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Abstract 
 
This paper presents a new neural network structure and namely node-to-node-link neural network 
(N-N-LNN) and it is trained by real-coded genetic algorithm (RCGA) with average-bound crossover and 
wavelet mutation [12].  The N-N-LNN exhibits a node-to-node relationship in the hidden layer and the 
network parameters are variable. These characteristics make the network adaptive to the changes of the input 
environment, enabling it to tackle different input sets distributed in a large domain.  Each input data set is 
effectively handled by a corresponding set of network parameters.  The set of parameters is governed by 
other nodes.  Thanks to these features, the proposed network exhibits better learning and generalization ab-
ilities.  Industrial application of the proposed network to hand-written graffiti recognition will be presented 
to illustrate the merits of the network. 
 
Keywords: Genetic algorithm, Hand-written graffiti recognition, and Neural network. 
 
1. Introduction  
 
Neural networks can approximate any smooth and con-
tinuous nonlinear functions in a compact domain to an 
arbitrary accuracy [5].  Three-layer feed-forward neural 
networks have been employed in a wide range of appli-
cations such as system modelling and control [5], load 
forecasting [1, 10, 11] prediction [8], recognition [9, 15], 
etc.  Owing to its specific structure, a neural network 
can realize a learning process [5].  Learning usually 
consists of two steps: designing the network structure 
and defining the learning process.  The structure of the 
neural network affects the non-linearity of its in-
put-output relationship.  The learning algorithm governs 
the rules to optimize the connection weights.  A typical 
structure has a fixed set of connection weights after the 
learning process.  However, a fixed set of connection 
weights may not be suitable to learn the information be-
hind the data that are distributed in a vast domain sepa-
rately. 
Traditionally, two major classes of learning rules, 
namely the error correction rules [16] and gradient 
methods [5], were used.  The error correction rules [16], 
such as the α-LMS algorithm, perception learning rules 
and May’s rule, adjust the network parameters to correct 
the network output errors corresponding to the given 

input patterns.  Some of the error correction rules are 
only applicable to linear separable problems.  The gra-
dient rules [5], such as the MRI, MRII, MRIII rules and 
back-propagation techniques, adjust the network pa-
rameters based on the gradient information of the cost 
function.  One major weakness of the gradient methods 
is that the derivative information of the cost function is 
needed, meaning that it has to be continuous and differ-
entiable.  Also, the learning process is easily trapped in 
a local optimum, especially when the problem is multi-
modal and the learning rules are network structure de-
pendent.  To tackle this problem, some global search 
evolutionary algorithms [2], such as the real-coded ge-
netic algorithm (RCGA) [3, 12], is more suitable for 
searching in a large, complex, non-differentiable and 
multimodal domain.  Recently, neural or neural-fuzzy 
networks trained with RCGA are reported [8, 11, 18].  
The same GA can be used to train many different net-
works regardless of whether they are feed-forward, re-
current, wavelet or of other structure types.  This gener-
ally saves a lot of human efforts in developing training 
algorithms for different types of networks. 
In this paper, modifications are made to neural networks 
such that the parameters of the activation functions in the 
hidden layer are changed according to the network in-
puts.  To achieve this, node-to-node links are intro-
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duced in the hidden layer.  The node-to-node links in-
terconnect the hidden nodes with connection weights.  
The structure of the N-N-LNN is shown in Fig. 1.  
Conceptually, the introduction of the node-to-node links 
increases the degree of freedom of the network model.  
It should be noted that the way to realize the 
node-to-node links is also governed by the tuning algo-
rithm.  The resulting neural network is found to have 
better learning and generalization abilities.  The en-
hancements are due to the fact that the parameters in the 
activation functions of the hidden nodes are allowed to 
change in order to cope with the changes of the network 
inputs of different operating sub-domains.  As a result, 
the N-N-LNN seems to have a dedicated neural network 
to handle the inputs of different operating sub-domain.  
This characteristic is good for tackling problems with 
input data sets distributed in a large spatial domain.  In 
this paper, hand-written graffiti recognition (which is a 
pattern recognition problem with a large number of data 
set) is given to show the merit of the proposed network.  
The proposed network is found to perform well experi-
mentally. 
This paper is organized as follows.  The N-N-LNN will 
be presented in section II.  In section III, the training of 
the parameters of the N-N-LNN using RCGA [12] will 
be discussed.  The application example on hand-written 
graffiti recognition system will be given in section IV.  
A conclusion will be drawn in Section V. 
 
2. Node-to-node link neural network model 
 
A neural network with node-to-node relations between 
nodes in the hidden layer is shown in Fig. 1.  An in-
ter-node link with weight im~  is connected from the 
( mdi + )-th node to the i-th node.  Similarly, an in-
ter-node link with weight ir

~  is connected from the 
( rdi − )-th node to the i-th node, i = 1, 2, …, nh..  md  
and rd  are the node-to-node distance, i.e. if md =2, the 
link with weight 3

~m  will be connected from node 5 to 
node 3.  Similarly,   if rd = 3, the link with weight 

6
~r  will be connected from node 3 to node 6.  As a re-
sult, the total number of node-to-node links is 2×nh, 
where nh is the total number of hidden nodes.  An ex-
ample of the node-to-node link connections is shown in 
Fig. 2.  The node-to-node relationship enhances the 
degree of freedom of the neural network model if it is 
made adaptive to the changes of the inputs.  Conse-
quently, the learning and the generalization abilities of 
the N-N-LNN can be increased. 
Fig. 3 illustrates the inadequacy of a traditional neural 
network.  In this figure, S1 and S2 are the two sets of 

data in a spatial domain.  To solve a mapping problem 
using a neural network, the weight of the network can be 
trained to minimize the error between the network out-
puts and the desired values.  However, the two data sets 
are separated too far apart for a single neural network to 
model.  As a result, the neural network may only model 
the data set S (average of S1 and S2) after the training 
(unless we employ a large number of network parame-
ters.)  To improve the learning and generalization abili-
ties of the neural network, the proposed N-N-LNN 
adopts a structure as shown in Fig. 4.  It consists of two 
units, namely the parameters-set (PS) and the 
data-processing (DP) neural networks.  The PS is real-
ized by the node-to-node links which store the parame-
ters (m, r are the parameters which will be described 
later) governing how the DP neural network handles the 
input data.  Referring back to Fig. 3, when the input 
data belongs to S1, the PS will provide the parameters 
(network parameters corresponding to S1) for the DP 
neural network to handle the S1 data.  Similarly, when 
the input data belongs to S2, the DP neural network will 
obtain another set of parameters to handle them.  In 
other words, it operates like two individual neural net-
works handling two different sets of input data.  Con-
sequently, the proposed N-N-LNN is suitable for han-
dling large numbers of data.   
Referring to Fig. 1, [ ])()()()( 21 tztztztz

innL=  
denotes the input vector; nin denotes the number of input 
nodes; t denotes the current input number which is a 
non-zero integer; )1(

ijw , i = 1, 2, …, nh; j = 1, 2, …, nin, 
denote the connection weights between the j-th node of 
the input layer and the i-th node of the hidden layer; nh 
denotes the number of hidden nodes; )2(

kiw , k = 1, 2, …, 
nout; i = 1, 2, …, nh, denote the connection weights be-
tween the i-th node of the hidden layer and the k-th node 
of the output layer; nout denotes the number of output 
nodes.  im~  and ir

~  are the connection weights of the 
links between hidden nodes (there are 2nh inter-node 
links); md  is the node-to-node distance between the 
( mdi + )-th node and the i-th node, rd  is the 
node-to-node distance between the i-th node and the 
( rdi − )-th node.  bk denotes the bias of the output 
nodes; tf1(⋅) and tf2(⋅) denote the activation functions of 
the hidden and output nodes respectively.  

[ ])()()()( 21 tytytyt
outnL=y  denotes the output 

vector.  The input-output relationship of the proposed 
neural network is governed by the following equation: 
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Fig. 5 shows the proposed neuron at node i of the hidden 
layer.  Its output )(⋅

isf is given by 

( ) ( ) ( )( )trtmttftf iiisi

~,~,))(( 1 χ=z , i = 1, 2, …, nh   (2) 
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where im  and ir  are parameters to be trained.  Re-
ferring to Fig. 4, these parameters are stored in the PS. 
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tf2(⋅) can be any commonly used activation function such 
as the purely linear, hyperbolic tangent sigmoid, or loga-
rithmic sigmoid functions [5, 16].  As mentioned ear-
lier, the node-to-node links enhance the degree of free-
dom of the modelled function.  In each neuron of the 
hidden layer, the input from the lower neighbour’s output 
( ( )tmi

~ ) influences the bias term while the input from the 
upper neighbour’s output ( ( )tri

~ ) influences the sharpness 
of the edges of the hyper-planes in the search space.  It 
can be seen from (8) that the proposed activation func-
tion ( )⋅1tf  is characterized by the varying mean ( ( )tmi

~ ) 
and the varying standard deviation ( ( )tri

~ ) respectively.  
Their values will be changed according to changes in the 
network inputs.  Fig. 6 shows that the means control the 
bias while Fig. 7 shows that the standard deviations con-
trol the sharpness.  Referring to Fig. 3, when the input 
data belongs to S1, the corresponding ( )tiχ  will drive 
the other nodes (with ( )mdim −

~  and ( )rdir +
~  ) to manipu-

late the characteristics of the S1 data.  Similarly, when 

the input data belongs to S2, the corresponding ( )tiχ  
will drive the other nodes to handle it accordingly.  Fig. 
8 explains the operating principle of the proposed neu-
ron.  In this figure, P1, P2, and P3 are three sets of input 
patterns.  1r̂P , 2r̂P , and 3r̂P are the inputs from the 
upper neighbour with the corresponding input patterns.  
Similarly, 1m̂P , 2m̂P , and 3m̂P are the inputs from the 
lower neighbour with the corresponding input patterns.  
When the proposed neuron manipulates the input pattern 
P1, the shape of the activation function is characterized 
by 1r̂P  and 1m̂P , and eventually outputs the pattern 
P’1.  Similarly, when the neuron manipulates the input 
pattern P2, the shape of the activation function is charac-
terized by 2r̂P  and 2m̂P .  So, the activation function 
is variable and is dynamically dependent on the input 
pattern.  Hence, the degree of freedom of the modelled 
function is increased.  Comparing with the conventional 
feed-forward neural network, the N-N-LNN should be 
able to offer a better performance.  In the N-N-LNN, 
the values of the parameters )1(

ijw , )2(
kiw , mi, ri, bk, md  

and rd  are trained by an improved RCGA [12]. 
 
 

 
 

Figure 1. Variable node-to-node link neural network. 
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Figure 2. Example node-to-node link connections in the 
hidden layer (number of hidden node = 6, md =2, rd = 3). 

 

 
 

Figure 3. Diagram showing two sets of data in a spatial 
 domain. 
Figure 1.   

 

 
 
 
 
 
 
 

 
 

Figure 4. Proposed structure of the neural network 
 
 

 
 
 
 
 
 
 

 
 

Figure 5. Proposed neuron at node i of the hidden layer. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6. Samples of the activation function ( )⋅1tf  of the 
proposed neuron with different im~  ( 0~ =ir ). 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. Samples of the activation function ( )⋅1tf  of the 
proposed neuron with different ir

~  ( 0~ =im ). 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8. Operating example of the proposed neuron with 3 
set of data patterns for hidden node 5. 
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3. Network parameters tuned by real-coded 
genetic algorithm 
 
In this paper, all parameters of the neural networks are 
trained by the improved RCGA with average-bound 
crossover and wavelet mutation [12].  The RCGA 
process is as follows: First, a set of population of chro-
mosomes P = [P1, P2, …, Ppop_size] is created (where 

sizepop _  is the number of chromosomes in the popu-
lation).  Each chromosome p contains some genes 
(variables).  Second, the chromosomes are evaluated by 
a defined fitness function.  The better chromosomes 
will return higher values in this process.  The form of 
the fitness function depends on the application.  Third, 
some of the chromosomes are selected to undergo ge-
netic operations for reproduction by the method of nor-
malized geometric ranking.  Fourth, genetic operations 
of crossover are performed.  The crossover operation is 
mainly for exchanging information between the two 
parents that are obtained by the selection operation.  In 
the crossover operation, one of the parameters is the 
probability of crossover cµ  which gives us the ex-
pected number of chromosomes that undergo the cross-
over operation.  Crossover operation in [12] is de-
scribed as follows: 1) four chromosomes (instead of two 
in the conventional RCGA) will be generated; 2) the best 
two offspring in terms of the fitness value are selected to 
replace their parents.  The crossover operation is called 
the average-bound crossover (ABX), which combines the 
average crossover and bound crossover.  The average 
crossover manipulates the genes of the selected parents, 
the minimum, and the maximum possible values of the 
genes.  The bound crossover is capable of moving the 
offspring near the domain boundary.  On realizing the 
ABX operation, the offspring spreads over the domain so 
that a higher chance of reaching the global optimum can 
be obtained.  After the crossover operation, the muta-
tion operation follows.  It operates with the parameter 
of the probability of mutation ( mµ ), which gives an ex-
pected number ( ×× pop_sizemµ no_vars) of genes that 
undergo the mutation.  The mutation operation is for 
changing the genes of the chromosomes in the popula-
tion such that the features inherited from their parents 
can be changed.  The mutation operation is called the 
wavelet mutation (WM), which applies the wavelet the-
ory to realize the mutation.  Wavelet is a tool to model 
seismic signals by combining dilations and translations 
of a simple, oscillatory function (mother wavelet) of a 
finite duration.  The wavelet function has two proper-
ties: 1) the function integrates to zero, and 2) it is square 
integrable, or equivalently has finite energy.  Thanks to 
the properties of the wavelet, the convergence and solu-
tion stability are improved.  After going through the 
mutation operation, the new offspring will be evaluated 

using the fitness function.  The new population will be 
reproduced when the new offspring replace the chromo-
somes with the smallest fitness value.  After the opera-
tions of selection, crossover and mutation, a new popula-
tion is generated.  This new population will repeat the 
same process iteratively until a defined condition is met.   
One superior characteristic of RCGA is that the detailed 
information of the nonlinear system to be optimized, e.g. 
the derivative of the cost function, need not been known.  
Hence, RCGA is suitable for handling complex optimi-
zation problems.  In this paper, RCGA is employed to 
optimize the fitness function characterized by the net-
work parameters of the N-N-LNN.  The fitness function 
is a mathematical expression that quantitatively measures 
the performance of the RCGA tuning process.  A larger 
fitness value indicates a better tuning performance.  By 
adjusting the values of the network parameters, the fit-
ness function is maximized (the cost value is minimized) 
based on the RCGA.  During the tuning process, off-
spring with better fitness values evolve.  The mutation 
operation will contract gradually with respect to the it-
eration number.  After the tuning process, the obtained 
network parameter values will be used by the proposed 
neural network.  As the proposed neural network is a 
feed-forward one, the outputs are bounded if its inputs 
are bounded, which happens for most of the real-life ap-
plications.  Consequently, no convergence problem is 
present for the neural network itself. 
 The input-output relationship of the proposed 
N-N-LNN can be described by, 

( ))()( tgt dd zy = , t = 1, 2, …, dn .,         (9) 

where [ ])()()()( 21 tztztzt d
n

ddd
in

L=z and 

[ ])()()()( 21 tytytyt d
n

ddd
out

L=y  are the given in-
puts and the desired outputs of an unknown nonlinear 
function )(⋅g  respectively; dn  denotes the number of 
input-output data pairs.  The fitness function of the 
RCGA depends on the application.  The most common 
fitness function is given by, 

err
fitness

+
=

1
1 ,         (10) 

where err is the error. 
The objective is to maximize the fitness value of (10) 
(minimize err) using RCGA by setting the chromosome 

to be ( ) ( )[ ]rmiikkiij ddrmbww 21  for all i, j 
and k.  The range of the fitness value of (10) is (0,1].  
After training, the values of these network parameters 
will be fixed during the operation.  The total number of 
tuned parameters ( paran ) of the proposed N-N-LNN is 
the sum of the number of parameters between the input 
and hidden layers, the number of parameters between the 
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hidden and output layers, and the number of parameters 
for im , ir , md , rd .  Hence, 

( ) ( )221 ++++= hhouthinpara nnnnnn , 

( ) 22 ++++= outhoutin nnnn         (11) 

 
4. Industrial application and results 
 
In this section, industrial application example will be 
given to illustrate the merits of the proposed network.  
The application is on hand-written graffiti recognition.  
A hand-written graffiti pattern recognition problem is 
used to illustrate the superior learning and generalization 
abilities of the proposed network on a classification 
problem with a large number of input data sets.  In gen-
eral, the neural network approaches are model-free.  
Different kinds of neural model applied for hand-written 
recognition system are reported in [2, 4, 7, 13, 15]. 

4.1. Neural network based hand-written graffiti 
recognition system 

In this example, the digits 0 to 9 and three control char-
acters (backspace, carriage return and space) are recog-
nized by the N-N-LNN.  These graffiti are shown in 
Fig. 9.  A point in each graffiti is characterized by a 
number based on the x-y coordinates on a writing area.  
The size of the writing area is xmax by ymax.  The bottom 
left corner is set as (0, 0).  Ten uniformly sampled 
points of the graffiti will be taken in the following way.  
First, the input graffiti is divided into 9 uniformly dis-
tanced segments characterized by 10 points, including 
the start and the end points.  Each point is labeled as (xi, 
yi), i = 1, 2, …, 10.  The first 5 points, (xi, yi), i = 1, 3, 5, 
7 and 9 taken alternatively are converted to 5 numbers zi 
respectively by using the formula zi = xixmax+ yi.  The 
other 5 points, (xi, yi), i = 2, 4, 6, 8 and 10 are converted 
to 5 numbers respectively by using the formula zi = yiy-
max+ xi.  These ten numbers, zi, i = 1, 2, …, 10, are used 
as the inputs of the proposed graffiti recognizer.  The 
hand-written graffiti recognizer as shown in Fig. 10 is 
proposed.  Its inputs are defined as follows, 

)(
)()(

t
tt

z
zz = ,         (12) 

where [ ])()()()( 1021 tztztzt L=z  denotes the 
normalized input vectors of the proposed graffiti recog-
nizer; [ ])()()()( 1021 tztztzt L=z  denotes the ten 
points in the writing area; ⋅  denotes the l2 vector 
norm.  The 16 outputs, )(tyk , k = 1, 2, …, 16, indi-
cates the similarity between the input pattern and the 16 
standard patterns respectively.  The input-output rela-
tionship of the training patterns is defined such that the 

output 1)( =tyi  and others are zero when the input 
vector belongs to pattern i, i = 1, 2, …, 16.  For exam-
ple, the desired outputs of the pattern recognition system 
are [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] for the digit “0(a)”, [0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0] for the digit “0(b)”, and [0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1] for the character “space” re-
spectively.  After training, a graffiti determiner is used 
to determine the output of the graffiti.  A larger value of 

)(ty j  implies that the input pattern matches more 
closely to the corresponding graffiti pattern.  For in-
stance, a large value of )(0 ty  implies that the input 
pattern is recognized as “0”. 

4.2. Results and analysis 

To train the neural network of the hand-written graffiti 
recognition system, a set of training pattern governing 
the input-output relationship will be used.  1600 train-
ing patterns (100 patterns for each graffiti) will be used 
in this example.  The training patterns consist of the 
input vectors and its corresponding expected output.  
The fitness function is given by (10), with 
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where [ ])()()()( 1621 tytytyt dddd L=y denotes the 
expected output vector and 

[ ])()()()( 1621 tytytyt L=y  is the actual network 
output defined as, 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑

=

h

i

n

i
kskik btfwtfty

1

)2(
2 ))(()( z , k = 1, 2, …, 16,  

       (14) 
where  

( ) ( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

=
trtmtzwtftzf ii

j
jijsi

~,~,)())((
10

1

)1(
1 , i = 1, 2, …,nh,  

       (15) 
where tf2(⋅) is a pure linear transfer function in this ap-
plication.   
For comparison purposes, a conventional 3-layer fully 
connected feed-forward neural network (FFCNN) [16], a 
fixed-structure network with link switches (FSNLS) [8], 
and a wavelet neural network (WNN) [18, 20-21] (which 
combines feed-forward neural networks with the wavelet 
theory, providing a multi-resolution approximation for 
discriminate functions) trained by the improved RCGA 
[12] are also used in this example.  For all cases, the 
initial values of the parameters of the neural network are 
randomly generated.  In this application, the lower and 
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upper bounds of the network parameters of the 
N-N-LNN are [ ] [ ]44)2()1( −∈ikkiij mbww , 

[ ]25.0∈ir  and [ ] ( )[ ]11 −∈ hrm ndd .  For the 
FSNLS, WNN and FFCNN, the network parameters are 
ranged from –4 to 4.  The number of iterations to train 
the neural networks is 15000.  For the RCGA [12], the 
probability of crossover ( cµ ) and the probability of mu-
tation ( mµ ) are 0.8 and 0.05 respectively; the weights of 
the average-bound crossover aw  and bw  are set at 0.5 
and 1 respectively; the shape parameter of wavelet muta-
tion ζ  is 2, and the population size is 50.  All the 
results are the averaged ones out of 20 runs.  In order to 
test the generalization ability of the proposed neural 
networks, a set of testing patterns consisting of 480 input 
patterns (30 patterns for each graffiti) is used. 
The average training, best training, average testing and 
best testing results in terms of mean square error (MSE), 
and the recognition accuracy rate of all approaches are 
summarized in Table 1 and Table 2.  It can be seen 
from these two tables that the recognition system imple-
mented by the N-N-LNN outperforms those by the 
FSNLS, WNN and FFCNN.  The best results are 
achieved when the number of hidden nodes (nh) is set at 
20 for the N-N-LNN, nh = 22 for the FSNLS, and nh = 24 
for the WNN and FFCNN.  In comparison with the 
FSNLS, WNN and FFCNN, the average training and 
testing errors of N-N-LNN at nh = 20 are 0.0157 and 
0.0186 respectively.  They imply 77.96% improvement 
over FSNLS at nh = 22, 96.82% and 76.90% improve-
ment over WNN at nh = 24, and 129.3% and 101.1% 
improvement over FFCNN at nh = 24, respectively.  In 
terms of the average testing recognition accuracy rate, 
the N-N-LNN (96.96%) gives a better result than the 
FSNLS (93.21%), WNN (93.92%) and FFCNN 
(91.25%). 
Fig. 11 shows the selected output values of the 
N-N-LNN, FSNLS, WNN and FFCNN for the 480 (30 
for each digit/character) testing graffiti.  In this figure, 
the x-axis represents the pattern number for correspond-
ing digit/character.  The pattern numbers 1 to 30 are for 
the digit “0(a)”, the numbers 31-60 are for the digit 
“0(b)”, and so on.  The y-axis represents the output yi.  
As mentioned before, the input-output relationship of the 
patterns will drive the output 1)( =tyi  and other out-
puts are zero when the input vector belongs to pattern i, i 
= 1, 2, …, 16.  For instance, the desired output y of the 
pattern recognition system is [0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0] for the digit “0(b)”.  Referring to Fig.11(d), we can 
see that the output y16 of the N-N-LNN for pattern num-
bers within 451-480 (the character “space”) is nearest to 
1 and other outputs are nearest to zero.  It shows that 
the recognition accuracy rate achieved by the N-N-LNN 
is good. 

 
 
 

Figure 9. Graffiti digits and characters (with the dot indi-
cating the starting point of the graffiti). 

 
 
 

Figure 10. Graffiti digits and characters (with the dot indi-
cating the starting point of the graffiti). 

 
Table 1. Training results on doing the hand-written graffiti 

recognition. 

   18=hn  20=hn  22=hn 24=hn

N
-N

-L
N

N
 paran   520 576 632 688 

Ave. 
training 

MSE 0.0185 0.0157 0.0169 0.0179 
Acc. 96.50% 97.38% 96.85% 96.62% 

Best 
training 

MSE 0.0168 0.0139 0.0145 0.0143 
Acc. 96.88% 98.06% 97.31% 97.38% 

FS
N

LS
 paran   1004 1112 1220 1328 

Ave. 
training 

MSE 0.0337 0.0328 0.0314 0.0322 
Acc.  92.46% 92.62% 93.25% 93.18% 

Best 
training 

MSE 0.0309 0.0293 0.0282 0.0288 
Acc. 93.40% 93.75% 94.00% 93.86% 

W
N

N
 

paran   486 540 594 648 
Ave. 

training 
MSE 0.0349 0.0321 0.0316 0.0309 
Acc. 92.35% 92.42% 93.10% 93.23% 

Best 
training 

MSE 0.0315 0.0292 0.0280 0.0278 
Acc. 93.31% 93.81% 94.00% 94.13% 

FF
C

N
N

 paran   502 556 610 664 
Ave. 

training 
MSE 0.0393 0.0385 0.0380 0.0360 
Acc. 90.17% 90.46% 90.73% 91.50% 

Best 
training 

MSE 0.0370 0.0388 0.0361 0.0326 
Acc. 90.50% 91.69% 92.56% 93.06% 
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Table 2. Training results on doing the hand-written graffiti 
recognition. 

   18=hn  20=hn  22=hn 24=hn

N
-N

-L
N

N
 paran   520 576 632 688 

Ave. 
training 

MSE 520 576 632 688 
Acc.  0.0228 0.0186 0.0199 0.0211 

Best 
training 

MSE 95.21% 96.96% 95.49% 95.40% 
Acc. 0.0204 0.0171 0.0185 0.192 

FS
N

LS
 paran   95.93% 97.29% 96.25% 96.05% 

Ave. 
training 

MSE 1004 1112 1220 1328 
Acc.  0.0363 0.0350 0.0331 0.0349 

Best 
training 

MSE 92.28% 92.50% 93.21% 93.00% 
Acc.  0.0330 0.0322 0.0310 0.0312 

W
N

N
 

paran   92.92% 93.13% 93.96% 93.75% 
Ave. 

training 
MSE 486 540 594 648 
Acc.  0.0365 0.0346 0.0344 0.0329 

Best 
training 

MSE 92.08% 92.22% 92.71% 93.92% 
Acc.  0.0329 0.0320 0.0322 0.0308 

FF
C

N
N

 paran   92.59% 93.54% 93.75% 94.38% 
Ave. 

training 
MSE 502 556 610 664 
Acc. 0.0410 0.0404 0.0393 0.0374 

Best 
training 

MSE 90.07% 90.58% 90.68% 91.25% 
Acc. 0.0404 0.0393 0.0388 0.0361 

 
5. Conclusion 
 
A new neural network has been proposed in this paper.  
The parameters of the proposed neural network are 
trained by the RCGA.  In this topology, the parameters 
of the activation function in the hidden nodes are 
changed according to the input to the network and the 
outputs of other hidden-layer nodes in the network.  
Thanks to the variable property and the node-to-node 
links in the hidden layer, the learning and generalization 
abilities of the proposed network have been increased.  
Application on hand-written graffiti recognition has been 
given to illustrate the merits of the proposed N-N-LNN.  
The proposed network is effectively an adaptive net-
work.  By adaptive, we mean the network parameters 
are variable and depend on the input data.  For example, 
when the proposed neurons of the N-N-LNN manipulate 
an input pattern, the shapes of the activation functions 
are characterized by the inputs from the upper and lower 
neighbour’s outputs, which depend on the input pattern 
itself.  In other words, the activation functions, or the 
parameters of the N-N-LNN, are adaptively varying with 
respect to the input patterns to produce the outputs.  All 
network parameters of the N-N-LNN depend only on the 
present state.  That means the network is a feed-forward 
one, causing no stability problem to the network dynam-
ics. 
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Figure 11. Output values of the N-N-LNN, FSNLS, WNN, and FFCNN for the 480 (30 for each type) testing graffiti patterns. 
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 (c). Digit ‘carriage return’. (d). Digit ‘space’.. 
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Figure 11 (continued). Output values of the N-N-LNN, FSNLS, WNN, and FFCNN for the 480 (30 for each type) testing graf-

fiti patterns. 
 
 
 
 
 
 
 
 
 
 


