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The atom's ionization rates by two photons is reported for different approaches: semi-classical 
regime using rate-equations, and quantum optics approach using density matrix operators. For each 
trend, the assumptions are presented and the ionization rates are given for different special cases 
like ionizing lasers with Lorenzian and Gaussian beam profiles.
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Special case 2: P2(t) via continuous mode laser field
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1. Rate-equation approach
To find the probability of ionization by two or multi photons we consider the following
model (Fig. 1) and the assumptions [1]:

Fig. 1: Model for two photon ionization (Fig. 1 of [1]): |a> are atomic eigenvectors:(|0>: ground state, |1>: first 
excited state, |Ʌ>: atomic continuum states (=K,σ) with K as photo-electron wavevector and σ as its polarization, C 1λ 
is the rate of ionizing transition from |1> to |λ>, A 01 is the rate of transitions from |0> to |1>, and B 10 is the rate of 
transitions from |1> to |0>. 

Assumption 

1. The rate of transitions from the final bound level to the continuum is much smaller              
than the rate of transitions between any two bound states of the atom that are              
active in the multiphoton ionization process:

; , so that the levels can achieve a        
quasi-steady state among themselves. 

By this assumption, we can study a case that the laser field produces a steady-state               
distribution amongst the bound atomic levels, and that photoionization takes place by a             
small leakage from the quasi-stationary final bound atomic state. 

The rate equations for the occupation probabilities of each atomic level are as following 
where the coefficients are defined in the caption of Fig. 1: 
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(1) 

While the last equation is equal to the “ionization rate W​2​”, the problem reduces to               
finding the steady-state population (probability) of bound atomic levels (p​0 and p​1​) under             
the influence of applied laser field. 

Assumptions 
2. Steady-state conditions for states |0>, and |1>, i.e. dp​0​/dt=dp​1​/dt=0,  
3. The normalization condition p​0​+p​1​=1,  

Ionization rate by two photons (W​2​) – general formula with assumptions: 
The two-photon ionization rate can be easily found considering the above equations as             
following: 

(2) 

Where: 

 is the total rate from |1> to any |Ʌ> state, and C​1λ​ is the rate of 
ionizing transition from |1> to |λ>,  

A​01​ is the rate of transitions from |0> to |1>, 

B​10​ is the rate of transitions from |1> to |0>, and  

p​λ ​is the occupation probability of (continuum) level |λ>.  

 

In the following we introduce new assumptions and find C​1​, A​01​, and B​10​, to express Eq.                
(2) as a function of more intrinsic parameters of the atom-laser beam system. 
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Assumptions  

4. : The relation between the direct and reverse transition rates          
between levels |0> and |1> (as shown in Fig. 1 (A​01​, and B​10​, respectively), or any                
transition rates between any two general states |a> and |b>; where γ​ab ​is the              
spontaneous transition rate from upper level |a> to the lower level |b>. 

 

5. ; which introduce a time limit that is much smaller than the            

lifetimes of atomic bound levels |a> and |b> ( is the inverse of lifetime of state                
|i> and is equal to the decay rate from level i to any upper or lower state caused by                   
spontaneous emissions or laser field, i.e. ). 

 
6. Considering a system of units in which: , 

 
7. Stark shifts of atomic energy levels due to the external laser field are considered so 

that the final energy level is  
 
 
Assumptions 

8. The function is much more slowly varying function of than the            

Lorentzian function of integrand , at resonance  

9. ; where i=a,b and is the full width at half maximum of             

with respect to variable ,  
 

10. Considering the energy flux carried by photons at frequency ⍵ as:           

, where 𝛀 denotes the solid angle of the photon beam           
and n(⍵) is the number of photons in the beam at frequency ⍵.  

 
 

11. ; assuming intense laser beams in which the number of photons in the 
beam at frequency ⍵ are large. 

 
12.  The total energy flux carried by photon field is as following:  
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(3) 
For Lorentzian lineshape:  

(4) 

Gaussian lineshape: 

(5) 

The central laser frequency is ω​L and the half width at half maximum Δ for               

Lorentzian shape and for Gaussian shape. 

To find the ionization rate, we consider the probability of transition from a bound state 
|b> to the another bound one |a> as [1]:  

 (Eq. 10 of [1]) which is a 

Lorentzian function of with decaying rates of levels |a>, |b>, and the superposition of 
them. 
where: 

is the interaction potential of the       
atom with the radiation field in dipole approximation, V is the volume of the system, ⍵​𝜆 is                 
the frequency, 𝞪 is the fine structure, a​𝜆 is the annihilation operator for a photon in mode                 
,r​ij​ is the dipole matrix element and |i> and |j> label atomic states. 
Considering |b> as one of the continuum final states,  

, where is the density of final       
states,  
By above assumptions one yields the Fermi golden rule: 
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The transition rates could be found by following relations: 

, and , and assumption 4 ( ) 

considering |a> = |1>, and |b>=|Ʌ>, the above relations yield: C​1​, A​10​, and B​01 

Ionization rate by two photons (W​2​) for Lorentzian laser beam– including additional 
assumptions 
Considering the above assumptions for the range of validity, one finds the ionization rate              
of an atom, (schemed in Fig. 1 by two photons), with Lorentzian laser lineshape (Eq. 4): 

 (6) 

where  

❏ C​1​ is the total rate from |1> to any |Ʌ> state, 
❏ Δ is the half width at half maximum of the Lorentzian lineshape of laser beam (Eq.                

4), 
❏ δ​10 is the detuning between the central laser frequency and the energy gap between              

atomic bound levels |0> and |1>, i.e. δ​10 ​= E​10​- ω​L​, 
❏ Ω​2​10 ​is the integrated Rabi frequency for transition |0> => |1> , which in general               

form is defined as :where r​ab is the dipole matrix element of            
atom regarding two states |a> and |b>, and J is the total energy flux of laser field. 

❏ is the spontaneous decay rate from level |1>. 

 
Special case: high power laser beam 
For high power laser beams with Lorentzian profile, the condition:          

is applied [1] in which the parameter        
includes ​J or the total energy flux carried by photons of laser beam (Eq. 3). In such                 
condition the population of levels |0> and |1> become equal (p​0​=p​1​=1/2) and the             
ionization rate yields: 

(7) 
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Ionization rate by two photons (W​2​) for Gaussian laser beam– including additional 
assumptions 
Considering the above assumptions, one finds the ionization rate of an atom schemed in              
Fig. 1 by two photons of a laser beam with Gaussian profile (Eq. 5) as following: 

(8) 

where: 

 

General solution for rate equation approach 
In the following we do not consider assumption 1 (C​1 <<A​10​,B​01​). By generally solving              
rate equations via Laplace transform, one achieves p​i​(t); the probability of the atom being              
in state |i>.  

Assumption 
1. Initial condition: p​0​(0)=1, p​1​(0)=0.  

Ionization rate by two photons (W​2​) – general formula with NO assumptions: 
The ionization rate for the above initial condition and no other previous assumptions is: 

 

where p​λ​(t) is the probability of the atom being in a continuum state. By considering               

, the Laplace transform yields: 

(7) 

where 

, and 
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Special cases: Long time limit 
The probability of the atom being in an ionized state in long time limit is 1, which is                  
obvious for our model, since we have not considered any reverse transition from ionized              
states to bound atomic states |0> and |1>.  

(8) 

Special cases: Short time limit 
The time dependent probability of the atom being in an ionized state in short time limit is                 
proportional to t​2​, which is seems not be accurate. It will be shown by density matrix                
approach (as well as some other works referred to in [1]) that in short time limit the                 
ionization probability is proportional to t​3​. 

(9) 

Special cases: time-independent ionization rate 
For time intervals in the following regime: 

 

which is a necessary condition for the relation: 

 

which is again a necessary condition for assumption 1 (C​1​ <<A​10​,B​01​). 

the ionization rate is time-independent and is found as: 

(10) 

where λ and 𝜇 are defined in the previous case. 
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Ionization rate for the time-independent regime with Lorentzian lineshape 
With the above condition for transition rates, and assuming a Lorentzian lineshape of 
laser as Eq. (4), the ionization rate is as following: 

 (11) 

which differs from Eq. (6) by that  is replaced by . 
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2. Quantum optics approach 

2.1. Density matrix approach 
The rate equation approach is not valid when laser field is well described as a single                

mode, since assumption 9 of previous section ( ) is not true for any time t.               
However we can assume that in some situations, the two-level system comes into a              
quasi-steady state with itself before appreciable loss to the continuum can occur            
(dp​i​/dt=0, where p​i​ is the probability of atom being in the state |i>). 

In the density matrix approach, equation of motion are given by following master             
equation 

(2.1) 

[Agarwal 1974], in RWA (rotating wave approximation) Hamiltonian: 

(2.2) 

where a, a​+ are the annihilation and creation operators of the single mode EM field with                
frequency w, w0 is the energy difference between two atomic levels ω​0​=E​0,1​, g is the               

coupling constant and is related to Rabi frequency by  

 

Assumptions 
1. the coupling constant g is considered real for simplicity,  
2. The laser beam is intense so that the number of photons in frequency ⍵ is large: 

n(⍵)>>1 

Ionization rate- general form 
By solving the equations of motion obtains from master equation (2.1), and above             
assumptions [1], the ionization rate is found as: 

(2.3) 

where: 
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● ,  

( , and the reduced density matrix for atom alone 

is: , where i=0,1 is the atomic levels, and n is the photon number), 

●  

Eq. (2.3) differs from ionization rate of Eq. (6) obtained by rate-equation approach, by              

setting . 

 
Special case: Short time limit 
considering the initial condition:  

 and all other matrix elements of being zero, the probability 
of the atom being in an ionized state would be: 

(2.4) 

Special cases: Inclusion of transitions to the continuum states 

If not considering the steady-state model anymore, and take into the account a             
non-negligible rate of transitions from state |1> to the continuum states, in an intuitive              
way by adding two corresponding coefficients rates to the equations of motions [1], one              
finds that for the following parameter regime:  

, 

the ionization probability is: 

 (2.5) 
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where . 

Eq. (2.5) differs from Eq. (2.3) in that  has been replaced by . 

 
Multimode laser beam 

If the laser won't be single mode as in the previous section, and the ionizing laser has a                  
finite bandwidth, the density matrix approach would be treated by the following            
multimode Hamiltonian: 

(2.6) 

where is the label of different modes in the laser beam. 

Assumptions 
1. considering rotating wave approximation (RWA),  

2. coupling constant be real for simplicity, 

3. The initial state of the field would be a Fock state ,            

where is the number of photons in mode , 

the state is identical to the initial       
state except that a photon in mode k has been added or removed, 

4. The reduced density matrix for atom alone is: , where i=0,1 is the 
atomic levels, and n is the photon number 

5. for all modes or equivalently , 

6. Normalization condition: for the reduced density matrix of atom, 

7. The diagonal elements ( ) are much larger than the         
off-diagonal elements while they have higher orders of coupling constant g. 
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Ionization rate - multimode laser beam 
Solving the master equation (2.1) for multimode Hamiltonian (2.6), the steady state case 

of for the corresponding density matrix element could be obtained ( ).          
The ionization rate for such case is: 

 (2.6) 

where 

= 

for any arbitrary energy flux function J.  

Ionization rate by density matrix approach for multimode laser beam- Gaussian lineshape 

(2.7) 

where 

which is identical to that resulted by rate-equation approach (Eq. (8)). 
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2.2. Resolvent formalism 
The Hamiltonian of the system of atom-laser field is as following: 

(1) 

The Hamiltonian parameters are (ℏ=1) [3]: 

● a​λ​†​, and a​λ​: creation and annihilation operators of a photon of mode λ (emitted              
photoelectron) with polarization index ƞ, wave vector ​k​, and energy ⍵​λ ​,So λ≣(ƞ, ​k,              
⍵​λ​), (the notation n​λ​=a​λ​†​a​λ ​will be used later.) 

● E​a​: atomic eigenenergies 
● |a>: atomic eigenvectors (|0>: ground state, |1>: first excited state, |2> second            

excited state, |Ʌ>: atomic continuum states (=K,σ) with K as photo-electron           
wavevector and σ as its polarisation. 

● g​λ​ij​: coupling constant given in the dipole approximation, 

 

α : fine structure constant which is e​2​/4πε​0​ℏc 

e​λ​: unit polarization vector of the field in mode λ, 

r​: The dipole moment operator of atom divided by electron charge ​e​,  

V: the volume of the system exposed to laser beam.  

● |​n​>= |n​λ1​,n​λ2​, n​λ3​, ... ​> : Initial laser field state, Fock state with n​λi as the number of                  
photons in wavelength λ​i 

● |​n​, ∓λ​i​> = |∓λ​i​> = |n​λ1​, n​λ2​,..., n​λi ​∓1, ...​ ​>: Field states in which a photon in one mode 
is absorbed or emitted: 

● |a>|​n​> = |i, ​n​>, or |i, ​n​∓λ​i​> :  Unperturbed atom-field state:  
●  

 

 

 

Evolution of the system by resolvent formalism 
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Using resolvent formalism [3], the unitary evolution operator of atom-field system could            
be found using the resolvent function G as following. In other words, the matrix elements               
of the time evolution operator at time t can be obtained by the following inversion               
formula: 

   (2) 

where resolvent function G(z) = 1/(z-H), H is the atom-field system Hamiltonian defined 
in  Eq. (1), and z is the complex variable. 

Ionization probability by two photons (P​2​(t)) – general formula 
Two photon ionization probability in a time interval ​t​ from initial state |0> to final 
continuous state |Ʌ> is P​2​(t) formulated as following: 

(3) 

Where ρ​F is the density matrix of the field, and U is the unitary evolution operator of the                  
system from state |0> to |Ʌ>. 

Assumptions and approximations to calculate P​2​(t) by above equation: 

1. Considering density matrix of the field as a pure Fock state of |n​1​n​1​n​3​...><n​1​n​2​n​3​...|. 
2. Γ​i​  is defined as the inverse lifetime of level |i> due to the spontaneous emission 

and the effect of perturbation caused by laser field, then:  
Γ​λ​=0 means that ionization process is irreversible. So once ion formed, it is 
perfectly stable and recombination is neglected. This is typical in multiphoton 
ionization experiments performed at very low gas pressures. 

3. Change of sum to integral over all polarization states, wave vectors:           

 
where Ω​k ​is the propagation direction of the λ​th​ mode, 

is the density of final states for the photoelectron,  

E​k​,I​ is the ionization energy. 

To calculate the integral over all ionization energies, we change the lower limit of              
integral from E​I ​to -∞ which is justified well above threshold. 
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4. The laser beam spectrum I(⍵) is defined as following:  

 

where I(ω)=J(ω)dω is the energy in the field carried by photons. This assumption             
enables us to treat the resonant case, when the central laser frequency is close to an                
atomic transition frequency. In the ordinary perturbation treatment the         
denominator of this ​Lorentzian distribution with respect to ⍵​0 will vanish and            
simplifies the solution. 

5. In addition, the laser has a bandwidth sufficiently large for us to ignore the Stark               
splitting of the atomic energy levels, so that the laser produces just shifts and              
broadenings. 

Ionization probability by two photons (P​2​(t)) – including more assumptions 
Considering the above assumptions, the following formula is the probability of ionizing 
the atom by two photons at time t (P​2​(t)): 

(4) 

where n​1​, n​2​, ω​1​, and ω​2​, are denoting the number and energy of photons in λ​1 and λ​2                  
modes, respectively, 

 where:  

 

Special case 1: P​2​(t) via single mode laser field 
In this case the number of photons in all modes are zero except one as following:  

 

It could be shown that in this case, the general form of AIP-TP reduces to the following 
form: 

(5) 

where R is defined for Eq. (4) 
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where F= 2παJ and J=n​0 ​ω​0 ​c​/V is the energy that is crossing unit area per second. 

Special case 2: P​2​(t) via continuous mode laser field 
Considering the following conversion of sum to integral: 

 

And considering a Lorentzian shape for the photon occupation number distribution: 

 

where 2Δ​k​ is the half width of the photon distribution ​n​k​ in k space. 

(6) 

Where  

 

<The other parameters need to be investigated in more details as their general 
definitions are not defined in the corresponding papers.> 
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