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Abstract—Integrating sensing into standardized communica-
tion systems can potentially benefit many consumer applications
that require both radio frequency functions. However, without
an effective sensing method, such integration may not achieve
the expected gains of cost and energy efficiency. Existing sensing
methods, which use communication payload signals, either have
limited sensing performance or suffer from high complexity. In
this paper, we develop a novel and flexible sensing framework
which has a complexity only dominated by a Fourier transform
and also provides the flexibility in adapting to different sensing
needs. We propose to segment a whole block of echo signal evenly
into sub-blocks; adjacent ones are allowed to overlap. We design
a virtual cyclic prefix (VCP) for each sub-block that allows
us to employ two common ways of removing communication
data symbols and generate two types of range-Doppler maps
(RDMs) for sensing. We perform a comprehensive analysis of the
signal components in the RDMs, proving that their interference-
plus-noise (IN) terms are approximately Gaussian distributed.
The statistical properties of the distributions are derived, which
leads to the analytical comparisons between the two RDMs as
well as between the prior and our sensing methods. Moreover,
the impact of the lengths of sub-block, VCP and overlapping
signal on sensing performance is analyzed. Criteria for designing
these lengths for better sensing performance are also provided.
Extensive simulations validate the superiority of the proposed
sensing framework over prior methods in terms of signal-to-IN
ratios in RDMs, detecting performance and flexibility.

Index Terms—Integrated sensing and communications (ISAC),
joint communications and sensing (JCAS), dual-function radar
communications (DFRC), OFDM, DFT-spread OFDM, orthogo-
nal time-frequency space (OTFS), CP, range-Doppler map (RDM)

I. INTRODUCTION

Integrated sensing and communications (ISAC) has attracted
extensive attention recently. By allowing sensing and commu-
nications to share the same waveform, hardware and frequency
spectrum etc., ISAC not only improves cost and energy
efficiency but also helps alleviate the increasingly severe
congestion of frequency spectrum [1]. As popularly seen in the
literature, ISAC designs can be sensing-centric (SC) [2]–[5],
communication-centric (CC) [6]–[11] and joint-design [12]–
[16]. While SC (or CC) adds communications (or sensing) into
existing sensing (or communications) systems as a secondary
function, a joint-design ISAC generally solves a holistically
formulated optimization problem for a (sub-)optimal dual-
function waveform [17]–[19]. In this paper, we focus on CC-
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TABLE I: Commonly used acronyms througout the paper

Acronym. Description
CA-CFAR cell-averaging constant false-alarm rate detector
CCC Cyclic cross-correlation
CC-ISAC Communication-centric ISAC
COS Classical OFDM sensing
C-COS CCC-based COS
CP; RCP; VCP cyclic prefix; reduced CP; virtual CP
DFT Discrete Fourier transform
DFT-S-OFDM DFT-spread OFDM
ISAC Integrated sensing and communications
IN Interference-plus-noise
OFDM Orthogonal frequency-division multiplexing
OTFS Orthogonal time-frequency space
RDM Range-Doppler map
SINR signal-to-IN ratio

ISAC which can potentially expedite the market penetration
of ISAC into consumer markets [20]. Moreover, CC-ISAC
considered here performs active sensing; c.f., passive sensing
based on communication signals.

A widely studied issue of CC-ISAC is how to achieve satis-
factory sensing performance based on standardized communi-
cation waveforms. Orthogonal frequency-division multiplexing
(OFDM) and its variant waveforms are popular in CC-ISAC.
Note that sensing here is similar to the conventional radar
sensing, i.e., detecting targets and estimating their parameters
(mostly location and velocity) from the echo signals. In [10],
OFDM waveform-based sensing is developed. The method has
been widely studied since its development; see [21], [22] and
their references. Thus, we call it the classical OFDM sensing
(COS). In short, COS i) transforms a block of OFDM sym-
bols into the frequency domain; ii) removes communication
data symbols through a point-wise division; iii) takes a two-
dimensional DFT to generate a so-called range-Doppler map
(RDM); and iv) performs target detection and estimation using
the RDM. COS will be further reviewed in Section II-B using
our signal model.

In [11], a COS-like sensing method is developed for dis-
crete Fourier transform (DFT)-spread OFDM (DFT-S-OFDM)
waveforms. Different from OFDM, DFT-S-OFDM presents
Gaussian randomness in the frequency domain. Hence, directly
dividing communication data symbols can severely amplify
noise background. To this end, the cyclic cross-correlation
(CCC) is introduced in [11] to replace the steps i) and ii)
of COS. For convenience, let us call the method developed
in [11] as C-COS. Note that C-COS can be employed for
sensing based on the orthogonal time-frequency space (OTFS)
which is a potential waveform candidate for future mobile
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communications [23]. While using C-COS requires OTFS to
be cyclic prefixed for each symbol as in OFDM and DFT-S-
OFDM, OTFS with a reduced cyclic prefix (RCP), i.e., a single
cyclic prefix (CP) for the whole block of OTFS symbols, is
the main trend in the OTFS literature.

For RCP-OTFS, COS and C-COS cannot be directly ap-
plied. So far, RCP-OTFS sensing is mainly based on the
maximum likelihood detection (MLD). In [24], an MLD
problem for RCP-OTFS sensing is formulated in the delay-
Doppler domain. In the case of a single target, solving an MLD
can be done through a matched filter. This is performed in [25]
and [26]. In [27], an MLD problem for RCP-OTFS sensing
is formulated in the time domain which, as claimed therein,
provides more insight compared with the MLD in the delay-
Doppler domain. Regardless of the domains used for formu-
lating MLD problems, solving them requires an exhaustive
search over the whole range-Doppler region. For each range-
Doppler grid to be tested, a metric is calculated with high-
dimensional matrix operations involved. In addition, solving
the MLD problems requires a set of high-dimensional channel
matrices which are pre-generated over the range-Doppler grids
to be searched. Storing these matrices and accessing them in
real time can be challenging in practice.

In this paper, we develop a novel sensing framework that
can be used for either waveforms with regular CPs, like OFDM
and DFT-S-OFDM, or waveforms with RCP, like RCP-OTFS.
The new sensing framework has a similar complexity to COS
yet with enhanced sensing flexibility and performance. Our
key innovations are illustrated below.
1) We propose a sensing framework that divides a block of

signal evenly into multiple sub blocks. Unlike most existing
schemes, such as COS, we do not follow the underlying
communication system but instead allow the number of
samples in each sub-block to be different from that in a
communication symbol. Moreover, we allow consecutive
sub-blocks to overlap, which introduces a new flexibility
to optimize the sensing performance as well as to balance
performance and implementation overhead.

2) We propose a virtual CP (VCP) that allows us to turn the
echo signal in each sub-block into a sum of scaled and
cyclically-shifted versions of a known signal. This then
allows us to remove the communication data symbols in
the frequency domain and generate RDMs, as done in
COS or C-COS. Moreover, the duration of the proposed
VCP can be flexibly adjusted according to the maximum
sensing distance. Such flexibility is not owned by COS
and its variants, as they strictly follow the underlying
communication system. Further, it is worth noting that the
flexibility of the proposed VCP also lies in that it can be
adjusted for better sensing performance.

3) We provide a comprehensive analysis of the interference-
plus-noise (IN) terms of the RDMs obtained under the
proposed sensing framework. We prove that the IN terms
in both RDMs approximately conform to Gaussian distri-
butions. The statistical properties of the distributions are
also derived. Moreover, we derive the signal-to-IN ratios
(SINRs) of both RDMs and extrapolate the results to COS
and C-COS. Further, we provide a holistic comparison

between COS and the proposed sensing framework for both
RDMs. The performance of the proposed sensing frame-
work under the two RDMs is also analytically compared.

Extensive simulations are provided to validate the proposed
sensing framework and our analysis. In particular, we demon-
strate that, as consistent with our analysis, the proposed
sensing framework always outperforms COS and C-COS in
low SNR regions where the upper limit of the region also
matches the analytical result. We also confirm that the RDM
obtained using CCC, as in C-COS [11], has a greater SINR
than the RDM obtained based on the point-wise division,
as in COS [10], in low SNR regions; however, the former
outperforms the later in high SNR regions. While the low-
SNR observation is consistent with the results in [11], the
high-SNR result is unveiled for the first time. The critical value
differentiating low and high SNR regions is also derived.

We remark that sensing based on standardized communica-
tion waveforms can also be performed using preambles. In [6],
[7], different sensing methods are developed using the Golay
complementary sequences (GCSs) in the preamble of IEEE
802.11ad communication signals. In [8], the Doppler resilience
of IEEE 802.11ad-based sensing is improved by incorporating
Prouhet-Thue-Morse sequences in the preamble. While these
methods exploit the superb auto-correlation feature of GCSs
for a high ranging performance, it can be non-trivial to adapt
them for other communication standards. Moreover, as stated
in [11], using a whole block of communication signal for
sensing can be more robust to interference and noise compared
with only using preambles. This paper is devoted to developing
a flexible sensing framework that can be applied to most, if not
all, communication systems. Thus, we use the payload signals
as in COS and C-COS. The comparison between preamble-
and payload-based sensing is out of the scope of this work.
In fact, as they both have some unique advantages, their
combination can be an interesting future work.

II. SIGNAL MODEL AND PROBLEM STATEMENT

In this section, the signal model of the considered ISAC
scenario is first established based on the OTFS modulation.
Then, COS is briefly reviewed. This further elicits several
important issues that have not been effectively solved yet.
Solutions to the issues will be developed in sequential sections.

A. Signal Model

We consider that a communication-only node is turned
into an ISAC node by incorporating a sensing receiver. The
communication signals are transmitted; meanwhile, the re-
ceiver collects target echo for sensing. As in most CC-ISAC
work [6], [7], [10], [11], we ignore the self-interference,
i.e., the signal leakage directly from the transmitter to the
receiver, due to the implicit full-duplex operation. As for the
communication waveform, we consider the OTFS modulation,
not only because it is a potential waveform candidate for future
mobile communications [23], but also due to its capability
in representing other common multi-carrier waveforms, e.g.,
OFDM and DFT-S-OFDM.
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Let di (i = 0, 1, · · · , I − 1) denote the data symbols to be
transmitted, where the data symbols are independently drawn
from the same constellation, e.g., 64-QAM, and I denotes
the total number of data symbols. In OTFS modulation, the
I data symbols are first placed in a two-dimensional delay-
Doppler plane. Let the delay and Doppler dimensions be
discretized into M and N grids, respectively. Denoting the
time duration of M data symbols as T , the sampling frequency
along the Doppler dimension is then 1

T , which leads to a
Doppler resolution of 1

NT . Since there are M grids along the
delay dimension, the corresponding resolution is T

M . In the
OTFS modulation, the data symbols can be mapped from the
delay-Doppler domain into the frequency-time domain via the
following transform [28],

S[m,n] =
1√
MN

N−1∑
k=0

M−1∑
l=0

dkM+le
j2π(nk

N −mT
M l∆f ) (1)

where j denotes the imaginary unit. Note that frequency and
time are the dual domains of delay and Doppler, respectively.

The frequency-time-domain signal S[m,n] is then trans-
formed into the time domain by performing the IDFT w.r.t.
m for each n. This leads to

s[l, n] =

M−1∑
m=0

S[m,n]Z−ml
M , ∀n, (2)

where Z−ml
M denotes the DFT basis, as given by

Zbc
a = e−j 2πbc

a /
√
a. (3)

If the critical sampling is employed, which is typical in
practice, then T∆f in (1) becomes one and moreover the
IDFT performed in (2) will cancel the l-related transform in
(1). Treating l as the row index and n the column index, the
signal s[l, n] will be transmitted column-by-column and in
each column the entries l = 0, 1, · · · ,M − 1 are transmitted
sequentially. Before going through the digital-to-analog con-
verter, some extra processing on s[l, n] would be necessary.
To prevent the inter-symbol interference (ISI), cyclic prefix is
generally used in multi-carrier transmissions. There are two
types of CP in the OTFS literature.

In the first type, every M data symbols have a CP added
[29], which is referred to as CP-OTFS hereafter. Let Q denote
the number of samples in a CP. Based on s[l, n] given in (2),
the signal to be transmitted can be given by

s̃CP[i] = s
[〈

⟨i⟩M+Q −Q
〉
M

, ⌊i/(M +Q)⌋
]
,

i = 0, 1, · · · , N(M +Q)− 1, (4)

where ⟨x⟩y takes x modulo y and ⌊x⌋ rounds toward negative
infinity. The indexes on the RHS of (4) indicate that every
(M +Q) samples of s̃CP[i] are obtained by copying the last
Q samples from s[0, n], s[1, n], · · · , s[M−1, n] at some n and
pasting to the beginning.

In the second-type CP, the whole block of MN data sym-
bols have a single CP added, which is known as the reduced

CP-OTFS (RCP-OTFS) [30]. The signal to be transmitted in
RCP-OTFS can be given by

s̃RCP[i] = s
[〈̃
i
〉
M

,
⌊̃
i/M

⌋]
,

s.t. ĩ = ⟨i−Q⟩MN , i = 0, 1, · · · ,MN +Q− 1, (5)

where the indexes on the RHS indicate that the last Q samples
from s[0, N − 1], s[1, N − 1], · · · , s[M − 1, N − 1] are copied
and pasted to the beginning of s[l, 0]. The CP-added signal
will go through a digital-to-analog conversion (DAC) and other
analog-domain processing, e.g., frequency up-conversion and
power amplification etc., before being transmitted. A pulse-
shaping filter is generally performed to reduce the out-of-
band (OOB) emission. For illustration convenience, we do not
include the filter in the signal model. Nevertheless, practical
pulse-shaping filters will be used in our simulations.

As mentioned earlier, we consider a sensing receiver co-
located with the communication transmitter. Therefore, it is
reasonable to assume prefect synchronization and zero fre-
quency offset for sensing. Consider P targets. The scattering
coefficient, time delay and Doppler frequency of the p-th target
are denoted by αp, τp and νp, respectively. Let s̃[i] be either
s̃CP[i] or s̃RCP[i] (the set of i varies accordingly). The target
echo, as a sum of the scaled and delayed versions of s̃[i], can
be modeled as

x[i] =

P−1∑
p=0

α̃ps̃ [i− lp] e
j2πik̃p + w[i],

s.t. α̃p = αpe
−j2πνpτp ; lp = τp/Ts; k̃p = νpTs, (6)

where Ts is the sampling interval, and w[i] ∼ CN
(
0, σ2

w

)
is the additive noise conforming to a circularly-symmetric
complex centered Gaussian distribution.

Remark 1: Some features of the above signal model are
remarked here. First, the signal s̃CP[i] can represent DFT-S-
OFDM and OFDM with slight changes made on S[m,n]. In
particular, DFT-S-OFDM can be obtained when the Fourier
transform w.r.t. k is suppressed in (1), while OFDM is
obtained when both Fourier transforms in (1) are skipped.
Second, s[l, n] obtained in (2) approximately conforms to
a complex centered Gaussian distributions, as denoted by
s[l, n] ∼ CN (0, σ2

d), where σ2
d is the power of di; see (1). The

above result can be attained using (1) and (2) in combination
with another two facts: the complex envelope of an uncoded
OFDM system converges in distribution to a complex Gaussian
random process [31]; the unitary DFT does not change the
statistical properties and the whiteness of a Gaussian process
[32]. Third, we can use the above two facts to validate that
s[l, n] ∼ CN (0, σ2

d) also holds for DFT-S-OFDM and OFDM.

B. Classical OFDM Sensing (COS)

COS was developed about a decade ago and has been
widely used in the sensing literature; see [21], [22] and their
references. However, there are still some issues that have not
been effectively solved yet. Below, we briefly review COS and
highlight the issues. As COS is originally developed for CP-
OFDM, we assume that s̃CP[i] is transmitted and use x[i] to
describe the method.
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In COS, the (M +Q)N numbers of echo samples x[i] are
divided into N consecutive symbols, each having (M + Q)
samples. Removing the first Q samples in each symbol and
taking the M -point unitary DFT of the remaining samples in
the symbol, we obtain a common echo signal model

Xn[m] ≈
P−1∑
p=0

α̃pd[m,n]e−j
2πmlp

M̄ ej2πn(M+Q)k̃p +Wn[m],

s.t. d[m,n] = dkM+l

∣∣
l=0,k=n

(7)

where dkM+l as given in (1) is a data symbol drawn from the
communication constellation, and Wn[m] denotes the DFT of
the background noise. Note that, as often done in radar signal
processing [33], the intra-symbol Doppler effect is suppressed
in (7).

Dividing Xn[m] by S[m,n] in a point-wise manner, we
can remove the communication data symbols. Then, a two-
dimensional Fourier transform can be performed over m and
n, leading to the following RDM,

U r
k[l] =

N−1∑
n=0

M−1∑
m=0

Xn[m]
/
S[m,n]Z−ml

M Znk
N , (8)

=

P−1∑
p=0

α̃pSM (l − lp)SN

(
(M +Q)N k̃p − k

)
+W r

k[l],

where the superscript {·}r stands for ‘ratio’ to differentiate
with another way of removing S[m,n], as to be illustrated
in Section II-C3; Zbc

a is the unitary DFT basis and defined
in (3); Wk[l] is the two-dimensional Fourier transform of
W r

n[m]
/
S[m,n]; and Sx (y) is introduced to denote the DFT

results of the two exponential signals in (7). The general form
of Sx (y) is given by

Sx (y) =
1√
x

sin
(
x
2
2πy
x

)
sin
(
1
2
2πy
x

) ej x−1
2

2πy
x . (9)

The function Sx (y) is localized around y = 0 and hence
|Yk[l]| can present P dominant peaks in the range-Doppler
domain, if α̃p ∀p is sufficiently large. Thus, a threshold
detector based on, e.g., likelihood ratio test (LRT), can be
developed for target detection, from which coarse estimations
of target parameters can also be attained.

C. Motivation and Problem Statement

COS has been widely applied given its low complexity.
However, COS and many of its variants can have limited sens-
ing performance, as they follow the underlying communication
systems. Some intriguing issues are illustrated below.

1) CP-limited sensing distance: CP plays a non-trivial role
in COS. Specifically, CP makes each received symbol consists
of cyclically shifted version of the transmitted symbol. This
then enables us to attain the convenient echo model given in
(7) and further facilitates the removal of S[m,n] to generate
the RDM given in (8). However, CP also puts a constraint
on sensing. Namely, the round-trip delay of the maximum
sensing distance should be smaller than the time duration of
the CP. Such limitation stands even when we have a sufficient

link budget for sensing a longer distance. Moreover, for the
communication waveform with a reduced CP, as modeled in
(5), COS is not directly applicable.

2) Communication-limited velocity measurement: While
the sensing distance is limited by CP, the velocity measurement
performance can be constrained by the values of M and N .
Substituting k̃p = νpTs into (7), we see that the Doppler
frequency νp becomes the frequency of the exponential signal
of n and (M + Q)Ts is the sampling interval. Thus, the
maximum (unambiguous) measurable value of the Doppler
frequency, as denoted by νmax, and its resolution, as denoted
by ∆ν , can be given by

νmax = 1
/(

2(M +Q)Ts

)
; ∆ν = 1

/(
N(M +Q)Ts

)
.

While a small M can give us a large unambiguous region
for Doppler measurement, a large N is then necessary to
keep a small ∆ν . However, assigning the values of M and
N in a sensing-favorable way may degrade the performance
of the underlying communication system, e.g., 5G [34], that
generally has stringent requirements on the two parameters.

3) COS adapted for DFT-S-OFDM: As shown in (8), com-
munication data symbols are removed via point-wise divisions
in COS. For CP-OFDM, this is okay, as S[m,n], directly
drawn from a constellation, does not take zero in general.
However, for DFT-S-OFDM and OTFS, S[m,n] conforms
to a complex centered Gaussian distribution, as illustrated in
Remark 1. This means a certain portion of S[m,n] is centered
around the origin and the direct division can lead to severe
noise enhancement. To address the issue, a time-domain CCC
is proposed in [11] to replace the frequency-domain division.
The RDM under CCC can be written based on (8), leading to

U c
k [l] =

N−1∑
n=0

M−1∑
m=0

Xn[m]S∗[m,n]Z−ml
M Znk

N , (10)

where a closed-form result, as in the second line of (8), is
not available, due to the randomness of S∗[m,n]. Note that
S[m,n] here is not the same as in (8). As said in Remark
1, for DFT-S-OFDM, S[m,n] can be obtained by suppressing
the k-related Fourier transform in (1). Now that we have two
ways of generating RDMs, a question follows naturally: which
one gives the better sensing performance?

It is worth noting that the issues highlighted in Sections
II-C1 and II-C2 have barely been treated yet in the literature.
As seen in [10], [11], [21], [22], COS and many of its variants
often follow the underlying communication system w.r.t. M
and N and assume by default that the maximum round-trip
delay of sensing targets is no greater than the CP duration.
For CP-OTFS with demodulation performed in the delay-
Doppler domain, channel estimation, as developed in [29], is
conceptually similar to target parameter estimation in sensing.
However, this also makes sensing performance suffer from the
communication-incurred constraints, as pointed out in Section.
II-C1 and II-C2.

Moreover, the question asked in Section II-C3 has not been
systematically investigated, although it was shown through
simulations in [11] that the CCC-based RDM has better
sensing performance than the ratio-based RDM in low SNR
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Fig. 1: The schematic diagram of the proposed sensing framework, where
a sensing receiver (S-Rx) is co-located with a communication transmitter
(C-Tx) and receives the echo signal x[i] for wireless sensing. Substantially
differentiating our design with previous ones, e.g., COS, is the highlighted
block segmentation and virtual cyclic prefix (VCP). These operations turn
the block of echo signal x[i], as well as the copy of transmitted signal s̃[i],
into Ñ sub-blocks (SBs) each having M̃ samples. Afterwards, two common
ways of generating RDMs, using point-wise division (PWD) [10] and product
(PWP) [11], can be performed.

regions. This, however, is not always the case, as will be
revealed in Section IV. To address the issues highlighted
in Sections II-C1 and II-C2, we develop a novel flexible
sensing framework in Section III. Performance analysis for
the proposed sensing framework will be conducted in Section
IV, which also answers the question asked in Section II-C3.

III. A LOW-COMPLEXITY SENSING FRAMEWORK

The proposed sensing framework is illustrated in Fig. 1. A
communication transmitter (C-Tx) transmits s̃[i] which can be
either s̃CP[i] in (4) with regular CPs (e.g., OFDM and DFT-
S-OFDM) or s̃RCP[i] in (5) with a RCP (e.g., RCP-OTFS). A
copy of s̃[i] is given to the sensing receiver (S-Rx), which,
as mentioned earlier, co-locates with C-Tx and shares the
same clock. While s̃[i] is transmitted, S-Rx receives the target
echo, i.e., x[i] given in (6). The proposed sensing framework
solely relies on x[i] and s̃[i] without requiring any cooperation
or changes from C-Tx1. The sensing receiver starts with
segmenting x[i] and s̃[i] into multiple consecutive sub-blocks,
then removes or exploits the communication data symbols for
generating an RDM. Substantially differentiating the proposed
sensing framework from previous sensing methods, e.g., COS,
is the way a block of samples is segmented, as detailed next.

Unlike previous designs fully complying with the underly-
ing communication systems, we proposed to segment x[i] into
Ñ sub-blocks, each having M̃ samples, where Ñ = N is not
required in our design. Moreover, we allow the consecutive
sub-blocks to overlap by Q̄ samples, where Q̄ is either zero
or a positive integer. As also shown in Fig. 1, we segment the
communication-transmitted signal s̃[i], a copy at the sensing
receiver, in the same way as described above and call each
segment the essential signal of the sub-block. Due to the
propagation delay of a target, part of the essential signal is

1Since the proposed design does not affect the underlying communication
system at all, we shall only focus on the sensing in this paper.

not within the received sub-block but right after it. To preserve
the essential signal in each sub-block, we propose to add the
Q̃ samples right after a sub-block onto the first Q̃ samples
within the sub-block, creating a VCP. Note that VCPs are
samples from the block of received echo signals with fixed
and known positions. Also note that VCP is independent from
the original CP of the underlying communication system. It
is only introduced for sensing receiver and will not incur any
change to the communication transmitter.

As seen from Fig. 1, adding VCP can make each received
sub-block comprised of cyclically shifted versions of its essen-
tial signal part, as long as Q̃, not Q any more, is greater than
the maximum target delay. Since the value of Q̃ is not limited
to the original CP length Q, we can design the maximum
sensing distance flexibly subject to a sufficient link budget.
Next, the above description is further elaborated on using the
signal model provided in Section II.

Let sn[l] denote the essential signal of the n-th sub-block.
Based on the above illustration, we can write sn[l] as

sn[l] = s̃[n(M̃ − Q̄) + l], l = 0, 1, · · · , M̃ − 1,

n = 0, 1, · · · , Ñ − 1, Ñ =

⌊
(I − Q̃− Q̄)

(M̃ − Q̄)

⌋
, (11)

where s̃[·] on the RHS can be either s̃CP[i] in (4) or s̃RCP[i]
in (5) and Ñ is the total number of sub-blocks. Take the three
sub-blocks in Fig. 1 for an illustration. By excluding the last
Q̄ samples of sub-block two and its Q̃-sample VCP, we see
that each of the first three sub-blocks has (M̃ − Q̄) unique
samples. This can be generalized into the expression of Ñ
given in (11).

With reference to Fig. 1, after adding VCP, the received
signal in sub-block n becomes

xn[l] ≈
P−1∑
p=0

α̃psn
[
⟨l − lp⟩M̃

]
ej2πn(M̃−Q̄)k̃p + wn[l]+

z(p)n [l]gQ̃[l], l = 0, 1, · · · , M̃ − 1, (12)

where α̃p, lp and k̃p are given in (6). Similar to (7), the
approximation here is also due to the suppression of the intra-
sub-block Doppler impact. We emphasize that, due to the Q̄-
sample overlapping of consecutive sub-blocks, the Doppler
phase is 2π(M̃ − Q̄)k̃p not 2πM̃ k̃p. In (12), z(p)n [l]gQ̃[l] de-
notes the interference term and gQ̃[l] is a rectangular window
function which takes one at l = 0, 1, · · · , Q̃ − 1, and zero
elsewhere. Moreover, the noise term wn[l] in (12) is obtained
by first segmenting w[i] given in (6) as done in (11) and then
adding VCP. Since the addition of two i.i.d. Gaussian variables
is still Gaussian with the variance doubled, we have

wn[l] ∼
{

CN (0, 2σ2
w) for l = 0, 1, · · · , Q̃− 1

CN (0, σ2
w) for l = Q̃, · · · , M̃ − 1

. (13)

We notice that the interference term in (12) is the price paid
for having VCP (i.e., sensing flexibility). Though the interfer-
ence will make the white background noise become colored,
we will show in Section IV that the overall interference-
plus-noise background in the RDM still approximates a white
Gaussian distribution under certain conditions.
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As in OFDM, the cyclic shift of the essential signal pre-
serves the sub-carrier orthogonality. Therefore, taking the M̃ -
point DFT of xn[l] w.r.t. l leads to

Xn[m] =

P−1∑
p=0

α̃pSn[m]e−j
2πmlp

M̃ ej
2πnkp

Ñ +Wn[m] + Zn[m],

s.t. kp = Ñ(M̃ − Q̄)k̃p,

Fn[m] =

M̃−1∑
l=0

fn[l]Z lm
M̃

, (F, f) ∈ {(S, s), (W,w)} ,

Zn[m] =

P−1∑
p=0

α̃p

M̃−1∑
l=0

z(p)n [l]gQ̃[l]Z
lm
M̃

, (14)

where Sn[m], Wn[m] and Zn[m] are the DFTs of the respec-
tive terms in (12). We notice again that the unitary DFT basis,
as defined in (3), is used. Since sn[l] is known, Sn[m] can be
readily calculated. Corresponding to (8), we can divide both
sides of Xn[m] by Sn[m] and take the two-dimensional DFT
w.r.t. n and m, attaining the following ratio-based RDM:

V r
k [l] =

P−1∑
p=0

α̃pSM̄ (l − lp)SÑ (kp − k) +W r
k[l] + Zr

k[l],

s.t. Xr
k[l] =

N−1∑
n=0

M−1∑
m=0

Xn[m]

Sn[m]
Z−ml

M Znk
N , X ∈ {W,Z} (15)

where Sx (y) is defined in (9). Corresponding to (10), we can
multiply both sides of Xn[m] by the conjugate of Sn[m] and
take the same DFT w.r.t. n and m as above, obtaining the
CCC-based RDM:

V c
k [l] =

P−1∑
p=0

α̃pS
c
k[l] +W c

k [l] + Zc
k[l], (16)

s.t. Sc
k[l] =

Ñ−1∑
n=0

M̃−1∑
m=0

|Sn[m]|2e−j
2πmlp

M̃ ej
2πnkp

Ñ Z−ml

M̃
Znk

Ñ
;

Xr
k[l] =

Ñ−1∑
n=0

M̃−1∑
m=0

Xn[m]S∗
n[m]Z−ml

M̃
Znk

Ñ
, X ∈ {W,Z} .

Remark 2: We remark that the CCC-based RDM is differ-
ent from the ratio-based one, particularly when Sn[m] has non-
constant amplitudes over m. As pointed out in [11], Sc

k[l] is the
CCC between sn[l] given in (11) and xn[l] given in (12). This
can be readily shown by writing |Sn[m]|2 = Sn[m]S∗

n[m],
replacing Sn[m] with its DFT expression

∑M−1
l′=0 sn[l

′]Z l′m
M̃

and rewriting the remaining m-related summation. CCC is
essentially equivalent to the matched filtering in conventional
radar signal processing [33]. Thus, at a target delay, CCC will
generate a peak, facilitating target detection and estimation.

Based on the RDMs obtained in (15) and (16), target
detection and parameter estimation can be performed for
various sensing applications. Note that developing methods
for target detection and parameter estimation will be out
of the scope of this study, as we focus on designing the
framework and investigating the unsolved issues highlighted
in Section II-C. Nevertheless, as will be proved in the next
section, Propositions 1 and 2 in specific, the IN signals in

TABLE II: Proposed Sensing Framework

Input: M̃ , Q̃, Q̄, Sn[m] and Ñ given in (11), and x[i] given in (6).
1) Segment x[i] into Ñ sub-blocks (SBs): the n-th SB starts from the

n(M̃ − Q̄) (n = 0, 1, · · · , Ñ − 1) and has M̃ samples;
2) Add the Q̃ samples after each SB onto the first Q̃ within the SB;
3) Take the M̃ -point DFT of each SB, attaining Xn[m] given in (14);
4) If the ratio-based RDM is preferred, divide Xn[m] by Sn[m] pointwise

and take a two-dimensional DFT w.r.t. n and m, leading to (15);
5) If the CCC-based RDM is chosen, multiply Xn[m] with S∗

n[m]
pointwise and take a two-dimensional DFT, yielding (16);

6) Provided PF, Nk
g , N l

g, Nk
r and N l

r , enumerate each range-Doppler
grid by performing the following steps,
a) Estimate the power of the local IN background according to (17);
b) Calculate the detecting threshold T based on (18);
c) If a power of the grid under test is greater than T, a target exists;

otherwise, no target. If a target exists, the coarse estimates of its
parameters can be obtained; see (19).

both RDMs, i.e., W r
k[l] + Zr

k[l] and W c
k [l] + Zc

k[l], over
range-Doppler grids, i.e., k and l, approximately conform to
i.i.d. Gaussian distributions. This enables many existing target
detectors and parameter estimators to be directly applicable
under the proposed sensing framework. To validate the new
design and analysis, the cell-averaging constant false-alarm
rate detector (CA-CFAR) [33, Chapter 16] will be performed
in our simulations.

Next, we summarize the proposed sensing framework in
Table II, where CA-CFAR is also briefly described. From the
input of Table II, we see some extra parameters, e.g., M̃ , Q̃
and Q̄ that are not owned by COS. These parameters endow
the proposed sensing framework with better flexibility and
adaptability compared with COS. Their design criteria will be
illustrated in Section IV. In Table II, Steps 1) to 2) perform
the proposed block segmentation and VCP. Step 3) transforms
the time-domain signal into the frequency domain. Steps 4)
and 5) show two different ways of removing communication
data symbols and accordingly generate RDMs. Step 6) and its
sub-steps implement the CA-CFAR.

In Step 6), PF is the expected false-alarm rate; Nk
g and

N l
g denote the number of gap samples on each side of the

grid under test (GUT) along the k- and l-dimensions; likewise,
Nk

r and N l
r denote the number of reference samples. The gap

samples will be excluded while the reference samples will
be used, when estimating the power of local IN background.
Given a Gaussian IN background, the maximum likelihood
estimate of the power is the mean of the signal power of the
selected reference grids, i.e.,

σ̂2
k∗,l∗ =

1

|Ωr
k∗,l∗ |

∑
(k,l)∈Ωr

k∗,l∗

|V X
k [l]|2, X ∈ {r, c},

Ωr
k∗,l∗ =

{
(k, l)

∣∣∣k=k∗−Nk
r −Nk

g ,··· ,k∗+Nk
r +Nk

g ;

l=l∗−N l
r−N l

g,··· ,l
∗+N l

r+N l
g

}∖
{
(k, l)

∣∣∣k=k∗−Nk
g ,··· ,k∗+Nk

g ;

l=l∗−N l
g,··· ,l

∗+N l
g

}
, (17)

where (k∗, l∗) denotes the index of GUT, Ωr
k∗,l∗ denotes the

index set of reference grids, {}\{} gives the set difference,
and |Ω| denotes the number of entries in the set Ω. Using
σ̂2
k∗,l∗ , we can set the CA-CFAR threshold as [33, (16.23)],

T = βσ̂2
k∗,l∗ , β = |Ωr

k∗,l∗ |
(
P
−1/|Ωr

k∗,l∗ |
F − 1

)
. (18)
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If |V X
k∗ [l∗]|2 ≥ T, we report the presence of a target at (k∗, l∗).

The coarse estimates of the delay and Doppler frequency of
the target, say the p-th, can be obtained as

τ̂p = l∗Ts; ν̂p = k∗
/(

(M̃ − Q̄)ÑTs

)
, (19)

where the relationship among relevant variables, as given in (6)
and (14), is used for the above result. For applications requir-
ing high-accuracy estimations of target location and velocity,
various methods for parameter refinement are available in the
literature, such as the conventional multiple signal clarification
(MUSIC) [35] and a much newer DFT-interpolation-based
estimator [36] etc. In a parallel work [37], we have specifically
studied the OTFS-based ISAC with a low-complexity target
estimator developed. Interested readers are referred to [37]
form more details on target estimation.

Before ending the section, the last note is given on the
computational complexity of the proposed sensing framework.
From Table II, we see that the explicit complexity is dominated
by the computations performed in Steps 3)-6). An implicit
complexity, however, lies in the computation of Sn[m] which
is an extra compared with previous designs, e.g., COS [10]
and C-COS [11]. Since Sn[m] is the result of Ñ numbers
of M̃ -point DFTs, computing it incurs the complexity of
O{ÑM̃ log M̃}, where O{M̃ log M̃} is complexity of the M̃ -
point DFT (under the fast implementation [38]). Step 3) shares
the same complexity of O{ÑM̃ log M̃}. The complexity of
generating an RDM, performing either Step 4) or Step 5), is
dominated by the two-dimensional DFT and can be given by
O{ÑM̃ log M̃+M̃Ñ log Ñ}. Step 6) essentially processes the
RDM by a two-dimensional filter, and hence can be performed
through the same two-dimensional Fourier transform as in
Steps 4) and 5) [39]. Consequently, we can say that the overall
computational complexity of the proposed sensing framework
is O{ÑM̃ log M̃ + M̃Ñ log Ñ}.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the interference and noise
background in the two RDMs obtained in (15) and (16). Then
we derive, analyze and compare their SINRs, through which
the question in Section II-C3 will be answered. Moreover,
insights into the parameter design for the proposed sensing
framework will also be drawn.

A. Preliminary Results

From (15) and (16), we see that both RDMs are obtained
based on Xn[m] given in (14). Thus, we analyze first its
three signal components, i.e., Sn[m], Zn[m] and Wn[m].
Their useful features are provided here. In particular, their
distributions are provided in Lemma 1 with the proof given in
Appendix A. The independence of Sn[m], Zn[m] and Wn[m]
over n is given in Lemma 2; see Appendix B for the proof. In
addition, the independence of the signals over m is illustrated
in Lemma 3; see Appendix C for the proof.

Lemma 1: The useful signal and the noise in (14) satisfy

Sn[m] ∼ CN (0, σ2
d);

Wn[m] ∼ CN
(
0, σ2

W

)
, σ2

W =
(
1 + Q̃/M̃

)
σ2
w,

(20)

where σ2
d is the power of communication data symbols, i.e.,

di given in (1), and σ2
w is power of the receiver noise, i.e.,

w[i] given in (6). Moreover, provided that α0, α1, · · · , αP−1

are uncorrelated, the interference term in (14) conforms to

Zn[m] ∼ CN
(
0, σ2

Z

)
, σ2

Z =
Q̃σ2

dσ
2
P

M̃
, σ2

P =

P−1∑
p=0

σ2
p, (21)

where σ2
p is the power of the p-th scattering coefficient, i.e.,

αp given in (6).

Lemma 2: Given M̃ > (Q̃ + Q̄) and at any m, Zn[m] is
i.i.d. over n, whereas Sn[m] and Wn[m] are each independent
over either the set of odd n’s or that of even n’s. In addition,
we have, at any m,

C (Sn[m], Sn+1[m]) = Q̄/M̃ ;

C (Wn[m],Wn+1[m]) = (Q̃+ Q̄)/M̃. (22)

where n = 0, 1, · · · , Ñ − 2 and C (x, y) = |E{xy∗}|√
E{|x|2}E{|y|2}

is

the absolute correlation coefficient between x and y.

Lemma 3: For any n, Sn[m] and Wn[m] are independent
over m, while Zn[m] is not and satisfies

C (Zn[m1], Zn[m2]) =
sin
(

2π
M̃

Q̃(m1−m2)
2

)
Q̃ sin

(
2π
M̃

(m1−m2)
2

) . (23)

From (15) and (16), we notice that the SINR improvement
is maximized when the IN background is independent over
the range-Doppler grids, also known as ‘white’. However,
we see from Lemmas 2 and 3, the interference and noise
signals are somewhat dependent over range-Doppler grids.
More interestingly, there is a trade off in this regard caused by
Q̃

M̃
. To reduce the correlation of Sn[m] and Wn[m] along n,

we prefer M̃ ≫ (Q̃+Q̄) which also means M̃ ≫ Q̃. However,
according to (23), reducing Q̃

M̃
will heavily increase the corre-

lation of Zn[m] over m. In an extreme case, consider Q̃ takes
one, the smallest value. We then have C (Zn[m1], Zn[m2]) =
1 (∀m1,m2). As will be shown shortly, the dependence of
Sn[m], Wn[m] and Zn[m] over n and m makes it difficult to
analyze the distribution of the IN background in the RDMs.
This, nevertheless, will be conquered.

B. Analyzing Signal Components in Two RDMs

We start with analyzing the distribution of the IN back-
ground, i.e., W r

k[l]+Zr
k[l], in the ratio-based RDM. According

to (15), W r
k[l] + Zr

k[l] can be rewritten as

Zr
k[l] +W r

k[l] =

Ñ−1∑
n=0

M̃−1∑
m=0

Dk,l
n,m︷ ︸︸ ︷

(Zn[m] +Wn[m])Z−ml

M̃
Znk

Ñ

Sn[m]
.

(24)

Since Zn[m] and Wn[m] are independent Gaussian vari-
ables, their sum is also Gaussian distributed. Moreover, given
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∀k,m, n, l, Z−lm
M̄

and Znk
Ñ

have deterministic values, as
defined in (3). Accordingly, applying Lemma 1, we obtain

Dk,l
n,m ∼ CN

(
0, (σ2

Z + σ2
W )
/
M̃Ñ

)
, (25)

where the coefficient of the variance is from the two DFT
bases; see (3). Then, the summand in (24) becomes the ratio
of two uncorrelated complex Gaussian variables. Such a ratio
conforms to a Cauchy distribution [40]. Now that Zr

k[l]+W r
k[l]

becomes the sum of Cauchy variables, one would think of
using the central limit theorem (CLT) to approximate the
summation as a Gaussian distribution. Unfortunately, CLT
is not applicable to Cauchy variables, as they have infinite
variances [40]. To this end, we provide a remedy below, in
light of the fact that the CLT is applicable to the truncated
Cauchy distributions [41].

Instead of using Sn[m] as divisor directly, we can use
gSn[m], where g a real positive coefficient. Since gSn[m] ∼
CN

(
0, g2σ2

d

)
according to Lemma 1, we can take a suf-

ficiently large g such that the probability of the event
|gSn[m]| < 1 can be reduced to a small value, say ϵ. Moreover,
if ϵI < 1, then out of I samples of CN

(
0, g2σ2

d

)
, the event

|gSn[m]| < 1 may not happen at all. According to [37, Lemma
3], the critical value of g, leading to ϵ = 1/I , can be given by

gc = 1
/(

σd

√
ln

I − 1

I

)
. (26)

Based on the above illustration, we can revise the ratio-based
RDM as follows,

Ṽ r
k [l] =

N−1∑
n=0

M−1∑
m=0

IE
{

Xn[m]

gSn[m]

}
Z−ml

M Znk
N

≈
P−1∑
p=0

α̃p

g
SM̄ (l − lp)SÑ (kp − k) + W̃ r

k[l] + Z̃r
k[l],

s.t. X̃r
k[l] =

N−1∑
n=0

M−1∑
m=0

IE
{

Xn[m]

gSn[m]

}
Z−ml

M Znk
N ,X ∈ {W,Z}

IE{·} = 1 if event E happens; otherwise IE{·} = 0,

E ∆
= {|gSn[m]| ≥ 1}, (27)

where Xn[m] is given in (14) and gSn[m] is used as the
divisor compared with using Sn[m] in (15). Note that the
approximation is based on that IE = 0 can barely happen
with a sufficiently large g. For the same reason, we will drop
the operator IE{·} below for notation simplicity. But bear in
mind that IE{·} shall still be applied.

Now we are able to invoke the CLT based on (27). However,
there is one more trap — the summands under the CLT need
to be i.i.d., while, as indicated by Lemmas 2 and 3, the i.i.d.
condition is not satisfied here. To this end, we resort to the
case M̃ ≫ (Q̃ + Q̄), under which the correlation of Sn[m]
and Wn[m] over n can be negligibly weak. As illustrated
at the end of Section IV-A, M̃ ≫ (Q̃ + Q̄) can severely
increase the correlation of Zn[m] over m. Nevertheless, we
discover that applying the CLT along the n-dimension first can
approximately remove the correlation of the resulted Gaussian

distributions over m. More details are given in Appendix D,
while the results are summarized in the following proposition.

Proposition 1: Provided that Ñ is large and M̃ ≫ (Q̃+Q̄),
the IN background of the ratio-based RDM obtained in (27)
approaches a complex centered Gaussian distribution which
satisfies

W̃ r
k[l] + Z̃r

k[l] ∼ CN
(
0,

(σ2
Z + σ2

W )b(ϵ)

g2σ2
d

)
, (28)

s.t. b(ϵ) = 2 ln
(
2(1− ϵ)

/(
e
√
ϵ(2− ϵ)

))
,

where σ2
Z and σ2

W are given in Lemma 1, ϵ is a sufficiently
small number and e denotes the base of the natural logarithm.

Despite the complex expression of the variance in (28),
it actually has a clear structure. Specifically, the fraction
(σ2

Z+σ2
W )

g2σ2
d

is the ratio between the variance of Dk,l
n,m and that of

gSn[m]; in parallel with that W̃ r
k[l]+Z̃r

k[l] is the ratio between
the two random variables. Such a ratio is known to have a
heavy-tail PDF [40] and hence the coefficient b(ϵ), greater
than one in general, acts like a penalty factor to account for
the heavy tail. Next, we elaborate more on b(ϵ). According to
[37, Appendix D], ϵ is the probability that

∣∣∣ℜ{W̃ r
k[l] + Z̃r

k[l]}
∣∣∣

is larger than a threshold, where ℜ{} takes the real part of a
complex number. Regardless of the specific expression of the
threshold, we hope ϵ is such a small probability that out of
M̃Ñ samples of W̃ r

k[l]+ Z̃r
k[l], less than one sample can have

the magnitude of its real part exceed the threshold. So a critical
value of ϵ is 1/

(
M̃Ñ

)
. Substituting the value into (28) leads

to

bc = b
(
1/
(
M̃Ñ

))
= 2

(
ln

(
2(M̃Ñ − 1)√
2M̃Ñ − 1

)
− 1

)
. (29)

Note that M̃Ñ ≈ I , the number of samples in the whole block
can be tens of thousands and even greater.

With reference to the analysis yielding Proposition 1, we can
similarly analyze the distributions of the signal components in
the CCC-based RDM obtained in (16). This time, the CLT
is directly applicable to the summands in (16), as each is a
product of two Gaussian variables and has a limited variance
[42]. However, the useful signal in the CCC-based RDM
is substantially different from that in the ratio-based RDM;
see (16) and (27). Thus, we provide some more analysis
in Appendix E, with the focus on the useful signal in the
CCC-based RDM. The following proposition summarizes the
analytical results.

Proposition 2: Provided large M̃ and Ñ as well as M̃ ≫
(Q̃+ Q̄), the signal components of the RDM obtained in (16)
approach Gaussian distributions that approximately satisfy

Sc
k[l] ∼

{
N
(
σ2
d

√
M̃Ñ , σ4

d

)
l = lp and k = kp

N
(
0, σ4

d

)
l ̸= lp or k ̸= kp

; (30)

W c
k [l] + Zc

k[l] ∼ CN
(
0, σ2

d(σ
2
Z + σ2

W )
)
. (31)

Detecting in Gaussian IN background has been widely
studied for decades. Thus, Propositions 1 and 2 allow us to
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employ many existing detectors to detect targets from the
RDMs obtained under the proposed sensing framework. The
CA-CFAR has been briefly reviewed in Section III. The two
propositions also allow us to analyze and compare the SINRs
in the two RDMs and draw insights into sensing parameter
design. This is carried out next.

C. Comparison and Insights

The SINRs in the two RDMs are first derived based on
Propositions 1 and 2. Based on (27), the power of the useful
signal in the ratio-based RDM can be given by σ2

P M̃Ñ/g2,
where σ2

P =
∑P−1

p=0 σ2
p. Then, combining the power of the

IN terms derived in Proposition 1, we obtain the SINR of the
ratio-based RDM, as given by

γr
V =

M̃Ñσ2
Pσ

2
d

(σ2
Z + σ2

W )b(ϵ)
=

M̃Ñ(
Q̃

M̃
+
(
1 + Q̃

M̃

)
1

γ0σ2
P

)
b(ϵ)

,

s.t. γ0 = σ2
d

/
σ2
w, σ2

P =
P−1∑
p=0

σ2
p, (32)

where the expressions of σ2
Z and σ2

W given in Lemma 1 are
used to get the final result. The above SINR can be simplified
under certain asymptotic conditions. In particular, we have

γr
V


γ0≪ 1

σ2
P≈

M̃
(

(I−Q̃−Q̄)

(M̃−Q̄)

)
γ0σ

2
P(

1+ Q̃

M̃

)
b(ϵ)

(a)
≈ Iγ0σ

2
P(

1− Q̄

M̃

)(
1+ Q̃

M̃

)
b(ϵ)

;

γ0≫ 1

σ2
P≈ I

/((
1− Q̄

M̃

)
Q̃

M̃
b(ϵ)

)
(33)

where
γ0≪ 1

σ2
P≈ is obtained by (I) suppressing Q̃

M̃
from the de-

nominator of (32) as γ0 ≪ 1
σ2
P

leads to Q̃

M̃
≪
(
1 + Q̃

M̃

)
1

γ0σ2
P

;

and (II) replacing Ñ with its expression given in (11) while

suppressing the flooring operator. Moreover,
(a)
≈ is due to

I = (M + Q)N ≫ (Q̃ + Q̄). The second line in (33) can
be obtained similarly.

For the CCC-based RDM, its SINR can be obtained by
applying Proposition 2 in (16). In particular, we have

γc
V =

(M̃Ñ + 1)σ2
Pσ

4
d

(σ2
Z + σ2

W )σ2
d + σ2

Pσ
4
d

=
(M̃Ñ + 1)

Q̃

M̃
+
(
1 + Q̃

M̃

)
1

γ0σ2
P
+ 1

,

(34)

where σ2
Pσ

4
d in the denominator of the middle result is the

interference caused by Sc
k[l] at l ̸= lp or k ̸= kp. With

reference to the way (33) is obtained, we can also attain the
asymptotic γc

V , as given by

γc
V


γ0≪ 1

σ2
P≈ Iγ0σ

2
P

/((
1− Q̄

M̃

)(
1 + Q̃

M̃

))
γ0≫ 1

σ2
P≈ I

/((
1− Q̄

M̃

)(
1 + Q̃

M̃

)) . (35)

The SINRs derived in (32) and (34) can be adapted for
the RDMs obtained in the framework of COS, i.e., (8) and
(10). As reviewed in Section II-B, COS complies with the
underlying communication system. Thus, we can take M̃ = M

and Ñ = N in (32) and (34). Moreover, since COS uses the
original communication CP, σ2

Z in (32) and (34), which is the
power of the interference caused by the proposed VCP, can
be suppressed, and σ2

W can be replaced by σ2
w. Under the

above changes, the SINRs of the RDMs in (8) and (10) can
be, respectively, given by

γr
U =

MNγ0σ
2
P

b(ϵ)

(a)
=

Iγ0σ
2
P(

1 + Q
M

)
b(ϵ)

(∀γ0);

γc
U =

(MN + 1)γ0σ
2
P

1 + γ0σ2
P


γ0≪ 1

σ2
P≈ Iγ0σ

2
P

/(
1 + Q

M

)
γ0≫ 1

σ2
P≈ I
/(

1 + Q
M

)
(36)

where
(a)
= is obtained by replacing N with I

(M+Q) , the same
replacement is also performed for γc

U , and the approximations
are similarly attained, as done in (33). Now, we are ready to
make some comparisons using the SINR expressions.

Remark 3: For the ratio-based RDM, we make the follow-
ing comparisons between COS and the proposed sensing:

3a) In low SNR regions, such that γ0 =
σ2
d

σ2
w

≪ 1
σ2
P

, the
proposed sensing framework has a greater SINR than COS
with a gain no less than 1

1− Q̄

M̃

, provided Q̃

M̃
≤ Q

M ;

3b) Provided the maximum round-trip delay of a target
is smaller than the communication CP duration, i.e.,
max∀p{τp} ≤ QTs, COS can have a greater SINR than
the proposed sensing framework for γ0 >

1+ Q
M(

1− Q̄

M̃

)
Q̃

M̃
σ2
P

;

3c) Provided max∀p{τp} > QTs, the result in Remark 3b)
may not hold any more; moreover, the proposed sensing
framework can have a greater SINR than COS;

The first two results can be readily attained based on (33) and
(36). It is noteworthy that the condition max∀p{τp} ≤ QTs

is implicitly required by COS to remove communication data
symbols for generating RDMs; see the review in Section II-B.
If the condition is unsatisfied, the SINR of COS, as given
in (36), becomes invalid. However, for the fact that COS
cannot effectively remove communication data symbols any
more while the proposed sensing can, we attain the result in
Remark 3c). As will be validated by Fig. 3 in Section V,
the SINRs of the two RDMs under COS degrade severely, as
max∀p{τp} exceeds QTs.

Remark 4: For the CCC-based RDM, provided Q̃

M̃
≤ Q

M ,
the proposed sensing always has a greater SINR than COS
regardless of γ0 and the SINR gain is no less than 1

1− Q̄

M̃

.

The results can be easily validated using (35) and (36). An
intriguing question is why the relationship between COS and
the proposed sensing is substantially different under the two
RDMs. In essence, this is caused by the different ways the
communication data symbols are removed for generating the
two RDMs. For the ratio-based RDM, the pointwise division,
as shown in (15), magnifies the IN background by introducing
the multiplicative coefficient b(ϵ). In contrast, the pointwise
product for the CCC-based RDM; see (16), introduces an
additive interference σ2

Pσ
4
d; see (34). While the VCP-incurred
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interference does not bother COS, the CCC-incurred interfer-
ence exists in both COS and the proposed sensing framework.

Remark 5: Some comparisons between the ratio- and CCC-
based RDMs are made here. Based on (33) and (35), we can
attain the following results for the proposed sensing:
5a) In low SNR regions where γ0 ≪ 1/σ2

P , the CCC-based
RDM has an SINR that is b(ϵ) times the SINR in the
ratio-based RDM, where b(ϵ) > 1 in general; see (29).

5b) In high SNR regions where γ0 ≫ 1/σ2
P , the ratio-based

RDM can have a greater SINR than the CCC-based RDM,
provided b(ϵ) ≤ M̃

Q̃
.

5c) Regardless of γ0, the CCC-based RDM always has a
greater SINR than the ratio-based RDM, if b(ϵ) > M̃

Q̃
+1.

Based on (36), similar results as above can be given for COS:
5d) The result in 5a) directly applies to COS;
5e) In high SNR regions where γ0 ≫ 1/σ2

P , the CCC-based
RDM has a greater SINR than the ratio-based RDM, if
b(ϵ) > γ0σ

2
P , while if b(ϵ) < γ0σ

2
P the ratio-based RDM

has a greater SINR.

D. Criteria for Setting Key Sensing Parameters

Unlike COS that follows with the underlying communi-
cation system, our sensing framework has the flexibility of
catering different sensing needs via adjusting several key
parameters: M̃ , Q̃ and Q̄ (Ñ is determined given the for-
mer three). Below, we illustrate the criteria for setting these
parameters to optimize sensing performance.

First, we can set Q̃ based on the required maximum sensing
distance, as denoted by rmax. From Section III, the sensing
distance of the proposed design is given by CQ̃Ts

2 , which,
equating with rmax, yields

Q̃ = 2rmax/CTs. (37)

It is worth noting that the issue of CP-limited sensing, as
described in Section II-C1, is addressed by introducing Q̃.
Unlike in COS and its variants where rmax is determined by
Q, we now can set Q̃ to satisfy rmax (provided a sufficient
link budget).

Second, we determine M̃ given the requirements on velocity
measurement. Applying the analysis in Section II-C2, the
maximum measurable value and the resolution of Doppler
frequency of the proposed sensing framework are given by

νmax = 1
/(

2(M̃ − Q̄)Ts

)
; ∆ν ≈ 1

/(
ITs

)
. (38)

Thus, to cater the expected ν∗max we need to keep M̃ ≤
1
/(

2ν∗maxTs

)
+ Q̄. Moreover, we prefer to have a relatively

large2 M̃ which can lead to a small Q̃

M̃
and hence a high SINR

in both RDMs; see (33) and (35). It is noteworthy that the
issue of limited velocity measurement, as illustrated in Section
II-C2, is now addressed by introducing M̃ and Q̄. Instead of
having an M -limited νmax, we now have the flexibility of
configuring M̃ to satisfy the requirement on νmax.

2Note that, if Q̄/M̃ is fixed, the larger M̃ the smaller Ñ(≈ I
/
(M̃(1 −

Q̄/M̃))) will become. This may affect the precision of results given in
Propositions 1 and 2 which expect both M̃ and Ñ .

TABLE III: Simulation Parameters

Var. Description IEEE 802.11ad
fc Carrier frequency 60.48 GHz
B Bandwidth 1.825 GHz
M No. of sub-carriers per symbol 512
Q CP length 128
N No. of symbols 143 (0.05 ms packet)
I Total No. of samples; see (4) N(M +Q) = 91520
σ2
d Power of data symbol di; see (1) 0 dB

σ2
p Power of αp; see (6) [0,−10,−20] dB

rp Target range U[0,10] m
†

vp Target velocity U[−139,139] m/s

σ2
w Variance of AWGN w[i]; see (6) −20 dB

† U[x,y] denotes a uniform distribution in the region give by the subscript.

Third, given M̃ , we can then set Q̄. To increase the SINR
in both RDMs, we expect to have Q̄ as large as possible; see
(33) and (35). However, the larger Q̄ the more correlated the
signals between adjacent sub-blocks can be; see Lemmas 2
and 3. As seen from Propositions 1 and 2, the correlation can
make the results less precise. The detailed impact, however, is
difficult to analyze. As will be shown through the simulations
in Figs. 4 and 5, the derivations and analysis in Sections IV-B
and IV-C are consistently precise when Q̄ takes from a small
value to the one as large as M̃/2− Q̃.

V. SIMULATION RESULTS

Simulations are performed in this section to validate the
proposed design. The simulation parameters are set with ref-
erence to [11] and are summarized in Table III. The root raised
cosine (RRC) filter with the roll-off coefficient of 0.2 is used at
both the communication transmitter and the sensing receiver.
In generating target echo signals, a four-times upsampling is
performed by the transmitter RRC filter; the target delay and
Doppler frequency are added at the high sampling rate; and a
four-times decimating is performed at the receiver RRC filter.
This generates off-grid range and Doppler values, making
the simulations comply with practical scenarios. Further, the
Swerling 0 target model [33, Table 7-3] is employed in the
simulation. Namely, αp =

√
σ2
p is taken over independent

trials. However, to have independent scattering coefficients,
the phase of αp (∀p) is uniformly drawn from [0, 2π], yet
independently over targets and trials.

The benchmark sensing framework is COS [10], as reviewed
in Section II-B. The original COS, as developed for OFDM
[10], uses the ratio-based RDM given in (8), while the variant
of COS, as developed for DFT-S-OFDM [11], employs the
CCC-based RDM given in (10). As illustrated in Remark 1, for
both OFDM and DFT-S-OFDM, the time-domain transmitted
communication signals conform to Gaussian distributions,
which is similar to OTFS. Therefore, for fair comparison, we
unitedly use OTFS modulation for all methods to be simulated.
In essence, it is the way a block of echo signal is segmented,
rather than the communication waveforms, that differentiates
COS and the proposed sensing framework. Substantially dif-
ferentiating our sensing framework from the existing ones of
the same kind, e.g., [10] and [11], is mainly the way how the
RDMs are generated. Therefore, following the most related
previous works [10] and [11], the SINRs of the RDMs and the



11

-20 -10 0 10 20

15

20

25

30

35

40

45

50
600

1800

COS

-20 -10 0 10 20

25

30

35

40

45

-18 -14

15

20

-18-16-14-12

28

30

32

34

c, 600,sim

(b)(a)

r, 600,sim

Fig. 2: SINRs in the RDMs versus γ0 defined in (32), where three targets
are set as specified in Table III. The ratio-based RDMs are shown in Fig.
2(a), while the CCC-based RDMs in Fig. 2(b). The two sub-figures share the
same legend, where the numbers are the values of M̃ used for the proposed
design. Corresponding to the solid curves, the dash ones are the theoretical
SINRs derived in (32), (34) and (36). For comparison convenience, the curve
‘c, 600, sim’ in Fig. 2(a) is copied from Fig. 2(b) and the curve ‘r, 600, sim’
in Fig. 2(b) is from Fig. 2(a).

target detection performance that is directly related to SINRs,
are employed as the main performance metrics in the following
simulations.

In the legends of the simulation results, we use ‘r’ to indicate
the ‘ratio-based RDM’, ‘c’ the ‘CCC-based RDM’, ‘sim’ the
simulated result and ‘pp’ the ‘proposed design’.

A. Illustrating SINRs in RDMs

Fig. 2 plots the SINRs of the ratio- and CCC-based RDMs
versus γ0, under different values of M̃ . In this simulation,
Q̃ = Q, Q̄ = 150 and other parameters are given in Table III.
Overall, we see that the derived SINRs can precisely describe
the actual (simulated) SINRs. This validates the analysis in
Section IV-B. More specifically, we see from Fig. 2(a) that
the proposed design achieves higher SINRs in the ratio-based
RDM than COS in the case of γ0 ≪ 1, which validates
Remark 3a). We also see Fig. 2(a) that as M̃ increases the gap
between the proposed design and COS becomes smaller for
γ ≪ 1. This is consistent with the SINR expression derived in
(32). We further see that, when γ0 ≫ 1, COS can outperform
the proposed design, which complies with Remark 3b). We see
from Fig. 2(b) that the SINR achieved in the CCC-based RDM
first increases with γ0 and then converges for large γ0’s. This is
consistent with (34). Moreover, we see that, for the CCC-based
RDM, the proposed design achieves the higher SINR across
the whole region of γ0 compared with COS. This aligns with
Remark 4. The comparison between the ratio- and CCC-based
RDMs validates the analysis given in Remark 5.

It is noteworthy that the value of M̃ determines the maxi-
mum measurable Doppler frequency of the proposed sensing
framework, as specified in (38). Approximately, the maximum
Doppler frequency under M̃ = 600 is the triple of that
under M̃ = 1800. Fig. 2 shows that the proposed design
achieves consistent SINRs under the two substantially different
cases. This manifests the flexibility of the proposed sensing
framework in adapting to different requirements on Doppler
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Fig. 3: SINRs in RDMs versus Q̃ (the length of VCP), where the values of
M̃ and Q̄ are changed with Q̃ to keep Q̃

M̃
= 1

4
and Q̄

M̃
= 1

3
. A single target

is simulated with its distance set as (Q̄−1)C
2B

m, while other parameters are
set as in Table III.

measurement. Such flexibility is not owned by any existing
designs of the similar kind, e.g., COS [10] and C-COS [11].

Fig. 3 illustrates the SINRs achieved by the proposed
sensing framework in the two types of RDMs under different
values of Q̃. The figure is dedicated to demonstrating the
ability of the proposed sensing framework in extending the
maximum sensing distance (a function of Q̃ given in (37)).
Since the ability is independent of the number of targets, we
only consider a single target in this simulation. As said in the
caption of the figure, we keep the ratios Q̃

M̃
and Q̄

M̃
fixed under

different Q̃’s. Then, according to (32) and (34), we know that
the SINRs achieved by the proposed design should be the same
over Q̃, which is clearly validated by Fig. 3. This illustrates the
great flexibility of proposed design in extending or reducing
sensing distance as per practical sensing needs. In contrast,
COS degrades severely when Q̃ exceeds Q = 128. This is
because COS strictly follows the underlying communication
system and cannot sense well when the echo delay is larger
than the CP length; see (7).

In Fig. 3, the gap between the theoretical and simulated re-
sults is less than 2 dB and caused by the approximation used in
deriving the theoretical SINR. In particular, the theoretical gain
of the signal power is taken as M̃Ñ in Section IV-B, which,
according to (14) and (15), is only accurate when lp (∀p) and
kp (∀p) are integers. As mentioned at the beginning of Section
V, we employ an upsampling and downsampling method to
generate off-grid range and Doppler values, resulting in the
gap seen in Fig. 3.

Figs. 4 and 5 demonstrate another great flexibility of the
proposed sensing framework by showing the SINRs achieved
in the two types of RDMs under different values of Q̄. Note
that three targets are set as detailed in Table III. Overall,
we see from the two figures that SINRs increase with Q̄
but the slopes decrease as M̃ becomes larger. This can be
well seen from the analytical SINR expressions derived in
(32) and (34). Moreover, we see from Fig. 4 that the SINR
performance under low and high SNRs are different, while
such phenomenon is not seen in Fig. 5. The rationale for this
result can be seen from Remark 4. It is worth highlighting
that, as seen from the figure, the analytical results match the
simulated ones in the whole region of Q̄. This manifests the
high flexibility of the proposed design.
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Fig. 4: SINRs in the ratio-based RDM versus Q̄ (the number of overlapping
samples between adjacent sub-blocks), where Q̃ = Q. The solid curves are
simulated results while the dash ones are theoretical.
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Fig. 5: SINRs in the CCC-based RDM versus Q̄ (the number of overlapping
samples between adjacent sub-blocks), where Q̃ = Q. The solid curves are
simulated results while the dash ones are theoretical.

B. Illustration of Target Detection

Next, we translate the SINR results obtained above into
the actual detecting performance of the proposed sensing
framework. To do so, we perform the CA-CFAR according
to the steps given in Table II. In the following simulations,
the parameters in Step 6), Table II are set as: Nk

g = N l
g = 3,

Nk
r = 2 and N l

r = 5. For a better time efficiency of simulating
and calculating the detecting probability, we make two changes
in the target scenario. First, we increase the number of targets
to P = 10 and have their ranges linearly spaced in [0, 10] m.
The velocities of the targets are still uniformly distributed, as
illustrated in Table III. Second, the powers of the targets are
set as follows: σ2

0 = 0 dB, σ2
p = −20 dB for p = 1, · · · , 4

and σ2
p = −30 dB for p = 5, · · · , 9. The setting of 10 targets

applies to all simulation results in this section, i.e., Figs. 6-11.
Fig. 6 shows the detecting probability of COS and the

proposed sensing framework under different M̃ . Fig. 7 shows
PF versus γ0 corresponding to each curve in Fig. 6. Jointly
observing the two figures, we see that the proposed sensing
framework achieves better detecting performance than COS
for all cases of the ratio-based RDM and most cases of the
CCC-based RDM. Moreover, the improvement of the detecting
probability is precisely predicted by the SINR results observed
in Fig. 2. This validates our analysis and derivations provided
in Section IV. From Fig. 7, we see that PF = 10−6 is not
achieved for the CCC-based RDM under M̃ = 600. In such a
case, PF increases with γ0. The reason is that the overlapping
of consecutive sub-blocks makes the essential signal of a block
partially correlated with the interference from its previous sub-
block; see Fig. 1. This is validated by Fig. 8, where we can
see the fake targets in the CCC-based RDM.
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Fig. 6: Illustration of the detection performance of the proposed sensing
framework, where Q̃ = Q, Q̄ = 150 and PF = 10−6. The numbers in
the legend are the values of M̃ .
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Fig. 8: Comparing the ratio- and CCC-based RDMs, as given in Figs. 8(a)
and 8(b), respectively. For illustration clarity, both RDMs are noise-less and
the z-axis is limited to avoid heavy interference background.

Figs. 9 and 10 illustrate the receiver operating characteristic
(ROC) of the proposed sensing framework in comparison with
that of COS. The cases of Q̃ = 100 and 400 in Fig. 3 are
considered here, corresponding to the maximum ranges of
8 m and 33 m, respectively. From Figs. 9 and 10, we see
that the proposed design is robust under different maximum
ranges, while COS, as predicted in Fig. 3, degrades severely
when the maximum range exceeds that specified by underlying
communication systems, i.e., 10 m. This demonstrates the
superior flexibility of the proposed design in handling different
sensing requirements.

Fig. 11 shows another flexibility of the proposed design
from introducing Q̄. We see that, in overall, the detecting
performance of the proposed design becomes better as Q̄
increases. This is consistent with the SINR results observed in
Figs. 4 and 5. We also see that for the low SNR shown in Fig.
11(a), the impact of Q̄ is more prominent compared with that
in the high SNR case shown in Fig. 11(b). This is reasonable
as Q̄ is introduced to increase the number of sub-blocks, and
hence the SINR in the RDM. However, such improvement
is limited as the larger Q̄, the higher correlation of the IN
background over sub-blocks, as illustrated in Section IV-A.
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Fig. 9: Comparing the receiver operating characteristic (ROC) of COS and the
proposed (pp) sensing framework using the ratio-based RDM, where γ0 =
−15 dB is set for Fig. 9(a) and γ0 = 15 dB for Fig. 9(b). In the legend, 8
m and 33 m are the maximum ranges of targets.
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Fig. 10: ROC curves under the CCC-based RDMs, corresponding to Fig. 9.
The one labeled ‘COS, 8m, r’ is copied from Fig. 9(b) for comparison.
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Fig. 11: Illustration of the detecting probability versus Q̄ corresponding to
the results presented in Figs. 4 and 5. The solid curves are for the ratio-based
RDMs while the dash ones are for the CCC-based RDMs.

VI. CONCLUSIONS

In this paper, we develop a novel sensing framework that is
applicable to not only cyclic prefixed waveforms, e.g., OFDM
and DFT-S-OFDM, but also those with reduced CP, e.g., RCP-
OTFS. Unlike COS and its variants, we do not follow the un-
derlying communication system and unprecedentedly achieves
the flexibility of adapting for different sensing needs. This is
achieved by a new block segmentation design that segments a
whole block of echo signal evenly into multiple sub-blocks that
can overlap between adjacent ones. This is also accomplished
by a newly introduced VCP that allows us to attain the
ratio- and CCC-based RDMs under any block segmentation.
We prove that the IN terms in both RDMs approximately
conform to centered Gaussian distributions whose variances
are also derived. We further perform a comprehensive analysis
comparing COS and the proposed sensing framework as well
as the sensing performance under the two types of RDMs.
Extensive simulations validate the flexibility of the proposed
sensing framework and its superiority over COS and C-COS.

In this work, for illustration clarity and simplicity, we have
ignored the potential impact of practical transceiver on the
performance of the proposed sensing framework. In particular,
as seen from Fig. 1, a copy of s̃[i], the time-domain transmitted
communication signal, is shared with the sensing receiver
before being processed by the RF chain. However, for the
sensing echo signals, s̃[i] would go through the transmitter RF
chain and the receiver one. No two RF chains can be identical
for sure. Thus, directly using s̃[i] for sensing can cause
performance loss. (We would mention that this seems to be a
common problem in published ISAC works of similar kind.)
It is interesting and important to further explore how these
practical hardware factors will affect the sensing performance.

APPENDIX

A. Proof of Lemma 1

As illustrated in Remark 1, sn[l] ∼ CN (0, σ2
d) and

sn[l] (∀n) is i.i.d. over l. As the unitary DFT of sn[l],
Sn[m] (∀n) conforms to the same distribution and is i.i.d.
over m. Likewise, the distribution of Wn[m], which is the
unitary DFT of wn[l] given in (13), conforms to a complex
Gaussian distribution and is i.i.d. over m. Since wn[l] (∀n)
has the non-identical variance over l, the variance of Wn[m]
is not equal to that of wn[l] and instead can be calculated,
based on (13) and (14); specifically(

2σ2
wQ̃+ σ2

w(M̃ − Q̃)
)/

M̃ =
(
1 + Q̃/M̃

)
σ2
w.

Next, we analyze the distribution of Zn[m]. From (14),
we see that the core of Zn[m] is the DFT (w.r.t. l) of
z
(p)
n [l]gQ̃[l] (∀p). From Fig. 1, we see that for any p,
z
(p)
n [l]gQ̃[l] consists of two parts, one from the essential signal

of the previous sub-block and the other from the sequential.
Thus, z(p)n [l]gQ̃[l] (∀p, ∀n) satisfies z(p)n [l]gQ̃[l] ∼ CN (0, σ2

d),
is i.i.d. over l, and is independent from sn[l]. As a result, the
DFT of z(p)n [l]gQ̃[l] conforms to

M̃−1∑
l=0

z(p)n [l]gQ̃[l]Z
lm
M̃

∼ CN (0, Q̃σ2
d

/
M̃).

With the assumption that αp is independent over p, the p-
related summation in (14) leads to the final distribution of
Zn[m] given in the statement of the lemma.

B. Proof of Lemma 2

The first statement of the lemma arises from the fact that
Wn[m] is only related to the receiver noise while the other
two components to the essential signals. Next, we illustrate
the independence of Sn[m] over n.

Using the expression of Sn[m] given in (14), we can have

E
{
Sn[m]S∗

n+1[m]
}
= E


M̃−1∑

l1=0

sn[l1]Z l1m

M̃

×

M̃−1∑
l2=0

s∗n+1[l2]Z
−l2m

M̃

 = Q̄σ2
de

−j 2π(M̃−Q̄)

M̃

/
M̃. (39)
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The last result is based on two facts: First, only at the indexes
given in (40), we can have non-zero expectation; otherwise
the summands involved are uncorrelated.

l1 = M̃ − Q̄, · · · , M̃ − 1 and l2 = l1 − (M̃ − Q̄) (40)

Second, from Fig. 1, we can see that at the indexes given
in (40), sn[l1] = sn+1[l2]. Based on (39), we can validate
E
{
|Sn[m]|2

}
= σ2

d and E
{
|Sn+1[m]|2

}
= σ2

d. Combin-
ing these expectations with (39), the correlation coefficient
between Sn[m] and Sn+1[m] can be obtained, as given in
the statement of Lemma 2. Following the above analysis
procedure for Sn[m], we can similarly calculate the correlation
coefficient between Wn[m] and Wn+1[m]. For brevity, we
suppress the details here.

C. Proof of Lemma 3

As said in Appendix A, Sn[m] (∀n) is the unitary DFT
(w.r.t. l) of sn[l] that is i.i.d. over l. Thus, Sn[m] (∀n) is
i.i.d. over m. For the same reason, Wn[m] (∀n) is i.i.d. over
m. However, Zn[m] is not i.i.d. over m, since the length of
z
(p)
n [l]gQ̃[l] (∀p) is smaller than the DFT dimension. Using the

expression of Zn[m] given in (14), we can calculate the cor-
relation coefficient between Zn[m1] and Zn[m2]. Specifically,
we have

E {Zn[m1]Z
∗
n[m2]}

(a)
= σ2

PE


M̃−1∑

l1=0

z(p)n [l1]gQ̃[l1]Z
l1m1

M̃

 ×

M̃−1∑
l2=0

z(p)n [l2]gQ̃[l2]Z
l2m2

M̃

∗ (b)
= σ2

Pσ
2
d

∑Q̃−1
l=0 Z l(m1−m2)

M̃√
M̃

,

(41)

where σ2
P =

∑P−1
p=0 σ2

p,
(a)
= is obtained based on the uncor-

related αp (∀p), and
(b)
= is due to to the independence of

z
(p)
n [l]gQ̃[l] over l. Calculating the l-related summation on the

RHS of
(b)
= by plugging in the definition of the DFT basis given

in (3), we can obtain the following correlation coefficient

|E {Zn[m1]Z
∗
n[m2]}|√

E {|Zn[m1]|2}E {|Zn[m2]|2}
= |f(m1 −m2)| , (42)

s.t. f(m1 −m2) = sin
(

2π
M̃

Q̃(m1−m2)
2

)/(
Q̃ sin

(
2π
M̃

(m1−m2)
2

))
where E

{
|Zn[m1]|2

}
can be readily attained by setting m2 =

m1 in (41); likewise for E
{
|Zn[m2]|2

}
.

D. Proof of Proposition 1

As said above (27), with a sufficiently large g introduced,
|gSn[m]| < 1 can barely happen. Moreover, the operator IE{·}
fully removes the cases of |gSn[m]| < 1. Therefore, we have∣∣Dk,l

n,m

/
gSn[m]

∣∣ ≤ max
{∣∣gDk,l

n,mS∗
n[m]

∣∣} , (43)

where Dk,l
n,m is defined in (24). Since Dk,l

n,m

/
gSn[m] conforms

to a truncated Cauchy distribution, we are now able to invoke
the CLT on deriving the distribution of W̃ r

k[l] + Z̃r
k[l]. Based

on Lemma 2, we know that Zn[m] is independent over n

and, under the condition M̃ ≫ (Q̃ + Q̄), such independence
is also owned by Sn[m] and Wn[m]. Accordingly, the ratio
Dk,l

n,m

/
gSn[m] (∀m) is independent over n. Invoking the CLT

under large Ñ , we attain

Ñ−1∑
n=0

Dk,l
n,m

gSn[m]
∼ CN

(
0, Ñ

(
ρb(ϵ)

))
, (44)

s.t. ρ =
(σ2

Z + σ2
W )

M̃Ñg2σ2
d

, b(ϵ) = 2

(
ln

(
2(1− ϵ)√
ϵ(2− ϵ)

)
− 1

)
,

where ϵ is a sufficiently small value and ρb(ϵ) is the variance
of each summand according to [37, Proposition 1]. Note that
ρ is the ratio between the variance of Dk,l

2ñ,m, as given in (25),
and that of gS2ñ[m], as easily deduced from Lemma 1.

With (44) attained, we know that W̃ r
k[l] + Z̃r

k[l] also
conforms to a Gaussian distribution, as it is the summa-
tion of

∑Ñ−1
n=0

Dk,l
n,m

gSn[m] over m. Moreover, as shown below,∑Ñ−1
n=0

Dk,l
n,m

gSn[m] is approximately independent over m. This
leads to the final distribution of W̃ r

k[l] + Z̃r
k[l], as given in

the statement of Proposition 1.
Independence of

∑Ñ−1
n=0

Dk,l
n,m

gSn[m] over m: As Gaussian-

distributed,
∑Ñ−1

n=0

Dk,l
n,m1

gSn[m1]
and

∑Ñ−1
n=0

Dk,l
n,m2

gSn[m2]
are indepen-

dent if they are uncorrelated. Replacing Dk,l
n,m with its full

expression given in (24), we can have

E


(∑Ñ−1

n1=0

(Zn1
[m1]+Wn1

[m1])Z
−m1l

M̄
Zn1k

Ñ
gSn1 [m1]

)
×(∑Ñ−1

n2=0

(Zn2
[m2]+Wn2

[m2])Z
−m2l

M̄
Zn2k

Ñ
gSn2

[m2]

)∗


(a)
= E


Ñ−1∑
n=0

(Zn[m1]+Wn[m1])(Z
∗
n[m2]+W∗

n [m2])e
j
2πl(m1−m2)

M̃

g2Sn[m1]S∗
n[m2]ÑM̃


=

Ñ−1∑
n=0

E {f/g}
(b)
≈

Ñ−1∑
n=0

µf/µg = 0,

s.t. f =

(
Zn[m1]Z

∗
n[m2]+Zn[m1]W

∗
n [m2]+Wn[m1]Z

∗
n[m2]

+Wn[m1]W
∗
n [m2]

)
S∗
n[m1]Sn[m2]e

j
2πl(m1−m2)

M̃

g = g2|Sn[m1]Sn[m2]|2ÑM̃ , (45)

where
(a)
= is obtained by suppressing all cross-terms at n1 ̸= n2

since they are uncorrelated; and
(b)
≈ is attained by applying the

first-order approximation of the mean of the ratiof/g [43]. The
last result is based on µf = 0 which can be readily obtained
by applying Lemmas 2 and 3.

E. Proof of Proposition 2

Consider Sc
k[l] first. According to Lemma 1, we have

Sn[m] ∼ CN (0, σ2
d). This then yields |Sn[m]|2

σ2
d/2

∼ χ2
2 and

E
{
|Sn[m]|2

σ2
d/2

}
= 2, V

{
|Sn[m]|2

σ2
d/2

}
= 4, (46)

where χ2
2 denotes the chi-square distribution with two degrees

of freedom (DoF). Given that Sn[m] (∀n) is statistically
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independent of m, we first consider the m-related summation
in calculating Sc

k[l]; see (16). Invoking the CLT, we know that
the summation leads to a Gaussian distribution whose variance
is given by

V

σ2
d

2

M̃−1∑
m=0

|Sn[m]|2

σ2
d/2

e−j
2πmlp

M̃ Z−ml

M̃

 = σ4
d.

The mean of the Gaussian distribution is more complicated,
as we need to consider the cases of l = lp and l ̸= lp. For the
first case, we have

E

σ2
d

2

M̃−1∑
m=0

|Sn[m]|2

σ2
d/2

e−j
2πmlp

M̃ Z−mlp

M̃

 = σ2
d

√
M̃,

where e−j
2πmlp

M̃ Z−mlp

M̃
= 1/

√
M̃ is applied. For the case of

l ̸= lp, we have

E

σ2
d

2

M̃−1∑
m=0

|Sn[m]|2

σ2
d/2

e−j
2πmlp

M̃ Z−ml

M̃

 = σ2
d

M̃−1∑
m=0

ej
2πm(l−lp)

M̃

= 0, (47)

where we have applied the fact that summing a discrete single-
tone exponential signal (with a non-zero frequency) over
integer cycles leads to zero. Combining the above discussion,
we conclude
M̃−1∑
m=0

|Sn[m]|2e−j
2πmlp

M̃ Z−ml

M̃
∼

{
N
(
σ2
d

√
M̃, σ4

d

)
l = lp

N
(
0, σ4

d

)
l ̸= lp

.

Based on Lemma 2,
∑M̃−1

m=0 |Sn[m]|2e−j
2πmlp

M̃ Z−ml

M̃
is inde-

pendent over the set of either odd n or even n, but shows
dependence between adjacent pair. However, under the as-
sumption of M̃ ≫ (Q̃ + Q̄), the dependence is weak as the
correlation coefficient approaches zero. Thus, summing the
LHS of the above equation over n converges in distribution
to another Gaussian with its statistical properties depicted in
the statement of Proposition 2. The distribution of Xr

k[l], X ∈
{W,Z} can be similarly derived with reference to Appendix
D. Thus, we suppress the details for brevity.
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