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Abstract—Federated learning (FL) can empower Internet-of-Vehicles (IoV) networks by leveraging smart vehicles (SVs) to participate
in the learning process with minimum data exchanges and privacy disclosure. The collected data and learned knowledge can help the
vehicular service provider (VSP) improve the global model accuracy, e.g., for road safety as well as better profits for both VSP and
participating SVs. Nonetheless, there exist major challenges when implementing the FL in IoV networks, such as dynamic activities
and diverse quality-of-information (QoI) from a large number of SVs, VSP’s limited payment budget, and profit competition among SVs.
In this paper, we propose a novel dynamic FL-based economic framework for an IoV network to address these challenges. Specifically,
the VSP first implements an SV selection method to determine a set of the best SVs for the FL process according to the significance of
their current locations and information history at each learning round. Then, each selected SV can collect on-road information and offer
a payment contract to the VSP based on its collected QoI. For that, we develop a multi-principal one-agent contract-based policy to
maximize the profits of the VSP and learning SVs under the VSP’s limited payment budget and asymmetric information between the
VSP and SVs. Through experimental results using real-world on-road datasets, we show that our framework can converge 57% faster
(even with only 10% of active SVs in the network) and obtain much higher social welfare of the network (up to 27.2 times) compared
with those of other baseline FL methods.

Index Terms—Federated learning, IoV, quality-of-information, contract theory, profit optimization, vehicular networks.
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1 INTRODUCTION

A Ccording to the recent Allied Market Research’s out-
look [1], the global market value of the Internet-of-

Vehicles (IoV) is expected to grow by more than 215% in
2024 due to significant demands of road safety from smart
vehicles (SVs), e.g., autonomous cars and electric vehicles.
Through the IoV, the vehicular service provider (VSP) can
build on-road services to enhance the driving safety for the
SV users. In particular, the VSP can first obtain on-road data
from active SVs e.g., road conditions, location, and driving
activities. Using the centralized learning process, the VSP
can then generate the meaningful on-road information with
high quality [2], and share the updated on-road informa-
tion to requesting customers (e.g., SVs, public transporta-
tions, local governments, and mobile users) in its coverage
areas. In fact, the aforementioned mechanism has been
widely adopted by several commercial on-road applications,
e.g., the Placemeter (www.placemeter.com), Google Maps
(www.google.com/maps), and Waze (www.waze.com).
However, sharing raw on-road data to the VSP in a central-
ized manner may face the huge computation and storage
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costs for the VSP, privacy disclosure for the SV users, and
severe network congestion in the IoV (when a huge amount
of data is transferred over the network). Therefore, feder-
ated learning (FL) as a highly-effective distributed machine
learning approach has a great potential to address these
issues [3]. Specifically, instead of sharing raw on-road data,
each SV in the FL-based IoV network can train its local on-
road data to generate the local trained model. This local
model is then collected by the VSP to update the global
on-road model, aiming at enhancing the on-road model ac-
curacy. By doing so, we can mitigate the inherent problems
that occur in the centralized learning systems.

Although the applications of FL-based IoV networks
have been studied in a few works, e.g., [4], [5], [6], the
conventional FL model is inefficient or even impractical to
be implemented in real-world IoV networks due to several
reasons. First, the behaviors of SVs in the networks are very
dynamic in practice, e.g., some SVs move frequently, while
some other SVs are occasionally disconnected from the
network (e.g., due to unreliable communication channels,
multiple handovers, and Internet unvailability at particular
periods). Furthermore, training local datasets and collecting
local trained models from all the SVs in the networks for
the learning process are costly and impractical due to huge
communication overheads, especially with a large number
of moving SVs. Second, the quality-of-information (QoI),
that includes on-road data in various locations at different
times [7], obtained by the SVs is remarkably diverse. That
makes the concurrent learning process from all SVs even
worse when some SVs have low QoI. Third, due to the VSP’s
limited payment budget and the inherent profit competition
among SVs, how to optimally incentivize the “right” SVs for
their contributions to the FL process while maximizing the
profit of VSP still remains as an open issue, especially under
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the information asymmetry between the VSP and SVs.
To address the first challenge due to dynamic activities

of a large number of SVs, solutions to select/schedule only
a set of FL local learners, e.g., smartphones, IoT devices, and
vehicles, in the wireless networks can be adopted. For exam-
ple, in [8], the authors introduce random scheduling, round-
robin, and proportional fair methods to choose FL learn-
ers. Other random selection methods using asynchronous
FL and heterogeneous networks are also discussed in [9]
and [10], respectively. However, these works assume that the
selected FL learners can implement local learning process
equally without considering their QoI (the second aforemen-
tioned challenge). In fact, the QoI obtained by SVs in the
IoV networks varies dramatically [7], e.g., some SVs are not
moving for a certain period, and thus they may provide low
QoI. Consequently, the low QoI can degrade the prediction
accuracy or cause FL performance instability (when the
low-quality trained local models are aggregated together
with other local models during the learning process) [11],
leading to a lower profit for the VSP. Furthermore, all the
above works do not consider any incentive mechanism to
compensate the selected FL learners for the learning process,
and thus discourage the FL learners to participate in and
contribute high QoI for the next FL processes [3]. Note
that a “right” incentive mechanism can also in turn help
to “recruit” the “right” SVs. Designing such an incentive
model is challenging, especially under the limited budget
of the VSP, the competition among the SVs, as well as the
information asymmetry between the VSP and selected SVs.

In this paper, we aim to address the aforementioned chal-
lenges through proposing a novel dynamic FL-based eco-
nomic framework that selectively engages a subset of best
SVs for the FL process at each learning round. Specifically,
the VSP can first select active SVs whose current locations
are within significant areas. These significant areas are de-
termined based on the Average Annual Daily Flow (AADF),
i.e., the average number of vehicles passing through pre-
defined roads in a particular area on one day [12]. From the
set of active SVs based on the location significance, the VSP
can further choose the best SVs based on their information
significance (or QoI) history, e.g., due to the VSP’s limited
payment budget for the learning SVs [13]. Through combin-
ing both location and information significance, the VSP can
obtain useful on-road information [14] and reliable trained
model updates [3] from the selected SVs, aiming at enhanc-
ing the learning quality of the FL. From this SV selection,
the VSP can provide an incentive mechanism for the best
SVs which share their current information significance for
the FL process. Nonetheless, due to the the VSP’s limited
payment budget and the existence of multiple learning SVs
at each round, each selected SV may compete with other
selected SVs in obtaining the corresponding payment as the
incentive of its local training process. To address this issue,
the authors in [15], [16], [17] propose a non-collaborative
Stackelberg game model where the VSP and mobile de-
vices act as a leader and followers, respectively. However,
these methods are only applicable when the mobile devices
know the full information of the VSP’s payment budget
(referred to as information symmetry). In practice, the VSP
usually keeps its payment budget confidential (referred to
as information asymmetry) and the best SVs may not want to

follow controls by the VSP completely (due to the conflict
of economic interests between them) [18]. Hence, the above
approaches are ineffective to implement in our problem.

Given the above, we develop a multi-principal one-agent
(MPOA) contract-based economic model [19], where the best
SVs (as principals) non-collaboratively offer contract agree-
ments (containing information significance and offered pay-
ment) to the VSP. The VSP (as the agent) is then in charge of
optimizing the offered contracts. In this case, we formulate
the contract model as a non-collaborative learning contract
problem to maximize the profits of the VSP and the best
SVs at each round under the VSP’s information-asymmetry
and common constraints, i.e., the individual rationality (IR)
and incentive compatibility (IC). The IR constraints ensure
that the VSP always joins the FL process. Meanwhile, the
IC constraints guarantee that the VSP always obtains the
maximum profit when the best contract determined for the
VSP is applied. To find the optimal contracts for the SVs,
we first transform the contract optimization problem into
an equivalent low-complexity problem. We then develop
an iterative algorithm which can quickly find the equilib-
rium solution, i.e., optimal contracts, for the transformed
problem. After that, the VSP and selected SVs can execute
the FL algorithm to improve the global on-road model
accuracy at each learning round. Moreover, at the end of
each round, the VSP can update its net profit considering
the current round’s global model accuracy and freshness
(i.e., how up-to-date the global model in the FL process
is). We then conduct experiments using real-world on-road
datasets from all major roads of 190 areas/local districts and
1.5M traffic accidents in the United Kingdom (UK) between
2000 and 2016. The experiment results demonstrate that our
framework can improve the social welfare of the network
up to 27.2 times and speed up the learning convergence up
to 57% compared with those of the baseline FL methods [8].

Although a few recent works, e.g., [20], [21], have stud-
ied the contract theory in FL, their proposed approaches
have some limitations and are inapplicable in IoV networks.
First, they only select the FL learners based on the QoI
without considering location significance which is one of
the most important factors in IoV networks. Second, both
works assume that the FL learners’ data with certain quality
have been collected prior to the FL learner selection. This is
impractical in IoV networks where the SVs are dynamically
moving, and thus the QoI may vary over time. Third, they
are limited to the one-principal multi-agent-based contract
policy, i.e., not accounting for the competition among FL
learners. Moreover, the work in [20] implements the contract
optimization only once and utilizes the same FL learners
for the entire FL process until reaching a convergence.
Meanwhile, the FL learner selection in [21] is determined by
the vehicular users (not the central server). As such, there
is a possibility that some candidate FL learners with high
QoI may not be able to join in the FL process, and thus the
overall prediction model accuracy can be degraded. To the
end, the major contributions of our work are as follows:

• Propose a novel dynamic FL-based economic frame-
work for the IoV network, aiming at selecting the
best SVs and maximizing profits for the VSP as well
as learning SVs to quickly achieve the converged
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global prediction model for road safety.
• Design the dynamic SV selection method taking both

location and QoI of SVs into account. As such, we can
select the best quality SVs for the FL process, thereby
improving the overall learning process and yielding
more profits for the VSP.

• Develop an MPOA-based contract problem which
can incorporate the learning payment competition
among the selected SVs under the VSP’s limited and
unknown payment budget.

• Propose a transformation method to reduce the
complexity of the original optimization problem,
and then develop a light-weight iterative algorithm
which can quickly find the optimal contracts for SVs.

• Theoretically analyze the convergence of the pro-
posed dynamic FL and then provide detailed analy-
sis to show the impacts of the global model accuracy
and its freshness on the net profit of the VSP.

• Conduct extensive experiments to evaluate the pro-
posed framework using two real-world on-road
datasets in the UK. These results provide useful
information to help the VSP in designing the effective
FL with SV selection method in the IoV network.

The rest of this paper is organized as follows. Section 2
describes the proposed economic framework for the IoV.
Section 3 introduces the proposed SV selection method, and
Section 4 presents the proposed MPOA contract-based prob-
lem and solution. Section 5 describes the FL algorithm with
the selected SVs. Moreover, the VSP’s profit analysis based
on the global model accuracy and freshness is provided in
Section 6. The performance evaluation is given in Section 7,
and then the conclusion is drawn in Section 8.

2 DYNAMIC FEDERATED LEARNING-BASED ECO-
NOMIC FRAMEWORK

Consider an IoV network including one VSP and multiple
active SVs who can participate in the dynamic FL process.
Let I = {1, . . . , i, . . . , I} denote the set of active SVs in
the IoV network. Periodically, each SV-i can monitor its
current on-road status through its embedded sensor devices,
e.g., the camera, weather, and global positioning system
(GPS) sensors. From this status, the SV can pre-process
and extract meaningful on-road information and store it
in a log file at the SV’s local storage. In particular, the
information may include the SV’s visited location history,
date, time, light condition (e.g., dark or light), weather
condition (e.g., windy, snowy, or rainy), and road surface
condition (e.g., dry or wet). To collaborate with the VSP
in the FL process, the interested SV users can first deploy
an on-road service application developed by the VSP at
their SVs’ built-in Android or iOS platforms, e.g., Live
Traffic NSW (www.livetraffic.com) and Live Traffic Info
(www.highwaysengland.co.uk). Then, the SV users can en-
able the application’s access permission to allow the VSP
accessing basic information including the SVs’ current loca-
tion and information significance in a secure manner [24]. In
this way, the VSP can observe useful information to select
the best SVs (which act as the FL learners at each learning
round, e.g., every hour or day) within its coverage (e.g., via

road side units [22]) with minimum privacy disclosure of the
SVs’ collected on-road data. Note that the accessed current
location information is only used to help the VSP select the
best SVs for each learning round (as similarly implemented
in location-based services such as Google Maps, Placemeter,
and Waze), and is totally different from on-road sensing data
that the selected SVs collect when they run on the road.
Specifically, let T = {0, 1, . . . , t, . . . , T} denote the set of
rounds of an FL process and M(t) = {1, . . . ,m, . . . ,M},
where M(t) ⊂ I , be the set of selected SVs based on their
location significance at round t. The selection of M active
SVs guarantees that they will provide useful on-road in-
formation due to their locations in the significant areas [14].
N (t) = {1, . . . , n, . . . , N}, whereN (t) ⊂M(t), denotes the
set of selected best quality SVs based on their information
significance at round t. The selection of N best SVs can
ensure that the local trained model updates are reliable to
provide high learning accuracy with faster convergence [20].
Alternatively, we denote the collected data size, i.e., number
of samples, at SV-n for each learning round t as ηn(t).

To compensate the selected SVs in N (t), the VSP al-
locates a maximum payment budget of Bmax(t) at each
round t. Due to its economic benefit, the VSP practically
keeps its willingness to pay (in regards to the received
information significance from the FL learners) as a pri-
vate information for the SVs, and it can be expressed as
the type of the VSP [18]. This type is influenced by the
VSP’s current payment budget: a higher type indicates the
willingness to pay more for the SVs in N (t) due to its
higher payment budget. For that, we can define a finite
set of the VSP’s types as Θ = {θ1, . . . , θj , . . . , θJ}, where
j, j ∈ J = {1, . . . , j, . . . , J}, indicates the type index and
we have θJ > θJ−1 > . . . > θj > . . . > θ2 > θ1 without
loss of generality. Correspondingly, we denote Bj(t) to
be the payment budget for the VSP with type θj , where
Bj(t) =

θj
θJ
Bmax(t), j ∈ J . As the type of the VSP is pri-

vate, the SVs only can observe the VSP’s type distribution,
i.e., ρj(t), where

∑J
j=1 ρj(t) = 1,∀j ∈ J ,∀t ∈ T [23].

According to Bj(t), the VSP requires to determine the
payment proportion for each SV-n. Particularly, given the
VSP with type θj , we define payment proportion vector
of all N SVs as %(t) = [%1(t), . . . ,%j(t), . . . ,%J(t)], where
%j(t) = [%1

j (t), . . . , %
n
j (t), . . . , %Nj (t)], and 0 ≤ %nj (t) ≤

1,∀j ∈ J ,∀n ∈ N (t). Moreover, for each learning
round t, we denote ζ(t) = [ζ1(t), . . . , ζj(t), . . . , ζJ(t)]
and ϕ(t) = [ϕ1(t), . . . ,ϕj(t), . . . ,ϕJ(t)] to be the vectors
of information significance and corresponding payments
of all participating SVs for all types, respectively. In this
case, ζj(t) =

[
ζ1
j (t), . . . , ζnj (t), . . . , ζNj (t)

]
, and ϕj(t) =[

ϕ1
j (t), . . . , ϕ

n
j (t), . . . , ϕNj (t)

]
. As the VSP’s type increases,

each SV-n can offer higher information significance to the
VSP since it can obtain higher payment from the VSP. Over-
all, the proposed dynamic FL-based economic framework
for the IoV can be illustrated in Fig. 1. For each learning
round t, the VSP performs the following processes:

• Step 1: The VSP observes active SVs in the network.
• Step 2: The VSP selects M active SVs based on their

location significance using the K-means algorithm.
• Step 3: From M SVs, the VSP selects N best SVs

which have the highest QoI (defined in Section 3).
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Fig. 1: The proposed dynamic FL-based economic framework for the IoV.

• Step 4: The N selected SVs collect on-road informa-
tion data for the current learning round.

• Step 5: In the end of each learning round, these N
SVs send initial contracts based on the collected on-
road data to the VSP. Then, the VSP will determine
and send the optimal contracts to the SVs.

• Step 6: Upon receiving the optimal contracts, all N
SVs train their local datasets to obtain local trained
models. These local models are then collected by the
VSP to update the current global model.

• Step 7: The VSP updates its net profit based on the
current round’s global model accuracy and freshness.

At each learning round, the VSP may choose a different
set of best SVs because of their diverse mobility behaviors.
The above processes are repeated until the global on-road
prediction model converges or after a pre-defined number
of learning rounds is achieved. More details can be found in
the following sections.

3 LOCATION AND INFORMATION SIGNIFICANCE-
BASED SV SELECTION

In this section, we discuss on how the VSP can choose a
set of best active SVs based on the location and information
significance prior to the FL process at each learning round t.

3.1 Location Significance-Based SV Selection
In this method, the VSP can monitor the current location of
the active SVs in the IoV using the GPS information stored
in their on-road service applications locally. This current
location information sharing can be securely protected, e.g.,
using anonymization or obfuscation-based approaches [24],
[25]. From the active SVs observed in each learning round,
the VSP can select M SVs, where M ≤ I , whose locations
are in the significant areas (i.e., the areas are of high interests
by the VSP and/or the areas with high vehicle traffic volume
based on their total AADFs for specific periods), e.g., big
cities, central business districts, or tourist attractions. Let
D = {1, . . . , d, . . . ,D} denote the set of considered areas,

the fixed total AADF for each area-d prior to the learning
process can be expressed by [12]

Vd =

$max1∑
$1=1

$max2∑
$2=1

v$1,$2

d

365
, (1)

where $1 ∈ {1, 2, . . . , $max
1 } and $2{1, 2, . . . , $max

2 }
specify the indices of considered year periods and days for
a year (i.e., $max

2 = 365), respectively. In addition, v$1,$2

d
represents the vehicle traffic volume in area-d for day $2 of
year$1. The area with higher Vd value implies the area with
higher significance. The reason is that many vehicles tend
to visit the centralized areas where profitable employment
market, desirable lifestyle, better educational occasion, and
tourist attractions exist. In this case, the vehicles in those
areas typically accommodate more useful and meaningful
on-road information, e.g., traffic jams and/or accidents, due
to their high vehicle traffic volume [14].

Using Vd from all areas in D, the VSP can categorize
those areas into insignificant and significant areas. For that,
we implement a binary classification scheme using the K-
means algorithm [26] in which groups ‘0’ and ‘1’ represent
insignificant and significant areas, respectively. Consider
that the VSP has a road traffic dataset containing area IDs,
their major road locations, and their total AADFs of the
vehicles Vd,∀d ∈ D. To attain the sets of insignificant and
significant areas, the total AADF centroids V̂ 0 and V̂ 1 that
minimize the overall squared distance between each Vd and
the centroids can be determined using the following:

min
{σ,V̂}

∑
d∈D

σ0
d(Vd − V̂ 0)2 + σ1

d(Vd − V̂ 1)2, (2)

s.t. σ0
d + σ1

d = 1,∀d ∈ D, (3)

σ0
d, σ

1
d ∈ {0, 1},∀d ∈ D, (4)

where σ0
d and σ1

d are binary variables which indicate the
total AADF closeness of area-d to the centroids V̂ 0 and V̂ 1,
respectively. The constraints (3) imply that the total AADF
of each area-d can be classified into one group only. To
find the optimal sets of insignificant and significant areas,
the centroids V̂ 0 and V̂ 1 are first updated at each K-means
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iteration ι, i.e., V̂ 0
(ι+1) =

∑
d∈D

σ0
d,(ι)Vd∑

d∈D
σ0
d,(ι)

and V̂ 1
(ι+1) =

∑
d∈D

σ1
d,(ι)Vd∑

d∈D
σ1
d,(ι)

,

respectively, until V̂ 0
(ι+1) = V̂ 0

(ι) and V̂ 1
(ι+1) = V̂ 1

(ι). Hence,
the VSP can obtain the optimal sets of insignificant areas,
i.e., D0 ⊂ D, and significant areas, i.e., D1 ⊂ D, based on
the value ‘1’ of both σ0

d and σ1
d, ∀d ∈ D, for all learning

rounds. Then, the VSP can dynamically select M SVs whose
current locations are within the set of significant areas D1 at
each learning round t.

3.2 Information Significance-Based SV Selection
From the selected M SVs, the VSP can further choose N SVs
as the FL learners, where N ≤ M , to efficiently execute the
FL algorithm for each round t. To this end, we introduce
the information significance-based SV selection method to
obtain N SVs which have the highest QoI. In particular,
adopted from [7], suppose that K = {1, . . . , k, . . . ,K} and
L = {1, . . . , l, . . . , L} to be the set of captured on-road
information timespans, e.g, between day 1 and day 7 for
a week, and location IDs, e.g., between location 1 and
location 100, from the SVs in M(t), respectively. Utilizing
the timespan-k and location-l, each SV-m can calculate
a spatio-temporal variability ηk,lm (t), i.e., the data size in
location-l for timespan-k, from its total data size, i.e., ηm(t),
where ηm(t) =

∑K
k=1

∑L
l=1 η

k,l
m (t). This calculation can be

conducted by the on-road service application provided by
the VSP and stored at the SVs.

To implement the FL process at each round t, the VSP
can determine the required spatio-temporal variability at
timespan-k and location-l from SV-m, i.e., yk,lm (t). How-
ever, due to the different mobile activities of the SV-m,
∀m ∈ M(t), on the roads in diverse locations for different
times, each SV-m may have various actual spatio-temporal
variability for each timespan-k and location-l, i.e., [7]

xk,lm (t) =

{
ηk,lm (t), if ηk,lm (t) ≤ yk,lm (t),
yk,lm (t), otherwise.

(5)

Equation (5) implies that the actual spatio-temporal vari-
abilities cannot exceed the required ones. From xk,lm (t) and
yk,lm (t), we can define two matrices of actual and required
spatio-temporal variabilities for each SV-m as follows:

Xm(t) =


x1,1
m (t) x1,2

m (t) · · · x1,L
m (t)

x2,1
m (t) x2,2

m (t) · · · x2,L
m (t)

...
...

. . .
...

xK,1m (t) xK,2m (t) · · · xK,Lm (t)

 , and

Ym(t) =


y1,1
m (t) y1,2

m (t) · · · y1,L
m (t)

y2,1
m (t) y2,2

m (t) · · · y2,L
m (t)

...
...

. . .
...

yK,1m (t) yK,2m (t) · · · yK,Lm (t)

 .
(6)

Then, we can derive the information significance metric as
the normalized spatial length of a matrix [27] in Frobenius
norm using (6), which is

ζm(t) = 1− ‖Ym(t)−Xm(t)‖F
‖Ym(t)‖F

= 1−

√
K∑
k=1

L∑
l=1

(
yk,lm (t)− xk,lm (t)

)2

√
K∑
k=1

L∑
l=1

(
yk,lm (t)

)2
.

(7)

From (7), we can observe that the information significance
for SV-m, ∀m ∈ M(t), is between 0 and 1, i.e., 0 ≤ ζm(t) ≤
1. Specifically, ζm(t) = 0 implies that no actual spatio-
temporal variability is collected by the SV-m. Meanwhile,
ζm(t) = 1 specifies that the required spatio-temporal vari-
abilities for all timespans and location IDs of the SV-m are
fully satisfied. Using this information significance metric,
the VSP can determine the dataset quality of the SVs in
M(t) without disclosing any sensitive information of the
SVs’ actual datasets. Then, the VSP can select N SVs that
will implement the FL process based on their largest ζm(t)
values for each round t, i.e.,

N (t) = max
[N ]
{ζ1(t), . . . , ζM (t)}. (8)

Equation (8) specifies that only N SVs will exchange their
local on-road models to update the global on-road predic-
tion model at each round t in the FL process.

4 MPOA-BASED LEARNING CONTRACT OPTI-
MIZATION PROBLEM AND SOLUTION

Based on the list of selected SVs, the VSP can inform the
selected SVs in N (t) to first collect on-road data for a
particular period. Then, the SVs can send initial contracts at
each learning round t including the information significance
ζnj (t) =

θj
θJ
ζn(t),∀n ∈ N (t),∀j ∈ J , based on the collected

data, and payment ϕnj (t) = υζnj (t),∀n ∈ N (t),∀j ∈ J [6],
where υ is the information significance price unit. These ini-
tial contracts will be used to optimize the non-collaborative
contract problem at the VSP. In this section, we first describe
the MPOA-based contract optimization problem for the VSP
(as the agent) and learning SVs in N (t) (as the principals).
After that, a transformation method is introduced to reduce
the problem complexity and an iterative algorithm is devel-
oped to find the equilibrium contract for the selected SVs.

4.1 Profit Optimization for the VSP

Considering the payment proportion vector for the VSP
with type θj , i.e., %j(t), information significance vector for
the VSP with type θj , i.e, ζj(t), and payment vector for the
VSP with type θj , i.e., ϕj(t), the profit that the VSP with
type θj can obtain from performing the learning process
together with SVs in N (t) at round t can be formulated by

µjV SP (t) = θjS(%j(t), ζj(t))− C(%j(t),ϕj(t)). (9)

Specifically, S(%j(t), ζj(t)) and C(%j(t),ϕj(t)) indicate the
satisfaction and cost functions of the VSP, respectively.
Moreover, the θj describes the weight of S(%j(t), ζj(t)) for
the VSP with type θj . As such, the VSP with a higher type
has a higher weight due to its willingness to pay more
towards the FL process. For the satisfaction function, we use
a squared-root function as similarly implemented in [23].
The reason is that the satisfaction increases when the QoI,
i.e., information significance, gets better. However, the VSP
may have less interest to further increase the satisfaction
when the higher data quality triggers less on-road model
accuracy improvement [28]. Thus, the satisfaction function
can be expressed by

S(%j(t), ζj(t)) = λ

√ ∑
n∈N (t)

%nj (t)ζnj (t), (10)
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where λ > 0 is a conversion parameter corresponding
to the monetary unit of obtaining a certain information
significance based on the existing data trading market [23].
For the cost function of the VSP, we can formulate it as the
total payment transfer to the partipating SVs in N (t) with
respect to their information significance values used in the
FL process, which is

C(%j(t),ϕj(t)) =
∑

n∈N (t)

%nj (t)ϕnj (t). (11)

From (9)-(11), we can devise an optimization problem to
maximize the profit of VSP with type θj by

(P1) max
%j(t)

θjS(%j(t), ζj(t))− C(%j(t),ϕj(t)). (12)

s.t. C(%j(t),ϕj(t) ≤ Bj(t), (13)

0 ≤ %nj (t) ≤ 1,∀n ∈ N (t), (14)
where the constraint (13) implies that the total payment for
SVs in the FL process cannot exceed the maximum payment
budget of the VSP with type θj , i.e., Bj(t). Due to the
convexity of objective function (12), i.e., the satisfaction and
cost functions are concave and linear functions, respectively,
and the linearity of the constraints (13)-(14) in (P1), it
can be guaranteed that we can find the optimal %̂j(t) =
[%̂1
j (t), . . . , %̂

n
j (t), . . . , %̂Nj ],∀j ∈ J , straightforwardly.

4.2 Profit Optimization for Learning SVs

In this section, we formulate the FL contract optimization
problem to maximize the expected profit of each SV-n, n ∈
N (t), individually under the constraints of the VSP. Specif-
ically, from the optimal payment proportion %̂j(t),∀j ∈ J ,
each SV-n can calculate its expected profit through taking
all possible types of the VSP into account such that

µn(ζ(t),ϕ(t)) =
J∑
j=1

(
%̂nj (t)ϕnj (t)− %̂nj (t)ζnj (t)ξn(t)

)
ρj(t),

(15)
where ξn(t) indicates the computation and memory costs of
SV-n in training the local dataset with certain information
significance at round t. Additionally, the utilization of

∑
(.)

specifies that the expected profit of each SV-n at round t
depends on the VSP’s type distribution ρj(t),∀j ∈ J .

In this optimization problem, we can obtain the optimal
contracts which satisfy the individual rationality (IR) and
incentive compatibility (IC) constraints from the VSP. The IR
constraints guarantee that the VSP with a certain type will
always obtain a positive profit as described in Definition 1.

Definition 1. IR constraints: The VSP must achieve a non-
negative profit, i.e.,

θjS(%̂j(t), ζj(t))− C(%̂j(t),ϕj(t)) ≥ 0,∀j ∈ J , (16)
for each t ∈ T to participate in the FL contract optimization.

Due to the information asymmetry between the VSP and
SVs, in addition to the IR constraints, the optimal contracts
must also satisfy the IC constraints which ensure the fea-
sibility of the contracts. In particular, the IC constraints
guarantee that the VSP can always obtain the maximum
profit if an appropriate contract, i.e., the contract designed
for that current type of the VSP, is utilized. This condition
can be defined in the following Definition 2.

Definition 2. IC constraints: The VSP with current type θj will
likely to choose a contract designed for its current type θj rather
than with another type θj∗ , i.e.,
θjS(%̂j(t), ζj(t))− C(%̂j(t),ϕj(t)) ≥ (17)

θjS(%̂j∗(t), ζj∗(t))− C(%̂j∗(t),ϕj∗(t)), j 6= j∗,∀j, j∗ ∈ J .

Given the expected profit of each SV-n in (15) as well as
IR and IC constraints of the VSP in (16) and (17), respec-
tively, we can formulate a non-collaborative learning con-
tract optimization due to the selfish nature of participating
SVs. As such, the FL contract optimization problem (P2) to
maximize the expected profit for SV-n independently at the
VSP for each t can be expressed by

(P2) max
ζ(t),ϕ(t)

µn
(
ζ(t),ϕ(t)

)
,∀n ∈ N (t), (18)

s.t. C(%̂j(t),ϕj(t) ≤ Bj(t),∀j ∈ J , (19)

θjS(%̂j(t), ζj(t))− C(%̂j(t),ϕj(t)) ≥ 0,∀j ∈ J , (20)

θjS(%̂j(t), ζj(t))− C(%̂j(t),ϕj(t)) ≥ (21)

θjS(%̂j∗(t), ζj∗(t))− C(%̂j∗(t),ϕj∗(t)), j 6= j∗,∀j, j∗ ∈ J .
Using the optimization problem (P2), each SV-n via the VSP
can maximize its profit under the competition from other
SVs in N (t) and the limited payment budget of the VSP.

4.3 Social Welfare of the Internet-of-Vehicles
To further derive the social welfare of the IoV, i.e, the total
actual profits of the VSP and all learning SVs in N (t), we
can find the actual profit of each SV-n when the VSP has the
type θj as %̂nj (t)ϕnj (t)− %̂nj (t)ζnj (t)ξn(t). Then, given the VSP
has type θj , we can calculate the total actual profit of all SVs
in N (t) by ∑

n∈N (t)

(
%̂nj (t)ϕnj (t)− %̂nj (t)ζnj (t)ξn(t)

)
. (22)

As a result, we can calculate the social welfare at round t for
type θj according to (9)-(11) and (22) by

µjSW (t) = θjλ

√ ∑
n∈N (t)

%̂nj (t)ζnj (t)−
∑

n∈N (t)

%̂nj (t)ϕnj (t)

+
∑

n∈N (t)

(
%̂nj (t)ϕnj (t)− %̂nj (t)ζnj (t)ξn(t)

)
(23)

= θjλ

√ ∑
n∈N (t)

%̂nj (t)ζnj (t)−
∑

n∈N (t)

%̂nj (t)ζnj (t)ξn(t),∀j ∈ J .

4.4 Contract Problem Transformation
In Proposition 1, we can observe that solving (P2) requires
computational complexity O(J2). As a result, this will incur
a large of computational resources, especially when the
number of VSP’s types and the number of learning rounds
are high.

Proposition 1. The computational complexity of solving (P2) is
O(J2).

Proof. From (19)-(21), we can observe that there are J pay-
ment budget constraints, J IR constraints, and J(J − 1) IC
constraints. Thus, the computational complexity of solving
problem (P2) is O(J2).

Then, using the following transformation method, i.e.,
transforming the IR and IC constraints, we can reduce the
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computational complexity of solving (P2) from O(J2) into
O(J). Specifically, we first demonstrate that when the VSP’s
type is higher (i.e., the willingness to pay more due to higher
payment budget), the learning SV-n, ∀n ∈ N (t), will offer
higher information significance values to the VSP. This aims
to obtain higher payments from the VSP. This condition can
be formally written in Lemma 1.

Lemma 1. Let
(
ζ(t),ϕ(t)

)
denote any feasible contracts from the

SVs to the VSP such that ζj(t) ≥ ζj∗(t) if and only if θj ≥ θj∗ ,
where j 6= j∗, j, j∗ ∈ J .

Proof. See Appendix A.

Since ζj(t) ≥ ζj∗(t), in the following Proposition 2, we
show that the SVs will request higher payment to the VSP
correspondingly when the VSP has type θj compared with
when it occupies type θj∗ .

Proposition 2. If ζj(t) ≥ ζj∗(t), then ϕj(t) ≥ ϕj∗(t), where
j 6= j∗, j, j∗ ∈ J .

Proof. See Appendix B.

According to Lemma 1 and Proposition 2, we can ob-
serve in the following Proposition 3 that the profit of the
VSP is a monotonic increasing function of its type.

Proposition 3. For any feasible contract
(
ζ(t),ϕ(t)

)
, the profit

of the VSP must satisfy
θjS(%̂j(t), ζj(t))− C(%̂j(t),ϕj(t)) ≥
θj∗S(%̂j∗(t), ζj∗(t))− C(%̂j∗(t),ϕj∗(t)), (24)

where θj ≥ θj∗ , j 6= j∗, j, j∗ ∈ J .

Proof. See Appendix C.

From Proposition 3, we can reduce the number of IR
constraints by using the VSP’s minimum type, i.e., θ1. As
such, we can derive that

θjS(%̂j(t), ζj(t))− C(%̂j(t),ϕj(t)) ≥
θjS(%̂1(t), ζ1(t))− C(%̂1(t),ϕ1(t)) (25)
≥ θ1S(%̂1(t), ζ1(t))− C(%̂1(t),ϕ1(t)) ≥ 0.

In other words, the IR constraints for other types θj , j > 1,
will automatically hold if and only if we can satisfy the
IR constraint for θ1. To this end, we can modify the IR
constraints in (20) into

θ1S(%̂1(t), ζ1(t))− C(%̂1(t),ϕ1(t)) ≥ 0. (26)
For the IC constraints in (21), we can also reduce the

number of constraints using the following transformation
stated in Lemma 2.

Lemma 2. The IC constraints in (21) of (P2) can be modified
into the following local downward incentive constraints (LDIC),
i.e.,

θjS(%̂j(t), ζj(t))− C(%̂j(t),ϕj(t)) ≥
θjS(%̂j−1(t), ζj−1(t))− C(%̂j−1(t),ϕj−1(t)), (27)

∀j ∈ {2, . . . , J},
where ζj(t) ≥ ζj−1(t),∀j ∈ {2, . . . , J}.

Proof. See Appendix D.

The conditions in (27) imply that if the IC constraint
regarding the type that is one type lower than type θj holds,
i.e., θj−1, then all other IC constraints are also satisfied as

long as the conditions in Lemma 1 hold. From (26)-(27), we
can update the optimization problem (P2) into the problem
(P3) as follows:

(P3) max
ζ(t),ϕ(t)

µn
(
ζ(t),ϕ(t)

)
,∀n ∈ N (t), (28)

s.t. (19), and,
θ1S(%̂1(t), ζ1(t))− C(%̂1(t),ϕ1(t)) ≥ 0, (29)
θjS(%̂j(t), ζj(t))− C(%̂j(t),ϕj(t)) ≥
θjS(%̂j−1(t), ζj−1(t))− C(%̂j−1(t),ϕj−1(t)),

∀j ∈ {2, . . . , J}, (30)
ζj(t) ≥ ζj−1(t),∀j ∈ {2, . . . , J}. (31)

From problem (P3), we demonstrate that the problem now
can be solved with computational complexityO(J) as stated
in the following Proposition 4.

Proposition 4. The computational complexity of solving (P3) is
O(J).

Proof. From the constraints (19), (29)-(31), there are J + 1 +
(J − 1) + (J − 1) = 3J − 1 number of the constraints.
Hence, the computational complexity of solving problem
(P3) becomes O(J).

4.5 Learning Contract Iterative Algorithm
Based on the problem (P3), we can find the op-
timal contracts

(
ζ̂(t), ϕ̂(t)

)
by implementing an iter-

ative algorithm as described in Algorithm 1. Specif-
ically, the SVs in N (t) first offer the initial con-
tracts at iteration ς = 0, i.e.,

(
ζn(ς)(t),ϕ

n
(ς)(t)

)
, ∀n ∈

N (t), where ζn(ς)(t) = [ζn1,(ς)(t), . . . , ζ
n
j,(ς)(t), . . . , ζ

n
J,(ς)(t)]

and ϕn(ς)(t) = [ϕn1,(ς)(t), . . . , ϕ
n
j,(ς)(t), . . . , ϕ

n
J,(ς)(t)]. Given(

ζn(ς)(t),ϕ
n
(ς)(t)

)
, ∀n ∈ N (t), the VSP can find the optimal

payment proportion values %̂(ς)(t) which maximize the ob-
jective function of (P1). Then, using the obtained %̂(ς)(t) and

other SVs’ current contracts
(
ζ−n(ς) (t),ϕ−n(ς) (t)

)
[29], the VSP

can iteratively find a new contract for the SV-n, n ∈ N (t),
to maximize the objective function of (P3) at iteration ς + 1.

The algorithm continues until the gaps between the
expected profits at iteration ς and ς + 1 of all the SVs is
equal or less than the optimality tolerance γ, and thus the
algorithm converges and the equilibrium contract solution
can be found (as proven in Theorems 1 and 2). In this case,
the expected profit of the SV-n at the equilibrium contract
solution

(
ζ̂
n
(t), ϕ̂n(t)

)
will achieve the highest value com-

pared with all other contract solutions it takes, given the
equilibrium contract of other SVs

(
ζ̂
−n

(t), ϕ̂−n(t)
)

. Alter-
natively, no SV-n can improve its expected profit by unilater-
ally deviating from its equilibrium strategy

(
ζ̂
n
(t), ϕ̂n(t)

)
,

as described in Definition 3.

Definition 3. Equilibrium solution for non-collaborative learn-
ing contract optimization problem: The optimal contracts(
ζ̂(t), ϕ̂(t)

)
=
(
ζ̂
n
(t), ϕ̂n(t), ζ̂

−n
(t), ϕ̂−n(t)

)
are the equi-

librium solution of (P3) at learning round t if and only if

µn(ζ̂
n
(t), ϕ̂n(t), ζ̂

−n
(t), ϕ̂−n(t)) ≥

µn(ζn(t),ϕn(t), ζ̂
−n

(t), ϕ̂−n(t)),∀n ∈ N (t), (32)
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hold and the optimal contracts
(
ζ̂(t), ϕ̂(t)

)
still satisfy the

constraints (29)-(31).

Algorithm 1 Learning Contract Iterative Algorithm

1: Set ς = 0 and γ > 0
2: The VSP informs the selected SVs in N (t) to send initial

contracts
3: for ∀n ∈ N (t) do
4: SV-n offers

(
ζn(ς)(t),ϕ

n
(ς)(t)

)
to the VSP

5: end for
6: repeat
7: Obtain %̂(ς)(t) that maximize (P1) given

(
ζ(ς)(t),ϕ(ς)(t)

)
8: for ∀n ∈ N (t) do
9: Find the new contract

(
ζnnew(t),ϕnnew(t)

)
, which max-

imizes (P3) using %̂(ς)(t) and
(
ζ−n(ς) (t),ϕ−n

(ς) (t)
)

10: if
[
µn

(
ζnnew(t),ϕnnew(t), ζ−n(ς) (t),ϕ−n

ς) (t)
)

−

µn
(
ζn(ς)(t),ϕ

n
(ς)(t), ζ

−n
(ς) (t),ϕ−n

(ς) (t)
)]

> γ then

11: Set
(
ζn(ς+1)(t),ϕ

n
(ς+1)(t)

)
=

(
ζnnew(t),ϕnnew(t)

)
12: else
13: Set

(
ζn(ς+1)(t),ϕ

n
(ς+1)(t)

)
=

(
ζn(ς)(t),ϕ

n
(ς)(t)

)
14: end if
15: end for
16: ς = ς + 1
17: until µn

(
ζn(ς)(t),ϕ

n
(ς)(t), ζ

−n
(ς) (t),ϕ−n

(ς) (t)
)
, ∀n ∈ N (t), do

not change anymore
18: Generate optimal contracts

(
ζ̂(t), ϕ̂(t)

)

4.6 Convergence, Equilibrium, and Complexity Analy-
sis of the Learning Contract Iterative Algorithm
To analyze the convergence and equilibrium contract for
Algorithm 1, we consider two steps for each iteration ς . First,
each SV-n, n ∈ N (t), generates contract

(
ζn(ς)(t),ϕ

n
(ς)(t)

)
and sends it to the VSP. Then, the VSP helps the SVs to find
their optimal payment proportions %̂(ς)(t) locally due to the
unknown contract information among the SVs. In this case,
we can show that Algorithm 1 converges to the equilibrium
contract solution by using the best response method [29]. In
particular, the best response of SV-n at iteration ς + 1 given(
ζ−n(ς) (t),ϕ−n(ς) (t)

)
can be expressed by

Φn(ς+1)

(
ζ−n(ς) (t),ϕ−n(ς) (t)

)
= (33)

arg max
{ζnnew(t),ϕnnew(t)}∈Cn

µn
(
ζnnew(t),ϕnnew(t), ζ−n(ς) (t),ϕ−nς) (t)

)
,

where Cn is the non-empty contract space [36] for SV-n and
C =

∏
n∈N (t)Cn. As the monotonicity is not ensured for

each SV-n, we can use
(
ζnnew(t),ϕnnew(t)

)
∈ Φn(ς+1) to be(

ζn(ς+1)(t),ϕ
n
(ς+1)(t)

)
if the following condition satisfies[

µn
(
ζnnew(t),ϕnnew(t), ζ−n(ς) (t),ϕ−nς) (t)

)
−

µn
(
ζn(ς)(t),ϕ

n
(ς)(t), ζ

−n
(ς) (t),ϕ−n(ς) (t)

)]
> γ. (34)

The above iteration stops when the algorithm converges for
all SVs in N (t) as stated in Theorem 1.

THEOREM 1. The best response iterative Algorithm 1 converges
under the optimality tolerance γ.

Proof. See Appendix E.

Next, we need to ensure that the Algorithm 1 also con-
verges to the equilibrium solution

(
ζ̂(t), ϕ̂(t)

)
. Specifically,

we first investigate that the equilibrium solution exists by
finding a fixed point in a set-valued function Φ, Φ : C→ 2C,
which is Φ =

[
Φn
(
ζ−n(t),ϕ−n(t)

)
,Φ−n

(
ζn(t),ϕn(t)

)]
.

The revelation of this fixed point is equivalent to the equilib-
rium solution [19], [36], in which the Algorithm 1 converges
to the equilibrium contract solution, i.e., all the SVs in N (t)

obtain the maximum expected profits where
(
ζ̂(t), ϕ̂(t)

)
is

found. This is formally stated in Theorem 2.

THEOREM 2. If
(
ζ̂(t), ϕ̂(t)

)
is a fixed point in Φ, then the

best response iterative process in Algorithm 1 converges to its
equilibrium contract solution

(
ζ̂(t), ϕ̂(t)

)
.

Proof. See Appendix F.

Finally, the complexity of the Algorithm 1 with N SVs is
formally stated in the following Theorem 3.

THEOREM 3. Algorithm 1 has polynomial complexity log(N) +
ez +O(1/N), where z is the Euler constant.

Proof. See Appendix G.

5 FEDERATED LEARNING WITH SV SELECTION

5.1 Learning Process

To improve the global on-road prediction model accuracy,
we implement the FL process with SV selection at each
round [11] using the latest information significance (based
on the above optimal contracts

(
ζ̂(t), ϕ̂(t)

)
of SVs in

N (t)). For the FL algorithm, we adopt a deep learning
approach leveraging deep neural networks (DNN) for a
classification prediction model, i.e., when the output layer
of DNN produces discrete prediction values. Particularly,
we specify An(t) and Gn(t) to be the training feature data
(using features as columns) and ground-truth label data
within ηn(t) of SV-n, n ∈ N (t), respectively. Thus, the total
number of samples for all SVs in N (t) can be derived by
η(t) =

∑
n∈N (t) ηn(t). When multiple layers of the DNN

are considered, we have A`
n(t) such that A1

n(t) = An(t),
where ` is the training layer, ` ∈ [1, 2, . . . , `max]. For each
layer-`, we can compute the training output data Ĝ`

n(t) as
described by

Ĝ`
n(t) = α`n

(
A`
n(t)W(t)

)
, (35)

where W(t) is the global model matrix containing weights.
α`n(.) indicates the activation function of SV-n for nonlinear
transformation. For ` ∈ [1, 2, . . . , `max − 1], we adopt a tanh
activation function [30], i.e.,

α`n

(
A`
n(t)W(t)

)
=
eA

`
n(t)W(t) − e−A`

n(t)W(t)

eA
`
n(t)W(t) + e−A

`
n(t)W(t)

. (36)
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For the final layer, i.e., ` = `max, we utilize a softmax
activation function which is typically used to interpret a
probability distribution for a classification model [30], i.e.,

α`maxn

(
A`max
n (t)W(t)

)
=

eA
`max
n (t)W(t)∑
eA

`max
n (t)W(t)

. (37)

To extract more meaningful features from the training
input, we utilize several hidden layers `, where 1 < ` <
`max, such that A`+1

n (t) = Ĝ`
n(t). At the final layer `max,

we can obtain the predicted label data Ĝ`max
n (t) to calculate

the local loss function of SV-n at each t using a squared
Frobenius norm as follows:

εn
(
W(t)

)
=

1

ηn(t)

∥∥∥Gn(t)− Ĝ`max
n (t)

∥∥∥2

F

=
1

ηn(t)

ηn(t)∑
s=1

(
gsn(t)− ĝsn(t)

)2

,

(38)

where gsn(t) and ĝsn(t) are the elements of ground truth label
data Gn(t) and predicted label data Ĝ`max

n (t) at row-s for
round t, respectively. From εn

(
W(t)

)
, we can compute the

local loss gradient at SV-n by

∇Wn(t) =
∂εn

(
W(t)

)
∂W(t)

. (39)

Using this gradient ∇Wn(t), each SV-n can update the
local on-road model Wn(t) through utilizing the Adam
optimizer [31] which minimizes εn

(
W(t)

)
. This optimizer

operates as the adaptive learning rate to obtain high robust-
ness and fast convergence to the Wn(t). In this case, we
can derive the local update rules of the exponential moving
average of the∇Wn(t), i.e., pn(t), and the squared∇Wn(t)
to obtain the variance, i.e., qn(t), as follows:

p(τ+1)
n (t) = β(τ)

pn (t)p(τ)
n (t) +

(
1− β(τ)

pn (t)
)
∇Wn(t),

q(τ+1)
n (t) = β(τ)

qn (t)q(τ)
n (t) +

(
1− β(τ)

qn (t)
)(
∇Wn(t)

)2

,

(40)
where β(τ)

pn (t) ∈ [0, 1) and β(τ)
qn (t) ∈ [0, 1) represent p(τ)

n (t)’s
and q(τ)

n (t)’s steps of the exponential decays at local iteration
τ , respectively. Using the learning step κn, we can determine
how often the Wn(t) is updated for the next local iteration
τ + 1, which can be calculated by

κ(τ+1)
n (t) = κn

√
1− β(τ+1)

qn (t)

1− β(τ+1)
pn (t)

. (41)

Then, we can update the W
(τ+1)
n (t) for the next τ + 1 by

W(τ+1)
n (t) = W(τ)

n (t)− κ(τ+1)
n (t)

pn
(τ+1)(t)√

qn(τ+1)(t) + ε
, (42)

where ε specifies a constant to avoid zero division when√
qn(τ+1)(t) reaches zero. This local process continues until

a pre-defined local iteration threshold τth is reached, and
thus κ(τth)

n (t) and W
(τth)
n (t) are obtained. To this end, the SV-

n can send its W
(τth)
n (t) to the VSP for the global on-road

model update W(t + 1) by aggregating all W(τth)
n (t),∀n ∈

N (t), as follows:

W(t+ 1) =
1

η(t)

∑
n∈N (t)

ηn(t)W(τth)
n (t). (43)

To this end, we can compute the global loss function at

Algorithm 2 FL Process with SV Selection Algorithm

1: Set initial τth, tth, W(0), and t = 0
2: while t ≤ tth and Ψ(W(t)) does not converge do
3: The VSP determines SVs inN (t) ⊂M(t) ⊂ I using (8)
4: All SVs inN (t) collect on-road data for a certain time
5: Execute Algorithm 1 for all SVs in N (t) to obtain optimal

contracts
(
ζ̂(t), ϕ̂(t)

)
6: for ∀n ∈ N (t) do
7: Set An(t), Gn(t) from ηn(t) based on the optimal ζ̂

n
(t)

8: Calculate Ĝ`max
n (t) using An(t) and W(t)

9: Derive εn
(
W(t)

)
and W

(τth)
n (t)

10: Send W
(τth)
n (t) to the VSP

11: end for
12: Update the global on-road model W(t+1) using W

(τth)
n (t)

and ηn(t), ∀n ∈ N (t)
13: Determine the global loss Ψ(W(t + 1)) using

εn
(
W

(τth)
n (t)

)
, ∀n ∈ N (t)

14: t = t+ 1
15: end while
16: Obtain the final global on-road model W∗ and global loss

Ψ∗(W∗)

round t+ 1 which is expressed by

Ψ(W(t+ 1)) =
1

N

∑
n∈N (t)

εn
(
W(τth)

n (t)
)
. (44)

This global process repeats until the global loss converges or
the number of rounds reaches a given threshold tth, and thus
the final global on-road model W∗ and the final global loss
Ψ∗(W∗) are obtained. The proposed FL algorithm with SV
selection and MPOA contract-based model is summarized
in Algorithm 2.

5.2 Convergence Analysis

In this section, we investigate the convergence of the pro-
posed FL algorithm with SV selection using the gap between
the expected global loss after t� rounds, i.e., E[Ψ(W(t�))]
and the final global loss, i.e., Ψ∗(W∗). Consider the prob-
ability that an SV will be choosen by the VSP for the FL
execution at any round is N

I . Then, we can demonstrate
that the global loss gap is upper bounded by the expected
squared L2-norm global model gap, i.e., E[‖W(t�)−W∗‖22],
and it eventually reaches zero as stated in Theorem 4.

THEOREM 4. The proposed FL with SV selection in Algorithm 2
will converge to the minimum global loss Ψ∗(W∗) according
to the global loss gap condition

[
E[Ψ(W(t�))] − Ψ∗(W∗)

]
≤

δ
2E[‖W(t�)−W∗‖22], where δ is a positive constant.

Proof. Given that the global loss function after t� rounds, i.e.,
Ψ(W(t�)), is δ-smooth, we can show that E[Ψ(W(t�))] −
Ψ∗(W∗) ≤ δ

2E[‖W(t�)−W∗‖22]. More details are provided
in Appendix H.

To this end, it is intractable to provide the exact conver-
gence rate theoretically due to the dynamic set of learning
SVs with various QoI at each learning round. Nonetheless,
in the simulation results of Section 7, i.e., Fig. 8 and Fig. 9,
we can show that the proposed FL algorithm with SV
selection can speed up the convergence to the Ψ∗(W∗),
where

[
E[Ψ(W(t�))] − Ψ∗(W∗)

]
= 0, at a certain learning

round t�.
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6 VSP’S PROFIT ANALYSIS BASED ON THE
GLOBAL MODEL ACCURACY AND FRESHNESS

When more active SVs with high information significance
are recruited for the FL execution, the converged global on-
road model with high accuracy can be achieved faster. In
this way, the VSP can obtain more up-to-date global on-
road model, and thus achieve a higher freshness value when
selling this model to the potential customers, such as SVs,
public transportations, and mobile users. The adoption of
information freshness in FL has been recently investigated
in the literature. For example, the authors in [37] propose
an FL scheduling strategy considering the freshness of FL
learners’ local trained models, aiming at computing the
staleness level of the local models for the global model
update. In [38], the authors present an incentive mechanism
for the FL process accounting for the freshness of collected
data at each FL learner towards the completion of FL
process. Different from the existing works, we consider the
freshness of produced global model at each learning round
and analyze its impact on the VSP’s profit.

In practice, the profit of the VSP is influenced by not
only the decision of contract optimization, but also the
obtained global model accuracy and freshness. To the best
of our knowledge, this is the first analysis in the literature
accounting for the influence of global model accuracy and
freshness towards the economic aspect of the typical FL
process. Specifically, we introduce a dynamic global model
economic value considering the product of global model
accuracy and freshness at each learning round t, which is
expressed by

ω(t) = aχ(t)e−bt, (45)

where a, b are control parameters which can be defined
in advance based on the accuracy and freshness of global
model, χ(t) is the global prediction model accuracy at
learning round t, and e−bt is the global model freshness
function with respect to the learning round t [32], [33].
The relationship between the global model accuracy and
freshness in (45) implies that there is a trade-off between
them in the FL process. Specifically, to obtain a global model
with high accuracy, the FL algorithm usually requires to
be executed for multiple learning rounds, that leads to a
lower freshness value, and vice versa. Furthermore, the
proposed dynamic global model economic value can be
used to control the VSP’s net profit effectively. Specifically,
if the ω(t) is higher, the satisfaction in (10) will increase and
vice versa. Thus, the net profit of the VSP and social welfare
for type θj after the current learning round is completed can
be respectively defined as follows:

µ̂jV SP (t) = θjω(t)λ

√ ∑
n∈N (t)

%̂nj (t)ζnj (t)−
∑

n∈N (t)

%̂nj (t)ϕnj (t),

(46)
and

µ̂jSW (t) = θjω(t)λ

√ ∑
n∈N (t)

%̂nj (t)ζnj (t)

−
∑

n∈N (t)

%̂nj (t)ζnj (t)ξn(t),∀j ∈ J .
(47)

From (46), we can observe the relationship between
the net profit of the VSP and the global model economic

value (through the global model accuracy and freshness
values). In particular, the earlier the VSP can obtain the
high-accurate global prediction model, the more freshness
and thus the higher economic value the global model can
achieve (as illustrated in Fig. 2). However, in practice, at
the early learning rounds, the accuracy of the global pre-
diction model is not really high due to insufficient num-
ber of trained samples in the FL process (as illustrated in
Fig. 2(c)) [3]. Moreover, as shown in Fig. 2(d), the net profit
of the VSP will first increase up to the first 15 learning
rounds due to high freshness value and increasing accuracy
of the global model. Although the global model accuracy
gets improved for the rest of learning rounds, the existence
of lower freshness value will trigger lower global model
economic value, and thus the net profit of the VSP also
decreases gradually. Therefore, this observation provides an
insightful information for the VSP to determine the best
global model economic value which improves its profit in
the IoV accounting for the trade-off between the global
model accuracy and freshness for each learning round.
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Fig. 2: The impact of global model accuracy and freshness
(represented by learning rounds) on the global model eco-
nomic value and the VSP’s net profit.

7 PERFORMANCE EVALUATION

7.1 Dataset Preparation

We carry our experiments using the actual two road traffic
datasets in the UK between 2000 and 2016 [34] to evaluate
the performance of the proposed economic framework. For
the first dataset, there are 275K traffic AADFs from all major
roads of 190 areas/local districts in the UK that will be ap-
plied to obtain the set of significant areas. From this dataset,
we divide AADFs from all major roads based on the area
IDs such that each area is represented by the total AADF Vd
as defined in (1). For the second dataset, it includes 1.5M
traffic accidents of all major roads in the UK along with
34 features. Based on these features, we extract 7 useful
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features including accident location with 416 location IDs,
accident date, accident time, accident additional conditions,
i.e., light, weather, and road surface conditions (as training
features) and accident severity (as training label). We also
convert the accident date and time into categorical features,
i.e., 7-day (i.e., 1, 2, . . . , 7) and 24-hour (i.e., 0, 2, . . . , 23)
categories, respectively.

7.2 Experiment Setup

We use TensorFlow CPU 2.2 containing TensorFlow Federated
in a shared cluster. We also consider 100 active SVs. i.e.,
I = 100, to compare the performance of our proposed
method, i.e., proposed-LIS, with other baseline FL methods,
i.e., random scheduling and round-robin scheduling [8].
For the random scheduling, the VSP selects N SVs from I
active SVs randomly. For the round-robin scheduling, the
VSP chooses N SVs from I active SVs sequentially in a
round-robin manner. Both methods do not consider the SVs’
location and information significance at each round. We
also present a location-significance scheduling (referred to
as proposed-LS), i.e., the VSP selects N SVs from M active
SVs randomly without considering the SVs’ information
significance at each round, to show the impact of selected
SVs’ current location areas on the performance results. To
this end, we do not consider an information-significance
scheduling because this method may provide inaccurate
and useless on-road information regardless its QoI. We then
divide the active SVs into 3 categories, i.e., high-QoI SVs,
i.e., h-SVs, medium-QoI SVs, i.e., m-SVs, and low-QoI SVs,
i.e., l-SVs. In particular, we generate their data sizes and
spatio-temporal variabilities in the following order: h-SVs >
m-SVs> l-SVs. At each learning round, all SVs are randomly
scattered in both significant and insignificant areas (which
are determined by the K-means algorithm in Section. 3.1) as
illustrated in Fig. 3. We also account for various values of N ,
i.e., 5 and 10 SVs, for each round to evaluate the proposed
framework efficiency with respect to various payment bud-
gets.

In the contract optimization, we consider one agent, i.e.,
the VSP, and N principals corresponding to N learning SVs.
We set λ at 1.2 monetary unit (MU) per ζn(t) = 0.1,∀n ∈
N (t),∀t ∈ T [23]. We also set υ and ξn(t) at 2.1MU and
0.5MU per ζn(t) = 0.1,∀n ∈ N (t),∀t ∈ T , respectively. To
demonstrate various performances of the VSP, we consider
10 types, i.e., J = 10, with the same distribution of the
types, i.e., ρj(t) = 0.1 at each round. Then, we set Bmax(t)
at 125MU and 250MU [35] at each round for the cases of 5
and 10 learning SVs, respectively.

Next, we split the accident dataset into 0.8 training set
and 0.2 testing set. Additionally, we consider two data
distribution scenarios, i.e., i.i.d and non-i.i.d scenarios. For
i.i.d scenario, it occurs when most of the learning SVs in
the IoV network have visited many locations at different
times frequently, e.g., taxi or long-trip public transport, and
thus they can collect on-road data with various accident
severity levels. In this case, we distribute the training set
randomly to the h-SVs, m-SVs, and l-SVs based on their
information significance. Meanwhile, for non-i.i.d scenario,
it takes place when most of the learning SVs have only
passed through specific limited locations most of the times,

Fig. 3: An illustration of significant (red) and insignificant
(blue) areas in the UK from the dataset in [34].
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Fig. 4: The validity of IR and IC constraints for i.i.d scenario.

e.g., the school bus or city public transport, such that each
learning SV has very-limited and fixed accident severity
information. Specifically, we first divide the training set
randomly into 3 training subsets for h-SVs, m-SVs, and l-
SVs. Then, we sort each training subset according to the
training label. Each sorted training subset is distributed to
the corresponding number of learning SVs based on their
information significance. To implement the DNN, we use
two hidden layers with 128 and 64 neurons per layer and
one final layer with 3 neurons (which corresponding to 3
labels). We also use the Adam optimizer with initial step
size 0.01.

7.3 Learning Contract Performance
7.3.1 Common constraint validity and profit of the VSP
We first evaluate the validity of the VSP’s common con-
straints, i.e., IR and IC constraints, considered in the contract
optimization at a specific learning round, e.g., the first round
in this case. Specifically, we can observe the IR constraints
of the VSP for all methods in Fig. 4(a)-(b) and Fig. 5(a)-(b)
for i.i.d and non-i.i.d scenarios, respectively, with various
numbers of learning SVs. In this case, the profits of pro-
posed methods coincide with each other due to the VSP’s
limited budget constraint for the VSP’s each type. From
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Fig. 5: The validity of IR and IC constraints for non-i.i.d
scenario.

these figures, the VSP can always obtain positive profits for
all types of the VSP, thereby ensuring the feasibility of the
IR constraints as shown in (16). These profits monotonically
increase with respect to the VSP’s type such that the VSP
with a higher type will obtain a higher profit. The reason is
that the VSP is willing to pay more money to the learning
SVs due to higher payment budget. Additionally, we can
observe that more learning SVs, i.e., 10 learning SVs, will
produce higher profits for the VSP up to 1.95 times, respec-
tively, compared with that of 5 learning SVs. This is because
more learning SVs can provide larger training data sizes and
better information significance values for the FL process.
Meanwhile, compared with other methods, the proposed-
LIS can achieve higher VSP’s profit up to 2.63 and 1.8 times
for i.i.d and non-i.i.d scenarios, respectively. For Fig. 4(c)-(d)
and Fig. 5(c)-(d), we observe that the VSP can always obtain
the highest profit when it utilizes the right contract for its
true type. In this way, the IC constraints for all types of
the VSP are also satisfied. Particularly, the VSP with types
2, 4, 6, 8, and 10 will produce the highest profit when the
suitable contracts for those types are used. As both IR and
IC constraints hold, we can find the feasible contracts for all
learning SVs to maximize their profits at each round.

7.3.2 The profits of SVs and social welfare of the IoV

We then analyze the total profit of learning SVs and social
welfare of the IoV network at the first round as shown in
Fig. 6 and Fig. 7. Similar to the VSP’s profit performance,
the proposed-LIS can achieve higher learning SVs’ total
profits up to 21 and 18.2 times for 5 and 10 learning SVs,
respectively, in the i.i.d scenario as well as 5.27 and 8.93
times for 5 and 10 learning SVs, respectively, in the non-i.i.d
scenario, compared with those of random and round-robin
scheduling methods. The reason is that both methods are
likely to train the dataset with very low data size and quality
without considering the location-information significance.
We also observe that although the proposed-LS can achieve
the total profit of learning SVs close to that of proposed-LIS,
the proposed-LIS can increase the performance gap by 1.38
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Fig. 6: The total profit of learning SVs and social welfare for
i.i.d scenario.
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Fig. 7: The total profit of learning SVs and social welfare for
non-i.i.d scenario.

and 1.31 times for i.i.d and non-i.i.d scenarios, respectively,
when a higher type is employed by the VSP. The above
performance aligns with the social welfare of the network
in Fig. 6(c)-(d) and Fig. 7(c)-(d). Specifically, the proposed-
LS and proposed-LIS can improve the social welfare up to
3.63 and 4.2 times (i.i.d scenario) as well as 2.44 and 2.74
times (non-i.i.d scenario), respectively, compared with those
of random and round-robin scheduling methods.

7.4 Dynamic Federated Learning Accuracy Perfor-
mance

7.4.1 I.i.d scenario
We first investigate the global model accuracy for the i.i.d
scenario when the number of learning SVs, i.e., N , increases
and the VSP has type 10. In particular, when 5 SVs are used
to perform the FL algorithm for each round as shown in
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Fig. 8: The performance of proposed FL with SV selection
using various learning SVs with i.i.d datasets.

Fig. 8(a), the proposed-LIS can converge 57% (or 17 rounds)
earlier than those of the random scheduling and round-
robin with an accuracy of 85%. Furthermore, the proposed-
LIS can achieve the convergence 28% (or 5 rounds) faster
than that of the proposed-LS at the same accuracy level.
This is because the proposed-LIS only selects an SV with
high information significance within the significant areas.
Meanwhile, the baseline FL methods select the learning SVs
from the total active SVs without considering the location
and information significance-based SV selection. In this
case, there exists high probability that they only use l-SVs
most of the learning rounds, leading to a slow convergence.
For the proposed-LS, it only selects SVs in the significant
areas without information significance consideration. As a
result, its convergence accuracy will be slightly delayed.
These accuracy performances align with the global loss
ones in Fig. 8(c) where the proposed-LIS can reach the
fastest minimum convergence compared with other learning
methods.

The interesting point of accuracy performance can be
observed when 10 learning SVs are considered in Fig. 8(b).
Specifically, the learning methods other than the proposed-
LIS can improve the accuracy convergence speed by 18%
(or 6 rounds) because of the existence of more accu-
rate/meaningful local models from more learning SVs. Nev-
ertheless, this observation does not apply for the proposed-
LIS. The reason is that when each learning SV contains
i.i.d local dataset with high information significance, the
aggregation of all local models at the VSP will generate the
same model accuracy compared with the condition when
one h-SV is used. As such, the additional datasets with the
same high information significance from other SVs do not
further improve the convergence speed [11].

7.4.2 Non-i.i.d scenario
In contrast to the i.i.d scenario, the convergence speed for
the proposed-LIS gets faster when more learning SVs are se-
lected at each round for the non-i.i.d scenario. As shown in
Fig. 9(a), all FL methods suffer from the fluctuated/unstable
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Fig. 9: The performance of proposed FL with SV selection
using various learning SVs with non-i.i.d datasets.

learning performance when the VSP utilizes 5 learning SVs
(due to biased local dataset from each active SV [11]).
Nevertheless, the proposed-LIS eventually can achieve the
convergence within 30 learning rounds with accuracy level
85%. Specifically, the proposed-LIS still outperforms the
proposed-LS up to 17.5% (or 7 rounds) in terms of con-
vergence speed due to the selection guarantee of h-SVs.
Moreover, other baseline methods cannot even reach the
convergence because they likely to select l-SVs with very
biased local datasets. Similar to the i.i.d scenario, the global
loss performance in Fig. 9(c) aligns with the accuracy one
where the proposed-LS and proposed-LIS can reach the
fastest minimum convergence compared with those of the
random scheduling and round-robin methods.

When more learning SVs are selected by the VSP, the
accuracy performances for all FL methods can be improved.
As observed in Fig. 9(b), the proposed-LIS can speed up
the accuracy convergence by 45% (or 15 rounds) when
the VSP schedules 10 learning SVs for each round. The
reason is that the proposed-LIS can train more h-SVs and
m-SVs with less biased local datasets, thereby reducing the
unfairness among different SVs. Furthermore, the proposed-
LIS can achieve the convergence speed up to 62% (or 29
rounds) faster than those of other methods when 10 learning
SVs are used, respectively. These results can provide useful
information for the VSP in practice to determine the best
SV selection method for the FL process in terms of stability,
robustness, and flexibility.

7.5 Relationship Between Contract and Federated
Learning Performance

This section discusses how the global model accuracy and
the global model freshness obtained from the learning pro-
cess at each round can influence the profits of the VSP (with
type 10) and learning SVs as well as the social welfare of
the network obtained from the contract optimization. As
observed in Fig. 10(a)-(b) when i.i.d datasets are used, the
net profit of the VSP (when using the proposed-LS and
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Fig. 10: Net profits of the VSP and learning SVs for all
learning rounds when i.i.d datasets are trained.
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Fig. 11: Net profits of the VSP and learning SVs for all
learning rounds when non-i.i.d datasets are trained.

proposed-LIS) first suffers from negative profit during the
first three learning rounds for all cases. The reason is that
although the VSP can obtain high information significance
values from the learning SVs at these rounds, the obtained
global model accuracy cannot compensate the satisfaction
function due to the higher cost, i.e., high payment for
the learning SVs with high QoI. As the learning round
increases, the global model accuracy start to improve sig-
nificantly by 60%, thereby enhancing the net profit of the
VSP (with the maximum profit between round 10 and 15).
Due to the global model freshness impact and less accuracy
improvement at further learning rounds, the profit of the
VSP gradually decreases. Nonetheless, our proposed-LS and
proposed-LIS can still outperform other methods up to 7.25
and 8.92 times in terms of the VSP’s net profit, respectively.

For the total net profit of learning SVs, the performance
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Fig. 12: Final social welfare for all learning rounds when i.i.d
and non-i.i.d datasets are trained.

is not affected by the global model accuracy and freshness.
Alternatively, it remains the same as the one obtained from
the contract optimization. The reason is that the profits of
learning SVs depend only on their current round’s trained
datasets with certain information significance values, and
computation as well as memory costs at the learning SVs. As
can be seen in Fig. 10(c)-(d), our proposed-LIS can achieve
the highest total profit performance of learning SVs for
most rounds due to the use of more h-SVs. Similar trends
with more fluctuated profit performance can be observed
in Fig. 11 when non-i.i.d datasets are used for the cases of
5 and 10 learning SVs. However, the use of 5 learning SVs
in Fig. 11(a) and Fig. 11(c) triggers low net profits for both
VSP and learning SVs of the proposed-LS and proposed-
LIS during the first 16 and 27 learning rounds, respectively
(due to the unstable accuracy performance in Fig. 9(a)). To
support the performances in Fig. 10 and Fig. 11, we show
the final social welfare for both i.i.d and non-i.i.d scenarios
in Fig. 12. Specifically, the trend of social welfare follows
the one of the VSP’s net profit with increased profit values
due to addition of learning SVs’ total profit. In this case,
our proposed-LIS can achieve the social welfare up to 24.5
and 27.2 times for i.i.d and non-i.i.d scenarios, respectively,
compared with those of other methods. To this end, we
can summarize that the i.i.d scenario can provide more
stable economic benefit performance throughout the learn-
ing rounds compared with that of the non-i.i.d scenario.
However, the non-i.i.d scenario will provide more practical
economic benefit performance because of the unique and
biased dataset (generated from diverse mobile activities) at
each learning SV in the practical IoV network.

8 CONCLUSION

In this paper, we have proposed the novel economic frame-
work for the IoV network to maximize the profits for the
VSP and learning SVs in the dynamic FL process. Specifi-
cally, we have introduced the dynamic SV selection method
to determine a set of active SVs based on the significance of
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their locations and information at each learning round. From
the set of selected SVs, each SV can first collect on-road data
and then offer a payment contract to the VSP with respect
to its QoI. In this case, we have developed the MPOA-
based contract optimization problem under the competition
of learning SVs and the VSP’s common constraints (i.e.,
the IR and IC constraints) as well as incomplete infor-
mation of payment budget. To find the optimal contracts,
we have transformed the problem into the equivalent low-
complexity problem and then implemented the iterative
contract algorithm which can achieve the equilibrium so-
lution for all the learning SVs at each learning round. We
have also analyzed the convergence of proposed FL and
investigated on how the accuracy and freshness of the global
prediction model obtained by the FL process at each round
affect the net profits of the VSP and learning SVs as well as
the social welfare of the network. Through the experimental
results, we have shown that our proposed framework can
significantly improve the FL convergence speed, profits of
the VSP and learning SVs, and the social welfare of the
network compared with other baseline FL methods.
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APPENDIX A
PROOF OF LEMMA 1

We first prove that ζj(t) ≥ ζj∗(t) if and only if θj ≥ θj∗
using the IC constraint in (17), which is

θjS(%̂j(t), ζj(t))− C(%̂j(t),ϕj(t)) ≥
θjS(%̂j∗(t), ζj∗(t))− C(%̂j∗(t),ϕj∗(t)). (48)

If the VSP has type j∗, then we obtain
θj∗S(%̂j∗(t), ζj∗(t))− C(%̂j∗(t),ϕj∗(t)) ≥
θj∗S(%̂j(t), ζj(t))− C(%̂j(t),ϕj(t)), (49)

where j 6= j∗ and j, j∗ ∈ J . From (48) and (49), we can
obtain
θjS(%̂j(t), ζj(t)) + θj∗S(%̂j∗(t), ζj∗(t)) ≥
θjS(%̂j∗(t), ζj∗(t)) + θj∗S(%̂j(t), ζj(t)),

θjS(%̂j(t), ζj(t))− θj∗S(%̂j(t), ζj(t)) ≥
θjS(%̂j∗(t), ζj∗(t))− θj∗S(%̂j∗(t), ζj∗(t)),

S(%̂j(t), ζj(t))
(
θj − θj∗

)
≥ S(%̂j∗(t), ζj∗(t))

(
θj − θj∗

)
.

(50)
By removing (θj − θj∗), we have S(%̂j(t), ζj(t)) ≥
S(%̂j∗(t), ζj∗(t)). Since the satisfaction function in (10) is
monotonically increasing in ζj(t), thus if S(%̂j(t), ζj(t)) ≥
S(%̂j∗(t), ζj∗(t)), then ζj(t) ≥ ζj∗(t) given %̂j = %̂j∗ .

Then, we prove that θj ≥ θj∗ if and only if
S(%̂j(t), ζj(t)) ≥ S(%̂j∗(t), ζj∗(t)). From (48)-(50), we have

θj
(
S(%̂j(t), ζj(t))− S(%̂j∗(t), ζj∗(t))

)
≥

θj∗
(
S(%̂j(t), ζj(t))− S(%̂j∗(t), ζj∗(t))

)
.

(51)

By eliminating both S(%̂j(t), ζj(t)) − S(%̂j∗(t), ζj∗(t)),
we obtain θj ≥ θj∗ considering S(%̂j(t), ζj(t)) −
S(%̂j∗(t), ζj∗(t)) ≥ 0 since S(%̂j(t), ζj(t)) ≥
S(%̂j∗(t), ζj∗(t)). As a result, we prove that if
S(%̂j(t), ζj(t)) ≥ S(%̂j∗(t), ζj∗(t)), then θj ≥ θj∗ . This
concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

Based on (48) and (49), we can derive the following expres-
sions:

C(%̂j(t),ϕj(t))− C(%̂j∗(t),ϕj∗(t)) ≤

θj
(
S(%̂j(t), ζj(t))− S(%̂j∗(t), ζj∗(t))

)
,

(52)

C(%̂j(t),ϕj(t))− C(%̂j∗(t),ϕj∗(t)) ≥

θj∗
(
S(%̂j(t), ζj(t))− S(%̂j∗(t), ζj∗(t))

)
.

(53)

Given %̂j = %̂j∗ , if S(%̂j(t), ζj(t)) ≥ S(%̂j∗(t), ζj∗(t)),
then we can obtain C(%̂j(t),ϕj(t)) ≥ C(%̂j∗(t),ϕj∗(t))
from (53), and thus ϕj(t) ≥ ϕj∗(t) since the cost func-
tion (11) is monotonically increasing in ϕj(t). Moreover,
if C(%̂j(t),ϕj(t)) ≥ C(%̂j∗(t),ϕj∗(t)), then we can obtain
from (52) that S(%̂j(t), ζj(t)) ≥ S(%̂j∗(t), ζj∗(t)), and thus
ζj(t)) ≥ ζj∗(t)).

APPENDIX C
PROOF OF PROPOSITION 3

From Lemma 1 and Proposition 2, we have ζj(t)) ≥ ζj∗(t))
and ϕj(t) ≥ ϕj∗(t). If θj ≥ θj∗ , then

θjS(%̂j(t), ζj(t))− C(%̂j(t),ϕj(t)) ≥
θjS(%̂j∗(t), ζj∗(t))− C(%̂j∗(t),ϕj∗(t)) ≥ (54)

θj∗S(%̂j∗(t), ζj∗(t))− C(%̂j∗(t),ϕj∗(t)) ≥ 0.

Thus, θjS(%̂j(t), ζj(t)) − C(%̂j(t),ϕj(t)) ≥
θj∗S(%̂j∗(t), ζj∗(t))− C(%̂j∗(t),ϕj∗(t)) when θj ≥ θj∗ .

APPENDIX D
PROOF OF LEMMA 2

We first define downward ICs (DICs) and upward ICs
(UICs) as the IC contraints between the VSP with type
indices j and j∗, ∀j∗ ∈ {1, . . . , j − 1}, and between the VSP
with type indices j and j∗, ∀j∗ ∈ {j+1, . . . , J}, respectively,
in which

θjS(%̂j(t), ζj(t))− C(%̂j(t),ϕj(t)) ≥
θjS(%̂j∗(t), ζj∗(t))− C(%̂j∗(t),ϕj∗(t)). (55)

Then, we prove that DICs can be simplified into two con-
secutive types called local DICs (LDICs), which are the IC
constraints between the VSP with type indices j and j − 1.
Consider that θj−1 < θj < θj+1, j ∈ {2, . . . , J − 1}, we can
derive

θj+1S(%̂j+1(t), ζj+1(t))− C(%̂j+1(t),ϕj+1(t)) ≥
θj+1S(%̂j(t), ζj(t))− C(%̂j(t),ϕj(t)), (56)

θjS(%̂j(t), ζj(t))− C(%̂j(t),ϕj(t)) ≥
θjS(%̂j−1(t), ζj−1(t))− C(%̂j−1(t),ϕj−1(t)). (57)

From Lemma 1, we have proven that S(%̂j(t), ζj(t)) ≥
S(%̂j∗(t), ζj∗(t)) if θj ≥ θj∗ . Then, we can obtain

θj+1(S(%̂j(t), ζj(t))− S(%̂j−1(t), ζj−1(t))) ≥
θj(S(%̂j(t), ζj(t))− S(%̂j−1(t), ζj−1(t))) ≥
C(%̂j(t),ϕj(t))− C(%̂j−1(t),ϕj−1(t)), (58)

and
θj+1S(%̂j+1(t), ζj+1(t))− C(%̂j+1(t),ϕj+1(t)) ≥
θj+1S(%̂j(t), ζj(t))− C(%̂j(t),ϕj(t)) ≥
θj+1S(%̂j−1(t), ζj−1(t))− C(%̂j−1(t),ϕj−1(t)). (59)

As θj+1S(%̂j+1(t), ζj+1(t)) − C(%̂j+1(t),ϕj+1(t)) ≥
θj+1S(%̂j−1(t), ζj−1(t)) − C(%̂j−1(t),ϕj−1(t)), it can be
expanded from the VSP with type index j − 1 to type index
1 to show that all the DICs satisfy, i.e.,
θj+1S(%̂j+1(t), ζj+1(t))− C(%̂j+1(t),ϕj+1(t)) ≥ (60)

θj+1S(%̂j−1(t), ζj−1(t))− C(%̂j−1(t),ϕj−1(t)) ≥ . . . ≥
θj+1S(%̂1(t), ζ1(t))− C(%̂1(t),ϕ1(t)),∀j ∈ {1, . . . , J − 1}.
As a result, we can conclude that by using the LDICs, all the
DICs satisfy, and then the DICs can be reduced. Likewise,
we can prove that all the UICs hold considering the local
UICs (LUICs) and Lemma 1.
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APPENDIX E
PROOF OF THEOREM 1
Consider C has

(
ζ−n(ς+1)(t),ϕ

−n
(ς+1)(t)

)
and(

ζ−n(ς) (t),ϕ−nς) (t)
)

such that(
ζ−n(ς+1)(t),ϕ

−n
(ς+1)(t)

)
>
(
ζ−n(ς) (t),ϕ−nς) (t)

)
. (61)

Given that Φ̂n(ς+1)

(
ζ−n(ς) (t),ϕ−nς) (t)

)
=

max Φn(ς+1)

(
ζ−n(ς) (t),ϕ−nς) (t)

)
, we can show that the

choice Φ̂n in Φn at SV-n is increasing, which is

Φ̂n(ς+2)

(
ζ−n(ς+1)(t),ϕ

−n
(ς+1)(t)

)
≥ Φ̂n(ς+1)(t)

(
ζ−n(ς) (t),ϕ−n(ς) (t)

)
.

(62)
Using

(
ζ−n(ς+1)(t),ϕ

−n
(ς+1)(t)

)
>

(
ζ−n(ς) (t),ϕ−n(ς) (t)

)
and

Φ̂n(ς+2)

(
ζ−n(ς+1)(t),ϕ

−n
(ς+1)(t)

)
< Φ̂n(ς+1)

(
ζ−n(ς) (t),ϕ−n(ς) (t)

)
to

derive a contradiction, we can obtain

µn

(
Φ̂n(ς+1)

(
ζ−n(ς) (t),ϕ−n(ς) (t)

)
, ζ−n(ς+2)(t),ϕ

−n
(ς+2)(t)

)
+

µn

(
Φ̂n(ς+2)

(
ζ−n(ς+1)(t),ϕ

−n
(ς+1)(t)

)
, ζ−n(ς+1)(t),ϕ

−n
(ς+1)(t)

)
≥

µn

(
Φ̂n(ς+2)

(
ζ−n(ς+1)(t),ϕ

−n
(ς+1)(t)

)
, ζ−n(ς+2)(t),ϕ

−n
(ς+2)(t)

)
+

µn

(
Φ̂n(ς+1)

(
ζ−n(ς) (t),ϕ−n(ς) (t)

)
, ζ−n(ς+1)(t),ϕ

−n
(ς+1)(t)

)
. (63)

Based on the definition of Φn(ς+1),

Φ̂n(ς+1)

(
ζ−n(ς) (t),ϕ−n(ς) (t)

)
∈ Φn(ς+1)

(
ζ−n(ς) (t),ϕ−n(ς) (t)

)
describes that

µn

(
Φ̂n(ς+1)

(
ζ−n(ς) (t),ϕ−n(ς) (t)

)
, ζ−n(ς+1)(t),ϕ

−n
(ς+1)(t)

)
≥

µn

(
Φ̂n(ς+2)

(
ζ−n(ς+1)(t),ϕ

−n
(ς+1)(t)

)
, ζ−n(ς+1)(t),ϕ

−n
(ς+1)(t)

)
.

(64)
Then, from (63) and (64), we have

µn

(
Φ̂n(ς+1)

(
ζ−n(ς) (t),ϕ−n(ς) (t)

)
, ζ−n(ς+2)(t),ϕ

−n
(ς+2)(t)

)
≥

µn

(
Φ̂n(ς+2)

(
ζ−n(ς+1)(t),ϕ

−n
(ς+1)(t)

)
, ζ−n(ς+2)(t),ϕ

−n
(ς+2)(t)

)
,

(65)
and thus Φ̂n(ς+1)

(
ζ−n(ς) (t),ϕ−n(ς) (t)

)
∈

Φn(ς+2)

(
ζ−n(ς+1)(t),ϕ

−n
(ς+1)(t)

)
. In other words, it

can be noticed that Φ̂n(ς+1)

(
ζ−n(ς) (t),ϕ−n(ς) (t)

)
>

Φ̂n(ς+2)

(
ζ−n(ς+1)(t),ϕ

−n
(ς+1)(t)

)
. Based on the def-

inition of Φ̂n(ς+1), it can be observed that

Φ̂n(ς+2)

(
ζ−n(ς+1)(t),ϕ

−n
(ς+1)(t)

)
≥ Φ̂n(ς+1)

(
ζ−n(ς) (t),ϕ−n(ς) (t)

)
which contradicts with the above condition. As a result, Φ̂n

is an increasing function.
Using the increasing function of Φ̂n, the VSP can update

the contract of SV-n at iteration ς + 1 if the condition in (34)
is satisfied. To this end, the use of γ can be denoted as the
optimality tolerance to stop the iterative algorithm. In par-
ticular, when all the SVs in N (t) do not hold the condition
in (34) at iteration ς = κ, we have

(
ζn(κ+1)(t),ϕ

n
(κ+1)(t)

)
=(

ζn(κ)(t),ϕ
n
(κ)(t)

)
,∀n ∈ N (t). Hence, for the rest of ς

values starting from κ, the iterative algorithm provides the
same µn

(
ζn(ς+1)(t),ϕ

n
(ς+1)(t), ζ

−n
(ς) (t),ϕ−n(ς) (t)

)
,∀n ∈ N (t).

It means that the iterative algorithm converges under γ.

APPENDIX F
PROOF OF THEOREM 2

To prove that the iterative algorithm can converge to the
equilibrium solution, we first show that an equilibrium
exists by finding a fixed point of Φ. Suppose that C∗
contains

(
ζ(t),ϕ(t)

)
∈ C. This C∗ is a non-empty con-

tract space because Φ̂
(

minC
)
≥ minC, Φ̂ ∈ Φ, and thus

Φ̂
(

maxC∗
)
≥ maxC∗. Since Φ̂ is an increasing func-

tion, we obtain Φ̂
(

Φ̂
(

maxC∗
))
≥ Φ̂

(
maxC∗

)
, and thus

Φ̂
(

maxC∗
)
∈ C∗. Then, we have Φ̂

(
maxC∗

)
≤ maxC∗

and obtain Φ̂
(

maxC∗
)

= maxC∗. Consequently, max C∗

is a fixed point of Φ which contains
(
ζ̂(t), ϕ̂(t)

)
and

indicates that the equilibrium exists. Since the profits of
all SV-n, ∀n ∈ N (t), follow the increasing function until
they converge, no SVs can further improve the profits
when their optimal contracts are obtained. In this case,
it implies that the iterative algorithm must converge to
the equilibrium contract solution

(
ζ̂(t), ϕ̂(t)

)
, to guarantee

that there exists no such SV-n can improve its profit, i.e.,
µn
(
ζ̂
n
(t), ϕ̂n(t), ζ̂

−n
(t), ϕ̂−n(t)

)
, unilaterally [19], [36].

APPENDIX G
PROOF OF THEOREM 3

Let n† ⊂ N denote the number of SVs in N (t) which
complete the best response optimizations at iteration ς + 1,
i.e., Φn(ς+1)

(
ζ−n(ς) (t),ϕ−n(ς) (t)

)
, without modifying their cur-

rent contracts. We also define U ∈ [0, 1] as the current
normalized candidate profit. Given that R is the total
number of contract policies, n†-th SV obtains R − 1 new
contract policies in Cn† (whose normalized candidate profits
need to be compared with U ) when the SV computes its
Φn
†

(ς+1)

(
ζ−n

†

(ς) (t),ϕ−n
†

(ς) (t)
)

. In this case, the probability that
all the R − 1 policies cannot drive the next normalized
candidate profit higher than U is UR−1. Thus, the (n† + 1)-
th SV can try to find its Φn

†+1
(ς+1)

(
ζ
−(n†+1)
(ς) (t),ϕ

−(n†+1)
(ς) (t)

)
.

In contrast, the probability that one of the R − 1 policies
is the best response can be defined as 1 − UR−1. As such,
the normalized candidate profit changes from U to a value
larger than µ̂n†

(
ζn
†

(ς)(t),ϕ
n†

(ς)(t), ζ
−n†
(ς) (t),ϕ−n

†

(ς) (t)
)

+ γ with

the probability 1 − µ̃R−1
n†

, where µ̃n† = µ̂n† + γ, and
µ̂n† ∈ [0, 1] is the normalized current profit of SV-n† (we
simplify the form of µ̂n†(.) into µ̂n† ). At this state, we set the
number of SVs in N (t) that have finished the best response
back to 1.

Utilizing the Markov chain, let ϑ(U, n†) to be the number
of steps of the Algorithm 1, when n† SVs have finished the
best response (without changing the contracts with normal-
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ized candidate profit U ) before reaching the convergence.
Then, we obtain

ϑ(U, n†) = UR−1ϑ(U, n† + 1)

+

∫ 1

U
(R− 1)µ̃R−2

n†
(ϑ(µ̃n† , 1) + 1)dµ̃n† ,

(66)

where the first component specifies that the (n† + 1)-th SV
does not modify its contract, i.e., ϑ(U, n†) = ϑ(U, n† + 1),
with probability UR−1. Additionally, the second component
represents that the (n† + 1)-th SV finds a new best response
with normalized candidate profit µ̃n† and probability den-
sity (R− 1)µ̃R−2

n†
, and thus one additional step is produced,

i.e., ϑ(U, n†) = ϑ(µ̃n† , 1)+1. Given the boundary conditions
ϑ(U,N) = 0 and ϑ(1, n†) = 0 for all U and n†, respectively,

and Ξ(U) =
1∫
U

(R− 1)µ̃R−2
n†

(ϑ(µ̃n† , 1) + 1)dµ̃n† , we have
ϑ(U, 1) = UR−1ϑ(U, 2) + Ξ(U),
... =

...
ϑ(U,N − 2) = UR−1ϑ(U,N − 1) + Ξ(U),
ϑ(U,N − 1) = Ξ(U).

(67)

From (67), we can obtain that ϑ(U, 1) = Ξ(U)Π(U), where
Π(U) = 1 + UR−1 + . . .+ U (R−1)(N−2). (68)

As such, the differential equation of ϑ(U, 1) with respect to
U is
dϑ(U, 1)

dU
+
(

(R− 1)UR−2Π(U)− 1

Π(U)

dΠ(U)

dU

)
ϑ(U, 1) =

− (R− 1)UR−2Π(U). (69)
Given that the boundary condition ϑ(1, 1) = 0 and

Ω(U) =

∫ U

0

(
(R− 1)µ̃R−2

1 Π(µ̃1)− 1

Π(µ̃1)

dΠ(µ̃1)

dµ̃1

)
dµ̃1

=

∫ U

0
(R− 1)µ̃R−2

1 Π(µ̃1)dµ̃1 − log(Π(U)),

(70)
the function ϑ(U, 1) becomes ϑ(U, 1) = e−Ω(U)

∫ 1
U (R −

1)µ̃R−2
1 Π(µ̃1)eΩ(µ̃1)dµ̃1. As ϑ(U, 1) is decreasing in U , the

number of steps is upper-bounded by ϑ(0, 1). Specifically,
considering Ω(0) = 0 from (70) and Π(0) = 1 from (68),
then

ϑ(0, 1) =

∫ 1

0
(R− 1)µ̃R−2

1 e
∑N−2
n=0

µ̃
(R−1)(n+1)
1

n+1 dµ̃1

=

∫ 1

0
e
∑N−2
n=0

µ̃
(R−1)(n+1)
1

n+1 dµ̃
(R−1)
1

=

∫ 1− 1
N

0
e
∑N−1
n=1

µ̃
(R−1)n
1
n dµ̃

(R−1)
1 +∫ 1

1− 1
N

e
∑N−1
n=1

µ̃
(R−1)n
1
n dµ̃

(R−1)
1

≤
∫ 1− 1

N

0
e
∑∞
n=1

µ̃
(R−1)n
1
n dµ̃

(R−1)
1 +

1

N
e
∑N−1
n=1

1
n

=

∫ 1− 1
N

0

dµ̃
(R−1)
1

1− µ̃(R−1)
1

+ ez +O(1/N)

= log(N) + ez +O(1/N)),

(71)

where z ≈ 0.5772 is the Euler constant. From (71), we
can see that the number of steps of the Algorithm 1 is
bounded above to the polynomial complexity log(N)+ez +
O(1/N) [39].

APPENDIX H
PROOF OF THEOREM 4
We first consider that the local loss function for all learning
SVs, i.e., εn,∀n ∈ N (t), are all δ1-smooth and δ2-strongly
convex [11], i.e.,
εn(W(t))− εn(Ŵ(t)) ≤ 〈W(t)− Ŵ(t),∇εn(Ŵ(t))〉

+
δ1
2
‖W(t)− Ŵ(t)‖22,∀n ∈ N (t),

(72)
and
εn(W(t))− εn(Ŵ(t)) ≥ 〈W(t)− Ŵ(t),∇εn(Ŵ(t))〉

+
δ2
2
‖W(t)− Ŵ(t)‖22,∀n ∈ N (t),

(73)
respectively. Then, given that 0 < κ(t) ≤ min(1, 1

δ2τth
),∀t,

where δ2 is a positive constant and κ(t) = κ
(τth)
1 (t) =

. . . = κ
(τth)
N (t) from (41) with fixed β

(τth)
pn (t) and β

(τth)
qn (t),

∀n ∈ N (t), we can obtain the expected squared L2-norm
global model gap [11] as follows:

E[‖W(t)−W∗‖22] ≤
( t−1∏
t∗=0

f1(t∗)

)
‖W(0)−W∗‖22

+
t−1∑
t†=0

f2(t†)
t−1∏

t∗=t†+1

f1(t∗),

(74)

where
f1(t∗) , 1− δ2κ(t∗)(τth − κ(t∗)(τth − 1)), (75)

f2(t∗) ,
(I −N)κ2(t∗)τ2

thΥ
2

N(I − 1)
+ 2κ(t∗)(τth − 1)Λ+

(1 + δ2(1− κ(t∗)))κ2(t∗)Υ2 τth(τth − 1)(2τth − 1)

6
+

κ2(t∗)(τ2
th + τth − 1)Υ2,

(76)

Λ , Ψ∗(W∗)− 1

I

I∑
i=1

εi(W
∗) ≥ 0, (77)

and Υ = max ‖W(t)‖ is the maximum global model
for all learning rounds. In this case, the first component(∏t−1

t∗=0 f1(t∗)

)
‖W(0)−W∗‖22 in (74) indicates the global

model gap in the initial round. Meanwhile, the second
component

∑t−1
t†=0 f2(t†)

∏t−1
t∗=t†+1 f1(t∗) in (74) implies the

cumulate impact of the proposed SV selection method on
the global model convergence.

Using the δ-smoothness function in (72) for the global
loss Ψ(.), we have the below expression after t� rounds, i.e.,

E[Ψ(W(t�))]−Ψ∗(W∗) ≤ δ

2
E[‖W(t�)−W∗‖22]

≤ δ

2

( t�−1∏
t∗=0

f1(t∗)

)
‖W(0)−W∗‖22+

δ

2

t�−1∑
t†=0

f2(t†)
t�−1∏

t∗=t†+1

f1(t∗).

(78)

Equation (78) shows that the global loss gap is upper
bounded by δ

2E[‖W(t�) − W∗‖22]. Then, due to the de-
creasing learning rate limt→∞ κ(t) = 0, we can observe
that limt�→∞

[
E[Ψ(W(t�))]−Ψ∗(W∗)

]
= 0, which implies

that the global loss gap eventually will reach zero. This
concludes the proof.
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