programs, for example,
use ligand screening and structural virtual screening techniques from hit detection to optimization.
In this review, we examined various types of computational methods focusing on anticancer drugs.
Machine-based learning in basic and translational cancer research that could reach new levels of
personalized medicine marked by speedy and advanced data analysis is still beyond reach. Ending
cancer as we know it means ensuring that every patient has access to safe and effective therapies.
Recent developments in computational drug discovery technologies have had a large and remarkable
impact on the design of anticancer drugs and have also yielded useful insights into the field of
cancer therapy. With an emphasis on anticancer medications, we covered the various components
of computer-aided drug development in this paper. Transcriptomics, toxicogenomics, functional
genomics, and biological networks are only a few examples of the bioinformatics techniques used to
forecast anticancer medications and treatment combinations based on multi-omics data. We believe
that a general review of the databases that are now available and the computational techniques used
today will be beneficial for the creation of new cancer treatment approaches.
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1. Introduction

Cancer is a group of diseases marked by uncontrolled cell division which spreads to or
invades other parts of the body [1–7]. It is a devastating disease that affects both the old and
the young. In 2012 alone, there were an estimated 14.1 million new cases and 8.2 million
deaths worldwide. It has been predicted that 22 million new cancer cases and 13 million
deaths may occur in the next two decades [8]. The inherent complexity and heterogeneity
of cancer have proven to be a substantial hurdle for finding effective therapies, which
are typically exacerbated by tumor proliferation and metastasis [9]. Based on the affected
cell types, cancer can be classified into over 200 classes. Detailed information on these
classes can be obtained from The National Cancer Institute, e.g., their origins, relevant
therapies, and Food and Drug Administration (FDA)-authorized medications, among other
things [10]. According to the most recent 2015 Cancer Trends Progress Report, death rates
due to cancer have dropped since the early 1990s [11]. The route to discovering novel drugs
has always been a winding one. The main goal of drug development is to find a single
compound or a combination of compounds that can deliver the required medical effects.
Thus, research in bioinformatics, cellular and molecular biology, experimental medicine,
genetics, genomics, medicinal chemistry, pharmacology, pharmacokinetics and metabolism,
proteomics, structural biology, and tumor biology is critical for developing an effective
anticancer drug [12–15].

Drug discovery relies heavily on pre-clinical screening of promising molecules [16,17].
Animal trials and in vitro drug screening have improved the methods of compound selec-
tion with impressive results [18–22]. In cancer treatment discovery, however, the investiga-
tional assays that are employed for analyzing small compounds are often costly [23–25]
and time-consuming. As a result, more effective techniques to develop traditional drugs
are needed. Discovering new uses for existing medications is far more cost-effective than
searching for new cancer-fighting therapies. It is possible to anticipate anticancer thera-
peutic efficacy based on drug repositioning using generated multi-omics data. Dealing
with patient heterogeneity is a major difficulty in contemporary cancer therapy. It has been
known for over 50 years that various types of cancer patients will respond very differently
when given the same treatment. Combination therapy, which employs a number of different
medications in order to obtain better clinical results, is also commonly used to treat cancer.
Combination therapies/medicines have numerous advantages over monotherapy [26–29].

We examine how these approaches have been successfully employed in assisted sepa-
ration. Problem patterns in the handling of drug design for cancer treatments, establishing
research gains that are integrated with in silico drugs, have the potential to yield ingenious
anticancer medications.

2. Anticancer Drug Target Prediction

Only about 400 encoded proteins have been proven to be helpful in developing
medicines [30]. In contrast, there is a slew of potential therapeutic atomic targets for treat-
ing cancer [31]. The conventional approach is often based on the “one molecule, one target,
one disease” paradigm, which avoids drug–protein interactions. However, it is worth
mentioning that many challenging disorders are associated with a variety of objective
proteins [32–34]. Furthermore, due to certain medicines having “poly-pharmacological”
characteristics, unanticipated drug functionalities resulting from off-targets that are uncon-
trolled and unavoidable can lead to unpleasant side effects [7,35–39]. Sildenafil (Viagra), for
example, is currently used to treat erectile dysfunction in men but was primarily designed
for the treatment of angina [40]. Several medicines, including anticancer drugs, are yet
to be discovered, as their associated target proteins (both primary and non-target) are
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unknown [7,41–47]. Furthermore, several therapeutic cancer targets remain “unchecked”
by pharmaceutical establishments. Phosphatases, transcription factors, and representatives
of RAS are categorized as “undruggable” because they require active enzymatic sites [48].
The explanation for all possible novel ligand-bound sections has been highlighted as a sig-
nificant step in changing a medication and repurposing it, to establish the ability of modern
medicines to deal with new symptoms. As a result, new long-conditioned bioinformatics
target prediction is fundamental for identifying a reliable drug target indicator. Several
new web servers have been developed based on drug–target interactions, each with its
own set of databases and reliable prediction tools. Moreover, computational drug design
approaches are used to investigate provable protein–drug interactions. Net-based models,
and motor-review-based designs specifically, have emerged as powerful tools. The Genetic
Association Database is a repository for research on complicated diseases and disorders
and human genetic associations. This database’s objective is to track the user to find poly-
morphisms that are medically significant. GAD offers a comprehensive, open, web-based
collection of molecular, clinical, and study characteristics for more than 5000 human genetic
association studies. With the aid of contemporary high-throughput test techniques and
up-to-date annotated molecular nomenclature, this database enables the systematic exami-
nation of complicated common human genetic diseases. All the datasets can be obtained
from the website (Tables 1 and 2) [29].

Table 1. Sources of data for determining the correlations between cancer and genes.

Database Simple Explanation Reference

Gene Expression Omnibus (GEO)

GEO is a free, open-access
repository for functional genomics

data that accepts submissions of
MIAME-compliant data.

Gene expression omnibus. Available online:
http://www.ncbi.nlm.nih.gov/geo (accessed on

23 January 2022)

The Cancer Genome
Atlas (TCGA)

Genomic statistics from >10,000
patient tissue samples from >30

prevalent cancers, such as exome,
SNP, methylation, mRNA, miRNA,

and clinical.

The Cancer Genome Atlas Program. Available online:
http://cancergenome.nih.gov (accessed on

23 January 2022)

Genetic Association
Database (GAD)

A database of information on
genetic associations with serious

illnesses and disorders.

Gender and Development Program.
GAD Activities Sex Disaggregated Data. Available

online: http:
//www.tapi.dost.gov.ph/resources/gad-databases

(accessed on 23 January 2022)

Catalogue Of Somatic Mutations
In Cancer (COSMIC)

A thorough resource for learning
about somatic mutations’ effects on

human cancer.

Catalogue Of Somatic Mutations In Cancer. Available
online: https://cancer.sanger.ac.uk/cosmic (accessed

on 23 January 2022)

Online Mendelian Inheritance in
Man (OMIM)

Relationship between genetic traits,
especially diseases, and genes.

An Online Catalog of Human Genes and Genetic
Disorders. Available online: http://www.omim.org

(accessed on 23 January 2022)

Table 2. Data sources for determining the correlations between drugs and genes.

Database Simple Explanation Reference

Therapeutic Target (TTD)

A database that offers details on the
diseases targeted, the investigated and
undiscovered therapeutic protein and

nucleic acid targets, the relevant methods,
and the medications that are specific to

each target.

Therapeutic Target Database. Available online:
https://openebench.bsc.es/tool/ttd (accessed

on 23 January 2022)

http://www.ncbi.nlm.nih.gov/geo
http://cancergenome.nih.gov
http://www.tapi.dost.gov.ph/resources/gad-databases
http://www.tapi.dost.gov.ph/resources/gad-databases
https://cancer.sanger.ac.uk/cosmic
http://www.omim.org
https://openebench.bsc.es/tool/ttd
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Table 2. Cont.

Database Simple Explanation Reference

Genomics of Drug Sensitivity in
Cancer (GDSC)

A database of 138 identified anticancer
compounds (on average 525 cell lines

studied for each drug) representing more
than 1000 distinct cancer cell lines.

Genomics of Drug Sensitivity in Cancer.
Available online:

http://www.cancerrxgene.org/download
(accessed on 23 January 2022)

DrugBank

Complete drug target data, including
information on sequencing, structure,
and route, together with detailed drug
(i.e., chemical, pharmacological, and

pharmaceutical) data.

Drug bank online. Available online:
http://www.drugbank.ca/ (accessed on

23 January 2022)

PharmGKB

A freely accessible online knowledge
repository that collects, organizes,

synthesizes, and disseminates
information about the influence of genetic
variation on pharmacological response.

Online Knowledge Repository. Available online:
https://www.pharmgkb.org/ (accessed on

23 January 2022)

Cancer Cell Line
Encyclopedia (CCLE)

Genomic data, including information on
DNA copy number, mRNA expression,

and mutations, from more than
1000 cancer cell lines.

Cancer Cell Line Encyclopedia. Available online:
https://portals.broadinstitute.org/ccle

(accessed on 23 January 2022)

3. Computer-Aided Drug Discovery and Design

Max Perutz and John Kendrew were awarded the Nobel Prize in Chemistry in 1962
(myoglobin) for introducing the early hearing long-resolution protein system. They had
received grants to collaborate with others in the crystallographic determination of protein
structure, most recently with Brian Kobilka and Robert Lefkowitz for research on the
constituents of G-protein-coupled receptors (GPCRs) [49]. The interest in searching for
potential molecules that may be developed into effective formulations developed naturally,
with the emphasis on the chemical orientation and the three-dimensional relative position
of each atom in a target moiety, from an insensitive screening procedure that relied on the
chance to uncover molecular hits to a process established as “normal” medicine discovery
and design. Capoten (captopril), the first-ever drug that acted by inhibiting angiotensin-
converting enzyme (ACE), was the first medication that benefited from the improvement
in utilizing structural information, in the 1980s. In 1997, the HIV protease inhibitor nelfi-
navir mesylate (Viracept) became the first medication to be authorized in the United States
entirely as a result of the structure of the active target site. These breakthroughs were just
the beginning of the hunt for better, quicker, and less costly methods, in addition to compu-
tational methods and strategies for designing new medicines or improving existing ones.
Efforts have also been made to analyze more compounds vis-a-vis the target (the screening
method) in less time and to gather essential knowledge and experience to establish a library
of molecules of a variety of chemicals for explicit future screening (Table 3). Along with
the fragment’s 3D structure, other factors taken into account include the atoms’ van der
Waals radii, electrostatic charges, dipoles, flourishes, and dihedral angles. Scientists can
now utilize virtual or in silico studies to model real-world processes using computing
resources such as sophisticated agencies or supercomputers. This development has paved
the way for discovering more efficient and selective medicines with fewer side effects in
a cost-efficient and less time-consuming manner.

With the use of these technologies, it is now feasible to test more chemicals in a shorter
time with lower cost (virtual screening). Computer-assisted drug discovery and design
(CADDD) has led to scientists making in silico breakthroughs. Computer models of syn-
thetic techniques have shown some promise. These advancements may be seen in the
resolution of 3D structures using computer models, the optimization and creation of new
compounds, and the investigation and characterization of the atomic processes of earlier
medications or natural items. In addition, they expand the definition of orthosteric medi-

http://www.cancerrxgene.org/download
http://www.drugbank.ca/
https://www.pharmgkb.org/
https://portals.broadinstitute.org/ccle
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cation to include allosteric modulators and biopic medicines in the quest for therapeutic
molecules. Orthosteric medications are those that bind to a target at a particular active site.

Arieh Warshel, Michael Levitt, and Martin Karplus received the 2013 Nobel Prize in
Chemistry for their contributions to the modeling of complex systems in chemical and
biological processes and interactions from a computational and physical perspective.

Many systems are now being developed to boost and support the drug discovery
process. CADDD has greatly improved since its initiation, with significant contributions
from many other research organizations worldwide. It is now possible to incorporate mul-
tiple data sources to speed up the discovery of novel medicines that reshape the behavior
of therapeutically important protein targets and enhance early-stage pharmaceutical re-
search. Advances in CADDD automation have resulted in an environment that supports
the evaluation and synthesis of huge numbers of compounds in less time, making the drug
discovery process faster and more cost-effective. CADDD is now a broadly accepted term
for describing the computational tools and also a method of storing, managing, analyzing,
and modeling compounds that are useful at every step of a drug development project, from
lead compound identification to intensification, target description, and validation, even in
pre-clinical studies [50–54].

3.1. Computer-Aided Drug Design Based on Ligands

The ligand-based computer-aided drug design (LB-CADD) method investigates lig-
ands that are known to interact with targets of interest. These methods make use of a collec-
tion of reference structures acquired from substances that are known to interact effectively
and assesses their 2D or 3D structures. The overall goal is to modify these mixtures in a way
that preserves the physicochemical characteristics most critical to their desired interactions
while removing extra information that is irrelevant to those interactions. Since this does not
necessitate understanding the structure of interest, it is perceived as an indirect approach
to dealing with medication discovery. The building of a QSAR demonstration that predicts
biologic movement from synthetic structures, or the determination of mixtures based on
the similarity of a substance to recognized active molecules using similarity measures are
the two key techniques of LB-CADD. The difference between the two techniques is that the
latter gives more weight to the compound’s structure and highlights how this affects the
flow of biological information more than the former. The techniques are related to in silico
screening for novel compounds with intriguing biologic actions, quick drug development,
hit-to-lead assays, and improvement of DMPK/ADMET characteristics. The foundation
of LB-CADD is the idea that atoms that are fundamentally analogous are likely to exhibit
comparable properties. LB-CADD methods rather than SB-CADD procedures can also be
used when the biologic target’s structure is unknown. Additionally, ligand-based virtual
high-throughput screening (LB-vHTS) techniques frequently identify dynamic mixtures
that are more potent than those identified by SB–vHTS [55–57].

3.2. Drug Design Using Structure-Based Computer Assistance

The three-dimensional structure is used in structure-based computer-assisted drug
design to find irritants that are rationally tied to their coupling pocket and may subsequently
become excellent drug candidates. Either atomic magnetic resonance (NMR), homology
modeling, or X-ray protein crystallography may be used to determine the three-dimensional
structure. The final strategy makes use of a homologous protein whose structure has been
determined by one of the earlier procedures. Receptor ligand docking and rescoring
methods are the core building blocks of calculations in the field of structure-based medicine
configuration. The goal of receptor ligand docking is to predict the binding of a ligand in
the coupling pocket of a receptor using just the topology (or information adaptation) of
the former and the 3D directions of the latter. In this way, docking systems often include
a calculation that generates a wide range of postures to be scored by the scoring capacity
and a scoring capacity that measures the collaborative liveliness of each (moderate) posture.
Most of the time, scoring abilities can be separated into learning-based and observation-
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based categories. The latter employ a variety of (frequently physically inspired) terms
whose coefficients are advanced using a specific informational index with known binding
free energies, in contrast to the former, which use a reversal of the Boltzmann factor to
compute scores from the repetition of various perceptions [55,58,59].

Table 3. Selected inhibitors developed using computational chemistry and rational drug design
strategies [53].

Compound Function Therapeutic Area Approval Time References

Captopril ACE inhibitor
Diabetic nephropathy,

hypertension, congestive heart
failure, myocardial infarction

1975 [60,61]

Cimetidine H2 receptor antagonist Heartburn and peptic
ulcer therapy 1978 [62]

Dorzolamide Inhibitor of carbonic anhydrase Antiglaucoma agent 1989 [63,64]

Saquinavir Inhibitor of HIV-1 protease Antiretroviral medication to treat
HIV or AIDS 1995 [65,66]

Zanamivir Inhibitor of neuraminidase Antiviral (influenza A and
influenza B) 1999 [67–70]

Nelfinavir Inhibitor of HIV protease Antiretroviral medication to treat
HIV or AIDS 1999 [71]

Lopinavir HIV protease inhibitor with
peptidomimetic properties

Antiretroviral medication used to
treat HIV/AIDS in patients who

have developed resistance to other
protease inhibitors.

2000 [72]

Darunavir Inhibitor of nonpeptic HIV
protease Antiretroviral for HIV/AIDS 2006 [73,74]

Imatinib Inhibitor of tyrosine kinase Chronic myeloid leukemia 1990 [75,76]

Gefitinib Epidermal growth factor receptor
(EGFR) kinase inhibitor

Non-small-cell lung
cancer (NSCLC) 2003 [77,78]

Erlotinib EGFR kinase inhibitor Pancreatic cancer, NSCLC 2005 [79]

Sorafenib Vascular endothelial growth factor
receptor (VEGFR) kinase inhibitor

Thyroid cancer, renal cancer,
liver cancer 2005 [80,81]

Lapatinib Erb-B2 receptor tyrosine kinase 2
(ERBB2)/EGFR inhibitor Breast cancer 2007 [82,83]

Abiraterone Inhibitor of androgen synthesis
Hormone refractory prostate

cancer or metastatic
castration-resistant prostate cancer

2011 [84,85]

Crizotinib Anaplastic lymphoma kinase
(ALK) inhibitor NSCLC 2011 [86–88]

4. Anticancer Small Organic Molecules Design via a Computational Approach

Conventionally, there are two different approaches to computer-aided design of anti-
cancer small organic compounds: ligand-based drug design (LBDD) and structure-based
drug design (SBDD). When a large number of particles can contain a receptor, LBDD
is preferred [54]. SBDD, on the other hand, necessitates familiarity with the recipient′s
three-dimensional structure. In most cases, the target structure is obtained using special
experimental techniques such as X-ray, NMR, or Cryo-EM techniques; however, when the
target structure is missing homology modeling techniques, the forms must be contained
within a sufficient level of homology (>25–30%) [89]. Note that LBDD and SBDD are not
mutually exclusive, and their combination has effectively aided several investigations re-
quiring the screening of large libraries of compounds [90]. The CADDD process necessitates
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certain methodologies that are outside the scope of this paper. As a result, selecting solid
reviews and perspectives to highlight technical concerns associated with various methods,
while focusing on the general CADDD, is recommended. SBDD approaches are also known
as implemented computer-aided approaches [91–96] (Figure 1).
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4.1. Anticancer Small Molecule Design

There are hundreds of reports in the scientific literature where computational methods
support the development of anticancer drugs [97,98]. A few examples are given here, one
of which also gives an idea of how these computer-aided tools are frequently employed in
anticancer drug discovery. One particularly good example is the recent development of
human aromatase (HA) inhibitor. HA is responsible for transforming androgens, resulting
in estrogens, and this is a well-known primary therapy for ER-positive breast cancer. HA
is like a cytochrome P450 with a concealed catalytic site. In 2012, two scientists named
Sgrignami and Magistrato began investigating the pathways followed by the substrate
to/from the binding site, employing computational methods [99–101].

In one of the reported frameworks, HA was the first atomic model on a clone of the
ER membrane created from 1-plamitoyl-2-oleoyl-sn-glycero-3-phosphocholine units, and
this compound was utilized at random in RAMD simulations to map examples of potential
pathways. The direction of an unexpected force with known strength was fixed to a specific
ligand, and the order was maintained to check whether the ligand could travel a specified
threshold distance clearly in a given period. This technique enables the sampling of many
unbinding actions in a smaller simulation period, in this case 100. Ultimately, the relaxing
routes were aggregated to identify multiple typical entry/exit channels, and then they were
evaluated using the guided MD (SMD) technique. The SMD simulations, unlike RAMD
simulations, apply a known-direction force to the ligand, causing it to migrate away from
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the binding site at a steady speed. It is required to detach the ligand, and this was employed
as a test of whether the channel′s permeability was reduced due to this process.

4.2. Computational Method for Anticancer Peptide Design

For a long time, peptides were thought to be a niche market with limited growth
prospects. This was primarily due to the failure of these molecules to cross the plasma
membrane, their physiological instability, low/minimal oral absorption, and the crucial
roles that the amino acid chain plays in hormonal signaling [102]. However, they have
many advantages, including the potential to substitute natural agonists and the ability to
target interactions between protein substances. A range of approaches, including the use
of non-natural amino acids, framework alterations, and novel formulations, has helped
to overcome these disadvantages, resulting in a significant increase in peptide drug pro-
duction. A structure-based approach is preferred when performing computational peptide
design (CPD). The primary sources of peptide sequences for therapeutic peptide design
are the structures of protein–protein complexes; however, this type of knowledge is not
always available, and computational chemistry may therefore contribute significantly to
this. First, in conducting a computer-aided analysis to develop an amino acid chain′s
affinity and specificity for a specific target, it is vital to build an accurate indicator of the
peptide–target complex if possible or more bioactive chains of amino acids from random
libraries or genuine sources if even a crude model is not available. Since peptides explore
a larger conformational space than small compounds, consolidated docking techniques
are often employed in drug development; however, these are ineffective for this type of re-
search. Instead, where necessary, modern docking algorithms combined with experimental
restrictions may aid in the selection of the proper structure [103,104]. MD simulations have
estimated that this method may be utilized to assist in developing changes in peptides to
improve affinity and specificity, once a model of the complex is provided [105,106].

Spodzieia et al. [107] discuss the utilization of multi-protein structures in neoplastic
peptide computer-aided design. Their research aimed to develop a peptide blocker of the
herpes simplex virus access regulator (HVEM) protein, which is abundantly expressed in
melanoma cells and has been identified as a target for anticancer therapy. According to
visual examination of the structure of the interaction of HVEM and the B and T lymphocyte
attenuator (BTLA) polypeptide, removing a 17-residue amino acid from HVEM (posi-
tions 23–39) could prevent the HVEM–BTLA combination from forming. Ten-nanosecond
simulations of MD supported the peptide′s ability to bind BTLA, which preliminarily
corroborated this theory. Experiments revealed that the amino acid chain could effectively
inhibit interactions between protein substances. Nevertheless, this impact is primarily due
to the appearance of an available cysteine residue in the amino acid chain, suggesting that
the observation could be due to the formation of a covalent bond between BTLA and the
protein rather than a compound with the same framework as seen in the X-ray studies.

5. Structure-Based Approach

The sequencing of the human genome has created a paradigm shift in drug discovery
techniques on a large scale as a result of structure-based drug design. It allows for a better
understanding of many types of cancer-associated developments and the detection of
cancer targets (SBDD). SBDD must be employed to identify anti-neoplastic agents with
a variety of structures by studying binding site interactions and specificity factors using
cutting-edge technology such as the 3D architectures of proteins in cancer that are relevant
for treatment. Two types of structure-based techniques have been identified: protein-
ligand-based complexes and protein-based strategies. Regarding SBDD, studies on the
target structural information in complex ligands are helpful in this drug discovery method.
The principal interaction between the target protein and ligand is extracted from the protein-
ligand-based complex, giving an excess of information on either the activity or inhibitory
actions. A protein-based technique can be employed if a protein-ligand-based strategy is
not available, where attributes of the relevant protein binding data can be transformed
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into pharmacophore properties. Studies on contemporary drug development leverage one
or two of the SB approaches outlined below if a cancer target’s structural information is
accessible [108].

5.1. Docking of Molecules

Molecular docking is a standard structure-based methodology used in logical drug
design to examine and predict sequences and interaction relations between ligands and
receptor proteins [108]. Depending on how adaptable the ligands utilized in the com-
putational method are, molecular docking is characterized as rigid docking or flexible
docking [109,110]. The inflexible docking approach, also known as a critical approach,
focuses solely on the fixed geometry and structural and chemical reciprocity between the
ligands and targeted proteins, ignoring elasticity and the induced-fit hypothesis [111].
Rapid and highly productive rigid docking is utilized extensively in drug discovery, with
many small molecular databases, and it is time-efficient. However, in a flexible docking
approach, this information would be more precise and complex. Different types of software
are available for docking, such as Glide, FlexX, DOCK, AutoDock, Discovery Studio, Sybyl,
and so on.

There are three basic phases in the molecular docking process. It is first necessary
to prepare the small molecule and target protein structures. The ability to anticipate con-
formations, orientations, and positional spaces in the ligand binding site is its second
use. Using the techniques of systematic and stochastic searching, conformational search
algorithms complete this goal of predicting the conformations of binary compounds. There
are three types of systematic search methods: exhaustive search, fragmentation, and con-
formational ensemble. Stochastic approaches, on the other hand, include: (i) Monte Carlo
(MC) methods, (ii) tabu search methods, (iii) evolutionary algorithms (EA), and (iv) swarm
optimization (SO) methods. Finally, these algorithms assess the potential binding free
energy, which works in conjunction with the scoring function to identify the molecules that
have a higher propensity for binding to targets during molecular docking. There are four
primary categories of scoring functions: I functions for consensus scoring, empirical scoring
functions, knowledge-based scoring functions, and force-field-based scoring functions,
among other options [88,112].

5.2. Pharmacophore Mapping Based on Structure

Over time, there has been a significant change in one of the most useful technologies,
i.e., pharmacophore mapping. This has been considered during the drug development
process in recent decades. Various structure-based techniques have been used for phar-
macophore modeling. Virtual screening, de novo design, and lead maximization have all
benefited from pharmacophore modeling [113,114]. In relation to the availability of ligand
structures, there are two different types of SBP modeling methods: target-binding site-
based and target-ligand-based approaches [115]. The target-ligand complex method makes
locating the protein′s ligand-binding pocket and determining the important ligand–protein
interactions uncomplicated. Ligandscout [116], pocket v.2 [117], and GBPM [118] provide
examples. It is worth noting that where ligands are unknown, they cannot be used. The
macromolecule employed in Discovery Studio [119] without a ligand-based technique is an
actual example that is not dependent on ligands or receptor–ligand associations. LUDI [120]
is software that characterizes the interactions within the binding site as pharmacological
properties. While this strict SBP technique has benefits in specifying a binding pocket′s total
interaction potential, the generated interaction maps frequently have multiple unprioritized
interactive features.

6. Drug Development Based on Ligands
6.1. Searching for Similarities

The concept of molecular similarity, which is the basis and motivation for ligand-based
techniques in drug development, lies behind these techniques. Due to their structural simi-



Bioengineering 2022, 9, 335 10 of 24

larities, compounds based on this concept have a tendency to have identical physiological
activities [121]. The structural information of the active ligand that interacts with the target
protein can be utilized as a query template to identify and predict other chemical entities
with a related property. On the other hand, there is a ligand-based drug discovery technique
that is based on this structural data. This method is referred to as an indirect protocol
for pharmaceutical research, since it only requires the structure of known active small
molecules. This provides a choice when a protein′s 3D defined structure is unknown or
cannot be predicted. In order to enhance medication pharmacokinetics, including ADMET
properties, this technique is frequently employed in silico to screen novel ligands with
fascinating biological activities and to maximize ligand biological activities (adsorption,
distribution, metabolism, excretion, and toxicity). This fundamental method is applied
worldwide and is based on molecular descriptors.

6.2. Ligand-Based Pharmacophore Mapping

Ligand-based pharmacophore modeling is a more specific method of improving phar-
macophore models based on a collection of active chemicals similar to molecular descriptors.
According to the IUPAC, a pharmacophore is “a set of spatial and electrical features re-
quired to achieve maximum supramolecular associations with predefined biological active
targets and to initiate biological reactions” [122]. In this method, the structural overlap of
major molecular properties obtained from potentially active compounds or in the specific
binding site space is employed as a way to depict the most likely chemical features. Here,
very newly discovered compounds can be matched and can exhibit a wide response with
the enhanced pharmacophore, enhancing effectiveness against the specific target protein.
They can then be used as candidates for further investigations. As a result, adhering to
this critical computational strategy method aids in promoting and guiding drug discovery
without using macromolecular structures [123]. Ligand-based pharmacophore modeling
provides a better training set of drugs that have the same receptor.

6.3. Modeling with QSAR

Another ligand-based technique known as QSAR (quantitative structure–activity
relationship) involves assessing the bioactivities of pharmaceuticals using a variety of
molecular descriptors (MDs) or fingerprints (FPs). The function of QSAR modeling is to
describe the activity′s response to the target based on the ligand characteristics. Support
vector machine (SVM), random forest (RF), polynomial regression (PR), multiple linear
regression (MLR), and artificial neural networks (ANNs) are some of the ML and dynamic
programming (DP) methodologies utilized to create QSAR models [124]. Unlike in phar-
macophore models, the biological actions of QSAR can be quantified. Further molecular
design applications are accessible, such as developing new molecules, optimizing lead
compounds, and predicting new structural lead compounds in drug discovery. There are
also current advancements in science such as 2D-QSAR and the sophisticated 3D-QSAR
that can be used in computational methods.

7. Artificial Intelligence Aids in the Discovery of Anticancer Drugs

Promoting the development of multiple new anticancer medications through the use of
computational drug design has become a watershed moment in this field. Authorized med-
ications identified using a computational technique include Gefitinib [125], Erlotinib [126],
Sorafenib [127], Lapatinib [128], Abiraterone [129], and Crizotinib [130]. Anticancer drug
research has progressed slowly but steadily through the use of computational approaches.
SR13668, for example, was developed from indole-3-carbinol utilizing the PH4 layout.
Rodrigues et al. recently succeeded in identifying a very effective inhibitor for 5-LOX
(lipoxygenase) using a computer-learning-based technique based on physicochemical and
pharmacophore properties [131,132]. The introduction of AI has led to a significant evolu-
tion of the in silico design of anticancer medications; state-of-the-art learning algorithms
can help develop the good chemical characteristics required for novel compounds [133].
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Jann et al. used variational autoencoders to create the first ML-based antineoplastic chem-
ical synthesizer, proving that compound synthesis may be selective against compounds
with high expected resistance to a particular cancer [134]. They incorporated the disease′s
bimolecular characteristics into lead chemical identification efforts. This technique could
change the development of anticancer medication in silico. Artificial intelligence research
and the underlying machine learning algorithms may be especially useful for finding suc-
cessful pharmaceutical treatments for complex disorders. A prime example of this is cancer,
which is one of the top causes of death in the world. Most of the aggressive subtypes of
cancer have not yet been successfully treated using a systematic scientific method. Cancer
develops when abnormal cells proliferate uncontrollably in one area of the body and can
invade and harm nearby healthy tissue and organs. It is a very complicated illness with
more than 200 subtypes, each of which requires a unique diagnosis and course of treatment.
Scientists have developed sophisticated profiling methods to measure these aberrations
and utilize them to personalize medicines, since cancer develops from aberrations in the
genomic materials of the cells. The most popular cancer therapies are still radiotherapy
and chemotherapy, which use high-energy X-rays to kill most of the proliferating cells.
Even though these treatments have the potential to be extremely hazardous and are not
designed to target the particular set of genomic abnormalities that give each tumor its own
individuality, they can occasionally be effective in decreasing or eliminating malignant
cells. Researchers could benefit from artificial intelligence techniques by analyzing the
intricate genomic makeup of each individual tumor, to create precise predictions of therapy
response. As a result, better treatments for specific patients could be found, which would
be a significant step toward personalized medicine [88,135,136].

8. Discovering New Drug Binding Sites through the Use of MD Simulation

Knowledge of multiple protein–ligand interrelationships is vital to some critical bi-
ological processes. Understanding the work of endogenous ligands and synthetic drug
molecules requires the identification and characterization of LBP. GPCR is a target often
used in the development of new drugs [137]. A recent study revealed that ligands bind
to various allosteric sites other than the intended binding sites, in addition to orthosteric
points [138–140]. Primary computational methods for predicting functional areas such as
3D ligand sites and others were discussed in a recent overview. However, these reporting
tools frequently generate many potential ligand binding sites, making it difficult for the
user to determine which active pocket of the structure is correct for chemical or drug
binding. In recent years, approaches based on molecular dynamics (MD) have been used
to circumvent this limitation. Supervised MD, for example, is an effective method for
precision sampling and ligand-binding-site identification [141–143]. The MD simulations
revealed an extra sodium ion in the region of the orthosteric binding site [144], and could be
used to recognize allosteric sites in protein kinases, Ras proteins, and Staphylococcus aureus
Sortase, among other things [145–147].

9. Integration of Structure- and Ligand-Based Approaches

Numerous studies have pointed out that structure-based techniques and ligand-based
techniques are independently viable methodologies used in the identification of anticancer
medicines [148–151]. Selecting certain structure-based and ligand-based procedures and
using them in combination to identify active chemicals is the most typical strategy for
combining the approaches. In vitro mTOR kinase assays validated active compounds with
low Tanimoto similarities, indicating that the integrated VS approach may swiftly find
structurally distinct inhibitors for a specific target [152].

EGFR LB models for the VS of the Molecules database were generated using ligand-
based Laplacian-modified NB classifiers (approximately 6M compounds). To isolate dual
EGFR-BRD4 leads, predetermined EGFR hits were docked into an ensemble of BRD4
protein form. Experiments were conducted on several compounds, revealing one lead
candidate with adequate dual action that could be further improved [153]. Despite the
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increasing availability of structural data, several therapeutically significant protein families
still lack structures for computational drug development. The fundamental restriction in
employing an integrated strategy is deciding which methods to integrate and how many to
incorporate to generate superior and non-redundant output [154].

9.1. Pseudoreceptor Modeling

Pseudoreceptor models can associate SBDD and LBDD techniques by depending on
surrogate three-dimensional receptor structures that modify the contour and volume of
the binding region and the critical interaction characteristics between the receptor and
ligand. In order to verify the correct direction of the receptor–ligand interaction properties
integrated into the models, the bioactive conformation of these compounds should be
determined using experimental methods such as mutation studies. Partition-based, grid-
based, peptide-based, isosurface-based, atom-based, and fragment-based techniques are
some of the categories covered in Tanrikulu′s review [155,156]. Pseudoreceptor modeling
has been used in much cancer-related computational research. For example, Rödl et al.
used molecules discovered through similarity search algorithms as reference structures to
create a 5-Lipoxygenase (5-LO) pseudoreceptor model. The VS experiment revealed potent
and non-cytotoxic inhibitors that could be employed as a source of novel scaffolds for lead
optimization. This supplied the interaction pattern required for binding [157–160]. It is also
interesting to note that pseudoreceptors cannot wholly mimic the actual size and shape
of the expected receptor’s binding pocket. Therefore, this framework, based on a set of
reference molecules, might favor compounds with identical structures [11].

9.2. Proteochemometric Modeling

Lapinsh et al. established the term “proteochemometrics” when they developed
a new methodology for examining receptor–ligand interaction data in their work. They
investigated the binding information of chimeric receptors and their ligands [161]. This
skill can be used simultaneously to represent the interactions of a group of molecular
entities with a group of receptors, as opposed to explaining the important contacts for
an individual ligand and an individual receptor. As a result, this technique may be
utilized to deduce the relationships between a group of linked QSAR datasets. Furthermore,
the PCM model developed can be applied to newly identified targets connected to the
series under investigation [162]. Wu and colleagues explored the use of PCM models to
screen for selective HDAC inhibitors, and their work is an excellent illustration of the
use of PCM modeling in the hunt for anticancer drugs. The best model used in this
study accurately predicted inhibitory actions for each HDAC inhibitor, and it was able to
determine the drug’s class- and isoform-selectivity, leading to the discovery of leads with
less negative consequences [163]. COX-2, which has been linked to colorectal cancer and
whose suppression is a promising technique for the development of anticancer treatments,
is a more recent example [164–166].

10. Current Trends in Computational Approaches for Anticancer Drug Delivery Systems

Drug inventory research mainly focuses on the “one drug, one target” concept, in
which unique chemical entities are discovered and created with a specific, well-defined
target. As a result, the core concept of “one drug, multiple targets” has manifested as a uni-
versal concept in drug development, including poly-pharmacology and drug repositioning
(DR) methodologies in cancer studies. Thus, poly-pharmacology is gaining popularity
as the next anticancer drug discovery paradigm. The interaction of drugs with several
targets, which may interfere with a single or multiple disease processes, is the fundamental
idea of poly-pharmacology [167,168]. Data mining, chemogenomic methodologies (inte-
grated LBSB methodologies and structure-based or ligand-based methodologies), and
network pharmacology are promising computational techniques in this field, including
machine learning methods, drug–target interactions, and drug side-effect profiles for in
silico computational profiling and DR [168,169]. Within the Hsp90 interactome, an in sil-
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ico poly-pharmacology approach was recently developed for choosing interesting target
combinations and creating targeted chemical libraries [170]. Drug repositioning or drug
repurposing is the process of finding new uses for already approved treatments, particu-
larly generic pharmaceuticals. It is thought to be an excellent technique for drug discovery
because it manages risks and is cost-effective. Antihistamines such as astemizole have
been withdrawn from the market due to their side effects, as they cause arrhythmias at
higher doses.

The same drug was repurposed as an anticancer drug that slowed tumor growth [171].
Another study used an integrated in silico DR technique to find DR candidate anticancer
medicines for lung cancer, glioblastoma, and breast cancer using the expression signature
and target signatures acquired from the LINCS chemical structure [172]. In a recent work,
Huang et al. developed a new DR pipeline that utilized topological graph theory and
machine learning techniques to examine four biological processes that are enriched for
lung cancer, with potential therapeutic drugs, microarray datasets, and targeted genes
against NSCLC [173]. Another study described a novel systems pharmacology strategy
for repurposing metformin as a precision cancer treatment [174]. It has been suggested
that in the post-chemical genomic era, the DR field will extend to include large-scale omics
impacts such as those of proteome, transcriptome, and metabolome [172].

11. Successful Stories in Computational Drug Discovery

Modern drug discovery benefits from computational methods. Almost every step
of the drug discovery pipeline uses computational methods. Properties, time required,
and anti-neoplastic drug functioning have demonstrated improvements through computa-
tional methods. Computational methods are regarded as a potent success of anti-neoplastic
drug development (Table 4). Some benefits of this computational method for small drug
molecules have been discussed. This type of drug is used in cancer treatment or in clinical
trials. Crizotinib′s development is an important example of the use of structure-based
design methodologies [175,176]. Crizotinib, which was accepted by the FDA in 2011, is
a specific and powerful cMet/ALK dual antagonist [177]. c-Met, also termed HGFR, and its
endogenous ligand HGF (hepatocyte growth factor), are important regulators of a variety
of cell functions [178]. Increased spreading of the c-Met polypeptide has been found in
a variety of human malignancies (including SCLC and NSCLC) [177], as has aberrant
c-Met signaling function in a variety of solid and blood tumors. As a result, c-MET is
a compelling prospective cancer target. The study began with the evaluation of a sequence
of 3-substituted indolin-2-one analogues for c-MET suppression, representing a powerful
family of kinase inhibitors. Compound 1 (PHA-665752, Figure 2), among the analogues,
demonstrated substantial efficacy in vitro and in vivo against the c-MET autophosphoryla-
tion method and the resulting physiologic authorizations. Compound 1 (PHA665752)′s
poor drug-like qualities, on the other hand, hampered its future investigation. The major
blocker interaction site was identified by combined crystalline structure study of com-
pound 1 with the kinase domain of c-MET, allowing for better drug design. In conjunction
with redrawing the intermediate rings of compound 1, a novel 5-substituted 3-benzyloxy-
2-aminopyridine family was developed (PHA-665752). Compound 2 showed potential
suppression of c-MET between these recently developed compounds. It should be men-
tioned that lipophilic effectiveness (LipE) was used as a metric for determining efficacy,
to track the maximization process. A docked shape of compound 2 with the c-Met kinase
domain was used to assist the use of framework design strategies to further optimize the
c-Met suppressive strength. Crizotinib (PF-02341066), with excellent restriction of tumor
growth and strong drug effectiveness, was developed after improvement of the 3-benzyloxy
group (the functional group at the 5-position of the 2-aminopyridine) and evaluation of
the chiral point. Furthermore, Crizotinib has proven to have excellent therapeutic effects
against lung cancer, lymphoma, and esophageal malignancies by inhibiting c-MET gene
proliferation (Figure 2) [179,180].
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Table 4. The list of FDA-approved anticancer drugs from the National Cancer Institute database.

Name Molecular Formula ATC Code Therapeutic Area Target and Function Year of Approval

Alpelisib C19H22F3N5O2S L01EM03 Breast cancer PI3K inhibitor 2019 [181]

Cladribine C10H12ClN5O3 L04AA40 Hairy cell leukemia Adenosine
deaminase inhibitor 2019 [182]

Darolutamide C19H19ClN6O2 L02BB06 Prostate cancer Androgen
receptor inhibitor 2019 [183]

Entrectinib C31H34F2N6O2 L01EX14 Non-small-cell lung
cancer and solid tumors

Tyrosine
kinase inhibitor 2019 [88]

Erdafitinib C25H30N6O2 L01EN01 Urothelial carcinoma FGFR
tyrosine inhibitor 2019 [184]

Fedratinib
Hydrochlo-

ride
C27H36N6O3S L01EJ02 Myelofibrosis Tyrosine

kinase inhibitor 2019 [185]

Selinexor C17H11F6N7O L01XX66 Multiple myeloma Nuclear
export inhibitor 2019 [186]

Zanubrutinib C27H29N5O3 L01EL03 Mantle cell lymphoma Bruton′s tyrosine
kinase inhibitor 2019 [187]

Abemaciclib C27H32F2N8 L01EF03 Breast cancer Cyclin-dependent
kinase inhibitor 2018 [188]

Apalutamide C21H15F4N5O2S L02BB05 Prostate cancer Androgen
receptor inhibitor 2018 [189]

Binimetinib C17H15BrF2N4O3 L01EE03 Melanoma MEk1 and
MEK2 inhibitor 2018 [190]

Dacomitinib C24H27ClFN5O3 L01EB07 Non-small-cell
lung cancer Oral kinase inhibitor 2018 [191]

Duvelisib C22H17ClN6O L01EM04

Chronic lymphocytic
leukemia (CLL)
and follicular

lymphoma (FL)

PI3K kinase inhibitor 2018 [192]

Encorafenib C22H27Cl1F1N7O4S1 L01EC03 Colorectal cancer
and melanoma BRAF kinase inhibitor 2018 [190]

Gilteritinib
Fumarate C62H92N16O10 L01EX13 Acute myeloid leukemia Tyrosine

kinase inhibitor 2018 [193]

The FDA authorized axitinib (AG-013736) in 2012 as a novel therapeutic for advanced
renal cell carcinoma to treat VEHG. The VEGF kinase domain in the DFG-out conformation
is where axitinib binds to act as an inhibitor. Axitinib was created using a structure-based
drug design approach. Vascular endothelial growth factor (VEGF) family members serve as
significant signaling network regulators that are involved in angiogenesis. Tumor cells have
been found to express VEGF signaling, which is essential for the development of malignant
illnesses. VEGFRs function as ligands in the VEGF signaling network, as they are the main
VEGF receptors. The tyrosine kinases (RTKs) known to be VEGF receptors include VEGFR-1
(also known as FLT1), VEGFR-2 (also known as FLK1 and KDR), and VEGFR-3 (also called
FLT4). The pan-kinase inhibitor’s ability to block the activity of VEGFRs against VEGFR-1,
VEGFR-2, and VEGFR-3 has been demonstrated to offer an effective method of developing
anti-angiogenic drugs. All of these derivative compounds were shown to have strong
inhibitory effects (Figure 3). The cellular potency and the favorable physicochemical and
PK characteristics of axitinib were significantly improved. Axitinib and pembrolizumab
were recently approved as first-line anticancer treatments for renal cell carcinoma.
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12. Conclusions and Future Perspectives

Cancer is a genuine threat to individuals′ well-being. About 9.6 million individuals
are affected each year by this disease. Malignancies have exceeded coronary illnesses as
the primary source of mortality in people. Progressing up-to-date anticancer therapies
takes twelve years and costs approximately USD 2.7 billion. The discovery of newer potent
drugs for treating cancer has been challenging, partly due to the limited knowledge we
possess on the in-depth mechanisms of each type of cancer. Development of a new drug
is expensive and time-consuming. Computational techniques might be helpful in the
drug discovery process with a large range of applications, for example, protein-association
network examination, drug target forecasting, restricting site expectation, virtual screening,
and numerous others. These approaches may help to accelerate the development of newer,
more effective drugs for cancer and malignancies. More advanced techniques such as
retro-manufactured routine arrangement, drug framework age, and medication restricting
fondness expectations have been gaining much significance lately with the advent of AI.
The applications of computational models along with newer advanced technologies may
help accelerate the development of effective drugs against malignancies. We outlined the
methods for identifying anticancer drugs in the sections above. We primarily covered
four topics in our discussion of these techniques′ applications: precision cancer therapy,
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drug positioning, and drug design forecasting for medication combinations. There is no
denying that the generation of an enormous amount of multi-omics data offers excellent
possibilities for precise and effective anticancer medication discovery at an affordable
cost. Despite the significant progress made to date in improving the effectiveness of
predictive methods, there are still many difficulties in the real world. Firstly, many computer
studies that have already been performed incorporate pre-existing knowledge such as
PPI networks and biological pathways. The integrality and accuracy of computational
predictions are, however, severely constrained by the preceding data′s continued high
sparsity. Additionally, more investigation into context-specific therapies for drug response
prediction is required. Since there are at present only a few datasets available for particular
tissues or medications, prediction models have mostly been based on pan-cancer data
studies, which do not take context-specificity into account. One of the key criteria for
future projections for certain types of cancer is the differences in the molecular profiles
of the cancer cell lines between tumor types. Additionally, the majority of the current
predictive approaches for drug development rely on the transcriptome profiles of cancer
cell lines, which are molecular profiles of cancer cell lines. Cancer cell lines, it has been
demonstrated, do not accurately replicate the molecular abnormalities seen in patients. To
achieve therapeutically relevant research, bioinformaticians should be well-versed in the
limits of cell lines. The models are also less extendable and useful in clinical contexts when
using methods that rely on sparser data types, such as CMap-based models, for which
data are only accessible for a small number of cell lines in a limited range of tissue types.
The primary causes of the failure of computational drug development are the selection of
cell lines that inadequately reflect the tumor biology and the lack of appropriate cell lines
for modeling response for certain malignancies. The following techniques may be used
to potentially overcome the aforementioned constraints of computational approaches to
drug discovery. Firstly, the applicability of computational prediction models in clinical
practice would be improved by using data types that are less dependent on the data types
themselves and more similar to patients in an in vitro scenario. Secondly, it may be possible
to create more precise predictive models by combining various independent datasets.
Thirdly, model validations using patient data and clinically applicable animal models are
still required. The integration of clinical data may be more effective for forecasting cancer
drugs for therapeutic purposes, which may be accomplished through collaborations with
doctors. This is the final and most crucial step in the translation to the clinical process.
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