Clara Javaherian

0

0

6

Projects history overview

August 2020

Cloning in quantum computation K.N.T University of Technology, Bachelors

Problem: cloning an unknown quantum state probabilistically

<u>Background</u>: due to the no-cloning theorem, no exact copy of an unknown quantum state is allowed <u>Results</u>: Theoretical proof of existing a probabilistic cloning machine

$$U(|\Psi_i\rangle \overbrace{0}^{M} \underbrace{\forall imes}_{m=0} V(|\Psi_i\rangle) = \sum_{m=0}^{2^{M}-1} \sqrt{p_m^{(i)}} |\Psi_i\rangle |a_1\rangle |a_2\rangle \cdots |a_M\rangle |P_m\rangle + \sum_{l=2^{M}}^{N_c} \sqrt{f_l^{(i)}} |\Psi_l\rangle_{AB} |P_l\rangle$$

Reference: Bachelor's thesis

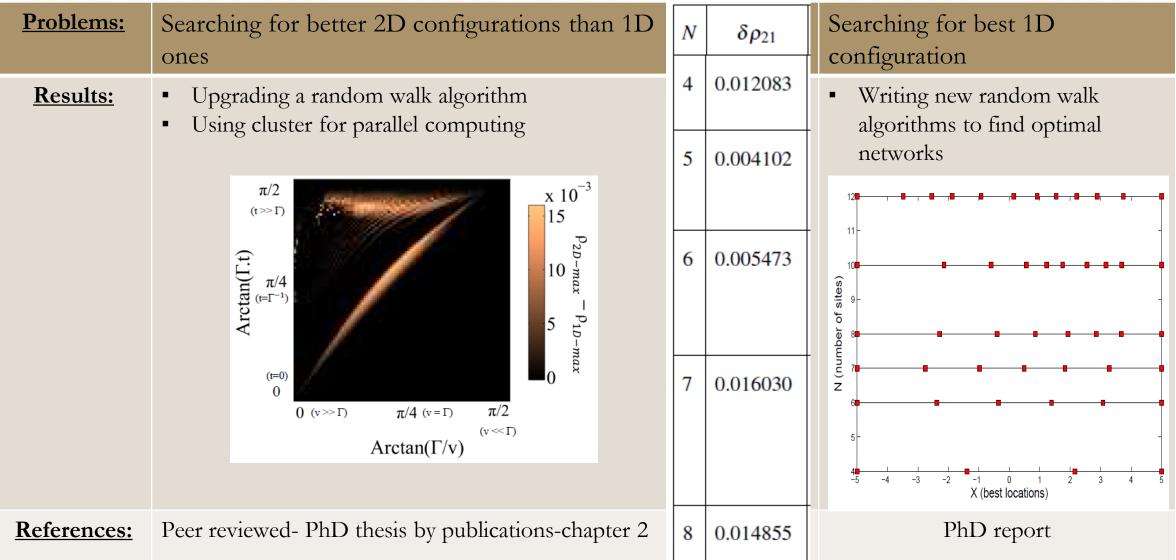
Simulation of plasmonic waveguides S. B. University, Masters

<u>Problem:</u> designing nano-metallic waveguides for nano-circuits <u>Results:</u> 3D scattering of an incident electric field from a circuit of permittivity ε

$$\vec{E}^{i}(\vec{x}) = \frac{\vec{D}(\vec{x})}{\varepsilon(\vec{x})} - \frac{1}{\varepsilon_{0}} \int_{\vec{x}' \in D^{s}} \frac{\exp(ik_{0}|\vec{x} - \vec{x}'|)}{4\pi |\vec{x} - \vec{x}'|} \frac{\varepsilon(\vec{x}) - \varepsilon_{0}}{\varepsilon(\vec{x})} [k_{0}^{2}D(\vec{x}')]d\vec{x}'$$
$$- \frac{1}{\varepsilon_{0}} \int_{\vec{x}' \in D^{s}} \frac{\exp(ik_{0}|\vec{x} - \vec{x}'|)}{4\pi |\vec{x} - \vec{x}'|} \frac{\varepsilon(\vec{x}) - \varepsilon_{0}}{\varepsilon(\vec{x})} \vec{\nabla} [\vec{\nabla}D(\vec{x}')]d\vec{x}'$$

Nanophotonic carbon nanotube waveguides S. B. University, Masters

Problems:	Allowed modes on metallic SWCNTs, and The excitation of surface Plasmon modes	Allowed modes on double walled metallic DWCNTs
<u>Results:</u>	 Metallic graphite layers with free valence electrons Density of electrons, friction due to collision with carbon ions, Maxwell equations Surface electronic waves coupled to electromagnetic waves or relativistic electron beams 	 Derivation of the equation of electronic waves (velocity field and density) out of Schrodinger equation Dispersion relations of surface electron waves
	$\begin{array}{c} y \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 2 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ \end{array} $	1.5 1.25 1.25 1.25 0.5 0.25 0.25 0 1 1 1.25
References:	I. Phys. D: Appl. Phys. 42 (2009) 055307	PHYSICS OF PLASMAS 16 (2009) 063501


References:

0

J. Phys. D: Appl. Phys. 42 (2009) 055307 PHYSICS OF PLASMAS 16 (2009)022108 PHISICS OF PLASMAS 10 (2009) 003301

Optimization of qubit networks' configurations Ulm University, PhD

0

Optimal designs of qubit networks Macquarie University, PhD

Problems:	Optimal design parameters	Proof of trapping energy	Optimal dynamic-networks design
<u>Results:</u>	lits: • 1D qubit networks • Optimal parameters for Maximum geometrical robustness • $\int_{(L_{E}-T_{V})^{0}} \int_{(L_{E}-T_{V})^{0}} $	 3D qubit networks Switching application	1D dynamic qubit networksUnidirectional quantum transport
		(a) 1 (1) N=4, Tetrahedron 1	(c) $ \phi_i ^2$ 1 200 200 150 100 50 0.4 0.2 0.2 0.2 0.2
		3 3 4 2 2 3 4 3 3 4 2 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 4 4 4 4 4 4 4	

Hamiltonian Learning Comparison of classical and quantum (MURI Project, UTS)

<u>Problem:</u> Finding few qubits Hamiltonian via pulses and measurements <u>Assumptions:</u> Hamiltonian is partly known

Tools:

 \bigcirc

- STEADY (Stochastic Estimation Algorithm for DYnamical variables), Robust to State Preparation And Measurement (SPAM) errors
- Qiskit software development kit (IBM Q quantum processors), and Pyquil, the Forest SDK (Rigetti quantum processors)

Quantum noise spectroscopy (MURI Project, UTS)

Problem: QuDits as noise spectroscopes or sensors

Assumptions: noise is dephasing, Gaussian, non-stationary

Manuscript results:

Expectation value of a general observable	environmental noise spectrum,
	pulse sequence characteristics

$$\langle \langle \hat{O}(t) \rangle \rangle_{c} = R_{0} - \frac{1}{2} \int_{0}^{t} \int_{0}^{t} dt' dt'' \sum_{a,b=0,\dots,d-1} R_{ab} y_{a}(t') y_{b}(t'') \langle \beta_{a}(t') \beta_{b}(t'') \rangle_{c}$$