
“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

1

Joint Speed Control and Energy Replenishment
Optimization for UAV-assisted IoT Data Collection

with Deep Reinforcement Transfer Learning
Nam H. Chu, Dinh Thai Hoang, Diep N. Nguyen, Nguyen Van Huynh, and Eryk Dutkiewicz

Abstract—Unmanned aerial vehicle (UAV)-assisted data col-
lection has been emerging as a prominent application due
to its flexibility, mobility, and low operational cost. However,
under the dynamic and uncertainty of IoT data collection and
energy replenishment processes, optimizing the performance for
UAV collectors is a very challenging task. Thus, this paper
introduces a novel framework that jointly optimizes the flying
speed and energy replenishment for each UAV to significantly
improve the overall system performance (e.g., data collection and
energy usage efficiency). Specifically, we first develop a Markov
decision process to help the UAV automatically and dynamically
make optimal decisions under the dynamics and uncertainties
of the environment. Although traditional reinforcement learning
algorithms such as Q-learning and deep Q-learning can help the
UAV to obtain the optimal policy, they often take a long time to
converge and require high computational complexity. Therefore,
it is impractical to deploy these conventional methods on UAVs
with limited computing capacity and energy resource. To that
end, we develop advanced transfer learning techniques that allow
UAVs to “share” and “transfer” learning knowledge, thereby
reducing the learning time as well as significantly improving
learning quality. Extensive simulations demonstrate that our
proposed solution can improve the average data collection per-
formance of the system up to 200% and reduce the convergence
time up to 50% compared with those of conventional methods.

Index Terms—UAV, IoT data collection, Markov decision
process, deep reinforcement learning, transfer learning.

I. INTRODUCTION

Over the last ten years, the Internet of Things (IoT) has
been rapidly evolving to meet ever-increasing demands in
industries and many aspects of our daily lives. According
to [2], the IoT’s share in wireless connections will increase
from 33% in 2018 to 50% by 2023, which is equivalent to
14.7 billion connections. Consequently, the IoT system scale
has been growing exponentially, posing various challenges to
service providers and network operators. First, the uneven
distribution of IoT devices over large areas makes traditional
wireless Access Points (APs) (e.g., WiFi APs) inefficient in
collecting IoT data. Second, traditional APs are even unable

The first author is supported by the Vingroup Science and Technology
Scholarship Program for Overseas Study for Master’s and Doctoral Degrees.

The authors are with the School of Electrical and Data
Engineering, University of Technology Sydney, Australia (e-
mails: namhoai.chu@student.uts.edu.au, hoang.dinh@uts.edu.au,
diep.nguyen@uts.edu.au, huynh.nguyenvan@student.uts.edu.au, and
eryk.dutkiewicz@uts.edu.au).

Preliminary results in this paper were presented at the 2021 IEEE
WCNC Conference and was published in its proceedings [1]. DOI:
10.1109/WCNC49053.2021.9417563

to collect IoT data in various situations. For example, IoT
devices are distributed at hard-to-reach locations such as on top
of trees, outside high-rise buildings, or even under bridges. In
this case, cellular base stations can act as data collectors in IoT
data collection networks. However, the limited energy storage
capacity and communication capability hinder IoT devices
from transmitting their data over long distances. Thus, IoT
data collection networks have been demanding effective and
flexible solutions for data acquisition.

Recently, UAVs have been emerging as a promising ap-
proach to tackle the above challenges. In particular, when
UAVs act as on-demand flying APs, thanks to their aerial
superiority, they can establish good line-of-sight (LoS) links
for the IoT nodes. This leads to better wireless communication
channels, and thereby improving the quality of service (QoS)
in comparison with traditional approaches, especially for IoT
applications that are sensitive to delay and/or require stable
communications [3]. In addition, in remote areas without
access to terrestrial infrastructures, UAVs can provide a much
more economic solution to collect IoT data than traditional
approaches, e.g., long-range ground broadcasting stations or
high-cost satellite communications. Another important advan-
tage of UAVs is that they can be promptly established in emer-
gency circumstances, in which the existing infrastructure is
disrupted and incapable of receiving data from IoT devices [4].
Due to the flexibility, mobility, and low operational cost, UAVs
have been being deployed as flying APs for some real-world
projects, e.g., Google’s Loon and Facebook’s Aquila [5], [6].

However, there are still some challenges that hinder the
applications of UAVs in IoT data collection networks. In par-
ticular, unlike traditional solutions for collecting IoT data (e.g.,
deploying fixed APs), UAVs have limited energy resources
supplied by batteries. Thus, some UAVs may not have enough
computing capacity to deploy advanced techniques, e.g., a
deep learning-based methods consisting a deep neural network,
to optimize their operations. When the UAVs’ batteries are
depleted, they must replenish their energy by flying back to
the charging stations to charge or replace their batteries. It is
worth noting that given a fixed working duration, the more
time the energy replenishment process takes, the less time
the UAVs can spend for collecting IoT data. Alternatively,
the energy replenishment process is highly dynamic since it
depends on the distance between the UAV and the charging
stations. Therefore, optimizing energy usage and the energy
replenishment process is critical to achieving high system
performance, but very challenging in practice. Moreover, the

UAVs often fly around to collect IoT data, while IoT nodes
are statically allocated over different zones, and their sensing
data are random depending on surrounding environments. To
that end, optimizing operations of UAVs in different zones to
maximize data collection efficiency is another major challenge
that needs to be considered. To address the aforementioned
problems, jointly optimizing the UAV’s speed and energy
replenishment process is an effective approach to maximize
data collection efficiency and energy usage efficiency.

A. Related Works

1) UAV’s Energy Replenishment Process: In [7]–[11], the
authors consider a UAV-assisted IoT data collection system
where a charging station is deployed to prolong UAV serving
time. To minimize the age of information (AoI) under the
constraint of the UAV’s charging rate and battery capacity,
the authors in [7] propose a least-charging-timed Metropolis-
Hasting trajectory and a least-visit-time-based trajectory. They
also point out that the UAV’s charging rate has much more
influence on the low bound of AoI than the UAV’s battery
capacity. The study in [8] aims to minimize the data collection
time by optimizing the UAV trajectory and the order of IoT
devices that the UAV is going to visit. Specifically, they
employ a deep deterministic policy gradient-based algorithm
to find a route between two positions, and a Q-learning based
scheduler to determine the order of visiting positions where
the IoT devices or charging station are located. Furthermore, a
transfer learning model is introduced to speed up the training
process. However, the effectiveness of the proposed transfer
learning technique is not well investigated. Similarly, the study
in [9] aims to minimize the total time that the UAVs need
to collect data from backscatter sensor nodes. If the UAVs’
remaining energy is insufficient to complete the task, they can
return to a charging station for charging. The authors first use
the Gaussian mixture model to group IoT nodes into different
clusters and formulate the trajectory optimization problem as
a semi-Markov decision process. Then, deep reinforcement
learning (DRL) approaches are proposed to find the optimal
policy for the UAV.

In [10], the authors consider that a UAV is wirelessly
being charged during the data collection task. They first
formulate the problem as a Markov decision process (MDP),
then propose a Q-learning algorithm to maximize the energy
efficiency and system throughput. In [11], the authors propose
a blockchain-enabled UAV-assisted framework to provide se-
curity for IoT data collection network. A charging coin is
introduced to reward UAVs when they successfully collect
IoT data. Then, the UAVs can use collected coins to recharge
their batteries at a charging station. In addition, they develop
an adaptive linear prediction model to reduce the number of
transactions in the system, resulting in a decrease in energy
consumption.

All of the above works assume that the UAVs always fly at
a constant speed during the data collection process. However,
in practice, a UAV can choose different speeds during its data
collection process depending on its surrounding environment.
Alternatively, the UAV’s speed can strongly influence the

system’s efficiency because it has a substantial impact on
energy consumption during the data collection process [12].
Thus, optimally controlling UAVs’ speed can significantly
improve the energy usage and data collection efficiency of
the system, especially in UAV-assisted IoT data collection
networks where UAVs have limited battery capacities. Unfor-
tunately, this important factor is not investigated in all the
above studies.

2) Speed Control for UAVs: In the literature, only a few
works investigate the speed control problem for UAV-assisted
IoT data collection networks [13]–[16]. In [13], the authors
aim to minimize the flight time for a data collection task by
jointly optimizing the UAV’s speed, data collection duration,
and the IoT devices’ transmit power. Their numerical results
show that the UAV’s optimal speed depends on the distance
between sensors, sensors’ energy, and the data upload require-
ments. In [14] and [15], the authors aim to maximize the data
collection efficiency by controlling UAV’s speed according to
the IoT device density. In particular, the authors in [14] first
introduce an analytical model for the transmission between
the UAV and IoT nodes, then the UAV’s speed is optimized
based on this model. In [15], the authors reveal a tradeoff
between system throughput and IoT devices’ energy efficiency.
By optimizing the UAV’s speed, altitude, as well as the MAC
layer frame length, we can achieve the balance between the
two conflict factors.

All the above works (i.e., [13]–[15]) apply the conventional
optimization theories, which statically optimize the UAV’s
speed during the IoT data collection process. Therefore,
their algorithms need to rerun whenever the environments
are changed, leading to a high computational complexity.
As a result, optimization-based solutions are inefficient in
addressing the high dimensional state space as that in the
considered problem. More importantly, they cannot be used
in scenarios in which the complete information about the
surrounding environment is unknown, like what we consider
in this work (e.g., packet arrival probabilities for the whole
network and flight time for replacing the battery). In this con-
text, reinforcement learning emerges as the best approach to
address the highly dynamic and uncertainty of the environment
since it can help the UAV adapt its behavior according to the
environment’s changes. In [16], the authors employ deep Q-
learning to control the UAV’s speed during its data collection
task, where the UAV can also wirelessly charge the IoT devices
while collecting their data. This work aims to minimize the
data packet loss by selecting the best devices to be charged
and interrogated, together with the optimal UAV’s speed. Their
simulation results show that the UAV’s speed is proportional
to the number of IoT devices and inversely proportional to the
data queue lengths of IoT devices. Similar to [13]–[15], the
study in [16] does not consider the impacts of UAV’s energy
consumption and energy replenishment processes during the
data collection task. It is worth highlighting that the energy
replenishment process is a critical factor that cannot be ignored
since the UAVs’ energy is limited.

It can be observed that all of the aforementioned works do
not jointly optimize energy replenishment and speed control
activities simultaneously. However, they are among the most

important factors to achieve high efficiency in terms of energy
and data collection for UAV-assisted IoT data collection net-
works. In addition, these proposed approaches require a high
computational complexity that may be inefficient to deploy on
UAVs. Moreover, most RL-based optimal operation policies
for UAV-based collectors (i.e., [8]–[10], [16]) rely on con-
ventional Q-learning or deep Q-learning based algorithms that
are prone to overestimating state-action values. This problem
can make the learning process unstable [19]. In addition,
the work in [8] applies transfer learning to speed up the
learning process of the proposed DRL algorithm. However, the
impacts of transfer learning are not well investigated. Note that
transfer learning does not always improve or even can cause
negative impacts on the learning process [17]. Furthermore,
the study in [8] does not consider the UAV’s speed control,
one of the most important factors influencing to decisions of
energy replenishment. To fill these gaps, this study develops
a highly efficient solution based on deep reinforcement trans-
fer learning for UAV-assisted IoT data collection networks.
Specifically, our proposed approach can effectively address the
overestimation problem and stabilize the learning process by
adopting recent advanced techniques in RL, including deep Q-
learning [18], deep double Q-learning [19], and dueling neural
network architecture [20]. In addition, the proposed solution
can simultaneously optimize the UAV’s speed and energy
replenishment processes and allow the learned knowledge to
be effectively “shared” and “transferred” between UAVs. Thus,
leveraging the transfer learning technique can improve the
learning quality and reduce the learning time, thereby leading
to a decrease of computational complexity. Therefore, our
proposed solution can be effectively implemented on UAVs.

B. Contributions

Given the above, to jointly optimize the speed control and
battery replacement activities for a considered UAV under the
dynamic and uncertainty of IoT data collection process, we
propose a dynamic decision solution leveraging the Markov
decision process (MDP) framework. This framework allows
the UAV to make optimal decisions (regarding the flying
speed and battery replacement activities) based on its current
observations about the surrounding environment. Although Q-
learning can be used to find the optimal policy for the UAV,
its convergence rate is slow, especially in a highly complex
problem as the one considered in this paper where we need to
jointly optimize the speed and energy replenishment activities
for the UAV. In addition, Q-learning algorithms usually suffer
from overestimation problems when estimating action values,
especially for complicated problems with hybrid actions like
what we consider in this paper (i.e., speed selection and
energy replenishment actions) [19]. Thus, we develop a highly-
effective Deep Dueling Double Q-learning (D3QL) to address
these challenges. The key ideas of D3QL are to (1) separately
and simultaneously estimate the state values and action ad-
vantages, making the learning process more stable [20], and
(2) address the overestimation by using two estimators (e.g.,
deep neural networks), resulting in the stability of estimating
action values. To further reduce the learning time and enhance

the learning quality, we develop transfer learning techniques
to allow the UAV to learn more knowledge from other UAVs
learning in similar environments. In addition, these techniques
also help the UAV leverage knowledge obtained from different
environments to improve its policy, making our solution more
applicable and scalable. Therefore, our proposed solution
can be deploy on resource-constrained devices, e.g., UAVs.
Extensive simulation results demonstrate that our proposed
solution, i.e., D3QL with transfer learning (D3QL-TL), can
simultaneously optimize the energy usage and data collection,
and thereby leading to the best performance compared to other
methods. To the best of our knowledge, this is the first study
investigating a UAV operation control approach taking the dy-
namic of the IoT data collection, energy limitation, and impact
of the energy replenishment process into considerations. Our
major contributions can be summarized as follows.
• Propose a novel framework that allows the UAV to

jointly optimize its flying speed and battery replace-
ment activities under the dynamic and uncertainty of
data collection and energy replenishment processes. In
addition, this framework can not only allow the UAV to
dynamically and automatically make optimal decisions
through real-time interactions with the surrounding en-
vironment but also enable the “share/transfer” learning
knowledge among UAVs working in the same and/or
similar environments.

• Develop a highly-effective DRL algorithm leveraging
recent advances of deep Q-learning, deep double Q-
learning, and dueling neural network architecture to sta-
bilize the learning phase, thereby quickly obtaining an
optimal operation policy for the UAV.

• Develop advanced transfer learning techniques that allow
UAVs to “share” and “transfer” their learning knowledge,
thereby reducing the learning time and improving learn-
ing quality for the UAV. In addition, these techniques help
UAVs to utilize the knowledge and information learned
from different environments, making our approach more
scalable and applicable in practice, e.g., scenarios with
multiple UAVs.

• Perform extensive simulations to demonstrate the effi-
ciency of our proposed approaches and reveal critical
elements that can significantly impact on the performance
of UAV-assisted IoT data collection networks.

The rest of this paper is structured as follows. The system
model and operation control formulation are described in Sec-
tion II and III, respectively. Section IV presents the proposed
D3QL and D3QL-TL algorithms. Then, the simulation results
are analyzed in Section V. Finally, Section VI concludes our
paper.

II. SYSTEM MODEL

In this work, we consider a UAV-assisted IoT data collection
system where a UAV is deployed to collect IoT data over
a considered area, as illustrated in Fig. 1. We assume that
the considered area is divided into N zones. The IoT devices
are distributed randomly over these zones to execute various
tasks, e.g., sensing temperature and humidity. In practice, the

x
O

Broadcasting Transmition

y

(x,y)

h

Time slot

Station

UAV’s trajectory

IoT devices

Battery level

Speed selection Energy replenishment

Fig. 1: System model for UAV-assisted IoT data collection
network.

numbers of IoT nodes in these zones are different due to
different sensing demands in these zones. We consider time to
be slotted (as in [14], [15]) with an equal duration, and each
time slot is split into two consecutive intervals, broadcasting
and transmission, respectively. In the broadcasting interval,
the UAV uses a dedicated channel to broadcast a wake-up
signal [21] to all IoT nodes in its communication range. After
acquiring this signal, these nodes will send their data to the
UAV during the transmission interval. We assume that the
communication link from IoT devices to the UAV adopts the
OFDMA technique, while the communication link from the
UAV to IoT devices uses the OFDM technique, as in [22].
In this way, the IoT devices can simultaneously transmit data
to the UAV. Let pn denote the probability of a data packet
successfully collected by the UAV in a time slot in zone n.
Because the IoT nodes are distributed unevenly over N zones,
pn may vary over these zones.

As considering a UAV-assisted IoT data collection network,
we can assume that the UAV flies at a fixed altitude h (similar
as that of [4], [13], [14], [22], [23]) and follows a predefined
trajectory to sweep through all IoT devices of the system
in each round (as in [13]–[15]). In this paper, unlike [13]–
[15], we consider a more realistic scenario where the UAV is
equipped with a battery that has limited energy storage. It is
worth mentioning that the energy consumption for the wireless
data collection process (i.e., broadcasting the wake-up signal
and receiving data packets) is much lower than that of the
flying operation [12]. In addition, the decision of the UAV at
each time slot (i.e., speed selecting or returning for energy
replenishment) does not influence the power consumption for
the wireless data collection process. Thus, our model can
straightforwardly capture the communication power consump-
tion by adding a constant to the UAV’s energy consumption
at each time slot, similar to that in [10]. To that end, in this
work, we only focus on optimizing energy consumption for
the UAV’s flying operation, similar as that in [7], [12]. In a
time slot, we assume that the UAV’s velocity is constant (as
in [13], [22]), but in different time slots the UAV can choose
to fly at different speeds, e.g., vw = {v1, . . . , vA}. Each speed
may cost a different amount of energy. For example, if the
UAV flies faster, it may use more energy per time slot [12].

Note that UAVs in UAV-assisted IoT data collection systems
often fly at a low speed to maintain the reliability of the data
collection process.

When the UAV’s energy is depleted, it will fly back to the
charging station placed at a fixed location to replace the bat-
tery, as illustrated in Fig. 1. Furthermore, during the flight, the
UAV can decide to go back to the charging station to change
the battery, for example, when it is near the charging station
and its energy level is low. Once the energy replenishment
process is accomplished, the UAV will fly back to its trajectory
and continue its task. Here, we consider that the UAV has a
maximum of E energy units for its operation (i.e., flying to
collect IoT data) and a backup energy storage for flying back
to the charging station for battery replacement. During the
energy replenishment process, including back-and-forth flights
and battery replacement, the UAV cannot collect data. Suppose
that it takes the UAV t f and tb time slots to fly from its current
location to the station and to replace the battery, respectively.
Indeed, the battery replacement time, i.e., tb , may be known in
advance, while the return flight time, i.e., t f , is highly dynamic
depending on the distance between UAV’s current location
and the charging station. In addition, t f also depends on the
return speed of the UAV, denoted by vr . Assuming that UAV
flies with a constant speed when returning to the station, the
duration of energy replenishment is calculated by the equation
te = 2t f + tb . Therefore, the energy replenishment process is
also dynamic due to the dynamic of flying time t f .

In practice, the surrounding environment is highly dynamic
and uncertain. Specifically, the UAV does not know the prob-
abilities of receiving a packet in different areas in advance,
as they are very uncertain depending on sensing tasks. It
is important to note that the UAV may collect more data
when moving in a zone with a high probability of receiving
packets, i.e., a high value of pn. As a result, to maximize the
data collection efficiency, the UAV must gradually learn this
knowledge in order to adapt its operations accordingly, e.g.,
flying speed and energy level status. Moreover, the returning
flight time depends on the distance between the UAV’s current
position and the station, which is highly dynamic. Therefore,
if the UAV appropriately decides when to return for battery
replacement (e.g., when it is near the station and its energy
level is low), the energy replenishment time will be reduced
significantly, resulting in high system performance. In contrast,
if the UAV goes back to replace its battery when its energy
level is high and it is far from the station, it will waste
both time and energy, leading to low system performance.
Thus, optimizing the UAV’s operations to maximize the long-
term system performance is a very challenging task. In the
following sections, we will present our proposed learning
algorithms that can effectively and quickly obtain the UAV’s
optimal operation policy under the limited energy of the UAV
and the uncertainty of the data collection process.

III. OPTIMAL OPERATION CONTROL FORMULATION

To overcome the uncertainty and highly dynamic of the
data collection and energy replenishment processes under
the limited energy storage of the UAV, we formulate the

UAV’s operation control problem as the Markov decision
process (MDP) framework. Typically, an MDP is determined
by three components, state space S, action space A, and
immediate reward function r . Based on the MDP framework,
at each time slot the UAV can dynamically make the best
actions (e.g., flying at appropriate speeds or return for battery
replacement) based on its current observations (i.e., its location
and energy level) to maximize its long-term average reward
without requiring complete information about data collection
and energy replenishment processes in advance.

A. State Space

In this work, we aim to maximize the efficiency of collecting
data and energy usage efficiency, and thus there are some im-
portant factors which we need to take into considerations. The
first important factor is the current location of the UAV. The
main reason is that the UAV’s location can reveal important
information about the expected amount of data that can be
collected by the UAV and the time it takes if the UAV chooses
to fly back to the station for battery replacement. Specifically,
the UAV will likely collect more data when moving in a zone
with a high probability of receiving data than in a zone with
a low probability of receiving data. In addition, the farther the
distance between the UAV and the station is, the more time
it takes to travel between these two positions. As mentioned
above, the UAV always flies at a fixed altitude so that the
UAV’s position can be given by its 2D projection on the
ground, i.e., (x, y) coordinates. The second crucial factor is the
current UAV’s energy level, denoted by e, which affects the
decision of the UAV at every time slot. For example, the UAV
should not select the battery replacement action (i.e., return
the station to replace the battery) unless its energy level is
low. Otherwise, it may waste time and energy for the flying
back trip. To that end, this information is embedded into the
state space of the UAV, which can be defined as follow:

S =
{
(x, y, e) : x ∈ {0, . . . ,X}; y ∈ {0, . . . ,Y };

and e ∈ {0, . . . ,E}
}
∪ {(−1,−1,−1)},

(1)

where X and Y are the maximum x and y coordinates of the
UAV’s trajectory, and E is the maximum energy capacity of
the UAV. As a result, the system state can be indicated by
a tuple s = (x, y, e) ∈ S. Moreover, because of the energy
replenishment process, it is necessary to introduce a special
state, i.e., s = (−1,−1,−1). This special state is only visited
when UAV’s energy is depleted (i.e., UAV’s state is (x, y,0))
or if the UAV selects the battery replacement action. Then,
after the energy replenishment process completes, the UAV
will return to the previous position (where it decided to go
back for battery replacement or where its energy is depleted)
with a full battery, i.e., s = (x, y,E). This design ensures that
the system process is continuous, i.e., no terminal state.

B. Action Space

During the operation, to maximize the system performance
in terms of energy usage and data collection efficiency, the

UAV needs to not only choose the most suitable flying speed
but also decide when to go back to the station to replace the
battery. It is worth mentioning that given different states, the
action spaces for these states may be different. For example,
at a non-working state, i.e., s = (−1,−1,−1), the UAV cannot
select a flying speed. Instead, the possible action at this state
is to stay “idle” until the UAV returns to its trajectory with
a full battery. In other words, the UAV will stay at the non-
working state after performing an “idle” action until the energy
replenishment process completes. As a result, we can define
the action space for the UAV as follows:

A , {a : a ∈ {−1,0,1, . . . , A}}, (2)

where action a = −1 is to indicate the “idle” action and action
a = 0 is to express that the UAV will choose to return to the
station for replacing the battery, namely battery replacement
action. Actions a= {1, . . . , A} are to represent the speed level
that the UAV selects to fly at the current time slot. In addition,
given the state s ∈ S the action space based on state s, i.e.,
AS , consists of all possible actions that are feasible at this
state. Thus, we can express AS as follows:

AS =

{
{−1}, if s = (−1,−1,−1),
{0, . . . , A}, otherwise. (3)

C. Reward Function

As discussed above, two main actions (i.e., flying speed
and battery replacement actions) have significant effects on
the system performance. Specifically, choosing an appropriate
flying speed at each time slot can maximize the efficiency of
the collecting data process as well as energy usage. Alterna-
tively, selecting the right time to return for battery replacement
can reduce the energy replenishment time, thereby improving
the overall system performance. For example, when the UAV
is flying near the charging station and its energy is low, it
should return to the charging station for battery replacement.
Therefore, our proposed immediate reward function consists
of (1) speed selection reward function, i.e., rat , and (2) battery
replacement reward function, i.e., rbt , as follows:

rt (st,at) =

rat (st,at), if at ∈ {A \ {0}},
rbt (st,at), if at = 0,
0, otherwise,

(4)

where at is the selected action at time t.
1) Speed Selection Reward Function: Since our objective

is to maximize the system performance by striking a balance
between the data collection efficiency and energy usage effi-
ciency, the speed selection reward function needs to capture
this information. We define data collection efficiency as the
number of collected data packets over a time slot and operation
status of the UAV. For example, given a time slot, if the UAV
is moving to collect data, it will receive a working reward,
denoted by Ω > 0. Otherwise, it will not receive the working
reward, i.e., Ω = 0. In this way, the working reward will
encourage the UAV to collect data rather than return and then
wait at the station for the battery replacement. The energy
usage efficiency can be represented by the cost of choosing a
flying speed, i.e., energy consumed by the UAV to fly at speed
a during a time slot t. Clearly, the selected speed determines

e(energy units)
0

10
20

30
40

l (m)

0
10

20
30

40

Reward

−25

−20

−15

−10

−5

0

5

10

−20

−15

−10

−5

0

5

Fig. 2: An example of the proposed battery replacement reward
function.

the energy consumption per time slot of the UAV, e.g., a low
speed will cost the UAV less energy per time slot than that
of a high speed [12]. At time slot t, the cost of performing
action a is denoted by ma

t , and the number of collected data
packets at the current state s is denoted by ds

t . Thus, the speed
selection reward function can be expressed by:

rat (st,at) = Ω + w1ds
t − w2ma

t , if at ∈ A \ {0}, (5)

where w1 and w2 are the weights to balancing between
collected data and energy consumption of the UAV. It is worth
noting that these weights can be defined in advance based on
the service provider’s requirements. For example, in case if
the data is more important and valuable than energy, we can
set the value of w1 to be higher than that of w2. In contrast,
if the energy is scarce, we can set the value of w1 to be lower
than that of w2. Therefore, the speed selection reward function
can capture the UAV’s data collection efficiency and energy
consumption efficiency.

2) Battery Replacement Reward Function: Although the
speed selection reward function gives the UAV sufficient
information to learn the optimal speed control, it cannot help
the UAV learn when it is good to return to the station for the
battery replacement. First, if the UAV performs the battery
replacement action, the values of Ω and ds

t in (5) will be zero,
leading to a negative value of rat . Consequently, the UAV may
consider this action as a bad choice and will not choose it
in the future. Second, the speed selection reward function is
unable to guide the UAV to learn where is good to return
for replacing its battery, e.g., the further from the station the
UAV is, the smaller reward for battery replacement action it
may receive. Therefore, battery replacement action needs a
different reward function, which needs to take into account of
both the UAV’s current energy level, i.e., e, and the distance
between its current position and the station, i.e., l. However, in
practice, it is challenging to design such a reward function for
battery replacement action because the complex relationship
between e and l makes more difficulties for the UAV to decide
whether it should go back or keep flying to collect data. In
particular, the UAV may choose the battery replacement action
if both e and l are small, while the UAV should continue its
collection task if any of these factors is large. To that end,

in the following, we propose a reward function for battery
replacement action that can address this problem, and to the
best of our knowledge, this is the first work in the literature
addressing the battery replacement problem for UAV-assisted
IoT data collection networks.

Suppose the UAV decides to return for battery replacement
at time t, at which its energy and the distance to the station are
et and lt , respectively. Then, its immediate reward is derived
from the battery replacement reward function as follows:

rbt (st,at) = c − w3 exp(w4et) − w5 exp(w6lt), if at = 0, (6)

where c is a constant controlling the maximum value of rbt ,
which may affect the learning policy of the UAV. For example,
if c is smaller than the smallest value of rat , the value of
returning reward function is always lower than that of the
speed selection reward function, making the return action
always “worse” than those of the speed selection actions. The
second and third terms in (6) express the influence of the
energy level et and the distance lt to the UAV’s decision for
battery replacement. The tradeoff between the energy level
et and the current distance lt is controlled by four weights,
i.e., w3,w4,w5,w6. Fig. 2 demonstrates an example of the
proposed battery replacement reward function in which c=10,
w3=w5=1, w4=0.06, and w6=0.08. It can be observed that
as e and l are large (e.g., greater than 36 and 17, respectively),
the UAV will receive negative rewards, meaning that the UAV
is not encouraged to return to replace its battery if its energy
is high or it is far from the station. In this way, this function
will encourage the UAV to return to the station for replacing
the battery when its current energy and distance to the station
are small.

D. Optimization Formulation

In this paper, our aim is to maximize the average long-
term reward function by finding a UAV’s optimal policy π∗,
i.e., π∗ : S → A. In particular, given the UAV’s current energy
and location, π∗ determines an action that maximizes the long-
term average reward function as follows:

max
π

R(π) = lim
T→∞

1
T

T∑
t=1
E
(
rt (st, π(st))

)
, (7)

where R(π) is the long-term average reward obtained by the
UAV according to the policy π, π(st) is the selected action
at state s at time slot t based on policy π, and rt (st, π(st))
is the immediate reward by following policy π at time slot t.
Thus, the optimal policy π∗ will assist the UAV in dynamically
making the optimal action according to its current observation,
i.e., its position and energy level. Moreover, Proposition 1
shows the optimality of the proposed immediate reward func-
tion rt (st,at).

PROPOSITION 1. “There always exists a maximum value of
the immediate reward function.”

Proof: We first prove the optimality for each component of
the immediate reward function, i.e., rat and rbt . From (5), the
speed selection reward function is a linear function of energy
consumption ma

t and an amount of collected data packet ds
t .

Since the values of ma
t and ds

t are always positive and finite,
there always exists a maximum value of the speed selection
reward function rat (st,at). For the second component, i.e.,
rbt (st,at), we can rewrite it as follows:

rbt (st,at) = c −
(
w3 exp(w4et) + w5 exp(w6lt)

)
, if at = 0.

(8)
We now prove that f (et, lt) = (w3 exp(w4et) + w5 exp(w6lt)
is convex. Specifically, the Hessian matrix of f (et, lt) is
calculated as follows:

H =
(
w3w

2
4ew4et 0
0 w5w

2
6ew6lt

)
. (9)

Then, the determinant of H is computed by: detH =

w3w
2
4ew4etw5w

2
6ew6lt . Since the weights in the immediate

function are always positive, we have detH > 0. Therefore,
H is positive definite and f (et, lt) is convex, meaning that
there always exists a minimum value of f (et, lt). As a result,
rbt (st,at) always has a global optimal value. Given above,
there always exists a maximum value of the immediate reward
function as its components are optimality and independent.

IV. OPTIMAL OPERATION POLICY FOR UAVS WITH DEEP

REINFORCEMENT TRANSFER LEARNING

In the considered problem, the UAV does not have complete
information about the surrounding environment in advance
(e.g., the data arrival probabilities and the charging process)
to obtain the optimal policy. In addition, the limited resource
of UAV requires a low computational complexity solution. To
deal with these challenges, we first propose a DRL algorithm
that can help the UAV gradually learn the optimal policy
without requiring complete information about surrounding
environments in advance. We then develop a transfer learning
framework aiming to reduce the learning time and improve
the learning quality of the UAV, and thereby mitigating the
computational complexity and resource consumption for the
UAV. Consequently, our proposed solution is more applicable
to aerial computing than conventional DRL approaches.

A. Deep Dueling Double Q-learning

In reinforcement learning, Q-learning is one of the most
widely used algorithms because it can guarantee to converge to
the optimal policy after the learning process [24]. However, the
usage of Q-table to approximate the optimal state-action values
Q∗(s,a), namely Q-values, makes the Q-learning struggling in
finding the optimal policy if the state and action spaces are
very large [25], especially under the scenario considered in
this work. In addition, the Q-learning and deep Q-learning may
overestimate Q-values. This potentially results in a sub-optimal
policy if overestimations are unevenly distributed over the state
space [26]. Since all of the related works using reinforcement
learning approaches (i.e., [8]–[10], [16]) propose Q-learning
or deep Q-learning based algorithms, they are prone to low
convergence and overestimation problems. To address these
problems, we propose a Deep Dueling Double Q-learning
algorithm (D3QL), in which three innovation techniques in
DRL are adopted. First, the deep neural network is employed

…

∑

A|𝓓|

∑ …

Sum

Sum

-

Input
layer

Hidden
layer

Value
function
𝓥(𝒔)

x
y
e

Advantage
function
𝓓(𝒔)

Average

State 𝒔 Outputs
𝓠(𝒔,𝒂)

Optimal Action
for the UAV…

…

Fig. 3: The proposed deep dueling architecture for UAV-
assisted IoT data collection.

to estimate the state-action function Q∗(s,a) so that the curse-
of-dimensionality problem of Q-learning can be effectively
handled [18]. Second, the overestimation in Q-learning can be
overcome by using the double deep Q-learning that separates
the action selection and action evaluation processes instead of
combining them in the Q-learning [19]. Finally, the learning
process is stabilized by adopting the dueling neural network
architecture where the state value function and advantage value
function are estimated separately and simultaneously [20].
Thus, our proposed algorithm, i.e., D3QL, can take all the
advantages of these techniques to improve the convergence
rate, stabilize the learning process, and decrease the overesti-
mation. As a result, the UAV can quickly achieve the optimal
operation, and thereby maximizing both data collection and
energy efficiencies for the system.

The D3QL algorithm is thoroughly described in Algo-
rithm 1. Specifically, the learning process consists of some
major steps. At the beginning of time step t, the UAV is at state
st and performs action at according to ε-greedy policy. It then
observes the next state st+1 and receives reward rt at the end
of a time slot. This experience (i.e., a tuple < st,at,rt, st+1 >)
can be used to train the neural network at step t. However,
the high correlation in consecutive experiences generated by
MDP can severely slow the learning process [27]. To that
end, D3QL stores the experiences in a memory B, then
samples a mini-batch uniformly at random from B. As a result,
the variance of the update decreases, thereby improving the
algorithm’s convergence rate. In addition, the usage of the
memory pool increases the data efficiency of the network’s
training since one experience can be used to update the neural
network multiple times. The D3QL estimates Q∗(s,a) by
using a deep neural network (DNN), whose input layer has
three inputs corresponding to the UAV’s state dimensions, i.e.,
the x-coordinate, y-coordinate, and current energy level. In
particular, feeding a state s to the DNN will return Q-values
for all actions at this state, and each Q-value is given by one
neuron of the DNN’s output layer.

In this work, to improve the efficiency and stability of the
learning process, we adopt a dueling neural network architec-
ture [20] consisting of two parallel streams to simultaneously
estimate the state-value function (i.e.,V(s)), and the advantage
function (i.e., D(s,a)), as illustrated in Fig. 3. Note that the
state-value function V(s) specifies a the quality of a state s
(i.e., how good to be at a state), whereas the action-value

Immediate reward 𝒓𝒕

𝒔𝒕+𝟏

p4

p1 p2

p3

State 𝒔𝒕

𝒓𝒕+𝟏

Environment

Memory B

Agent
Action 𝒂𝒕

Experience
(𝑠𝑡 ,𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)

𝑠,𝑎, 𝑟, 𝑠′ ∼ 𝑈(𝑩)
…

Target Q-network

…

Q-network

Minibatch

Fig. 4: The proposed D3QL-based model.

function Q(s,a) determines the value of performing an action
a at a state s. The advantage function is then defined by the
relation between state-value and action-value functions under
policy π as follows [20]:

Dπ(s,a) = Qπ(s,a) − Vπ(s). (10)

In this way, the advantage function Dπ(s,a) indicates the
importance of action a in comparison with other actions at
state s. Suppose that a state s is inputted to the dueling neural
network, the Q-function is then calculated by

Q(s,a; ξ,ψ) = V(s; ξ) +D(s,a;ψ), (11)

where ξ and ψ are weights and biases of the value and
advantage streams, respectively. It is worth noting that directly
using (11) may lead to mediocre performance of the algorithm
since this equation is unidentifiable, i.e., V and D cannot be
uniquely determined by a given Q. For example, ifV increases
the same amount that D decreases, Q is unchanged. In [20],
the authors address this issue by subtracting the maximum
value of the advantage stream as follows:

Q(s,a; ξ,ψ) = V(s; ξ)+
(
D(s,a;ψ) − max

a′∈A
D(s,a′;ψ)

)
. (12)

In this manner, Q(s,a∗; ξ,ψ) equals to V(s; ξ) for the
optimal action a∗, i.e., a∗ = argmaxa∈AQ(s,a; ξ,ψ) =
argmaxa∈AD(s,a;ψ). However, in (12), the advantage stream
changes as fast as the change in predicted optimal action’s
advantage, i.e., maxa′∈A D(s,a′;ψ), leading to instability in
estimating the Q-values. Hence, we can replace the max
operator by the mean to stabilize the estimation of Q-function
as follows [20]:

Q(s,a; ξ,ψ)=V(s; ξ)+
(
D(s,a;ψ)−

1
|A|

∑
a′

D(s,a′;ψ)
)
. (13)

To address the overestimation problem of Q-learning, we
adopt the double deep Q-learning [19]. Specifically, the D3QL
employs two dueling neural network-based estimators, which
are Q-network for action selection, i.e., Q(s,a; ξ,ψ), and target
Q-network for action evaluation, i.e., Q̂(s,a; ξ−,ψ−). Thus, the
target Q-value at step t is defined by:

Gt = rt + ζ Q̂
(
st+1,argmax

a
Q(st+1,a; ξt,ψt); ξ−t ,ψ−t

)
. (14)

For convenience, let φt and φ−t denote the parameters of Q-
network and those of target Q-network at time t, respectively.
Since the goal of Q-network training is to minimize the gap
between the estimated Q-value and target Q-value, we can

Algorithm 1 The D3QL Algorithm

1: Establish memory B and ε .
2: Establish Q-network Q with random parameters φ and

target Q-network Q̂ with parameters φ− = φ.
3: for step = 1 to T do
4: Choose action at according to the ε-greedy policy.
5: Execute at , observe reward rt and next state st+1.
6: Save experience (st,at,rt, st+1) in B.
7: Sample mini-batch of experiences randomly from B,

i.e., (s,a,r, s′) ∼ U(B).
8: Calculate Q-value Q(sk,ak ; φ) and target Q-value Gt

by (11) and (14), respectively.
9: Take a gradient descent step with respect to the param-

eters of Q-network.
10: Decrease the value of ε .
11: Set Q̂ = Q at every I steps.
12: end for

define the loss function at time t as follows:

Lt (φt) = E(s,a,r ,s′)

[(
Gt − Q(s,a; φt)

)2]
, (15)

where (s,a,r, s′) represents a data point in memory B used to
train the Q-network.

Gradient Descent (GD) algorithm is widely used to mini-
mize the loss function for deep learning algorithms because of
its simplicity in implementation and ability to find the global
minima [28]. In particular, GD calculates the cost function at
time t as follows:

Jt (φt) =
1
|B|

∑
(s,a,r ,s′)∈B

Lt (φt). (16)

Then, the parameters of Q-network are updated by

φt+1 = φt − αt∇φt Jt (φt), (17)

where αt is a step size at time t determining how much the
parameters are updated, and ∇φt (.) is the gradient of the cost
function with respect to the parameters of Q-network φ. For
each update, GD requires computing the loss and gradient for
all data points in the memory B, leading to a very slow process
if the data size is large, especially for the considered problem.
To that end, we adopt stochastic gradient descent (SGD) to
speed up the parameter update process while guaranteeing
the learning convergence [29]. Specifically, SGD only needs
to calculate the gradient and cost of a mini-batch sampled
uniformly at random from B for each time step. Hence, the
computational complexity of this algorithm is significantly
decreased. It is worth noting that the target Q-values Gt in
the loss function (15) appear similar to the labels used for
supervised learning. However, instead of being fixed before
the training, Gt changes as fast as the changes in the Q-target
network’s parameters φ−t . Therefore, the target Q-network’s
parameters are only updated by cloning from the Q-network’s
parameters at every I steps to stabilize the training process, as
shown in Fig. 4.

p4

p1 p2

p3

Environment

Memory B

Agent

Action 𝒂𝒕

Experience
(𝑠𝑡 ,𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)

𝑠,𝑎, 𝑟, 𝑠′ ∼ 𝑈(𝑩)

…
Target Q-network

…

Q-network

Minibatch

Source MDP 1

Target MDP

𝑼𝐓

Tr
an

sf
er

p4 p3

p1 p2

p4 p3

p1 p2

p5 p8

p6 p7
…

Experiences

(𝒔,𝒂, 𝒓, 𝒔′)

Source MDP 2 Source MDP N

Immediate reward 𝒓𝒕

𝒔𝒕+𝟏State 𝒔𝒕

𝒓𝒕+𝟏 Immediate reward 𝒓𝒕

𝒔𝒕+𝟏

p4

p1 p2

p3

State 𝒔𝒕

𝒓𝒕+𝟏

Environment

Memory B

Agent

Action 𝒂𝒕

Experience
(𝑠𝑡 ,𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)

𝑠,𝑎, 𝑟, 𝑠′ ∼ 𝑈(𝑩)

…

Target Q-network

…

Q-network

Minibatch

Target MDP

𝑼𝐓

Optimal
Policy

Source MDP

…

Q-network

𝒓𝒕

𝒂𝒕

𝒔𝒕+𝟏𝒔𝒕

𝒓𝒕+𝟏

Agent

Environment

Tr
an

sf
er

(a) Experience transfer (b) Policy transfer

Fig. 5: The proposed D3QL-TL based models: (a) experience transfer and (b) policy transfer.

B. Optimal Operation Policy with Transfer Learning

Although D3QL can effectively address the shortcomings of
Q-learning, it still poses some drawbacks inherited from con-
ventional DRL when addressing scenarios with high sample
complexity, as the considered problem in this work where the
surrounding environment of the UAV is unknown in advance.
First, it often takes a lot of time to train DNN, e.g., DQN’s
training time is up to 38 days for each Atari game [18]. If the
environment dynamics or the trajectory of the UAV changes,
the DNN may need to be retrained from scratch, yielding a
high computational complexity. Consequently, it is unable to
deploy on a UAV that has very limited energy and computing
resources. Second, since the UAV should only return for
replacing its battery when it is close to the station or its energy
level is low, it needs sufficient experiences in this region,
especially when flying over the station. However, as the UAV
flies over its fixed trajectory, experiences obtained from this
region are often very small compared with all obtained over
the entire considered area. Therefore, the UAV may not have
adequate information to learn an optimal policy. To address
these challenges, we develop a novel framework leveraging
transfer learning techniques, namely Deep Dueling Double Q-
learning with Transfer Learning (D3QL-TL).

1) Transfer Learning in Reinforcement Learning: Transfer
learning is a method of leveraging knowledge obtained when
performing a source task in a source domain to enhance the
learning process of target tasks in target domains [17], [30]–
[32]. Typically, a domain contains labeled or unlabeled data
given before the considered training process starts. However,
data in RL is obtained via interactions between the agent (i.e.,
the UAV) and its surrounding environment. As a result, both
the domain and task can be represented by an MDP. Thus, we
can define transfer learning in RL as in Definition 1 [31].

Definition 1. Transfer learning in RL: Suppose the source and
target MDPs are defined. Transfer learning (TL) in RL intends
to leverage the knowledge KS obtained from the source MDP,

i.e., the policy, the environment dynamics, and the data, as a
supplement to the target MDP’s information KT to efficiently
learn the target optimal policy π∗T as follows:

π∗T = argmax
πT

Es∼ST ,a∼πT [Q
πT (s,a)] , (18)

where πT is a target MDP’s policy approximated by an
estimator, e.g., a table or a DNN, that is trained on both KS
and KT.

Note that transfer learning for DRL may look like super-
vised learning since they both use existing data, but they are
very different. In particular, all DRL data used to train a DNN
are unlabeled and on-the-fly data generated by interactions
between an agent (e.g., the UAV) and its surrounding environ-
ment. Although the source data are collected in advance for
the target UAV, they are just observations of the source UAV
about the source environment, which do not have any label to
indicate which action the UAV should take. Thus, the target
UAV still needs learning algorithms (e.g., D3QL) to learn the
optimal policy gradually. Our proposed TL can help the UAV
utilize the knowledge from the source domain to avoid bad
decisions at the beginning of the learning process when the
UAV is exploring the environment by taking a random action,
thereby improving the learning rate and learning quality.

To measure the effectiveness of TL, we can use three
metrics, including jump-start, asymptotic performance, and
time-to-threshold [17]. In particular, jump-start measures how
much the UAV’s performance at the beginning of the learning
process can be improved by applying TL, while the asymptotic
performance measures this improvement at the end of the
learning process. The third metric, i.e., time-to-threshold, mea-
sures how fast TL can help the UAV to achieve a predefined
performance level compared with the scenario without TL. It
is worth highlighting that TL cannot guarantee improvement in
the learning curve. It may even negatively impact the learning
in the target MDP if the transfer knowledge is not carefully
chosen. Thus, in the following sections, we propose a transfer

Algorithm 2 The D3QL-TL

1: Establish memory B and ε .
2: Establish Q-network Q with random parameters φ, and

target Q-network Q̂ with parameters φ− = φ.
3: if Experience transfer then
4: Copy the experience set of source MDP MS to B.
5: else if Policy transfer then
6: Re-initialize Q and Q̂ with the parameter of source Q-

network’s parameters φS.
7: else if Hybrid transfer then
8: Re-initialize Q and Q̂ with the parameter of source Q-

network’s parameters φS.
9: Copy the experience set of source MDP MS to B.

10: end if
11: for step = 1 to T do
12: Choose action at according to the ε-greedy policy.
13: Execute at , observe reward rt and next state st+1.
14: Save experience (st,at,rt, st+1) in B.
15: Sample mini-batch of experiences randomly from B,

i.e., (s,a,r, s′) ∼ U(B).
16: Calculate Q-value Q(sk,ak ; φ) and target Q-value Gt

by (11) and (14), respectively.
17: Take a gradient descent step with respect to the param-

eters of Q-network.
18: Decrease the value of ε .
19: Set Q̂ = Q at every I steps.
20: end for

learning framework that can reduce the learning time and
learning quality for D3QL.

2) Deep Dueling Double Q-learning with Transfer Learn-
ing: The details of D3QL-TL are presented in Algorithm 2.
In particular, as illustrated in Fig. 5, we consider a UAV US
working in an IoT data collection environment formulated by
the MDP framework MS. Then, the knowledge of US can be
leveraged to help a new UAV UT effectively learn the optimal
policy for working in another environment formulated by the
MDP framework MT. In practice, MT can be the same or
different with MS. Moreover, the transferring knowledge can
be in the form of the policy and/or experiences of the source
UAV, i.e., US.

To that end, D3QL-TL defines three types of knowledge
transferring as follows:
• Experience Transfer (ET): This approach aims to leverage

a set of experiences ES, in which each element is a
experience tuple < s,a,r, s′ >, obtained in the source
MDP, i.e., MS, to improve the learning process of the
target UAV, i.e., UT, working in the target MDP, i.e.,
MT. Specifically, ES is first copied to the memory buffer
of the target UAV. Then, these transferred experiences
and target UAV’s new experiences are used to train the
Q-network. In this manner, the target UAV can quickly
get adequate information, and thereby significantly im-
proving the learning speed. In addition, the quality of
the experiences also affects the learning process. For
example, an experience does not have much value if it
is easy to be obtained by the target UAV. In contrast,

an experience is considered to be valuable if it is hard
to obtain and highly impacts the system performance.
For example, experiences obtained when the UAV is
near the station may have high values because they not
only contain information about environment dynamics
(i.e., packet arrival probabilities) but also may reveal
value information about the right time to take the battery
replacement action.

• Policy Transfer (PT): This approach directly transfers the
policy of a source UAV to a target UAV. In particular,
UT starts the learning process with the policy of US,
which is represented by the Q-network of US, called
the source Q-network. Hence, the UT’s Q-network is
initialized by the source Q-network parameters φS. Then,
the UT’s Q-network is trained with the new experiences
of UT obtained in the target MDP MT. Thus, starting
with the source policy can help UT to avoid random
decisions caused by the randomness of action selection at
the beginning of the learning process, e.g., inappropriately
choosing the battery replacement action.

• Hybrid: This approach aims to leverage the benefits of
both experience and policy transfer types. Particularly,
the hybrid scheme can improve not only the jump-start
but also the asymptotic performance.

Note that the efficiency of each transferring technique depends
on the relationship between the source and the target MDPs.
For example, if the source and target MDPs are very similar,
policy transfer may yield a better result in terms of conver-
gence rate than that of the experience transfer technique. In
contrast, when the source and target MDP are not similar, e.g.,
differences in environment dynamics, the experience transfer
should be a better choice.

C. Optimality and Computational Complexity Analysis

In RL, if a linear function approximates the value function,
the learning process can be guaranteed to converge to the
optimal policy [36]. Whereas, if a nonlinear function (e.g.,
a neural network) is used instead, it may not converge to the
optimal one [36]. In our proposed learning algorithms, we
adopt two innovative techniques (i.e., the dueling architecture
and double Q-learning) and three transfer learning approaches
to stabilize the learning process and improve the learning
quality, thereby improving the convergence rate. Thus, even
though the optimality of our deep reinforcement learning
algorithm, i.e., D3QL-TL, could not be proven theoretically,
the intensive simulation results show that D3QL-TL obtains a
stable and superior performance compared to those of other
approaches.

We now discuss the complexities of our proposed algorithms
(i.e., the D3QL and D3QL-TL), which mainly depend on the
training process of the Q-network. Note that the Q-network
training processes of D3QL and D3QL-TL are the same, so
their complexities are identical. In the Q-network, there is one
input layer Li , one hidden layer Lh , and two output layers
Lv and La corresponding to the state value and advantage
streams, respectively. It is worth noting that training a DNN
is typically carried out with matrix multiplication. Thus, the

�

���

��� ���

���

�

��

��
� �

���

��� ���

���

�

��

��
� �

���

��� ���

���

�

��

��
�

(a) MS (b) M1
T (c) M2

T

Fig. 6: (a) Source MDP, (b) the first target MDP, and (c) the
second target MDP.

complexity of feeding a mini batch with size Sb to the Q-
network is O

(
Sb

(
|Li | |Lh | + |Lh | |Lv | + |Lh | |Lv |

))
, where |.| is

the layer’s size, i.e., a number of neurons in a layer. Given
the training process takes T iterations, the complexity of the
proposed algorithms are O

(
Sb

(
|Li | |Lh |+ |Lh | |Lv |+ |Lh | |Lv |

))
.

In general, more computing resource is required to train
a DNN, especially the one with a complex architecture.
However, the deep Q-network in our proposed algorithms is
only contains four layers in which only one is fully connected
(i.e., the hidden layer). In addition, the proposed transfer meth-
ods can significantly reduce the complexity of reinforcement
learning, as can be seen through intensive simulation results
in the next section.

V. PERFORMANCE EVALUATION

A. Parameter Setting

We first evaluate our proposed approaches in an IoT system,
in which a UAV flies over a predefined trajectory in a con-
sidered area to collect IoT data, as in [13]–[15]. This area is
divided into four zones such that the UAV’s travel distance in
each zone equals 60m, as illustrated in Fig. 6(a). The station
is located at the origin, i.e., (0,0). The probabilities of packet
arrival in these zones are given by a vector p = [p1, p2, p3, p4],
e.g., p1 is the packet arrival probability when the UAV is flying
over zone 1 and so on. Since the UAV collects data while
flying, it often flies at a low speed (e.g., 5 m/s) to maintain
the reliability of the data collection process [14]. Therefore,
we consider that the UAV has three speeds: 1,3, and 5 (m/s).
The UAV consumes 2, 3, and 4 (energy units/time slot)
when flying at 1m/s, 3m/s, and 5m/s, respectively. Note
that our proposed MDP framework and learning algorithms
can help the UAV learn the optimal policy according to
its observation (i.e., its current position and energy level)
regardless of the UAV’s specifications, i.e., its available speeds
and corresponding energy consumption. Here, the energy unit
is used to quantify an amount of energy (as in [34], [35]),
and energy consumption values are only to demonstrate how
much energy the UAV uses at each time slot for its operation.
In practice, UAVs manufactured by different brands may have
different specifications, but the proposed algorithm still can
obtain the optimal policy for the UAV. The parameters of the
reward function are provided in Table. I.

The settings for our proposed algorithms are set as follows.
For the ε-greedy policy, ε is first set at 1, then gradually de-

1 10 20 30 40 50 60 70
Iteration (2x103)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

Re
wa

rd
 (r

ew
ar

ds
/ti

m
e

slo
t)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning

(a) Convergence rate of proposed algorithms

0 40 80 120 160 200 240
Time (time slots)

0

50

100

150

200

250

300

E
n

e
rg

y
 (

u
n

it
s
)

Zone 1

Zone 2

Zone 3

Zone 4

Charging

(b) Policy obtained by D3QL-TL

Fig. 7: Convergence rate and policy.

creased to 0.01. For all the proposed algorithms, the discount
factor is set at 0.9. In Q-learning, the learning rate β is 0.1. The
architectures of Q-network and target Q-network are illustrated
in Fig. 3. We use typical hyperparameters for training DNN,
e.g., the learning rate and the frequency update of Q̂ are set
to 10−4 and 104, respectively, as those in [18], [33].

For the experience transfer approach in D3QL-TL, experi-
ences are selected to be transferred based on their valuable
information. Recall that if the UAV performs the battery
replacement action when it is far from the station, it always
receives a very small reward compared with those of other
actions, as in (4). Therefore, the UAV’s experiences in this
area can imply that it should not take the battery replacement
action. In contrast, experiences obtained when the UAV is
near the station can contain both information, i.e., when it
not worth to return for charging (e.g., current energy level is
high) and when it is worth to take the battery replacement
action (e.g., current energy level is low). Thus, we choose
experiences obtained when the UAV flies near the station to
be transferred.

We study a scheme where the UAV does not have complete
information about the surrounding environment in advance,
e.g., the data arrival probabilities and the energy replenishment
process. Hence, we compare our approach with three other
deterministic policies, i.e., the UAV always flies at (1) lowest
speed (1m/s), (2) middle speed (3m/s), and (3) highest speed
(5m/s). In addition, the Q-learning and D3QL are selected

Parameters Ω w1 w2 c1 c2 c3 c4 c5 E p tb vr
Value 1 1 0.3226 5 0.5 0.5 0.022 0.2 300 [0.1,0.25,0.6,0.15] 10 1

TABLE I: Simulation parameters.

5 10 15 20 25 30 35 40 45 50
Battery Replacement Time (time slots)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

R
ew

ar
d

(r
ew

ar
ds

/t
im

e
sl

ot
)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

(a) Average reward

5 10 15 20 25 30 35 40 45 50
Battery Replacement Time (time slots)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/t

im
e

sl
ot

)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

(b) Average throughput

5 10 15 20 25 30 35 40 45 50
Battery Replacement Time (time slots)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e

E
ne

rg
y

C
on

su
m

pt
io

n
(e

ne
rg

y
un

its
/t

im
e

sl
ot

)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

(c) Average energy consumption

Fig. 8: Vary battery replacement time.

1 2 3 4 5 6 7 8 9 10
Return Speed (m/time slots)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

R
ew

ar
d

(r
ew

ar
ds

/t
im

e
sl

ot
)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

(a) Average reward

1 2 3 4 5 6 7 8 9 10
Return Speed (m/time slots)

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/t

im
e

sl
ot

)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

(b) Average throughput

1 2 3 4 5 6 7 8 9 10
Return Speed (m/time slot)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e

E
ne

ry
 C

on
su

m
pt

io
n

(e
ne

rg
y

un
its

/t
im

e
sl

ot
)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

(c) Average energy consumption

Fig. 9: Vary the UAV’s return speed.

as the baseline methods to demonstrate the effectiveness
of our proposed TL techniques since they are widely used
algorithms and the most recent advanced techniques in RL,
respectively. Moreover, to investigate impacts of the battery
replacement action on the system performance, we consider
an approach, namely D3QL-NoRA, where the D3QL will still
be implemented on the UAV, but the UAV will not select the
battery replacement action.

B. Simulation Results

In the simulation, we first evaluate the performance of our
proposed learning algorithm, i.e., D3QL-TL, by examining the
convergence rate and the obtained policy. Then, we evaluate
the system performance when varying some important param-
eters (e.g., battery replacement time, UAV’s energy capacity,
return speed, and packet arrival probabilities) to assess their
influences on the system performance. For the D3QL-TL, the
experience transfer type is chosen because it can leverage
the experiences obtained during the learning phases of other
algorithms, i.e., D3QL and Q-learning. Finally, to gain more

insights into the effectiveness of three transferring types in
D3QL-TL, we compare their performance in different scenar-
ios, i.e., changing the UAV trajectory and the probabilities of
receiving a packet.

1) Convergence and Policy: In Fig. 7 (a), we compare the
convergence of proposed algorithms in terms of average re-
wards. At the beginning of the learning processes, the average
rewards of proposed approaches are close to each other, ap-
proximately 0.35. However, only after 4,000 iterations, D3QL-
TL’s average reward is nearly 170% greater than those of other
approaches. Then, D3QL-TL almost converges to the optimal
policy after 7.5×104 iterations, and its average reward becomes
stable at around 0.78, which is more than 190% greater
than those of other learning algorithms. Interestingly, D3QL
and D3QL-NoRA converge to policies that achieve similar
average rewards. This suggests that D3QL is unable to take
advantage of the battery replacement action. In other words,
D3QL cannot effectively handle this complicated decision-
making situation. This result implies the outperformance of
our proposed algorithm, i.e., D3QL-TL, compared with other
methods when addressing the extremely complex problem as

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Packet Arrival Probability in Cell 3

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
R

ew
ar

d
(r

ew
ar

ds
/t

im
e

sl
ot

)
D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

(a) Average reward

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Packet Arrival Probability in Cell 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/t

im
e

sl
ot

)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

(b) Average throughput

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Packet Arrival Probability in Cell 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e

E
ne

rg
y

C
on

su
m

pt
io

n
(e

ne
rg

y
un

its
/t

im
e

sl
ot

)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

(c) Average energy consumption

Fig. 10: Vary the packet arrival probability of zone 3.

100 200 300 400 500 600 700 800 900 1000
UAV's Energy Storage Capacity(energy units)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

R
ew

ar
d

(r
ew

ar
ds

/t
im

e
sl

ot
)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

(a) Average reward

100 200 300 400 500 600 700 800 900 1000
UAV's Energy Storage Capacity(energy units)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/t

im
e

sl
ot

)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

(b) Average throughput

100 200 300 400 500 600 700 800 900 1000
UAV's Energy Storage Capacity(energy units)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e

E
ne

rg
y

C
on

su
m

pt
io

n
(e

ne
rg

y
un

its
/t

im
e

sl
ot

)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

(c) Average energy consumption

Fig. 11: Vary the UAV’s energy capacity.

the one considered in this paper.

Next, we show the policy obtained by D3QL-TL after
1.5×105 iterations in Fig. 7 (b). In particular, a point indicates
the energy level of the UAV at the beginning of a time slot.
The slope of a straight line between two points indicates the
selected action, e.g., the steeper this line is, the higher speed
is selected. Generally, the lowest speed is selected in a zone
that has a high probability of successfully collecting a packet.
In contrast, the highest speed is selected in a zone that has a
low probability of receiving a packet, as shown in Fig. 7 (b).
Given p = [0.1,0.25,0.6,0.15], as in Table. I, the D3QL-TL
selects the lowest speed in zone 3, and the highest speed in
zone 1,2, and 4. More interestingly, the UAV experiences the
middle and high speeds in zone 1. In particular, it travels at
the highest speed until its energy decreases to 55 energy units
at time slot 88, then the middle speed is selected. When its
energy drops to 40 energy units at time slot 93, equivalent to
13.3% energy level, the UAV takes the battery replacement
action. Note that Fig. 7 (b) also reveals information of the
location where the UAV should take the battery replacement
action by energy replenishment time, i.e., te. Particularly, given
te=12 time slots, the location that the UAV decides to return
only 1m away from the station. This result demonstrates the
impacts of location and energy level on the optimal policy of
the UAV.

2) Performance Evaluation: In this section, we perform
simulations to evaluate our proposed algorithms in terms of
average reward, throughput, and system energy consumption.
The parameters are set to be the same as those in V-B1. The
policies of proposed learning algorithms, including Q-learning,
D3QL, and D3QL-TL, are obtained after 1.5×105 iterations.

In Fig. 8, we vary the battery replacement time, i.e., tb .
Clearly, the average reward and throughput of all policies
decrease as the battery replacement time increases from 5 to
50 time slots. This is stemmed from the fact that given a fixed
duration, the less time the UAV needs to replace the battery,
the more time it can spend collecting data. As a result, the data
collection efficiency of the system reduces. It can be observed
that D3QL-TL can significantly outperform other approaches
in terms of average reward and throughput, while it still obtains
a reasonable energy consumption per time slot. In particular,
the average reward and throughput achieved by D3QL-TL are
up to 200% and 185% greater than those of the second-best
policy, i.e., D3QL, respectively.

Next, we vary the return speed vr of the UAV to observe the
system’s performance in terms of average reward, throughput,
and energy consumption. Figs. 9 (a) and (b) show that as
the return speed vr increases from 1(m/s) to 10(m/s), all
policies have upward trends in terms of the average reward and
throughput, except that of the D3QL-TL. The reason is that

1 10 20 30 40 50
Iterations (2x102)

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

R
ew

ar
d

(r
ew

ar
ds

/t
im

e
sl

ot
)

Hybrid with 1000 experiences
Policy Transfer
Experience transfer with 1000 experiences
D3QL
Hybrid with 50 experiences
Experience transfer with 50 experiences

(a) The first scenario

1 10 20 30 40 50
Iterations (2x103)

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

R
ew

ar
d

(r
ew

ar
ds

/t
im

e
sl

ot
)

Hybrid
Policy transfer
Experience Transfer
D3QL

(b) The second scenario

Fig. 12: Convergence of the proposed TL schemes.

the increase of vr leads to the decrease of time for returning to
the station, i.e., t f , and thus the UAV has more time to collect
data in a fixed duration. More interestingly, when the return
speed is low (e.g., lower than 3(m/s)), the lowest speed policy
obtains a higher average reward than that of the highest speed
policy, as observed in Fig. 9 (a). Nevertheless, the lowest speed
policy obtains the lowest performance (i.e., the average reward
is lowest) when the return speed is large. This emanates from
the fact that given a fixed serving time, the energy consumption
of the highest speed is higher than that of the lowest speed.
Therefore, the UAV has to replace its battery more frequently
if it flies at the highest speed rather than if it flies at the
lowest speed. Consequently, as the return speed increases,
the highest speed policy eventually performs better than that
of the lowest speed policy. Unlike other policies, D3QL-TL
achieves a stable average reward, approximately 0.8, that is
always much higher than those of other policies, as shown in
Fig. 9 (a). This is because the UAV equipped with D3QL-TL
can learn an excellent policy, e.g., taking battery replacement
action when the UAV is close to the station, making it more
adaptable to the changes of the return speed.

We then vary the packet arrival probability p3 of zone
3 while those of other zones are unchanged, as provided
in Table I, and observe the performance of our proposed
approaches. Figs. 10 (a) and (b) clearly show the increase
of average rewards and throughputs for all policies when
p3 increases from 0.1 to 1.0. Interestingly, as shown in

Fig. 10 (a), when p3 is small, e.g., lower than 0.4, the lowest
speed policy obtains lower rewards than those of the highest
speed. However, when p3 becomes larger, the lowest speed
achieves a higher average reward than that of the highest
speed. This implies that the UAV should fly at the lowest
speed if the packet arrival probability is high, and vice versa.
Fig. 10 (c) demonstrates that our proposed algorithm, i.e.,
D3QL-TL, can learn the environment’s dynamic, e.g., the
packet arrival probability. In particular, when the probability
of receiving a packet is low, e.g., less than 0.4, the UAV’s av-
erage energy consumption is high, approximately 3.65 energy
units/time slot, indicating that the highest speed is selected
more frequently than the lowest speed. In contrast, when this
probability becomes higher, e.g., larger than 0.5, the UAV’s
energy consumption decreases to around 2.6, implying that the
lowest speed is the most frequently selected speed. To that end,
D3QL-TL can leverage this knowledge to consistently obtain
the best performance compared with other policies.

Finally, in Fig. 11, we vary the UAV’s energy storage
capacity E to study its impact on the system performance.
In particular, when E is varied from 100 to 1000 energy
units, the average rewards and throughputs of all policies
increase, as shown in Figs. 11 (a) and (b), respectively. It
is worth highlighting that if E is small, e.g., less than 500,
the performance of the lowest speed is better than that of
the highest speed, as illustrated in Fig. 11 (a). However, the
highest speed outperforms the lowest speed when E is larger
than 500. This due to the fact that when E is small, the
UAV’s battery has to be replaced more frequently, leading to
a downgrade of the UAV’s data collection efficiency. Thus,
the UAV must conserve more energy by flying at the lowest
speed. By balancing between energy usage efficiency and data
collection efficiency, our proposed D3QL-TL approach can
always achieve the highest performance compared to other
policies.

3) Transfer Learning Strategies: In this section, we evalu-
ate and compare the effectiveness of three TL types in D3QL-
TL (i.e., experience transfer (ET), policy transfer (PT), and
hybrid transfer) in different scenarios, as shown in Figs. 6 (b)
and (c). In particular, the source MDP, i.e., MS is defined
as the MDP described in Section V-A, and the simulation
parameters are also provided in Table. I. Then, the optimal
policy obtained by D3QL-TL after 1.5×105 iterations and the
UAV’s experiences gathered in the source MDP are leveraged
to reduce the learning time and learning quality. To gain
an insight of when and how much these transfer learning
techniques can improve the learning process of D3QL, we
define two scenarios as follows:
• In the first scenario (illustrated in Fig. 6 (b)), the target

MDP (i.e.,M1
T) is the same asMS except the trajectory.

The UAV only flies over two zones, i.e., zone 1 and 2.
In each zone, it travels 80m.

• In the second scenario (illustrated in Fig. 6 (c)), the differ-
ence between target MDP (i.e.,M2

T) andMS is the proba-
bilities of receiving a packet, i.e., p = [0.6,0.15,0.1,0.25].

We first compare the convergence rate of several transfer
learning schemes of D3QL-TL and D3QL in the first scenario
in Fig. 12 (a). To investigate how experiences impact on

the learning process of D3QL-TL, we select two sizes of
experience sets, which are 50 and 100. As shown in Fig. 12 (a),
after 5×104 learning iterations, the average rewards obtained
by all types of D3QL-TL can achieve up to 179% greater
than that of D3QL, except the ET with the size of 50. For
the ET group, when the experience size is small, e.g., 50,
transfer learning does not improve the learning process of
D3QL since the average reward of ET is similar to that of
D3QL. However, when this size is large enough, e.g., 103,
the asymptotic performance of D3QL-TL is 171% greater
than that of D3QL in terms of average reward. Interestingly,
for the hybrid approach, when the experience size decreases,
the D3QL-TL’s performance increases. Especially, the PT,
which is equivalent to the hybrid with zero experience size,
consistently outperforms other transfer approaches in all the
metrics, i.e., jump-start, time-to-threshold, and asymptotic per-
formance. Specifically, only after 103 iterations, the PT obtains
the optimal policy, and its average reward is stable at around
0.68. Thus, the PT can help the UAV to reduce the learning
time up to 50% compared with those of other approaches.
These results demonstrate that if the environment’s dynamics
in the target MDP, e.g., probabilities of receiving a packet,
are similar to those in the source MDP, PT is the best choice.
The reason is that the change of trajectory makes source
experiences less efficient than that of the source policy. It
is worth noting that only schemes with PT can improve the
system performance at the beginning of the learning process
because this policy can help the UAV choose valuable actions
in this period, e.g., selecting battery replacement action when
it is near the station and its energy level is low.

In Fig. 12 (b), we show the results of the second scenario
where the packet arrival probabilities are different from that
of the source MDP. In this scenario, we set the experience
size to 103 for the ET and hybrid schemes. Again, it can be
observed that only schemes with PT can improve the initial
performance, e.g., during the first 2×103 iterations. Unlike the
first scenario, the PT yields the worst performance among the
transfer learning schemes, and its asymptotic performance is
almost zero, meaning that there is no improvement in terms
of average reward at the end of the learning process. In con-
trast, the ET and hybrid schemes achieve similar asymptotic
performance, approximately 172%. However, hybrid’s jump-
start metric, i.e., 192%, is significantly higher than that of ET,
i.e., 86%. These results suggest that when the environment
dynamics change, the hybrid scheme should be selected.

Lessons learned: The above results demonstrate that ap-
plying TL to DRL is not straightforward. If it is not carefully
implemented, TL may not be able to improve the performance
of DRL, e.g., the ET with 50 experiences in the first scenario
and the PT in the second scenario. In the first case, the change
in UAV’s trajectory means that the UAV still works in the same
environment, but it follows another path. Therefore, the PT can
quickly achieve the best policy because it can directly improve
the performance of the UAV instead of gradually transferring
the source knowledge in the ET. On the other hand, the
probability of successfully collecting a packet changes in the
second scenario, meaning that the UAV is placed in a different
environment. In this context, the hybrid transfer technique can

obtain the highest performance since it can leverage both the
policy and the important experiences in the source MDP.

VI. CONCLUSIONS

In this paper, we develop a novel Deep Dueling Double
Q-learning with Transfer Learning algorithm (D3QL-TL) that
jointly optimizes the flying speed and energy replenishment
activities for the UAV to maximize the data collection perfor-
mance of a UAV-assisted IoT system. The proposed algorithm
effectively addresses not only the dynamic and uncertainty
of the system but also the high dimensional state and action
spaces of the underlying MDP problem with hundreds of
thousands of states. In addition, the proposed TL techniques
(i.e., experience transfer, policy transfer, and hybrid transfer)
allow UAVs to “share” and “transfer” their learned knowledge,
resulting in a decrease of learning time and an improvement of
learning quality. The simulation results show that our proposed
solution can significantly improve the system performance
(i.e., data collection and energy usage efficiency) and has a
remarkably lower computational complexity compared with
other conventional approaches.

REFERENCES

[1] N. H. Chu, D. T. Hoang, D. N. Nguyen, N. V. Huynh and E. Dutkiewicz,
“Fast or slow: An autonomous speed control approach for UAV-assisted
IoT data collection networks,” in Proceedings of 2021 IEEE Wireless
Communications and Networking Conference (WCNC), 2021, pp. 1-6.

[2] Cisco Annual Internet Report (2018-2023) White Paper, [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[3] J. Wang, C. Jiang, Z. Wei, C. Pan, H. Zhang, and Y. Ren, “Joint UAV
hovering altitude and power control for space-air-ground IoT networks,”
IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1741-1753, Apr. 2019.

[4] C. H. Liu, X. Ma, X. Gao, and J. Tang, “Distributed energy-efficient
multi-UAV navigation for long-term communication coverage by deep
reinforcement learning,” IEEE Transactions on Mobile Computing, vol.
19, no. 6, pp. 1274-1285, Jun. 2020.

[5] Facebook, “Connecting the world from the sky,” Facebook Technical
Report, 2014.

[6] https://loon.com/
[7] X. Zeng, F. Ma, T. Chen, X. Chen and X. Wang, “Age-optimal UAV

trajectory planning for information gathering with energy constraints,” in
Proceedings of 2020 IEEE/CIC International Conference on Communi-
cations in China (ICCC), 2020, pp. 881-886.

[8] O. Bouhamed, H. Ghazzai, H. Besbes and Y. Massoud, “A UAV-assisted
data collection for wireless sensor networks: Autonomous navigation and
scheduling,” IEEE Access, vol. 8, pp. 110446-110460, Jun. 2020.

[9] Y. Zhang, Z. Mou, F. Gao, L. Xing, J. Jiang and Z. Han, “Hierarchical
deep reinforcement learning for backscattering data collection with multi-
ple UAVs,” IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3786-3800,
Mar. 2021.

[10] S. Fu et al., “Energy-efficient UAV-enabled data collection via wireless
charging: A reinforcement learning approach,” IEEE Internet of Things
Journal, vol. 8, no. 12, pp. 10209-10219, Jun. 2021.

[11] X. Xu, H. Zhao, H. Yao and S. Wang, “A blockchain-enabled energy-
efficient data collection system for UAV-assisted IoT,” IEEE Internet of
Things Journal, vol. 8, no. 4, pp. 2431-2443, Feb. 2021.

[12] F. Shan, J. Luo, R. Xiong, W. Wu, and J. Li, “Looking before crossing:
An optimal algorithm to minimize UAV energy by speed scheduling
with a practical flight energy model,” in Proceedings of the 2020 IEEE
Conference on Computer Communications (INFOCOM), IEEE, 2020,
pp. 1758-1767.

[13] J. Gong, T. Chang, C. Shen and X. Chen, “Flight time minimization of
UAV for data collection over wireless sensor networks," IEEE Journal
on Selected Areas in Communications, vol. 36, no. 9, pp. 1942-1954,
Sep. 2018.

[14] Q. Pan, X. Wen, Z. Lu, L. Li, and W. Jing, “Dynamic speed control
of unmanned aerial vehicles for data collection under internet of things,”
Sensors, vol. 18, no. 11, Nov. 2018.

[15] X. Lin, G. Su, B. Chen, H. Wang and M. Dai, “Striking a balance
between system throughput and energy efficiency for UAV-IoT systems,”
IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10519-10533,
Dec. 2019.

[16] K. Li, W. Ni, E. Tovar and A. Jamalipour, “On-board deep Q-network
for UAV-assisted online power transfer and data collection,” IEEE Trans-
actions on Vehicular Technology, vol. 68, no. 12, pp. 12215-12226, Dec.
2019.

[17] M. E. Taylor and P. Stone. “Transfer learning for reinforcement learning
domains: A survey.” Journal of Machine Learning Research, no. 7, pp.
1633-1685, 2009.

[18] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529-533, Feb. 2015.

[19] H. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double Q-learning." in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence (AAAI’16), AAAI Press, 2016, pp. 2094-2100.

[20] Z. Wang et al., “Dueling network architectures for deep reinforcement
learning,” in Proceedings of The 33rd International Conference on
Machine Learning, 2016, pp. 1995-2003.

[21] H. Khodr, N. Kouzayha, M. Abdallah, J. Costantine and Z. Dawy,
“Energy efficient IoT sensor with RF wake-up and addressing capability,”
IEEE Sensors Letters, vol. 1, no. 6, pp. 1-4, Dec. 2017.

[22] Q. Wu and R. Zhang, “Common throughput maximization in UAV-
enabled OFDMA systems with delay consideration,” IEEE Transactions
on Communications, vol. 66, no. 12, pp. 6614-6627, Dec. 2018.

[23] M. A. Abd-Elmagid, A. Ferdowsi, H. S. Dhillon, and W. Saad, “Deep re-
inforcement learning for minimizing age-of-information in UAV-assisted
networks.” in Proceedings of the 2019 IEEE Global Communications
Conference (GLOBECOM), IEEE, 2019, pp. 1-6.

[24] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
no. 3-4, pp. 279-292, 1992.

[25] N. C. Luong et al., "Applications of deep reinforcement learning
in communications and networking: A survey," IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133-3174, May 2019.

[26] S. Thrun and A. Schwartz, “Issues in using function approximation for
reinforcement learning,” in Proceedings of the 1993 Connectionist Models
Summer School, Hillsdale, NJ, 1993.

[27] S. Halkjear and O. Winther, “The effect of correlated input data on the
dynamics of learning.” in Proceedings of the 9th International Conference
on Neural Information Processing Systems, 1996, pp. 169-175.

[28] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai, “Gradient descent
finds global minima of deep neural networks,” in Proceedings of the
36th International Conference on Machine Learning, in Proceedings of
Machine Learning Research, 2019, pp. 1675-1685.

[29] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Stat., vol. 22, no. 3, pp. 400-407, 1951.

[30] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 10,
pp. 1345-1359, Oct. 2009.

[31] Z. Zhu, K. Lin, and J. Zhou, “Transfer learning in deep reinforcement
learning: A survey.” arXiv:2009.07888 [cs.LG], Sep. 2020.

[32] C. T. Nguyen et al., “Transfer learning for future wireless networks: A
comprehensive survey.” arXiv:2102.07572v1 [cs.LG], Feb. 2021.

[33] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[34] C. H. Liu, Z. Chen, J. Tang, J. Xu and C. Piao, “Energy-efficient
UAV control for effective and fair communication coverage: A deep
reinforcement learning approach,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 9, pp. 2059-2070, Sept. 2018.

[35] N. Van Huynh, D. T. Hoang, D. N. Nguyen and E. Dutkiewicz,
“DeepFake: Deep dueling-based deception strategy to defeat reactive
jammers,” IEEE Transactions on Wireless Communications, vol. 20, no.
10, pp. 6898-6914, Oct. 2021.

[36] V. A. Papavassiliou and S. Russell. “Convergence of reinforcement
learning with general function approximators,” in Proceedings of IJCAI,
1999, pp. 748-755.

	2021 IEEE
	Draft_IoTJ_Revision.pdf

