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Abstract— Heterogeneous multi-robot systems are advanta-
geous for operations in unknown environments because func-
tionally specialised robots can gather environmental informa-
tion, while others perform tasks. We define this decomposition
as the scout–task robot architecture and show how it avoids
the need to explicitly balance exploration and exploitation by
permitting the system to do both simultaneously. The chal-
lenge is to guide exploration in a way that improves overall
performance for time-limited tasks. We derive a novel upper
confidence bound for simultaneous exploration and exploitation
based on mutual information and present a general solution
for scout–task coordination using decentralised Monte Carlo
tree search. We evaluate the performance of our algorithms
in a multi-drone surveillance scenario in which scout robots
are equipped with low-resolution, long-range sensors and task
robots capture detailed information using short-range sensors.
The results address a new class of coordination problem for
heterogeneous teams that has many practical applications.

I. INTRODUCTION

Multi-robot systems enable flexible scaling of robotic ap-
plications by composing multiple, possibly disposable robots
into a functional team that outperforms a single robot. Real-
world use of multi-robot systems is increasing, for example,
in warehouse management [1], agriculture [2], and defence
[3]. We anticipate that heterogeneity will further accelerate
the adoption of multi-robot systems because it enables in-
creases in system capability through functional specialisation
of individual robots. Specialisation is particularly appealing
in applications in which the environment is partially or
completely unknown. A subset of the team could focus
on gathering information, while the rest perform tasks. We
are interested in developing algorithms to coordinate the
behaviour of heterogeneous teams that operate in unknown
environments and in exploring how the division of labour
between information-gathering and task-performing robots
relates to the classical trade-off between exploration and
exploitation.

We define a team composition in which some robots (i.e.,
task robots) are equipped to perform a particular task while
others (i.e., scout robots) are equipped with sensors to rapidly
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Fig. 1. An example application for multi-drone surveillance. The task
is to confirm all targets (yellow) with the task drones (red). Scout drones
(white) support the process by sensing targets (yellow) from a distance, at
low resolution, and cueing for possible target presence.

acquire knowledge about the environment as the scout–task
robot architecture. There are many compelling applications
of this idea. For example, it may be desirable to deploy
disposable scout robots to ensure safe operation of a high-
value task robot, as in the case of a Mars rover-copter team
[4–6]. We consider the multi-drone surveillance application
illustrated in Fig. 1, where a limited number of scout robots
equipped with long-range sensors cue task robots for the
presence of targets.

One unexplored benefit of the scout–task robot archi-
tecture is that it can be viewed as a way to sidestep the
exploration–exploitation trade-off inherent to operations in
unknown environments, through heterogeneity. Whereas the
trade-off between exploration and exploitation is a question
of balancing these two activities, the scout–task architecture
permits simultaneous exploration and exploitation. Assuming
that the overall system objective is to complete as many
tasks as possible in a given amount of time, the challenge is
how to guide exploration in a way that is most relevant to
exploitation. Scout robots should provide information about
the environment that allows task robots to improve their
plans and thus find higher-quality solutions. For this reason,
we find that the scout–task coordination problem is funda-
mentally different from previous heterogeneous multi-robot
coordination problems, and solutions have been proposed
only in application-specific instances [4–6].

In this paper, we present a general solution to scout–task
coordination. We derive a novel upper confidence bound
(UCB), the mutual-information UCB (MI-UCB), to enable
simultaneous exploration and exploitation. The MI-UCB
shows that the posterior expected reward is probabilistically
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upper bounded by a combination of Shannon information
gain and prior expected reward. It then follows from the
principle of optimism under uncertainty that executing paths
that maximise the MI-UCB, in fact, maximises the posterior
expected reward in hindsight. We apply MI-UCB to the
multi-drone surveillance problem shown in Fig. 1 using
decentralised Monte Carlo tree search (Dec-MCTS) [7]. Our
results show that, with the same team configuration, the
hindsight reward is improved by up to 134% compared
with simply maximising prior expected reward. We also
demonstrate MI-UCB in a multi-drone simulation with real-
time operations set in a realistic environment.

II. RELATED WORK

Heterogeneous multi-robot coordination is often posed
as a task-allocation problem in which robots have varying
levels of competency in completing each task. An optimal
assignment of tasks may be achieved with, e.g., markets [8],
Hungarian algorithms [9], or MCTS [10]. We are interested
in the scout–task robot coordination problem, where a sub-
team of scout robots assists task robots in completing their
tasks by exploring the environment. Exploration implicitly
aids task completion in the long term. Existing work closely
related to this problem includes [4, 6], which considers a
Mars rover completing navigation or temporal-logic tasks,
assisted by an aerial robot that scouts ahead to improve
localisation accuracy or environmental knowledge. While we
do not consider these problem instances in this paper, our
result is sufficiently general to encompass them.

Multi-robot surveillance, in which a team of robots
searches for targets [11], is typically addressed by main-
taining a probabilistic belief over target locations using an
occupancy grid [12] or a random finite set [13–15]. Based
on the current belief, a plan is generated that maximises
the expected number or probability of detections [11, 16–19]
or minimises the uncertainty of target locations [14, 20, 21].
Here, the two objectives are distributed across the team, such
that scout robots contribute to uncertainty reduction and task
robots to detection of targets. We show that considering the
two objectives in tandem improves the overall number of
detections in hindsight, compared with considering only the
expected number of detections.

The idea of combining exploration and exploitation is not
new. In martingale-based approaches such as UCB on trees
(UCT) [22] or KL-UCB [23], an agent repeatedly samples
the reward of an action to construct statistical quantities that
motivate exploration or exploitation. A trade-off between the
two gradually biases the sampling toward the optimum, as
in the case of MCTS [7, 24]. These approaches are parallel
to ours, because it is infeasible for a physical robot to
sufficiently sample reward during its operation.

A more suitable class of algorithms for robotic appli-
cations in unknown environments is Bayesian optimisation
(BO). A prominent example is Gaussian process (GP) UCB
[25], which has been used in robotic source seeking in
plumes [26] and in human–robot interaction [27]. In BO, an
agent cycles between gathering a new sample and updating
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Fig. 2. A probabilistic graphical model illustrating the scout–task coor-
dination problem. Dashed connections depend on team composition. The
control input u generates trajectory q. A task robot (red) gains a reward
R(q, E), depending on the trajectory q and the latent environment E. A
scout robot (green) gathers measurements yt at each state qt, revealing
information about E.

its belief; and the samples are biased toward the optimum by
use of a UCB derived from that belief. This is prohibitive
for scout–task coordination, as all agents must necessarily
contribute to both gathering measurements and maximising
reward. Our proposed UCB substantially relaxes this require-
ment and others using information-theoretic tools.

A theoretical result closely related to our work is [28,
Lemma 3], which shows that, if a UCB similar to ours were
to hold, using the UCB as an acquisition function for action
selection leads to bounded regret. We show that a similar
UCB generally holds.

III. SCOUT-TASK COORDINATION PROBLEM

We formulate the scout–task coordination problem, illus-
trated in Fig. 2, as follows. Consider a team of N mobile
robots, the dynamics of which are described by:

qr
t+1 = f(qr

t ,u
r
t ), (1)

where qr
t and ur

t are the state and control action of robot r
at time t, respectively. The superscript 1 ≤ r ≤ N denotes
the robot, the subscript t denotes time, and ur

t is the control
action applied to robot r at time t.

The robots operate in an unknown environment, denoted
by E, which can follow any distribution. For example, it may
be discrete and follow a categorical distribution; or it may
be continuous and follow a Gaussian distribution. Each robot
may belong to a set of scout robots S ⊂ [1, ..., N ] or to a set
of task robots T ⊂ [1, ..., N ]. S and T are not necessarily
disjoint; and thus a robot may belong to both sets (i.e., it
may be a scout-and-task robot).

If r ∈ S, robot r generates measurements yr
t that reveal

information about E:

yr
t ∼ P(yr

t | qr
t , E). (2)

If r ∈ T , robot r is equipped with a payload to perform
an intended task, which depends on the environment E. We
thus model the task completion by a deterministic reward
function R(qT , E). It is important to note that scout-only
robots r ∈ S \ T do not contribute directly to the reward
function; instead they allow the task and scout-and-task
robots r ∈ T to more effectively complete their tasks by
gathering information on E.



For brevity, we omit the subscript (resp. the superscript)
to mean the set of states over time (resp. different robots).
I.e., qr = {qr

1, ...,q
r
T }, qt = {q1

t , ...,q
N
t }. The omission of

both subscript and superscript indicates the set of all robots’
trajectories over time: i.e., q = {q1, ...,qN} = {q1, ...,qT }.
We also replace the superscript with S and T to mean the
set of poses or trajectories of robots that belong to the set of
scout or task robots, respectively. Hence, qT = {qi | i ∈ T }.
Further, we write qr(ur) to mean the trajectory obtained by
applying ur to robot r; and likewise q(u) denotes the set
of all robots’ trajectories obtained by applying the control
sequences u = {u1, . . . ,ur} to the corresponding robots.
Similarly, we write yr(qr) to mean the set of observations
obtained from the trajectory of robot r.

Our aim is to choose control inputs u maximising reward:

u∗ = argmax
uT

R(E,qT (uT )). (3)

Clearly, (3) cannot be solved directly because E is a random
variable and, consequently, so is R(E,qT (uT )). This is
addressed in Sec. IV.

IV. MI-UCB FOR COORDINATION

In this section, we derive a surrogate acquisition function,
MI-UCB, by analysing the effect of improvement in environ-
mental knowledge on the estimated reward. Then, we present
an online planning framework for scout–task coordination.

A. Mutual-Information Upper Confidence Bound (MI-UCB)
We cannot solve (3) directly as E and R(q(u), E) are ran-

dom variables that must be estimated. A common approach
is to pose an expectimax problem based on current belief:

u∗ = argmax
u

E
E∼P(E)

R(E,qT (uT )). (4)

However, this does not show how, or why, the scout robots
can coordinate because neither the measurements yS , nor the
state or control, qS or uS , respectively, appear in (4).

To consider the effect of measurements obtained by the
scout robots, we consider maximising the posterior expected
reward given measurements:

u∗ = argmax
u

E
E∼P(E|yS)

R(E,qT (uT )). (5)

While (5) incorporates the effect of measurements, we can-
not solve it directly because the measurements yS remain
random variables that have not been sampled. One may
take an expectation over possible measurements similar to
a partially observable Markov decision process approach
[29], but the fundamental challenge of enumerating possible
measurements over possible trajectories remains.

Our finding is that we can solve (5) using the principle
of optimism under uncertainty, by deriving a UCB on the
posterior expected reward. The exact statement is:

Theorem 1 (MI-UCB). Suppose R(E,qT ) is a measurable
function of E for all qT . With probability ≥ 1− δ:

E
E∼P(E|yS)

[R(E,qT )] ≤

1

δ
I(yS ;E) + logE[expR(E,qT ))].

(6)

Most importantly, the UCB on the RHS of (6) decou-
ples scout- and task-only robots because it separates in-
formation gain and reward into a weighted sum. The term
logE[expR(E,qT (uT ))] is called the cumulant generating
function (CGF) in probability theory. for which analytical
expressions are often available. It is also important to note
that the posterior expected reward on the left-hand side of
(6) cannot be calculated before taking the measurement,
while the UCB on the right-hand side may be calculated
beforehand.

Theorem 1 is proved by evaluating how the change from
P(E) to P(E | yS) affects the estimated reward, as captured
by the seminal result of Donsker & Varadarhan [30–32]:

Lemma 1 (Change of measure inequality). Given any mea-
surable function φ on X and any two distributions P and Q
on X , we have:

E
x∼P

[φ(x)] ≤ DKL(P | Q) + log E
x∼Q

[expφ(x)]. (7)

Proof of Theorem 1. Consider the change of measure in-
equality between P(E | yS) and P(E):

E
E∼P(E|yS)

[R(E,qT )] ≤DKL(P(E | yS) | P(E))

+ logE[expR(E,qT )].
(8)

Applying Markov’s inequality over yS to the KL divergence
term yields the claimed result.

B. Online Planning

Based on the UCB in Theorem 1, our online planning
framework solves the following surrogate problem:

u∗ = argmax
u

I(E;yS) + δ logE expR(E,qT (uT )). (9)

The principle of optimism under uncertainty [33] asserts that
maximising the UCB (9) maximises the reward function (5)
when evaluated in hindsight. This is known as a no-regret
bound.

The online-planning framework cycles between updating
the belief P(E) and maximising the MI-UCB (9). For this
purpose, we use Dec-MCTS [7], a decentralised multi-robot
planning algorithm that extends the well-known MCTS. As
we do not modify Dec-MCTS except the objective function,
we only give a brief description – interested readers are
referred to [7].

In Dec-MCTS, each robot maintains a probability dis-
tribution over the control sequences u of the entire team.
Other robots’ distributions are updated asynchronously via
communication, while each robot’s own distribution is up-
dated via single-robot MCTS iterations. The single-robot
MCTS iterations generate rollout trajectories for a single
robot, and evaluates the objective function (9) with other
robots’ trajectories fixed at a random sample drawn from
the probability distribution maintained.

Hence, the combination of MI-UCB and Dec-MCTS can
solve any instance of the scout-task coordination problem in
a decentralised manner as long as the MI-UCB (9) can be
computed given the control sequences u of the entire team.



As distribution updates are asynchronous by design, Dec-
MCTS is robust against delays, and thus permits multi-hop
communication.

V. APPLICATION IN MULTI-DRONE SURVEILLANCE

We apply MI-UCB to a multi-drone surveillance problem
in which the task is to maximise the number of confirmations
of an unknown number of targets at unknown locations. Task
drones are equipped with short-range sensors only, and scout
drones are equipped with long-range sensors that can rapidly
provide knowledge about the environment. Drones may also
be dual-equipped (i.e., they may be scout-and-task drones).

A. Reward Function

We represent the targets in a 2D occupancy grid, so that the
environment is a Boolean matrix E ∈ BNX×NY , where NX

and NY are the number of cells in the X and Y directions,
respectively. E(i, j) = 1 means cell (i, j) is occupied by a
target, and 0 indicates otherwise.

We model the visibility of cell (i, j) from robot r at time
t as a Bernoulli random variable vrt (i, j;q

r
t ) ∈ B:

vrt (i, j;q
r
t ) ∼ P(vrt (i, j) | qr

t ). (10)

The visibility over a trajectory qr is a disjunction
vr(i, j;qr) = ∨tvrt (i, j;qr

t ). Similarly for the visibility over
different robots, v(i, j;q) = ∨rvr(i, j;qr). Robot r ∈ T
confirms a target at cell (i, j) iff the target exists and may
be sensed. The reward is the number of targets confirmed:

R(qT (uT ), E) =
∑
ij

(vrt (i, j;q
T (uT ))E(i, j)). (11)

The reward function (11) is a sum of Bernoulli random
variables, which is in turn a Poisson binomial random
variable. Its CGF is given by:

log E
E∼P(E)

expR(qT (uT ), E)

=
∑
ij

log(1 + P(d(i, j;qT (uT )))(e− 1)),
(12)

where P(d(i, j;qT (uT ))) = P(v(i, j;qT (uT )))P(E(i, j)).

B. Belief Update and Information Gain

We use a simple grid-based filter for decentralised data
fusion of E. With the standard independence assumption,
the belief over target occupancy decomposes as:

P(E) =
∏
i,j

P(E(i, j)). (13)

When a target is visible, a scout robot can measure its
position. We adopt the inverse sensor model [34] approach to
discretise the measurements and represent the measurement
as a matrix of Bernoulli random variables:

P(yr
t (i, j) | E(i, j),qr

t ) =

vrt (i, j;q
r
t )P(yr

t (i, j) | E(i, j)).
(14)

The sensor model P(yr
t (i, j) | E(i, j)) is given by a

confusion matrix between true and measured occupancy.

Each scout robot communicates its position and detected
target locations (if any) at regular intervals. Measurements
are fused with Bayes’ rule:

P(E(i, j) | yr
1:t(i, j)) =

(
(1− vrt (i, j; qrt ))

+vrt (i, j; q
r
i )
P(yr

t (i, j) | E(i, j),yr
1:t−1(i, j)

P(yr
t (i, j) | yr

1:t−1(i, j)

)
×P(E(i, j) | yr

1:t−1(i, j)).

(15)

Information gain may be calculated as follows. For each
cell, the information gain is:

I(E(i, j);yr
t (i, j))) =

H(P(yr
t (i, j)))− E

E(i,j)
H(P(yr

t (i, j) | E(i, j))), (16)

where H(p) is binary entropy and P(yr
t (i, j)) =

EE(i,j) P(yr
t (i, j) | E(i, j)). The information gain is

summed over the visible region:

I(E;yr
t ) =

∑
ij

v(i, j;q(u))I(E(i, j);yr
t (i, j))). (17)

VI. RESULTS

We analyse the performance of MI-UCB in the context of
the multi-drone surveillance problem. We first compare its
performance in terms of ground-truth reward with that of a
conventional expectimax approach in a simplified simulation.
We then demonstrate the framework in two realistic simu-
lated environments to examine the behaviour of MI-UCB in
practical applications.

A. Comparison with Expectimax

We first compare the MI-UCB approach with the standard
expectimax approach. Here, expectimax refers to maximising
the expected reward, given the current belief at each stage,
without accounting for information gain.

The comparison is set in the environment shown in Fig. 3a,
where known obstacles and unknown targets are shown in
black and yellow, respectively. The task is to confirm targets
within a given radius of a robot representing its task sensors’
field of view. A scout robot may also reveal knowledge about
the environment using longer-range sensors.

There are two robots: red and green. To make the com-
parison fair, the red robot is a scout-and-task robot, while
the green robot is task-only. Thus, both are task robots, so
the expectimax approach can generate a meaningful plan for
each. If one robot were to be scout-only, the expectimax
approach would not generate a plan for it, unlike MI-
UCB (Sec. IV). Intuitively, the expectimax approach simply
reacts to the updates in belief, while MI-UCB accounts for
information gain associated with the belief update.

The robots start with a uniform prior; and the robots’
trajectory length for each time step is fixed at 2.5 m. Each
robot updates its environment belief after executing one time
step and re-plans its trajectory. We measure the performance
in terms of the fraction of targets confirmed in simulation
runs with the MI-UCB or expectimax approach generating



(a) Ground truth (b) Percentage of targets confirmed.

(c) MI-UCB (d) Expectimax

Fig. 3. Comparison between MI-UCB and expectimax in a simplified
scenario. A robot confirms a target (yellow) if it is within the circle
representing its target sensors’ field of view (red for a scout-and-task drone
equipped with target and long-range sensors and green for a task-only
drone, equipped only with task sensors). The colourmap shows the belief
on target occupancy (increasing from blue to yellow), while black areas
indicate obstacles and yellow-green areas are yet to be explored. MI-UCB
(c) outperforms expectimax (d), because the former accounts for the fact
that the red robot can provide greater information gain than the green robot.

the robots’ trajectories, while randomising the environment
by placing (three) targets in different locations for each run.

Combined results for ten runs of each simulation, provided
in Fig. 3b, demonstrate that the MI-UCB approach outper-
forms the expectimax approach by ∼ 50% in terms of the
median fraction of targets confirmed. Examples that illustrate
this trend are shown in Figs. 3c and 3d. In Fig. 3c, it may be
observed that MI-UCB causes the red scout-and-task robot to
(in effect) ‘delegate’ the task of confirming the target in the
centre of the environment to the green task-only drone, unlike
the expectimax approach used to generate the results shown
in Fig. 3d. This is because information gain is considered
in MI-UCB. Therefore, the team can maximise its utility if
the red robot continues to explore and gather information,
while the green robot confirms the target. In contrast, in the
expectimax approach, there is no incentive to do so; and the
red scout-and-task robot, being closer, confirms the target in
the centre. The higher variance of the MI-UCB approach is
attributed to its optimism and shows that the upper limit of
attainable reward is increased by valuing exploration.

We verify this trend in comparative performance with a
four-robot experiment. As before, all drones are task drones,
but the number of scout-and-task drones is varied from one
to four. We fix the number of time steps and evaluate the
reward per unit distance travelled by the drones in five runs

(a) Reward per unit distance (b) Performance improvement

Fig. 4. (a) Reward obtained with MI-UCB (green) and expectimax (red) as
a function of the number of scouts in the four-robot scenario. (b) MI-UCB
provides the most benefit compared with expectimax with two scouts, an
improvement of 134%, and converges to equivalence with expectimax when
four scouts are used.

for each approach, with five randomly placed targets.
As illustrated in Fig. 4, when there are fewer scout drones,

MI-UCB provides greater performance benefit compared
with expectimax; however, when all drones are scout-and-
task drones, the approaches yield identical rewards. This
implies that MI-UCB makes better use of limited information
to provide consistent reward values with varying team com-
position. The performance improvement plateaus with two
scouts, as shown in Fig. 4b, motivating the question of what
team composition is optimal for a given problem.

B. Practical Demonstrations

We demonstrate multi-drone surveillance in two realistic
simulation environments. To examine practical efficacy, we
perturb the problem from the ideal by varying the belief over
time, introducing obstacles with simultaneous mapping, and
emulating sensor failure.

We implement the multi-drone surveillance framework in
performant software based on the Robot Operating System
[35]. Each drone builds its own map using Real-Time
Appearance-Based Mapping [36]; and the maps are com-
bined to achieve inter-robot localisation and decentralised
mapping. We defer the description of the mapping framework
to a future work. The grid-based filter for target estimation
is implemented by use of the grid map library [37].

The quadrotor simulation is based on the PX4 software-
in-the-loop simulation [38], coupled with a modified version
of the Modular Open Robotics Simulation Engine [39]. The
simulation is distributed over two desktop computers, each
equipped with an NVIDIA RTX2060 graphics card. The
computations for each drone are executed in real-time on
an NVIDIA Jetson AGX single-board computer.

We first demonstrate the framework with four drones in
the environment pictured in Fig. 5a. It is based on an urban
area near Roma St. Station, Brisbane, Australia. The 3D
model is generated by use of high-altitude photogrammetry
and contains a mixture of open and cluttered terrain.

Figs. 5b–5d show the target occupancy belief held by the
green scout-and-task drone, as well as its intent. A target
is identified at the start of the operation and is confirmed
by the blue task drone (Fig. 5b). The yellow task drone



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Simulation results in the Brisbane (a) and Point Cook (e) environments. Time runs horizontally. Red spheres are targets yet to be confirmed. They
turn green after confirmation. The grey colourmap shows the robot’s belief over target occupancy.

confirms another target in the upper-middle portion of the
environment, where a parking lot is located. This behaviour
is consistent with the simplified simulation, in which, when
cued by a scout drone, a task drone undertakes the task
instead, distributing the exploration–exploitation workload.

Throughout the mission, the blue and yellow (task) drones
focus on smaller, geometrically complex areas (around the
tall building and the parking lot), while the red and green
scout-and-task drones jointly cover a larger area above the
train tracks. This demonstrates MI-UCB’s inheritance from
and generalisation of heterogeneous information gathering.

The difference between the two approaches is that MI-
UCB results in all targets eventually being confirmed, thus
completing the intended task. A heterogeneous information-
gathering approach would accept the long-range sensor’s
coverage of a target and not require that a short-range sensor
capture it. On the other hand, our decision-making under
uncertainty approach allows the practitioner to specify that
confirmation by a task drone is imperative. This provides
great flexibility, as one can easily replace the task of visual
confirmation with, e.g., payload delivery or casualty evacu-
ation, each of which requires proximity.

We also demonstrate the framework in the environment
shown in Fig. 5e, which is modelled on RAAF Base Point
Cook, Australia. The environment is prepared by modelling
the buildings from a satellite image. It creates an interesting
scenario for low-altitude operations because of the alleyways
and corners that limit full visibility. In this simulation, we
emulate perception failures to examine their effect on the

performance of the algorithm. For example, in Fig. 5f, the
blue scout-and-task drone has confirmed a target, but that is
not reported to the other drones; while in Fig. 5g, the same
occurs with yellow drone. Despite these unmodelled failures,
the algorithm adapts to the change and successfully confirms
all targets eventually, as illustrated in Fig. 5h.

VII. CONCLUSION

We presented a framework for coordinating a scout–task
robot team undertaking exploration and exploitation simul-
taneously and synergistically. This behaviour is enabled by
MI-UCB, a novel upper confidence bound that leads to
increased task performance in hindsight compared to simply
maximising the expected reward given the current belief.
The generality and simplicity of MI-UCB motivates not
only complex problems such as temporal-logic synthesis
[6, 40, 41], but also new fundamental questions in multi-robot
coordination. Given a problem instance, can we postulate
an optimal composition of scout and task robots? Can the
composition be adapted dynamically depending on the task
at hand? These types of coordination problems have many
practical applications in areas such agriculture, infrastructure
monitoring, construction, marine robotics, and others where
there is value in collecting detailed observations of objects
of interest that are distributed within the environment at
unknown positions.
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