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Estimation of Spatially-Correlated Ocean Currents from
Ensemble Forecasts and Online Measurements
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Abstract— We present a method to estimate two-dimensional,
time-invariant oceanic flow fields based on data from both
ensemble forecasts and online measurements. Our method pro-
duces a realistic estimate in a computationally efficient manner
suitable for use in marine robotics for path planning and related
applications. We use kernel methods and singular value decom-
position to find a compact model of the ensemble data that is
represented as a linear combination of basis flow fields and that
preserves the spatial correlations present in the data. Online
measurements of ocean current, taken for example by marine
robots, can then be incorporated using recursive Bayesian
estimation. We provide computational analysis, performance
comparisons with related methods, and demonstration with
real-world ensemble data to show the computational efficiency
and validity of our method. Possible applications in addition to
path planning include active perception for model improvement
through deliberate choice of measurement locations.

I. INTRODUCTION

Estimates of ocean current are critical for many applica-
tions of marine robots, particularly in supporting autonomous
mobility. However, currently available ocean forecast data
is in a form that is not directly compatible with existing
planning algorithms, and is difficult to update using online
sensor measurements. We are interested in exploiting robots’
ability to take measurements of ocean current online as a way
to augment forecast data in order to produce realistic flow
field estimates in probabilistic form. Real-time estimates are
relevant to marine robotics, and potentially also to marine
science and related disciplines.

Forecast data from organisations such as the Australian
Bureau of Meteorology (BOM) are often produced using
ensemble forecasting, where a set (or, ensemble) of predicted
flow fields is generated from a range of initial conditions.
While none of the ensemble members themselves are likely
to be exactly correct, the ensemble as a whole tends to
contain instances of largely similar flow patterns (Fig. 1).
Measurements taken by sensing systems could help to reduce
uncertainty by observing true flow conditions locally.

The ensemble format is awkward for robotics applica-
tions because planning algorithms typically assume a single
probabilistic environment model, as opposed to a set of
predictions [1, 2]. Ensemble forecasting models flow fields
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Fig. 1. Subsampled ensemble flow field data from the Australian Bureau
of Meteorology (BOM) off the coast of New South Wales, Australia. This
ensemble forecast consists of NE = 96 flow fields, each predicting ocean
surface conditions for 16th November 2018. One of the 96 flow fields is
shown in black, whilst others are shown in grey.

by incorporating information including temperature, salin-
ity, and the application of Navier-Stokes equations. The
challenge in producing a single model is how to distil the
information contained in the ensemble in a way that captures
uncertainty and that preserves spatial correlations seen in the
ensemble data.

In this paper, we present a novel estimation method that
produces a single probabilistic model using kernel methods
and singular value decomposition (SVD). Intuitively, we find
a set of basis flow fields and identify a compressed model,
represented as a linear combination of these basis flows, that
enforces spatial correlations found in the ensemble data. This
compact representation is key to achieving computational
efficiency. Then, we use a recursive Bayesian estimator to
efficiently integrate online measurements.

We present the details of our method in the case of two-
dimensional, time-invariant flows and provide computational
analysis. Performance comparisons with the incompressible
Gaussian process (GP) and kernel observer methods high-
light the computational advantages of our method empiri-
cally. Further, we demonstrate the behaviour of our method
using ensemble data from the Australian BOM. The results
of this experiment suggest applications of our method in an
active perception context where measurement locations are
intentionally chosen to reduce model uncertainty.
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II. RELATED WORK

The problem of oceanic flow field estimation is certainly
not new. Indeed, while an ensemble forecast is considered an
input to our problem, the ensemble forecast itself (e.g. [3, 4])
is used to aid human meteorological forecasters in estimating
atmospheric and oceanic conditions. Since an ensemble com-
prises many estimates, the use of filters has been previously
proposed to give a single estimate of the most likely flow
field. The ensemble Kalman filter [5, 6] is an extension of
the celebrated Kalman filter [7] which uses the sample co-
variance of ensemble forecasts; additionally, particle filtering
methods which do not depend on Gaussian assumptions
have also been proposed for use with ensembles [8, 9].
However, direct implementation of these filters often requires
copious amounts of computation power, due to their high
dimensionality.

Another tool used for oceanic flow field estimation is the
Gaussian process (GP), also known as “kriging”. A special
GP formulation for oceanic flow field estimation has been
proposed that imposes an incompressibility constraint, giving
it faster convergence compared to a standard radial basis
function kernel [10]. A closely related class of approaches is
the kernel observer [11–13], which constructs an observer on
the latent state of a kernel model. The use of these methods
on an ensemble forecast has not been studied, however;
typically kernel observers make use of a single dataset. Our
method can be considered an extension of the kernel observer
method which makes use of ensemble forecasts as a valuable
prior, resulting in a lower-dimensional latent state and faster
convergence rates.

Another related family of methods is based on the dy-
namic mode decomposition (DMD), which also has not
been applied for ensemble data. DMD-based methods also
seek to obtain a low-dimensional latent state with linear
dynamics, and have been used successfully to represent
dynamics of periodic fluid flows (e.g. [14]). Furthermore,
the use of an observer on the “DMD latent state” has been
investigated for fluid flow estimation [15, 16], and other time-
series data [17], but not ensemble data. Our approach extends
upon “DMD observer” idea by using a kernel embedding
to enforce incompressibility, which is a common model for
ocean currents (e.g. [18, 19]), and has been shown to improve
error and convergence rate of a GP in real-world 2D oceanic
flow fields [10].

In summary, the approach proposed in this paper can be
seen as a novel combination of kernel methods, the SVD,
and an observer for use with ensemble forecasts. It can be
seen as a unification of the kernel observer with the “DMD
observer”. Additionally, the proposed method leverages an
ensemble forecast as a prior, leading to fast convergence to
accurate estimates compared to these existing methods.

III. PROBLEM FORMULATION AND APPROACH

We consider time-invariant ensemble forecasts on a com-
pact subset of two-dimensional space R2. An ensemble
forecast E, common in meteorological weather prediction,
is a set of NE ensemble members ei ∈ E. Each of the

ensemble members ei is deterministically generated using
slightly different initial conditions which result in different
sets of flow vectors, representing multiple predictions of
the ocean current velocities at a discrete set of NV loca-
tions Xens ⊂ R2. Each ensemble member is such that ei =
{zi,1, · · · , zi,NV

} where zi,j = [ui,j , vi,j ]
> is a flow vector

for i-th ensemble member at position xj ∈ Xens.
A set of NK measurements, denoted as Z, is taken at a set

of positions Xmea. While the positions are fully-known, each
measurement z̃k ∈ Z at xk ∈ Xmea is subject to Gaussian
noise, such that

z̃k = ftru(xk) + nk, (1)

where ftru : R2 → R2 is the true, continuous, unknown flow
field and nk ∼N(02,Σmea) is the i.i.d. measurement error
with covariance Σmea ∈ R2×2.

We aim to estimate the continuous flow field f̂ : R2 → R2

given the ensemble forecast E and a set of measurements Z.

Problem 1. Given a finite set of NK noisy measure-
ments z̃k ∈ Z, at locations xk, find a continuous flow field
f̂ that minimises

f̂∗ = argmin
f̂∈C∞(x)

NK∑
k=1

∥∥∥z̃k − f̂(xk)
∥∥∥2
2
. (2)

However, (2) is severely underdetermined; additional prop-
erties must be imposed to constrain the problem. The main
desirable property of f∗ is to preserve spatial correlation (i.e.
flow patterns) within the ensemble E.

A. Approach overview

Our proposed approach solves Prob. 1 with the property
that f̂∗ preserves the spatial correlations in E. To do this, we
propose to construct f̂∗(x) using a basis H : R2 → R2×NW

and weight vector w ∈ RNW :

f̂∗(x) = H(x)w, (3)

where x = [x, y]> is a location.
Our approach is to choose H(x) based on the ensemble

data E, and to choose w based on online measurements Z.
Choosing H(x) in this way ensures that the “flow pat-
terns” (i.e. spatial correlations) of the resulting f̂ are consis-
tent with the ensemble data E. Additionally, this constrains
the valid solutions to be in the span of H(x), excluding
many spurious solutions allowed by (2), and hence aiding
the ill-posedness of the problem.

We propose a two-stage estimation framework consisting
of offline and online components. In our approach, since
H(x) does not depend on Z, it can be computed offline. The
basis H(x) is chosen based on the ensemble forecast E and
an additional incompressibility prior. The online component
uses a recursive filter to iteratively update w since the
measurements are often sequential.



IV. FLOW FIELD REPRESENTATION

In this section, we describe the offline part of the proposed
algorithm, comprising two steps: “regression” and “compres-
sion”. Firstly, we model each of the NE ensemble members
resulting in continuous and incompressible representations of
the ensemble flow fields encoded in latent states. Then, we
extract the flow patterns from E with the SVD to construct
a basis H(x) that preserves spatial correlations in E.

A. Flow field regression via kernel embedding

Existing work [10, 12, 13] have successfully used kernel
functions to represent flow fields in the past. The incompress-
ible kernel [10] has recently been shown to be an apt descrip-
tion of smoothness and incompressibility of physical 2D flow
fields. The incompressible kernel K : R2 ×R2 → R2×2 can
be expressed as

K(x,x′) = D(x)k(x,x′)D (x′)
>
, (4)

where D(x) =
[
∂
∂y − ∂

∂x

]>
, and k : R2 ×R2 → R is an

“inner” kernel function describing how the flow vectors are
expected to be given their proximity. Given prior knowl-
edge of the underlying function, an appropriate inner kernel
function can be chosen, which can lead to more accurate
modelling and better convergence properties.

The Gram matrix K(X,X ′) is defined with NP posi-
tions xi as columns of X ∈ R2×NP and NQ positions x′j
as columns of X ′ ∈ R2×NQ :

K(X,X ′) = [Ki,j ] ∈ R2NQ×2NP , (5)

where Ki,j = K(xi,x
′
j). Then, given ensemble data

positions Xens = [x1, · · · ,xNV
] and any spatial loca-

tion x ∈ R2, the latent state vector β ∈ R2NV encodes the
flow vector f̂(x) at x via

f̂(x) = K(x,Xens)β. (6)

For fixed β, evaluating all x ∈ R2 using (6) results in a
continuous 2D flow field f̂(x) that is incompressible. Then,
for each ensemble member ei ∈ E, the latent state βi is
chosen by

βi = argmin
β

‖ηi −K(Xens,Xens)β‖22 , (7)

where ηi is the vectorised form of ensemble member ei, such
that ηi = [ui,1, vi,1, · · · , ui,NV

, vi,NV
]>.

In our approach, the estimated flow field is refined by
adjusting values in the latent state representation. Our choice
of the kernel function K ensures that the resulting flow field
is always incompressible.

B. Model compression by SVD

In (6), K could be considered a candidate H(x). How-
ever, it would not preserve the spatial correlations in E.
This subsection addresses the construction of a H(x) so
that the spatial correlations are preserved via the SVD.
This admits a lower-dimensional representation of f̂ by
additionally constraining f̂ at Xens to be in the span of E,
hence the name “compression”.

(a) Ensemble member
η1 (b) Basis flow singular values

(c) K(Xens,Xens)u1 (d) K(Xens,Xens)u2 (e) K(Xens,Xens)u3

Fig. 2. Model compression for ensemble flow field models. (b) shows the
singular values in descending order. (c-e) shows the three most significant
basis flow fields which can be used to reconstruct the flow field in (a).

First, the latent states of the ensemble members are
concatenated for the latent matrix B ∈ R2NV ×NE

B =
[
β1 β2 · · · βNE

]
. (8)

Then the thin SVD provides the compact representation:

B = UΣV H , (9)

where (·)H is the conjugate transpose operator. Since the
number of ensembles is typically much less than that of
the variables in the latent state (NE � 2NV ), the left-
singular vector U ∈ R2NV ×NE is rectangular whilst the
right-singular vector V ∈ RNE×NE and the diagonal ma-
trix Σ ∈ RNE×NE of singular values σi are square.

The columns of U are referred to as the latent state
components ui, and corresponds to the latent states of the
basis flow fields. The singular values σi can be interpreted
as the significance of the basis flow fields in the ensemble.
The columns of V describe the relative contribution of basis
flow fields for the corresponding ensemble flow field.

The weight matrix W ∈ RNE×NE is defined as

W = ΣV H , (10)

the columns of which are weight vectors wi ∈ RNE . The
basis H can now be defined as

H(x) = K(x,Xens)U . (11)

The basis flow fields can be visualised by plotting H(x)
using only one latent state component ui instead of U .
Figure 2 shows an example of model compression process
using an ensemble consisting of flow fields similar to the one
shown in Fig. 2a. The ensemble data example can largely be
represented with the three basis flow fields (Fig. 2c-e), with
the three largest singular values.

We can choose to represent the flow field with NW ≤ NE
weights by keeping only the highest NW singular values
of the SVD and the corresponding columns of U and V .
In particular, choosing NW < NE effectively ignores the
effects of basis flow fields that vary less in the ensemble.



(a) k = 0 (b) k = 1

Magnitude error (m/s)

(c) k = 2

Fig. 3. Estimated flow fields after k measurements. The estimated flow field (purple) quickly converges to the true flow field (black) after a few
measurements. The red heatmap shows the magnitude flow field error across space. Measurements are shown as circled brown arrows.

V. ONLINE FLOW FIELD ESTIMATION

In the previous section, we described the offline stage of
our approach, representing a flow field as a weight vector w
with each weight corresponding to the basis flow fields of
the ensemble data. In this section, we propose a process to
incorporate information from noisy online measurements to
improve estimation accuracy by recursively updating w given
an initial estimate of the flow field.

Despite being static in this paper, we model the true flow
field as a degenerate discrete-time linear dynamical system,
which can easily be extended for use in the time-varying
case. The process and measurement models of the true flow
field are

wk = Awk−1 (12)
zk = H(xk)wk + nk, (13)

where A = INW×NW
is the state transition model for the

static flow field, and nk ∼N(02×1,Σmea) is the i.i.d. mea-
surement error with covariance Σmea. The Kalman filter [7]
is employed as it is the optimal estimator for measurements
with Gaussian noise [20]; the Kalman filter equations are
well-known (e.g. [21]) and are omitted for brevity.

As a recursive estimator, the Kalman filter needs to be
initialised with some estimate. The columns of the weight
matrix W are the weight vectors that correspond to each
ensemble flow field, so an estimate can be obtained by
aggregating them. An initial estimate weight vector ŵ0 and
its covariance P 0 ∈ RNW×NW is defined as the row-wise
mean and the diagonal matrix of row-wise variances of the
weight matrix W .

Figure 3 shows an example of the estimated flow fields
after k measurements. The rapid convergence to the true flow
field can be attributed to a good initial estimate from the
ensemble data, and well-placed measurements.

VI. ANALYSIS

Assuming that the environment is large, the number
of ensemble positions NV is greater than the number of
ensemble members in E (i.e. NE � NV ). Under this
assumption, we demonstrate the worst-case computation time
complexity in Table I for our framework as well as for kernel

TABLE I
COMPUTATIONAL COMPLEXITY OF COMPARED APPROACHES

Initialise Update Query
KO O

(
N3

V

)
O
(
N3

V

)
O (NV )

GP O (NV ) O (1) O
(
(NK +NV )3

)
LS O

(
N3

V

)
O
(
N3

W +NKN
2
W

)
O (NV NW )

Ours O
(
N3

V

)
O
(
N3

W +NV NW

)
O (NV NW )

observer (KO) [12], Gaussian process (GP) [10], and least
squares regression (LS) methods.

The kernel observer approach is proposed to estimate a
time-varying latent state with very few measurements. For
comparison, in the time-invariant case with ensembles, we
adapt the framework by setting the transition operator to
the identity, and initialising its estimate with the ensemble
latent states. This adaptation is identical to our approach
up to forming the latent matrix in (8), after which the
mean and variance of B is used to initialise their Kalman
filter. The GP approach utilises a kernel that allows for
an estimate of incompressible flow fields from flow vector
measurements and is adapted for use with ensembles by
finding the set of flow vector mean and covariances over
individual ensemble positions Xens, which is then added
as prior flow field measurements. Whilst the Kalman filter
shares the same estimation performance as least squares,
a least squares variation of our approach is included to
highlight the computational disadvantages in the context of
our problem. A useful aspect of the least squares approach is
that it does not need to be initialised with an estimate. Note
that all the listed approaches generate incompressible flow
fields through the use of the incompressible kernel [10].

In Table I, we have time complexities for three operations:
1) initialise (with ensemble forecast), 2) update where the
estimate f̂ is updated with a single measurement, and 3)
query where a flow vector estimate is queried at an arbitrary
position. The complexities are described with the number of
ensemble positions NV , the number of weights NW , and the
number of accumulated measurements NK .

For those methods with similar steps to our method (i.e.
KO, LS), the time complexity is O

(
N3
V

)
, whereas that for

the GP is O (NV ). This is because the GP computes the flow
field lazily, and just stores the NV aggregated flow vectors
from the ensemble. Ours computes the latent representation



(a) Kernel observer [12] estimate (b) Incompressible GP [10] estimate

Magnitude error (m/s)

(c) Our approach
Fig. 4. Comparison of flow field estimation using equally-spaced measurements (circled brown arrows) from the bottom right to the left. The magnitude
error between the estimated and the true flow field (black) is shown as a red heatmap.

of each ensemble flow field for basis flow field extraction.
The basis flow fields captures the spatial correlations of flow
vectors in the ensemble data. Unlike our method, the GP
loses significant amount of information since it is unable to
capture this spatial correlation.

The complexity for update is also similar among the
KO, LS and our method with two important differences.
Our method reduces the number of estimated variables by
compressing a representation with β to the low-dimensional
representation w, unlike the KO approach where compres-
sion is omitted. Since NW ≤ NE � NV , ours outperforms
the KO even without truncation (i.e. when NW = NE). For
the LS method, one particular implementation is to update
the weight vector after each measurement, which requires
all NK measurements to be considered. This particular
implementation becomes intractable as the number of past
measurements grows large over time. For the GP, the update
is performed by concatenating the new measurement to the
existing set.

For querying a position, the GP method requires an
inversion of the Gram matrix (5) between the positions of
the collected measurements and itself. This is an expensive
operation that is cubic in complexity [22], so as the num-
ber of measurements becomes large, the time complexity
approaches O

(
N3
K

)
.

As a whole, our method directly exploits the incom-
pressible basis flow fields present in the ensemble mem-
bers to fit the weights to the measurements. The compact
representation of flow fields as weights significantly reduce
the time complexities for update and query operations with
compression and truncation. We show that these operations
are not dependent on the number of past measurements. This
is an important property, especially in long-term missions
and closed-loop path planning where a robot continuously
measures the flow field to update its estimate.

VII. EMPIRICAL RESULTS

In this section, we compare the performance of our method
against existing approaches. We show that our method re-
duces the estimation error across the environment while
the existing approaches are limited to the neighbourhood of
measurements. We also empirically validate the theoretical

properties for update and query time. Then, we use real
ensemble forecast provided by the BOM to discuss how
different measurement policies affect the accuracy of flow
estimation. We argue how our method could be implemented
for various planning problems, especially active percep-
tion [23–25], where regular updates with measurements is
necessary. In all demonstrations, we use the incompressible
kernel in (4) with the squared exponential kernel [22]:

k(x,x′) = kSE(x,x
′) = σ2

ker exp

(
‖x′ − x‖22

2`2

)
, (14)

where ` and σker are hyperparameters to be tuned to the flow
field of interest.

A. Estimation comparison with existing approaches

We compare our method against the incompressible GP
(GP) [10], an adaptation of the kernel observer [12] with
Kalman filter (KO), and the least squares implementation of
our method (LS). We synthetically construct an ensemble of
NE = 20 flow fields over NV = 169 positions, shown in
Fig. 4. The true flow field ftru is shown with black arrows.
Starting at x = [6.98,−6.42]>, the vehicle makes a set
of 10 measurements with noise Σmea = 10−3I2×2 that are
2m apart while moving in a straight line. The measurement
positions are shown with brown circles with measurement
vectors as arrows.

In Fig. 4a, the flow field estimate from KO is shown. The
KO method utilises the latent state of the kernel β with
the size of 338 (i.e. 2NV ). We observe large errors; we
suspect that due to the large latent state, the problem is still
underdetermined.

In Fig. 4b, we show the estimates using incompressible
GP [10] over the synthetic ensemble data. The estimation
after the measurements is shown with blue arrows and the
error magnitude is shown in red. As discussed in Sec. VI,
the GP method is unable to make use of all the spatial corre-
lations present in the ensemble resulting in lower sampling
efficiency. As a consequence, the error is only reduced in the
neighbourhood of measurements while the distant regions are
virtually not affected.

The estimates from our method are shown in Fig. 4c.
Using our method, decomposition in Sec. IV found three rep-



(a) Iteration time per measurement (b) Query time per position

Fig. 5. Comparison of mean computational times between the kernel
observer (KO) [12], incompressible Gaussian process (GP) [10], a least
squares (LS) implementation of our approach, and our approach on the
flow field shown in Fig. 4. Values are averaged over 1000 trials, the 99.73%
confidence intervals of which are virtually imperceptible, and are omitted.

resentative basis flow fields. As a consequence, the number of
basis flows can be reduced from 20 (i.e. NE) to 3 (i.e. NW )
after truncation with virtually no degradation in estimation
performance. We show that our method significantly reduces
distant errors, unlike the GP and KO methods. Unlike the KO
method, the number of unknown variables in our approach is
also much smaller (i.e. NW � 2NV ) so less measurements
are required to properly determine the variables. The results
also show that the distant positions from measurements are
well estimated since our method considers spatial correla-
tions in flow fields unlike the GP method.

In Fig. 5, we show how our method scales in the number
of past measurements NK . As claimed in Sec. VI, the update
time shown in Fig. 5a stays almost constant in the number of
measurements except the LS method. It is important to note
that the update time for our method is much lower than the
KO due to our compressed representation (i.e. NW � 2NV ).
Likewise, the query time shown in Fig. 5b stays constant
for our method while it increases for the GP method which
is shown to be O

(
N3
K

)
in Sec. VI. Overall, the empirical

comparison shows that our method scales in a suitable way
for applications that take a large number of measurements.

B. Measurement policies in real ensemble flow fields

We show how different measurement policies affect the
estimation performance using our method. We use the ensem-
ble forecast data provided by the BOM where a portion of the
data is shown in Fig. 1. We compare three policies: uniform
where measurement positions are randomly taken, subspace
where measurements are only taken within a subsection with
high uncertainty, and active where measurements are taken
at positions with flow vector high uncertainty.

In Fig. 6, we show the root mean square (RMS) error
with increasing number of past measurements. For reference,
we have the ideal condition where measurements are taken
exactly at ensemble positions Xens such that the the final error
after all measurements is shown with dashed orange line.
Since ground-truth is not known for this forecast data, the
error for each policy is evaluated using leave-one-out cross-
validation (LOOCV) [26], where we initialise the estimates
without one chosen ensemble member and compare the
estimates against that chosen member. We then compute the

Fig. 6. Root mean square (RMS) error from flow field estimation using
different measurement policies using our approach. The flow field is based
on the real ensemble data shown in Fig. 1. The 99.73% confidence intervals
for these errors are shown for each measurement policy.

RMS of the residuals at Xens. For each measurement policy,
a trial is performed once with a fixed random seed. The
RMS error is shown in coloured lines and its 3σ confidence
interval is shown as a shaded band.

The results show that the active policy outperforms all
other policies. It is interesting to observe that the convergence
rate to the ideal is much faster using our approach. The
uniform policy initially underperforms compared to the sub-
space because the subspace policy focuses the measurements
in a region with high uncertainty so its reduction in error is
larger. However, as the number of measurements increases,
the uniform policy starts to outperform the subspace policy.
This is because the subspace policy is constrained to a
small region whereas the uniform policy takes measurements
across the environment.

The policy comparison result indicates that existing path
planning approaches will benefit from our method in that
a carefully-chosen measurement policy will greatly affect
the quality of the estimated flow field which will in turn
affect the quality of the planned path. For example, we can
formulate an active perception problem that involves finding
a set of unknown features over uncertain ocean currents.
Unlike the traditional problems, we do not simply maximise
our information over the features but also over ocean currents
since practical ocean vehicles are typically advected by ocean
currents [1, 27, 28]. Our method is both theoretically and
empirically validated for use in such a problem setting.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have presented a novel algorithm for
ocean flow field estimation. By leveraging ensemble data as
a prior and integrating sequential online measurements, fast
convergence to a good estimate is achieved in synthetic and
real-world conditions.

One limitation is the assumption of time-invariant flows,
but ensemble data is available over large time windows.
Blending dynamic mode decomposition (DMD) approaches
for the corresponding approximate linear dynamical system
could draw out the full potential of our method in the time-
varying case. An interesting immediate application is to
exploit the spatially-correlated probabilistic representation of
the flow field in path planning [29–34] in uncertain flows.
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