
Efficient Optimal Planning in non-FIFO
Time-Dependent Flow Fields

James Ju Heon Lee1, Chanyeol Yoo1, Stuart Anstee2 and Robert Fitch1
1University of Technology Sydney, Ultimo, NSW 2006, Australia

Email: juheon.lee@student.uts.edu.au, {chanyeol.yoo, robert.fitch}@uts.edu.au
2Defence Science and Technology Group, Department of Defence, Australia

Email: stuart.anstee@dst.defence.gov.au

Abstract—We propose an algorithm for solving the time-
dependent shortest path problem in flow fields where the FIFO
(first-in-first-out) assumption is violated. This problem variant
is important for autonomous vehicles in the ocean, for example,
that cannot arbitrarily hover in a fixed position and that are
strongly influenced by time-varying ocean currents. Although
polynomial-time solutions are available for discrete-time prob-
lems, the continuous-time non-FIFO case is NP-hard with no
known relevant special cases. Our main result is to show that this
problem can be solved in polynomial time if the edge travel time
functions are piecewise-constant, agreeing with existing worst-
case bounds for FIFO problems with restricted slopes. We present
a minimum-time algorithm for graphs that allows for paths with
finite-length cycles, and then embed this algorithm within an
asymptotically optimal sampling-based framework to find time-
optimal paths in flows. The algorithm relies on an efficient
data structure to represent and manipulate piecewise-constant
functions and is straightforward to implement. We illustrate the
behaviour of the algorithm in an example based on a common
ocean vortex model in addition to simpler graph-based examples.

I. INTRODUCTION

Many minimum-time planning problems in robotics in-
herently involve time-costs that are non-static. In terms of
finding shortest paths on graphs, this means that edge traversal
time is not a scalar value, but instead is a function that
varies over time. The importance of developing shortest path
algorithms for non-static travel times is well recognised, and
somewhat surprisingly, has been studied for over 50 years [2].
In comparison to static shortest path problems, progress in
developing a theoretical understanding of the time-dependent
shortest path (TDSP) problem has proved far more elusive.
Our goal is to explore relatively recent theoretical results in an
effort to develop practical algorithms for robotics applications.

Our main motivation is planning for robots and vehicles that
are influenced by fluid flows, such as those in the ocean and
the atmosphere [30]. Planning in ocean currents is important
for many applications such as oil and gas exploration [24], en-
vironmental monitoring [23] and defence [13], with platforms
such as underwater gliders, surface vessels, Wave Gliders, and
profiling floats. Planning is critical when the maximum vehicle
velocity is comparable to the prevailing current [17, 27];
success of autonomous navigation is then directly tied to the
ability to model [19] and exploit current predictions.

Known TDSP solution approaches remain difficult to apply

due to the many subtle problem variants [3] whose complexity
has only recently come to light. Perhaps as a consequence,
many published algorithms have no stated performance bounds
or, worse, make incorrect claims as noted in [8]. One important
property of TDSP problems over graphs is the FIFO (first-
in-first-out) property, which essentially states that delaying
departure time can never result in earlier arrival. Therefore,
in FIFO problems, remaining at any given node is never
beneficial. Waiting is critical for optimality in the non-FIFO
case, although if arbitrary waiting is permitted then a non-
FIFO problem can be transformed into an equivalent FIFO
version [3]. A second important property lies in characterising
the edge travel time function as either discrete time (one scalar
value per unit time) or continuous time. The discrete time case
(both FIFO and non-FIFO) is known to be polynomial in the
number of edges and the length of the time horizon [3]. It
is natural to exploit this discrete structure by searching the
time-expanded graph using common algorithms such as A*.
Execution time, however, can quickly become unwieldy for
long time horizons, and this effect is especially problematic
for slow moving vehicles in the ocean. The continuous time
case, again for both FIFO and non-FIFO problems, is non-
polynomial in the general case, even for piecewise-linear cost
functions [8].

Whereas it is not possible to avoid the worst case bound
in general, it is interesting to consider special cases. One
restriction in FIFO problems is to limit the set of possible
slopes for the pieces of the piecewise linear functions. This
limitation is helpful because it allows for polynomial-time
algorithms [8].

In this paper, we consider a previously unidentified special
case for non-FIFO problems where the edge travel time
function is piecewise constant, and show that its worst-case
bound is polynomial. We present an algorithm based on a data
structure that supports efficient manipulations of the piecewise
edge functions. We do not allow arbitrary waiting, which
would not be possible in flow fields. Finally, our algorithm
outputs solutions from every node and time to the destination,
which means that the solution is in the form of a policy that can
be used for replanning, for example. The piecewise-constant
assumption is reasonable in practice because ocean current
estimates are typically provided in this form [1], similar to
upper atmosphere estimates [25].

ar
X

iv
:1

90
9.

02
19

8v
1

 [
cs

.R
O

]
 5

 S
ep

 2
01

9

We then show how this solution for TDSP on graphs can be
used for planning in flow fields. First, we argue that flow fields
such as ocean currents are best described as asymptotically
FIFO, where the edge functions exhibit FIFO behaviour as
edge lengths approach zero, yet practical problem instances
are certainly non-FIFO. Then, we integrate the TDSP solution
into a sampling based algorithm, using PRM* for illustration,
and thus propose an integrated framework for time-dependent
flows. We provide examples in 2D flows, but the algorithm
can be used unchanged for 3D flows. We also show that the
running time of the algorithm is polynomial in the number of
nodes and size of edge functions.

This result is significant because it contributes a new the-
oretical result that provides a practical solution with known
performance bounds. It also gives insight into how to model
problems in practice. Since the solution size heavily depends
on the size of edge functions, it is desirable to minimise
their size. This modelling is different to how ocean current
predictions would naively be used, because it encourages post-
processing to merge pieces of individual edge functions that
remain constant between successive estimates.

A. Related work

Our work is related to the seminal paper by Foschini,
Hershberger, and Suri [8], who showed that the computational
complexity of FIFO problems with piecewise linear edge
travel time functions is superpolynomial in the number of
graph nodes. The authors further showed the existence of
polynomial time special cases where the slopes of the travel
time functions are restricted. We show that this bound also
holds for finding minimum travel time paths in non-FIFO
problems with piecewise constant edge functions, and present
an algorithm with a straightforward implementation. The main
distinction is that shortest paths in non-FIFO problems (that do
not allow arbitrary waiting) may include cycles. Our analysis
essentially bounds the length of cycles by relating the worst-
case cycle time to properties of the edge functions.

A useful categorisation of problem variants along with
complexity results is presented by Dean [3]. Interestingly, the
tightest known worst case bounds for general FIFO and non-
FIFO problems are both polynomial (in the number of graph
edges and the time horizon) in the discrete time case, and are
both superpolynomial in continuous time.

In discrete-time problems, optimal solutions may be found
by searching the time-expanded graph [11, 10], where nodes
are duplicated per unit time. Dreyfus [5] first applied Di-
jkstra’s algorithm in this case. More recent work is based
on A* [6, 7, 12] with performance improvements using
adaptive discretisation [16], precomputed heuristics [15], and
bidirectional search [4]. Other approaches are based on time-
aggregated graphs[9], where edge functions are represented as
time series.

Continuous-time problems are often motivated by path plan-
ning for underwater or surface vehicles in the ocean. A level
set approach is presented by Lolla et al. [21, 22]. Recent work

by Liu and Sukhatme [20] formulates the problem as a time-
varying Markov decision process. Since these methods assume
general edge functions, known complexity results suggest that
their worst-case running time is non-polynomial. Our approach
finds time-optimal paths in flow fields by embedding our
efficient TDSP solution within a sampling-based framework
that is asymptotically optimal.

II. BACKGROUND AND PROBLEM FORMULATION

A. Time-dependent directed graph

We consider a directed graph G = (S,E) that consists of
a finite set of states S and edges (s, s′) ∈ E where s, s′ ∈
S. The set of immediately reachable states from state s is
denoted as Ss ⊆ S. A set of goal states is denoted as Sg ⊂ S
where |Sg| ≥ 1. We restrict consideration to graphs in which
goal states are reachable from the initial state.

We define an (n+ 1)-length path Γ within G as a sequence
of states Γ = s0s1 · · · sn, where sk ∈ S and (sk, sk+1) ∈ E
for all k. The final state sn is one of the goal states Sg while
others are not. We denote Γk as the prefix of Γ up to the k-th
state in the path (i.e., Γk = s0s1 · · · sk). Given an edge (s, s′),
we define edge travel time Css′(t), or simply edge time, as
the time it takes to traverse from state s to s′, having departed
state s at time t. Without loss of generality, path traversal
begins no earlier than t = 0, and edge time Css′(t) is ∞ for
all t ≤ 0.

B. Arrival and travel time

Arrival time aΓ(t) [3] is defined as the time of arrival at
the final state sn in path Γ, having departed from state s at
time t. Formally,

aΓ(t) = asn−2,sn−1
(aΓn−2

(t)). (1)

Similarly, travel time TΓ(t) is defined as the time it takes to
complete the path Γ, having departed from the initial state s0

at time t. Formally,

TΓ(t) = aΓ(t)− t. (2)

Intuitively, travel time begins at departure, whereas arrival time
includes time spent awaiting the initial departure. Both arrival
and travel times depend on the sequence of edge times, each
of which depends on the individual arrival time at each edge.

C. FIFO properties

The TDSP problem is often solved for minimal arrival time
assuming first-in-first-out (FIFO) behaviour. A graph exhibits
FIFO behaviour if it satisfies [3, 8] t+Css′(t) ≤ t′+Css′(t

′)
for any edge (s, s′) ∈ E and t ≤ t′. Intuitively, the arrival
time aΓ(t) is non-decreasing with respect to departure time t.

Under the FIFO condition, optimal solutions exhibit the fol-
lowing properties [3]: 1) waiting at any state is not beneficial
at any time, 2) optimal paths are acyclic (i.e., they do not
revisit states), and 3) any subset of the optimal path is also a
shortest path.

S0
(t)Cs0s1 S1

(t)Cs0s0

(a) Initial state s0 and goal state s1
with time-dependent edge time
function C

0 5
Depature time (s)

1T
ra

ve
l t

im
e

(s
)

(b) Edge time Cs0s0 (t)

0 3 5
Depature time (s)

1.2

5.1

T
ra

ve
l t

im
e

(s
)

(c) Edge time Cs0s1 (t)

Fig. 1. Two-state graph example with time-dependent edge times

D. Problem formulation

In this paper, the objective is to minimise the travel time
given initial and goal states. In many practical robotics applica-
tions, travel time is more important than arrival time since the
constraints such as energy and cost are often tightly coupled
to travel time. With the notation defined, the time-dependent
shortest path (TDSP) problem for travel time is defined as
follows.

Problem 1 (Minimum travel time problem). Given a directed
graph G with time-dependent edge time function C, find an
optimal path Γ∗ and initial departure time t∗0 that minimises
the travel time T , such that

(Γ∗, t∗0) = arg min
Γ,t

aΓ(t)− t. (3)

We are also interested in solving for the minimum travel time
for a set departure time t0 as follows.

Problem 2 (Minimum travel time problem given initial depar-
ture time).

Γ∗ = arg min
Γ

aΓ(t0)− t0. (4)

We show later in this paper that the problems are equivalent
under the proposed framework. Note that we do not consider
waiting at an arbitrary node.

In this paper, we are interested in a non-FIFO graph where
the arrival time may not be non-decreasing with respect to
departure time.

Example 1 (Non-FIFO graph). Consider a graph with time-
dependent edge time function as shown in Fig. 1. The edge
time Cs0s1 is 5.1 seconds for the first 3.5 seconds and then
reduces to 1.2 seconds. The self-transition edge time Cs0s0 is
1 second for all departure time.

Clearly, the graph does not exhibit FIFO behaviour. Transi-
tioning immediately to goal state s1 from s0 takes longer than
self-transitioning at state s0 for a few times before arriving at
goal state s1. Note that self-transitioning is different to waiting;

the former is defined as an edge transition allowed by a graph,
whereas the latter is an arbitrary hold duration which is not
defined in a graph.

III. PIECEWISE-CONSTANT REPRESENTATION

We present travel and edge time functions in the form of
piecewise-constant functions (PF) [29, 28]. We illustrate the
form and the relevant operations required to understand the PF-
based value iteration where the solution is given as a policy
rather than a path.

A. Definition of piecewise-constant function (PF)

A piecewise-constant function f : R → R is defined
as a sequence of subdomain and constant pairs, where each
subdomain is a time interval in which the value is constant. We
define a piecewise-constant function f(t) on subdomains pfi
indexed backwards in time as follows

f(t) =

vf1 , if t > pf1
...
vfk , if pfk−1 ≥ t > pfk
...
vfn, if pfn−1 ≥ t > pfn
∞, else

≡

vf1 , if t > pf1
...
vfk , ef t > pfk
...
vfn, ef t > pfn
∞, else

(5)

where k ∈ N and pfk+1 < pfk ∀k ∈ N. We use a short form ‘ef’
for ‘else if’. Operations over PF are defined in [29]. We define
an additional operation called recursion. Suppose we have two
PFs f(t) and g(t). A recursive PF f(t+ g(t)) can be derived
using conditioning and merging operators such that

f(t+ g(t)) =(f(t+ pg1) 	 pg1)⊕ · · · ⊕ (f(t+ pgn) 	 pgn).
(6)

B. TDSP with piecewise-constant functions

We represent the travel time TΓ(t) and edge time Css′ using
PF, as defined in (5). The travel time function in (2) can be
re-written in an iterative form where T k

s (t) is the travel time
for k edge transitions starting at state s. Formally,

T 0
s0(t) =0

T 1
s0(t) =Cs0s1(t)

T 2
s0(t) =Cs0s1(t) + Cs1s2(t+ Cs0s1(t))

T 3
s0(t) =Cs0s1(t) + Cs1s2(t+ Cs0s1(t))

+ Cs2s3(Cs0s1(t) + Cs1s2(t+ Cs0s1(t)))

=Cs0s1(t) + T 2
s1(t+ Cs0s1(t)).

(7)

The travel time function can be written recursively as

T k+1
s (t) = Css′(t) + T k

s′(t+ Css′(t)). (8)

We denote by T ∗s (t) the converged travel time,
where T k+1

s (t) = T k
s (t) for all t ∈ R and some finite k ∈ Z.

We give the solution to the general TDSP problem as a
travel policy πs(t) represented as a PF for each state, allowing
for time-dependent transitions to other states. Formally,

πs(t) =

s1
s ∈ Ss if t > p1

s

s2
s ∈ Ss ef t > p2

s

...
...

s
nπs
s ∈ Ss ef t > 0

∅ else

, (9)

where sis is the state visited during the i-th subdomain. As
noted, the edge travel time function Css′(t) for edge (s, s′) at
departure time t is a PF, where the last subdomain is 0 and
the edge time is ∞ for ‘else’ subdomain (i.e., ∀t ∈ (∞, 0]).

Given a travel policy π, the PF-based travel time function
is written as

T k+1
s (t) =

Css1s
(t) + T k

s1s
(t+ Css1s

(t)) if t > p1
s

Css2s
(t) + T k

s2s
(t+ Css2s

(t)) ef t > p2
s

...
...

Css
nπs
s

(t) + T k
s
nπs
s

(t+ Css
nπs
s

(t)) ef t > 0

∞ else

,

(10)
where pks is the beginning of the k-th subdomain in policy πs.
The travel time for the goal states s ∈ Sg at any iteration k
is 0 for all t ∈ R. For simplicity, we use a short form omitting
the ‘else’ case, i.e., t ∈ (−∞, 0].

Example 2 (Calculation example). We illustrate the calcula-
tion of travel time using PF-based travel policy for the example
in Fig. 1a. The edge times in PF form are

Cs0s0 =
{

1.6 if t > 0 and Cs0s1 =

{
1.2 if t > 3.5

5.1 ef t > 0

(11)

Let the travel policy for state s0 be

πs0(t) =

{
s1 if t > 3

s0 ef t > 0
. (12)

The travel time for s0 after k + 1 edge transitions is then

T k+1
s0 (t) =

{
Cs0s1(t) + T k

s1(t+ Cs0s1(t)) if t > 3

Cs0s0(t) + T k
s0(t+ Cs0s0(t)) ef t > 0

=

{

1.2 if t > 3.5

5.1 else
if t > 3

1.6 + T k
s0(t+ 1.6) ef t > 0

=

1.2 if t > 3.5

5.1 ef t > 3

1.6 + T k
s0(t+ 1.6) ef t > 0

,

(13)

The detailed operations over piecewise functions including
the conditioning operation are presented in [29]. Starting
from T 0

s (t) = 0, we iteratively calculate the travel time until

0 0.3 1.4 1.9 3 3.5 5

1.2

2.8

4.4
5.1

6.7

8.3

(a) Travel time

0 0.3 1.4 1.9 3 3.5 5

4.7

6.2

8.3 8.59

5.79

 8.1
8.59

5.79

 8.1
8.59

(b) Arrival Time

Fig. 2. Travel and arrival time for travel policy in Example 2

it converges. The corresponding travel time subject to the
heuristic policy (12), which is not optimal, is

Ts(t) =

1.2 if t > 3.5

5.1 ef t > 3.0

2.8 ef t > 1.9

6.7 ef t > 1.4

4.4 ef t > 0.3

8.3 ef t > 0

. (14)

Figure 2 illustrates the solution; departing at t = 0, the policy
causes self-transit twice at s0 before moving to s1. If the initial
departure time is greater than 3s, the policy is to transit to s1

straight away.

IV. OPTIMAL TRAVEL TIME POLICY FOR NON-FIFO
TDSP PROBLEMS

Given a directed graph G and time-dependent edge time
function Css′(t), the optimal travel policy π∗s to reach the
goal state sg ∈ Sg from state s can be expressed as

π∗s (t) =

...

...
arg min
s′∈Ss

Css′(t) + T ∗s′(t+ Css′(t)) ef t > pi∗s

...
...

.

(15)
In principle, the optimal solution of (15) at state s could be
computed iteratively, by finding the optimal next state s′ ∈ Ss

for each time t > 0. Such an exhaustive approach is impossi-
ble, since there are infinitely many subdomains to consider.

We avoid this problem by finding a finite set of subdomains
iteratively. We prove later that such set exists for an optimal
solution. Let T k+1

ss′ be an immediate travel time function in
which the transition from state s to s′ occurs over all time t
after k edge transitions. Formally,

T k+1
ss′ =

{
Css′(t) + T k

s′(t+ Css′(t)) if t > 0 . (16)

Let P k
s be the set of subdomains in travel time function T k

s .
Such a set for optimal travel time T k+1∗

s is

P k+1∗
s = {0} ∪

⋃
s′∈Ss

P k+1∗
ss′ , (17)

Algorithm 1 Solving for optimal policy πk∗
s (t)

Inputs: Directed graph G = (S,E), time-dependent edge
time function C and number of edge transitions K
Outputs: Optimal travel policy πk∗ and travel time T k∗

T 0
s ←

{
0, if t > 0 ,∀s ∈ S

for k ← 1 to K do
for all s ∈ S \ sn do
T k+1
ss′ ←

{
∞ if t > 0 ,∀s′ ∈ S . (16)

P k+1∗
s ← {0} . (17)

for all s′ ∈ Ss do
T k+1
ss′ ←

{
Css′(t) + T k

s′(t+ Css′(t)) if t > 0 .

(16)
P k+1∗
s ← P k+1∗

s ∪ P k+1∗
ss′ . (17)

T k+1∗
s ←

...

...
min
s′∈Ss

T k+1
ss′ ef t > pi∗s

...
...

, ∀pi∗s ∈ P k+1∗
s

πk+1∗
s ←

...

...
arg min
s′∈Ss

T k+1
ss′ ef t > pi∗s

...
...

, ∀pi∗s ∈ P k+1∗
s

if P k+1∗
s ≡ P k∗

s and T k+1∗
s (t) ≡ T k∗

s (t), ∀t ∈ P k∗
s , s ∈ S

then
break

return πk
s (t) and T ∗s (t)

where subdomain set P k+1∗
ss′ is from immediate travel func-

tion T k+1∗
ss′ and P 0

s = {0}. The optimisation problem in (15) is
then solved over a finite set of subdomains P k+1∗

s where pi∗s ∈
P k+1∗
s in (15). The pseudocode is presented in Alg. 1.

Example 3 (Optimal policy example). The optimal travel time
with respect to the graph in Fig. 1a is

π∗s0(t) =

s1 if t > 3.5

s0 ef t > 0.3

s1 ef t > 0

, T ∗s0(t) =

1.2 if t > 3.5

2.8 ef t > 1.9

4.4 ef t > 0.3

5.1 ef t > 0
(18)

The solution converged after 5 iterations.

Intuitively, the optimal travel policy for Fig. 1 should be to
self-transit until the time is 3.5s, since edge time Cs0s1 is high.
However, the optimal policy is interestingly non-intuitive.
Suppose the policy is to self-transit while 0 < t < 3.5,
then the induced path is s0s0s0s1. The travel time after two
self-transitions is 3.2s which causes transition to state s1 0.3s
before the cheap cost is available. Therefore it is less time
consuming to transit directly than self-transit. Notably, self-
transiting becomes more efficient just after t0 > 0.3 since the
travel time after two edge transitions is enough to transit to s1

when the cost is cheap.

V. ANALYSIS

Without loss of generality, we assume Ss = S for all
states s ∈ S \ Sg (i.e., all states are immediately reachable
from any state). Given (16) and (17), the set of subdomains
can be written as

P k+1
s = {0} ∪

{
p ∈

⋃
s′∈Ss

Css′ ∪
(
P k
s′ − Css′

)
| p ≥ 0

}
,

(19)
where A− B = {a− b | ∀a ∈ A and b ∈ B} for two sets A
and B. We slightly abuse notation for Css′ to denote the set
of subdomains and constants in the corresponding edge time
function. Using a short form A

0 = {a ∈ A | a ≥ 0}, we have

P k+1
s ={0} ∪

⋃
s′

Css′ ∪
⋃
s′

P k
s′ − Css′

0

={0} ∪
⋃
s′

Css′ ∪
⋃
s′

⋃
s′′

Cs′s′′ − Css′

0

∪
⋃
s′

⋃
s′′

Pk−1

s′ −Cs′s′′
0 − Css′

0
.

(20)

Since all subdomain sets for edge time function are non-
negative by definition, the last term can be written in a form

A
0 −

B
0

0
= {a− b | a ∈ A, b ∈ B, a ≥ 0, b ≥ 0, a− b ≥ 0}.

(21)

Since B (i.e., Css′) is non-negative,

A−B
0

= {a− b | a ∈ A, b ∈ B, a− b ≥ 0 and b ≥ 0}. (22)

Intuitively, if a− b ≥ 0 and b ≥ 0, then a ≥ 0. Therefore
A
0 −B

0
≡ A−B

0
, (23)

if B is a non-negative set. Then the last term in (20) becomes

Pk−1−Cs′s′′
0 − Css′

0
=
P k−1
s′ − Css′ − Cs′s′′

0
. (24)

Therefore, the set of subdomains can be recursively written as

P k+1
s ={0} ∪

⋃
s′

Css′ ∪
⋃
s′

⋃
s′′

Cs′s′′ − Css′

0

∪ · · · ∪
⋃
s′

· · ·
⋃
sk

Csk−1sk − · · · − Css′

0
.

(25)

Lemma 1 (Finite edge transitions for convergence given
infinite length path). Given an arbitrary and infinite length
path Γ, the set of subdomains converges to a unique and finite
set within a finite number of edge transitions.

Proof: All subdomains in any edge time function are
non-negative by definition. Therefore subdomains in (25)
monotonically decrease as the number of edge transitions
increase. Since all subdomains in travel time function are
non-negative, there exists a finite maximum number of edge
transitions Kmax before convergence.

Lemma 2 (Convergence in finite edge transitions). Given an
arbitrary and infinite length path Γ, the worst case number of
edge transitions before convergence in subdomain set is

Kmax = ceil

(
maxC

minC

)
, (26)

where C =
⋃

s∈S
⋃

s′∈S Css′ \ {0}.

Proof: The worst-case number of edge transition Kmax

is the last edge transition before the subdomain set in Kmax-
th term becomes empty in (25) since subdomains are non-
negative. The longest such term is maxC −

∑Kmax

k=1 minC.

Remark 1 (Convergence and cyclic paths). The length of an
optimal path that may include cycles is bounded by a finite
number of edge transitions found in Lemma 2.

Theorem 1 (Convergence in optimal algorithm). The optimal
algorithm in Alg. 1 converges in a finite time Kmax as shown
in Lemma 2.

Proof: By Lemma 1 and 2, there exists a unique and
finite set of subdomains for travel time functions. Since the
optimisation problem is to find optimal travel policy for each
subdomain, the problem is then solved in a finite number of
iterations.

Theorem 2 (Time complexity). The overall time complexity
for Alg. 1 is O((|S| · |Cm|)k+2), where |S| is the number of
states in graph G, |Cm| is the maximum number of subdomains
over a set of edge time functions and k is the number of edge
transitions.

Proof: By (10), the overall complexity is related to the
number of subdomains, which is bounded by

|P k+1
s | =

∣∣∣∣∣{0} ∪⋃
s′

Css′ ∪
⋃
s′

P k
s′ − Css′

0

∣∣∣∣∣
≤ 1 + (|S| · |Cm|) + (|S| · |Cm|) · |P k

s′ |
≤ 1 + 2(|S| · |Cm|) + 2(|S| · |Cm|)2

+ · · ·+ 2(|S| · |Cm|)k+1

= O((|S| · |Cm|)k+2),

(27)

where Cm is the set of subdomains and constants with
the maximum cardinality over all edges e ∈ E. In the
worst case, we find the optimal policy for each subdomain
using value iteration in Alg. 1. Since the time complexity
for solving such value iteration is polynomial in number of
states, the overall time complexity for the proposed algorithm
is O((|S| · |Cm|)k+2).

Remark 2 (Time-static reduction). From Theorem 2, the time
complexity for time-static edge functions is reduced to O(|S|2)
(i.e., |Cm| = 1 and K = 0) which agrees with the complexity
of static shortest path problems.

Remark 3 (Time complexity in practice). The time complexity
in Theorem 2 is based on three worst-case conditions: 1) all

s9

s8

s1

r(n) = γ(log(n)/n)1/d

χfree

s5 s6

s7

s3

s4

s2

Fig. 3. A partial construction of a PRM* graph. Note the formation of a
cyclic graph in the radius intersection.

states are connected to all the others, 2) the maximum number
of iterations depends on the smallest edge subdomain and 3)
no overlapping subdomains.

The worst-case conditions in Remark 3 occur rarely in prac-
tice, particularly Condition 3. When subdomains in a set
overlap, they merge and form a much smaller set. Therefore
the set does not grow indefinitely until convergence.

By Theorem 2, the complexity heavily depends on the num-
ber of edge transitions (i.e., iterations). Since the maximum
number of edge transitions depends on the subdomains among
all edge functions as shown in Lemma 2, the running time
of the algorithm can be improved significantly by adaptively
pruning early rapid changes to increase the denominator (i.e.,
minC). Furthermore, we can also reduce the size of the edge
functions by merging consecutive constants that are similar
(i.e., reducing |Cm|).

VI. OPTIMAL PLANNING OVER TIME-DEPENDENT FLOW

In this section, we propose a path planning framework for
time-dependent flow fields. We present graph construction that
guarantees asymptotic optimality. We then present how time-
dependent edge time functions are derived for the graph.

A. Time-dependent flow field and FIFO condition

Suppose we have two points in a time-dependent flow field
where a single control is found to traverse from one to the
other. The path at time t may be different to that at t′ > t.
Since the path for departing later could yield shorter arrival
time than departing earlier, time-dependent flow field does not
respect FIFO. As the distance between two points approaches
zero, the non-FIFO property is weakened since the surrounding
flow also approaches time-static constant flow. Therefore,
time-dependent flow fields are asymptotically FIFO.

B. Asymptotically optimal planning for TDSP problems

We use the probabilistic roadmap∗ (PRM∗) algorithm to
solve the TDSP problem by building a graph; this approach
guarantees asymptotic optimality with respect to the number
of states [14]. Partial construction of the PRM* graph is
shown in Fig. 3. The algorithm first samples N states in free
space χfree and the states are connected to their neighbouring
states within the connection radius r. Each edge time is
computed as shown in Sec. VI-C. The algorithm is guaranteed

1

2

3

4

5

6

7

8

9

(a) At s5 and t = 2

1

2

3

4

5

6

7

8

9

(b) At s2 and t = 7

1

2

3

4

5

6

7

8

9

(c) At s5 and t = 10

1

2

3

4

5

6

7

8

9

(d) At s9 and t = 12

0 3 4 7 8 12

4
6
8

10
12

(e) Optimal travel time at s1

0 2 3 6 7 10 12

3
5
7
9

11
13

(f) Optimal travel time at s2

0 1 2 5 6 9 10 12

2
4
6
8

10
12
14

(g) Optimal travel time at s5

0 10 12

2

6

(h) Optimal travel policy at s5

Fig. 4. 3-by-3 example to reach s9. The red lines represent the optimal path starting from s1 to s9 and the width of blue lines represents the edge time for
the corresponding edge where the thicker width illustrates shorter travel time. The current state is coloured in blue.

to provide asymptotic optimality when the radius r satisfies the
following [14]:

r > γ · (log (N)/N)1/d, (28)

where d is the dimension of free space χfree.
Note that groups of states are connected in cycles where

neighbouring regions overlap (i.e. states s3, s4 and s5 in
Fig. 3). Therefore, the proposed algorithms can fully exploit
cyclic edge connections.

C. Time-dependent edge time functions from flow field

Suppose we have a vehicle R modelled as ẋ = vR(θ) +
F (x, t), where x ∈ R2 is the position of the vehicle,
F (x, t) = [ux,t, vx,t]

T is the time-dependent flow vector and
vR ∈ R2 is the vehicle velocity relative to the flow. The
vehicle is controlled by varying the bearing angle θ whilst
travelling at constant speed Vmax. The discrete time model
for the vehicle is represented as

x[k + 1] = x[k] + (vR(θ) + F (x[k], t)) ·∆t, (29)

assuming the flow does not vary during ∆t.
Given two graph states s and s′ that are located at xs

and xs′ , respectively, we enumerate a set of control sam-
ples Θ = {θ0, · · · } (i.e., bearing angles) to compute the
corresponding set of trajectories X = {x0, · · · } for a pre-
defined time horizon h. For a given control θi and departure
time t, we start from xi[k] = xs until k = H using (29),
where H = ceil(h/∆t) is discrete time horizon. Once the
enumeration is completed, we find the trajectory xi∗ ∈ X that
approaches closest to xs′ , such that

i∗ = arg min
i

min
k≤H
‖xs′ − xi[k]‖. (30)

The time taken for the trajectory to reach xs′ is denoted as
the edge time at departure time t. By Lemma 1, there exists a

finite number of subdomains assuming that the flow forecast
is also given in a form of piecewise-constant functions. This
is a practically valid assumption as discussed in Sec. V.

VII. EXAMPLES

In this section, we present two simulated examples where
local travel time varies with departure time. We first demon-
strate a discrete case with a discrete graph where we find
an optimal policy and the corresponding path given initial
departure time. Next, we present a flow field scenario where
we sample a graph over a continuous flow field and solve
for the path planning problem in an asymptotically optimal
manner. The algorithm was run on a standard laptop with Intel
i5-6300 2.5GHz CPU and 8GB RAM.

A. 3-by-3 grid

We consider a graph with 9 states as shown in Fig. 4, where
we aim to reach state s9 from state s1. The width of each
edge line (in blue) illustrates the corresponding edge time; the
thickest edge width represents an edge time of 1 while that
for the thinnest is 25. The current state is coloured blue.

In Fig. 4, the initial departure time is t0 = 0, when travel
along edges in the direction of the goal state is expensive
(Fig. 4a). The edge costs are relaxed later in time (Fig. 4d). A
policy derived using algorithms in Sec. IV results in a path
with optimal travel time Γ∗ = s1s4s5s2s1s4s5s2s1s4s5s6s9,
which is drawn in red.

The path starts off with two cycles through
states {s1, s2, s4, s5} and then reaches the goal state
via state s6. The optimal travel time for the path is 12 as
shown in Fig. 4e. State s5 plays an important role in the
optimal policy, deciding when to move towards the goal state,
while others’ actions are greedily chosen. The travel policy
for states s1, s2 and s4 is to move in a cycle regardless of
departure time, whereas the policy for state s5 (Fig. 4h) is to

(a) t = 1.951 departing at t0 = 0 (total travel time = 42.599) (b) t = 10.916 departing at t0 = 0 (total travel time = 42.599)

(c) t = 29.684 departing at t0 = 0 (total travel time = 42.599) (d) t = 42.599 departing at t0 = 0 (total travel time = 42.599)

(e) t = 31.8243 departing at t0 = 12 (total travel time = 34.8365) (f) t = 40.4315 departing at t0 = 25 (total travel time = 36.2631)

Fig. 5. Navigating at different initial departure time t0 = 0, 12 and 25 through time-dependent flow field from start (bottom left) and to destination (top
right). The red line is the path prefix and the green is the suffix, where t is the travel time for the prefix since the departure t0. The red asterisk is the current
location. Blue arrows represent the flow vector at a given position. The PRM∗nodes and edges are shown in black.

transit to s6 when the time is greater than 10. The optimal
solution was found after 14 iterations and the running time
was 0.418 seconds to converge.

B. Asymptotically optimal path planning in flow field
We generated a time-dependent flow field using the Taylor-

Green gyre vortex model [26], which is commonly used
to model ocean currents as shown in Fig. 5 (in blue). As
described in Sec. VI, we randomly sampled 200 states over
the space and used a connection radius of r = 1.735 (28) to
connect them. Sampled states and edges are shown in black.

The vehicle starts from the bottom left corner (circle) aiming
to reach the top right corner (cross). Figures 4a-4d illustrate its
progress over the optimal path for initial departure time t0 = 0
and the flow evolution over time. The red line represents the
trajectory followed up to time t and the green line is the
remaining path. The total travel time is 42.599. The vehicle
spends time on the left side until the flow in the middle

weakens. Then it moves towards the goal state against a weak
opposing flow. The optimal travel policy was found after 44
iterations and the running time was 583 seconds.

In Fig. 5e and 5f, we demonstrate optimal paths for two
different initial departure times, t0 = 12 and 25, respectively.
Since the flows are more relaxed than departing at t0 = 0,
the overall travel times are reduced although the arrival times
are later. It is important to note that optimising travel time
for ocean vehicles is more valuable than optimising arrival
time when their endurance is dominated by travel time, as is
often the case. We have shown that our proposed framework
can find the optimal departure time that minimises the overall
travel time in one such example.

VIII. CONCLUSION AND FUTURE WORK

We have presented a new algorithm for finding shortest
paths in time-dependent graphs and have shown how it can

be combined with sampling-based methods for planning in
time-dependent flow fields. This result expands the set of
known polynomial-time special cases for TDSP to include
non-FIFO problems with piecewise-constant edge travel time
functions. Previously, special cases with restricted slopes were
restricted to FIFO problems. Our result also provides a new
practical solution for planning in flow fields, with known
performance bounds, that is applicable to autonomous vehicles
in the ocean [27, 18]. An important avenue of future work is
to develop efficient algorithms with performance guarantees
for stochastic cases where flow field velocities and vehicle
control are uncertain. It is also important to explore further
special cases in non-FIFO TDSP problems that may be solved
in polynomial time.

ACKNOWLEDGEMENT

This work is supported by an Australian Government
Research Training Program (RTP) Scholarship, Australia’s
Defence Science and Technology Group and the University
of Technology Sydney.

REFERENCES

[1] E. P. Chassignet, H. E. Hurlburt, E. J. Metzger, O. M.
Smedstad, J. A. Cummings, G. R. Halliwell, R. Bleck,
R. Baraille, A. J. Wallcraft, C. Lozano, et al. US
GODAE: global ocean prediction with the HYbrid Coor-
dinate Ocean Model (HYCOM). Oceanography, 22(2):
64–75, 2009.

[2] K. L. Cooke and E. Halsey. The shortest route through
a network with time-dependent internodal transit times.
J. Math. Anal. Appl., 14(3):493–498, 1966.

[3] B. C. Dean. Shortest paths in FIFO time-dependent
networks: Theory and algorithms. Technical report, MIT,
2004.

[4] U. Demiryurek, F. Banaei-Kashani, C. Shahabi, and
A. Ranganathan. Online computation of fastest path in
time-dependent spatial networks. In Proc. of SSTD, pages
92–111, 2011.

[5] S. E. Dreyfus. An Appraisal of Some Shortest-Path
Algorithms. Oper. Res., 17(3):395–412, 1969.

[6] E. Fernndez-Perdomo, J. Cabrera-Gmez, D. Hernndez-
Sosa, J. Isern-Gonzlez, A. C. Domnguez-Brito, A. Re-
dondo, J. Coca, A. G. Ramos, E. . Fanjul, and M. Garca.
Path planning for gliders using Regional Ocean Models:
Application of Pinzn path planner with the ESEOAT
model and the RU27 trans-Atlantic flight data. In Proc.
of IEEE OCEANS, pages 1–10, 2010.

[7] E. Fernndez-Perdomo, D. Hernndez-Sosa, J. Isern-
Gonzlez, J. Cabrera-Gmez, A. C. Domnguez-Brito, and
V. Prieto-Maran. Single and multiple glider path planning
using an optimization-based approach. In Proc. of IEEE
OCEANS, pages 1–10, 2011.

[8] L. Foschini, J. Hershberger, and S. Suri. On the com-
plexity of time-dependent shortest paths. Algorithmica,
68(4):1075–1097, 2014.

[9] B. George and S. Shekhar. Time-aggregated graphs for
modeling spatio-temporal networks. J. Semantics Data,
9:191–212, 2008.

[10] V. M. Gunturi, S. Shekhar, and K. Yang. A Critical-
Time-Point Approach to All-Departure-Time Lagrangian
Shortest Paths. IEEE Trans. Knowl. Data Eng., 27(10):
2591–2603, 2015.

[11] V. M. V. Gunturi, E. Nunes, K. Yang, and S. Shekhar. A
critical-time-point approach to all-start-time Lagrangian
shortest paths: A summary of results. Advances in Spatial
and Temporal Databases, 6849 LNCS:74–91, 2011.

[12] J. Isern-Gonzalez, D. Hernandez-Sosa, E. Fernandez-
Perdomo, J. Cabrera-Gamez, A. C. Domnguez-Brito, and
V. Prieto-Maranon. Path planning for underwater gliders
using iterative optimization. In Proc. of IEEE ICRA,
pages 1538–1543, 2011.

[13] H. Johannsson, M. Kaess, B. Englot, F. Hover, and
J. Leonard. Imaging sonar-aided navigation for au-
tonomous underwater harbor surveillance. In Proc. of
IEEE/RSJ IROS, pages 4396–4403, 2010.

[14] S. Karaman and E. Frazzoli. Sampling-based Algorithms
for Optimal Motion Planning. Int. J. Robot. Res., 30(7):
20, 2010.

[15] S. Kontogiannis and C. Zaroliagis. Distance Oracles for
Time-Dependent Networks. Algorithmica, 74(4):1404–
1434, 2016.

[16] D. Kularatne, S. Bhattacharya, and M. A. Hsieh. Optimal
Path Planning in Time-Varying Flows Using Adaptive
Discretization. IEEE RA-L, 3(1):458–465, 2018.

[17] J. J. H. Lee, C. Yoo, R. Hall, S. Anstee, and R. Fitch.
Energy-optimal kinodynamic planning for underwater
gliders in flow fields. In Proc. of ARAA ACRA, 2017.

[18] K. M. B. Lee, J. J. H. Lee, C. Yoo, B. Hollings, and
R. Fitch. Active perception for plume source localisation
with underwater gliders. In Proc. of ARAA ACRA, 2018.

[19] K. M. B. Lee, C. Yoo, B. Hollings, S. Anstee, S. Huang,
and R. Fitch. Online estimation of ocean current from
sparse GPS data for underwater vehicles. Proc. of IEEE
ICRA, 2019. accepted (arXiv:1901.09513).

[20] L. Liu and G. S. Sukhatme. A Solution to Time-Varying
Markov Decision Processes. In Proc. of IEEE ICRA,
2018.

[21] T. Lolla, M. P. Ueckermann, K. Yigit, P. J. Haley, and
P. F. J. Lermusiaux. Path planning in time dependent
flow fields using level set methods. In Proc. of IEEE
ICRA, pages 166–173, 2012.

[22] T. Lolla, P. F. J. Lermusiaux, M. P. Ueckermann, and P. J.
Haley. Time-optimal path planning in dynamic flows
using level set equations: theory and schemes. Ocean
Dynam., 64(10):1373–1397, 2014.

[23] D. L. Rudnick, R. E. Davis, C. C. Eriksen, D. M.
Fratantoni, and M. J. Perry. Underwater gliders for ocean
research. Mar. Technol. Soc. J., 38(2):73–84, 2004.

[24] L. M. Russell-Cargill, B. S. Craddock, R. B. Dinsdale,
J. G. Doran, B. N. Hunt, and B. Hollings. Using
Autonomous Underwater Gliders for Geochemical Ex-

ploration Surveys. APPEA J., 58:367–380, 2018.
[25] A. Stein, R. R. Draxler, G. D. Rolph, B. J. Stunder,

M. Cohen, and F. Ngan. NOAAs HYSPLIT atmospheric
transport and dispersion modeling system. B. Am. Mete-
orol. Soc., 96(12):2059–2077, 2015.

[26] G. I. Taylor and A. E. Green. Mechanism of the
production of small eddies from large ones. Proc. R.
Soc. Lond. A, 158(895):499–521, 1937.

[27] K. Y. C. To, K. M. B. L. Lee, C. Yoo, S. Anstee, and
R. Fitch. Streamlines for motion planning in under-
water currents. Proc. of IEEE ICRA, 2019. accepted
(arXiv:1901.09512).

[28] C. Yoo. Provably-Correct Task Planning for Autonomous
Outdoor Robots. PhD thesis, University of Sydney, 2014.

[29] C. Yoo, R. Fitch, and S. Sukkarieh. Probabilistic Tempo-
ral Logic for Motion Planning with Resource Threshold
Constraints. In Proc. of RSS, 2012.

[30] C. Yoo, R. Fitch, and S. Sukkarieh. Online task planning
and control for fuel-constrained aerial robots in wind
fields. Int. J. Robot. Res., 35(5):438–453, 2016.

	I Introduction
	I-A Related work

	II Background and Problem Formulation
	II-A Time-dependent directed graph
	II-B Arrival and travel time
	II-C FIFO properties
	II-D Problem formulation

	III Piecewise-Constant Representation
	III-A Definition of piecewise-constant function (PF)
	III-B TDSP with piecewise-constant functions

	IV Optimal Travel Time Policy for Non-FIFO TDSP Problems
	V Analysis
	VI Optimal Planning Over Time-Dependent Flow
	VI-A Time-dependent flow field and FIFO condition
	VI-B Asymptotically optimal planning for TDSP problems
	VI-C Time-dependent edge time functions from flow field

	VII Examples
	VII-A 3-by-3 grid
	VII-B Asymptotically optimal path planning in flow field

	VIII Conclusion and Future Work

