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Abstract 
 

It is remarkable that a small tapering angle can boost the bearing capacity of a pile 

foundation notably. It implies that a pile with a small tapering angle, resembling a 

truncated cone, can approximately accommodate up to 40% more structural loading 

than its counterpart same volume cylindrical pile.  

 

This study aims to establish an equation for obtaining the optimum tapering angle of 

bored tapered piles correlated to the pile geometry and sand properties varying with 

the relative density. The optimum tapering angle corresponds to the maximum axial 

bearing capacity, while keeping the volume of material in the tapered pile the same 

as the counterpart straight cylindrical pile.  

 

Firstly, analytical formulations are developed to estimate the axial bearing capacity 

of bored tapered piles embedded in sand. The proposed governing equations capture 

the shaft vertical bearing component of the tapered pile, which is unique to tapered 

piles and varies nonlinearly with the tapering angle. By differentiating the obtained 

bearing capacity equation with respect to the tapering angle, an optimum tapering 

angle is achieved. The finite element method, mostly using PLAXIS, is also adopted 

to conduct the numerical modelling and to calibrate the model parameters of the 

proposed analytical equation, considering the soil nonlinearities and interaction 

between the tapered pile and the surrounding soil subjected to axial loading. UBC 

sand constitutive model is used to simulate the soil response in the vicinity of the 

tapered pile; and the model parameters are calibrated against laboratory test results 

for sandy soils with different relative densities. However, due to the complexity of 

the proposed differentiation and inverse calculation, a numerical solution is used to 

obtain the results. Consequently, the load-displacement curves of the tapered piles 

are attained numerically, and the optimum tapering angle, resulting in the maximum 

axial capacity of the pile, is determined. Results exhibit a good agreement between 

the analytically determined axial bearing capacity for the tapered pile and the 

corresponding numerical modelling predictions. Furthermore, a simplified empirical 

equation is established to select the optimum tapering angle, which can readily be 
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used by practicing engineers. On the other hand, a new simple equation for prediction 

of pile group efficiency considering the effect of tapering angle in cohesionless soil 

under vertical loading condition is developed. Firstly, a simple analytical relationship 

based on the mathematical definition of the pile group efficiency is developed. 

However, the effect of tapering angle is captured by defining a new geometry 

efficiency coefficient related to the shaft vertical bearing component of tapered piles. 

Thereafter, this new mathematical equation is developed, considering the shaft 

vertical bearing ratio and the new geometry efficiency coefficient. Furthermore, a 

numerical analysis is performed for modelling single cylindrical and tapered piles as 

well as pile groups to validate the proposed mathematical equation. Subsequently, 

the load-displacement diagrams for a single pile and group of piles are obtained. 

Then, the bearing capacities of cylindrical and tapered bored piles both as single and 

group are computed and compared using specific settlement criterion. Besides, the 

friction resistance ratio and the shaft vertical bearing ratio are separated using 

existing numerical methods. Having the ratios of various components of bearing 

capacity, pile group efficiencies can be obtained from both the numerical and 

mathematical models. The results show that the proposed equation can predict the 

pile group efficiency by considering the tapering angle as well as other affecting 

parameters as a simple and novel relationship.  

 

Finally, step-tapered piles (those with a larger top diameter, and a smaller diameter 

at lower sections) are analysed numerically. In this study the behaviour of step-

tapered piles having only one step under axial loading condition is investigated. 

Three series of piles embedded in sand are examined numerically using the three-

dimensional finite element method. Each set consists of five piles, including one 

reference straight sided wall pile and four step-tapered piles having the same volume. 

Different internal friction angles (to represent loose, medium and dense sands) and 

corresponding elastic modulus and lateral earth pressure coefficients are considered 

to observe their effect on the bearing capacity and settlement of piles. The load-

displacement diagram of each pile is obtained, and accordingly, the frictional and 

end bearing resistances are calculated. Some MATLAB codes are developed to get 

the numerical data and carry out the calculations. Moreover, the normal and shear 

stress states, plastic points, and deformations around the step and toe of piles are 
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computed and compared. According to the results, the advantages of step-tapered 

piles over their counterpart cylindrical ones in terms of bearing capacity and 

settlement are discussed. Finally, the optimum stepped length of the pile is 

determined. 
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𝐷𝑎𝑣: Average diameter of a tapered pile; 

𝐷𝑏 : Base diameter of a tapered pile; 

𝐷𝑡𝑜𝑝 : Top diameter of a tapered pile; 

𝐸50: Young’s modulus (The secant modulus in drained triaxial test); 

𝐸𝑜𝑒𝑑: Young’s modulus (Tangent modulus for primary oedometer loading); 

𝐸𝑢𝑟: Young’s modulus (Unloading-Reloading); 

𝐾: Lateral earth pressure coefficient; 

𝐾0: At rest lateral earth pressure coefficient; 

𝐾𝑡: Taper factor for the shaft resistance of tapered piles; 

𝐿: Length of pile; 

m: Number of piles in each row; 

n: Number of piles in each column; 

𝑁𝑡: Bearing capacity factor for tapered piles; 

𝑃𝑔: Perimeter of a group of piles; 

𝑃𝑠: Perimeter of a single of piles; 

𝑄𝑏: Base bearing capacity of a single pile; 

𝑄𝑓: Frictional bearing capacity of a single pile; 

𝑄𝑔: Total bearing capacity of a pile group; 

𝑄𝑠: Total bearing capacity of a single pile; 

𝑄𝑠𝑣: Shaft Vertical bearing capacity of a single pile; 

𝑟: Radius of the pile’s nth segment; 

𝑅𝑓: Failure ratio;  
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𝑅𝑖𝑛𝑡𝑒𝑟 : Interface coefficient;  

𝑆: Spacing between piles in a group; 

𝑆𝑔: Settlement of a pile group; 

𝑆𝑠: Settlement of a single pile; 

𝑉𝑐 : Volume of a cylindrical pile; 

𝑉𝑡: Volume of a tapered pile; 

𝑞𝑏𝑡: Toe resistance of a single pile; 

𝑞𝑠𝑡: Shaft resistance of a single pile; 

𝑞𝑠𝑣: Vertical bearing resistance stemming from the body of a tapered pile; 

𝑟𝑏: Bottom radius of the pile; 

𝑟𝑐: Radius of the counterpart same volume cylindrical pile; 

𝑟𝑡: Top radius of the pile; 

휂′𝑠: Geometric efficiency coefficient (Shaft resistance); 

휂′𝑠𝑣: Geometric efficiency coefficient (Shaft vertical resistance); 

𝜙𝑖: Internal friction angle of the interface; 

 
Greek letters 
 
𝛼: Tapering angle; 

𝛼𝑚𝑎𝑥: Maximum tapering angle for a pile with constant volume; 

𝛼𝑜𝑝𝑡: Optimum tapering angle; 

𝛼𝑟: Ratio of optimum tapering angle to the maximum tapering angle; 

𝛽: Correlation coefficient; 

𝛾: Soil unit weight; 

𝛾𝑝: Plastic shear strain increment; 

휂𝑓: Stress ratio at failure; 

𝜈𝑖: Poisson’s ratio of the interface; 

𝜎′: Mean stress in the plane of loading; 

𝜎𝑏
′ : Effective stresses at pile toe and mid-length of the pile; 

𝜎𝑏𝑛
′ : Effective normal stress (at the middle of the nth pile element); 

𝜎𝑚
′ : Effective stresses at mid-length of the pile; 

𝜙𝑖: Internal friction angle of the interface; 

𝑑휀𝑣
𝑝: Increment of plastic volumetric strain; 
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𝑑휂: Change in shear stress ratio; 

𝛿: Pile-soil interface friction angle; 

휁: A correlation coefficient controls the approaching rates of assumed functions for 

parameters; 

휂: Shear stress ratio;  

휂𝑔: Pile group efficiency; 

𝜆: Correlation coefficient; 

𝜇: A coefficient corresponding to the portion of mobilized Passive earth pressure 

coefficient; 

𝜏: Shear stress; 

𝜓: A coefficient in bearing capacity factor suggested by Janbu corresponding to 

relative density; 

𝜓′: Dilation angle of soil; 

𝜙: Internal friction angle of soil; 

𝜙′: Effective soil friction angle; 
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Chapter
Introduction

1.1 Introduction

Due to the increasing demand for more efficient and cost-effective foundations in the 

construction sector, geotechnical engineers are pursuing research on finding novel 

ideas to design foundations providing higher bearing capacities, while using less or 

eco-friendly materials. Many investigations have been conducted into understanding 

the behaviour of tapered piles. Some of them are indicating the advantages of this 

kind of piles compared to their counterpart cylindrical ones, and some of them are 

presenting specific circumstances wherein the advantages of tapered piles can far 

outweigh the straight-sided wall piles. However, it seems that there are some gaps 

for appraising whether using such piles are adequately beneficial to be substituted 

with the cylindrical ones. 

Besides, finding the theory behind the idea of tapered piles can be of considerable 

significance to make a decision. The question arises from the point that what happens 

when the shaft of a straight-sided wall pile get inclined and by increasing this 

inclination which aspects of the pile change. Moreover, finding the answer to the 
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question whether any specific tapering angle for these piles reported enhancing the 

bearing capacity while being in the allowable settlement zone, may contribute to a 

much sound judgment regarding their advantages. Many previously published 

investigations have introduced tapered piles as effective replacements for 

conventional cylindrical piles. However, one of the main objectives of this study is 

to shed light on the conditions and aspects that can make these piles more beneficial 

in the construction of deep foundations.  

 

This study is presenting a comprehensive review on tapered pile foundations 

comprising experimental, analytical and numerical investigations in Chapter 2. This 

includes both axial and lateral behaviour of tapered piles for static and dynamic 

loading conditions. Moreover, this study mainly focuses on studying the behaviour 

of bored tapered piles embedded in sandy soil. 

 

1.2 History and development of tapered piles 

Tapered piles are one of the first human-made piles since they were from timber 

materials, which were available easily for construction purposes. Various 

geometrical shapes and pile materials have frequently been implemented in the 

construction of structures. Concrete, steel, and timber piles are more commonly 

employed in building foundations. Piles with different cross-sectional shapes such as 

square, circular or H shape are regularly used, which are commonly straight in length 

with a small number of exclusions (i.e., timber tapered piles, monotube piles, 

Raymond step-tapered piles, and taper-tube piles). Figure 1.1 demonstrates different 

kinds of piles embedded in soil. 
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Figure 1.1. Common types of cast-in-place (patented) piles: (a) Commonly used uncased 

pile; (b) Franki uncased pedestal pile; (c) Franki cased pedestal pile; (d) welded or 
seamless pipe; (e) Western cased pile; (f) Union or monotube pile (tapered); (g) Raymon 

pile (h) step-tapered pile (modified after Bowles (1996)) 
  

 

Depths shown indicate usual ranges for the various piles. Due to the inclined body of 

tapered piles, the soil surrounding the piles are compacted during pile driving (ASCE 

1984; Dougherty 2017; Poulos 1979). This issue can contribute to a higher lateral 

earth pressure coefficient in the adjacent soil. Table 1.1 illustrates some estimations 

for the lateral earth pressure coefficient (LEPC) based on several pile tests. The 

tapered piles used for tests were made of timber material. However, the values 

obtained in tension tests for step-tapered piles were not accepted since tests were 

performed in saturated soil, and the values might have resulted from water suction in 

the point region. In other words, the negative pressure in soil can increase the 

effective stress and consequently intensify the lateral earth pressures. Due to this 

reason, the obtained lateral earth pressures cannot be precise and reliable. 
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Table 1.1. Summary of several pile tests for estimating the lateral earth pressure coefficient 
(LEPC) (after Bowles, 1996) 

Reference H 
piles Pipe Precast 

concrete Timber Tapered Tension 
tests 

Mansur and Hunter 
(Mansur, 1970) 

1.4-
1.9 

1.2-
1.3 

1.45-1.6 1.25 - 0.4-09 
All types 

Tavenas  
(Tavenas, 1971) 

0.5 - 0.7 - 1.25 - 

Ireland (Ireland, 1957) - - - - - 1.11-3.64 

API  
(American Petroleum 

Institute, 1984) 
- 1.0-

0.8 1.0 - - - 

 

 

Referring to Table 1.1, the lateral earth pressure coefficient (LEPC) estimated for 

timber tapered piles is about 1.25. However, other studies suggested different values 

for this coefficient, which is discussed in this study in Chapter 2. Once the applied 

lateral load pushes the pile head, the transferred force to soil by the pile decreases 

from pile head to its bottom, which proves the beneficial effects of material 

distribution in tapered piles (Kurian & Srinivas 1995). Since a substantial number of 

surveys on piles and related published papers are associated with cylindrical piles, in 

this study, it is planned to investigate various features of tapered piles. 

 

The current building codes and design techniques are generally inclined towards 

cylindrical piles (Livneh & El Naggar 2008). Reinforced concrete tapered piles are 

regularly precast with desired shapes of cross-section (PETAJA 1981). When they 

are used as driven piles, they are categorised as ‘displacement' piles. Thus, they move 

a volume of soil equivalent to the pile volume. In loose sand, this movement even by 

a straight-sided wall pile results in soil compaction around the pile, which enhances 

the frictional bearing noticeably owing to the significant increase in stresses acting 

perpendicularly to the pile side surface. Besides, tapered piles have an added 

advantage about their vertical load-carrying capacity. This transmits from a part of 

load, which is transmitted by vertical bearing on the sides due to the inclination of 
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the body. This component leads to an increase in the pile bearing capacity when 

compared to straight-sided wall piles, which in turn increases the frictional 

component of the pile resistance.

1.3 Problem statement

The author believes that even though tapered piles are generally cost-effective, 

particularly as driven piles, experience suggests they are underutilized in practice. 

This issue appears to be due to the following factors:

Lack of knowledge and insufficient information about their existence.

Lack of a reliable and straight forward analytical technique for estimating their 

axial compressive capacity.

Insufficient marketplace competition to minimize their costs.

On the other hand, most of the relationships, developed for predicting the behaviour 

of piles, are associated with the conventional cylindrical piles or prismatic ones.

However, for tapered and step-tapered piles, there are limited analytical solutions. 

By and large, in the last three decades, the growing tendency to investigate the 

behaviour of tapered and step-tapered piles has made it inevitable to conduct more 

research in this area. Figure 1.1 demonstrates some different bored cast piles having 

various shapes (Bowles, 1996). Referring to Figure 1.1 (h), a step-tapered pile is 

demonstrated schematically. This study aims to investigate the behaviour of these 

piles installed in sand. The load-displacement diagram of each model is obtained 

separately, and a detailed comparison is made to quantify the behaviour of piles with 

different shapes, but having the same volume. By altering the stepped length of the 

pile, the stress contours developed around the shaft will change due to changes in the 

stress level and the lateral earth pressures.

Furthermore, this study aims to find a rather simple set of equations for axial bearing 

capacity of tapered piles and also investigate whether an optimum tapering angle 

resulting in maximised bearing capacity exits or not. For this purpose, since this study 

investigates the behaviour of bored tapered piles, the mechanism of failure for the 
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base resistance is assumed to follow the Prandtl-type punching failure (Terzaghi 

1943). However, the two important coefficients of 𝑘𝑡 (taper factor), and bearing 

capacity factor 𝑁𝑡, are considered as functions of tapering angle 𝛼. 

 

Several researchers have developed different mathematical equations for prediction 

of the bearing capacity equations of tapered piles, where most were developed based 

on the cavity expansion theory, applicable to tapered driven piles. However, for the 

tapered bored piles, a few equations were established based on experimental results 

by representing a taper coefficient (El Naggar & Sakr 2000; Lee et al. 2009; Paik et 

al. 2010, 2013). 

 

Indeed, most of the previous analytical, numerical and experimental studies, 

investigating the response of tapered piles, had considered an arbitrary tapering angle 

(El Naggar & Wei 1999a, 2000b; Lee et al. 2009; Paik et al. 2010, 2013; Spronken 

1998; Wei & El Naggar 1998). Although Horvath (2004b) by referring to Nordlund 

(1963) mentioned that there should be a limiting value for the tapering angle, other 

researchers such as Kodikara & Moore (1993) did not discuss the possibility of such 

limit in their mathematical derivations. On the other hand, Hataf & Shafaghat 

(2015b) have performed several numerical modellings and compared the load-

displacement curves to show that there is an optimum tapering angle for piles based 

on hardening soil model. However, their numerical modelling has considered a 

constant lateral earth pressure coefficient for all cases of cylindrical and tapered piles. 

In addition, they have adopted several assumptions such as a constant stiffness for 

three different cases of soil types, which is not a practical condition. Hence, in this 

study it is tried to clarify the concept of optimum tapering angle and its relationship 

with the sandy soil properties, using analytical and numerical analyses. Afterwards, 

the behaviour of tapered piles in a group is investigated to estimate the bearing 

capacity of tapered pile groups using group efficiency concept. Finally, step-tapered 

piles with one ledge were analysed numerically and their load-displacement diagrams 

were compared to gain a clearer understanding of the behaviour of these type of deep 

foundations. 
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1.4 Objectives 

The main goal of this study is to investigate the behaviour of tapered and step-tapered 

piles under axial and lateral loads. Four specific objectives of this research are as 

follows: 

 
  Developing new equations to obtain the bearing capacity of piles 

considering the tapering angle. 

  Finding an optimum tapering angle for different types of sand, 

through analytical approach and using the developed bearing 

capacity equations. 

  Developing an efficiency relationship for tapered pile groups. 

  Investigating the effectiveness of step-tapered piles in terms of 

bearing capacity through load-displacement curves. 

 

1.5 Scope and limitations of the work 

In this study, concrete bored piles embedded in sandy soil under axial static loading 

condition are investigated through analytical and numerical modellings. Two 

different constitutive models are used to capture different aspects of each one for the 

purpose of tapered and step-tapered pile modelling (UBC sand model and hardening 

soil HS model). The water table is considered below the pile toe for all models. In 

addition, the behaviour of bored piles is investigated in this study, where the 

simulations represent the construction stages of soil excavation and casting the 

concrete piles in the bored hole.  

 

1.6 Structure of the thesis 

Chapter 2 of the current study describes the past studies which have been performed 

on tapered piles. In that chapter it is attempted to extract the most important findings 

of the previous studies on tapered piles, and present them as a critical review. The 

behaviour of tapered piles under different types of loading are investigated and the 

knowledge gap in the area is clarified. The methodology of the research, including 

the adopted soil behavioural models and the soil calibration exercise, is presented in 
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Chapter 3. It should be mentioned that the soil calibration exercise, which has been 

used in finding the best soil strength parameters in numerical analyses, is summarised 

in Chapter 3. 

 

In Chapter 4, an analytical approach is adopted to find the optimum tapering angle 

of piles in which piles can provide the maximum bearing capacity with identical 

volume of material. This research also contributes to an efficiency equation in 

Chapter 5, to predict the bearing capacity of group of tapered piles. Hence, the ratio 

of the bearing capacity of a pile group to the summation of bearing capacities of 

single piles in the group, known as the pile group efficiency, is investigated. In the 

new developed efficiency equations, the effect of tapering angle is considered, as the 

practical usefulness of tapered piles has been enlightened by the course of time. 

Particularly, the cylindrical pile groups have the potential to be substituted with same 

volume tapered pile groups in some projects, which in turn it can considerably save 

cost and time. 

 

In Chapter 6, the behaviour of step-tapered piles having one ledge and embedded in 

sand is investigated. Step-tapered piles can provide bearing capacity through their 

shaft, base, and the end surface of stepped section. This specific kind of deep 

foundation has a larger upper diameter (for an assigned pile length) and smaller 

diameters in the lower parts. Step-tapered piles have an effective material distribution 

through their body. As the upper sections endure higher forces compared to the lower 

parts, accumulation of material distribution in the upper part is more efficient to resist 

against greater forces.  

 

Finally, in Chapter 7, a brief summary of the acquired results is presented, comprising 

some recommendations for future researchers who are interested in pursuing 

investigation on tapered pile foundations. Chapter 7 also portrays new directions and 

ideas for future research on step-tapered piles. 
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Chapter
Literature Review

2.1 Introduction

The growing tendency to study the behaviour of tapered piles in the last two decades 

has made it necessary to gain a deeper insight into this specific kind of deep 

foundation. Tapered piles have been investigated through analytical, experimental, 

and numerical studies. These piles have revealed different behaviour under various 

loading conditions. Hence, reviewing and assessing these efforts to comprehend their 

response can be of great significance. In this chapter firstly, it is attempted to go over 

the previous experimental studies, conducted on tapered piles. Then, the proposed 

analytical and mathematical solutions, employed to calculate the bearing capacity of 

single tapered piles are compared to have a better vision of how these piles behave. 

In the third section of this chapter, the numerical modelling studies are brought 

together to make a comparison between the optimum tapering angle in loose, medium 

and dense sand. 

Finally, all the efforts are investigated technically to find the advantages, 

disadvantages and the research gaps for this specific kind of piles. In addition to the 

comparison of different methods toward understanding the behaviour of tapered pile 

foundations, a section, entitled the directions and ideas for future research on tapered 
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piles, is provided at the end of this study (Chapter 7) comprising the most recent 

achievements in this area. Moreover, the implementation of tapered piles in a 

significant project as a case study is discussed. The efforts made in this study can 

give an enhanced perspective to the practitioners and researchers to investigate the 

behaviour of tapered piles professionally.  

 

2.2 Past experiences and recent discoveries 

Due to the increasing demand for more efficient and cost-effective resolutions in 

construction industries, geotechnical engineers are pursuing research on finding novel 

ideas to design foundations providing more bearing capacities using less material. 

Many investigations have been conducted to deeply understand the behaviour of 

tapered piles employed in different conditions. Some of them have revealed the 

advantages of this kind of piles in comparison to their counterpart cylindrical ones, 

and some of them are presenting specific circumstances wherein the advantages of 

tapered piles can far outweigh straight sided wall piles. However, it seems that there 

are some gaps for deciding whether using such piles is reasonably beneficial to be 

employed in place of the cylindrical piles. Furthermore, finding the theoretical reasons 

behind the idea of tapered piles can be of great importance to make a decision. Finding 

the answer to the question whether any specific tapering angle for these piles reported 

(in allowable settlement zone) to provide maximum bearing capacity, may contribute 

to a much logical judgment regarding their advantages. Due to a wide range of 

parameters linked to the performance of tapered piles, categorizing the main factors 

affecting the results can be of great significance. Hence, in this study, categorization 

is carried out firstly based on the loading conditions. A comprehensive overview of 

axial and lateral static loading conditions is presented in the first part. Then the special 

effects of the taper coefficient (Kt), the effective overburden pressure (σV´), the 

confining pressure (σh´) and the load-displacement curves (p-y) of piles are studied 

and compared. The second part is allocated to study the response of tapered piles under 

axial and lateral dynamic loading condition. In the second part, similar to the first one, 

in three separate sections the effects of various parameters such as the tapering angle, 

the slenderness ratio and the stiffness will be discussed. The load-displacement 

diagrams of tapered piles subjected to axial harmonic loading is discussed. Finally, the 
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mathematical developments for predicting the response of non-uniform cross-section 

piles subjected to axial and lateral harmonic loading are collected as a comprehensive 

assessment. 

 

In next section, the main findings acquired based on experimental investigations on 

vertically loaded tapered piles, are presented. The results of these investigations can 

be divided into three parts. The first part consists of studying the parameters, which 

directly play an essential role in the behaviour of tapered piles. Based on the conducted 

studies, these parameters are the taper coefficient (which has been used widely in 

attaining knowledge regarding the behaviour of these kinds of deep foundations), the 

effective overburden pressure, and the relative density of sand. The second part is 

allocated to studying the load-displacement behaviour of tapered piles. Particularly, 

comparing the tapered piles' load-displacement curves with their counterpart 

cylindrical piles can gain a deeper insight into their usefulness. Moreover, the 

inclination body of this kind of pile can make the surrounding soil be compacted, 

which in turn can contribute to the enhancement of the lateral earth pressure 

coefficients significantly. Hence, the third part of this section discusses the effect of 

confining pressure on tapered piles performance.  

 

2.3 Statically axial and lateral loading conditions 

2.3.1 Experimental investigations 

2.3.1.1 A brief review of experimental literature  

 

The axial capacity of tapered piles has been investigated under compression and uplift 

loading conditions by many researchers (Bakholdin 1971; El Naggar & Wei 1999a, 

2000b; Fahmy & El Naggar 2017; Fellenius 2017; Khan et al. 2008; Livneh & El 

Naggar 2008; Manandhar & Yasufuku 2013; Paik et al. 2010, 2013; Rybnikov 1990; 

Sakr et al. 2004; Society 1978; Spronken 1998; Wei & El Naggar 1998; Wei 1998). 

Ismael (2003, 2006, 2009) investigated the behaviour of step-tapered bored piles in 

calcareous and cemented sand under static lateral loading. Horvath & Trochalides 

(2004) presented a report for the evaluation of used tapered piles at the John F. 

Kennedy international airport as a case study. The behaviour of tapered piles driven 
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into sand using centrifuge equipment has been studied by (El Naggar & Sakr 2000; 

Sakr & El Naggar 2003). El Naggar & Wei (1999b) conducted a vast range of tests on 

realistic scale steel piles to obtain the response of cone shaped piles subjected to lateral 

loading. 

 

Fellenius et al. (2000) analysed the effect of soil set-up, concrete stiffness, and residual 

stress for tapered piles in sand. Nordlund (1963) studied the load-carrying capacity of 

tapered piles and proposed design curves to determine the coefficient of earth pressure 

taking into account the effect of the tapering angle. D'Appolonia & Hribar (1963) 

studied the behaviour of step-tapered piles with a corrugated surface considering its 

load transfer mechanism and an analytical method has been presented accordingly to 

obtain the load transfer curves of these piles. Based on the test proposed results the 

bearing capacity of tapered piles is the sum of the tip resistance and the side resistance, 

the latter having two components, (1) skin friction, and (2) vertical component of 

wedge reaction. Jain et al. (2013) studied the comparative behaviour of tapered and 

uniform piles driven in loose sands and discussed the dependability of N, (bearing 

capacity factor) and Kh (the coefficient of lateral earth pressure) values. Dutta (1986) 

conducted model pile load tests to study the effect of the tapered shape of pile with 

variable cross-section on the ultimate bearing and uplift capacities. Dutta (1986) found 

that the tapering angle was a key parameter influencing the load capacity of the pile 

and figured out that geometrically the triangular pile carried the maximum load.  

 

Around three decades ago, Meyerhof et al. (1988) have examined the response of 

single cylindrical piles embedded in sand by performing lateral load tests. They found 

that the relative stiffness of piles (the ratio of pile stiffness to soil stiffness) plays a 

significant role on the lateral performance of piles. The importance of the pile 

geometry factor have been highlighted by Mahmoud & Burley (1994), who have 

conducted lateral load tests on a series of square and circular short pile models. 

 

The behaviour of the cone shaped piles under static lateral loading condition has been 

investigated by El Naggar & Wei (1999b), including a vast range of tests on large-

scale steel piles. Sakr et al. (2005) have conducted some pressure chamber tests on 

composite tapered and cylindrical piles subjected to static lateral loading using the 
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conventional head and toe driving methods. Sakr et al. (2005) have compared their 

proposed model for the p-y curves with the strain wedge model proposed by Norris 

(1986), which considers the interaction between the structure (pile) and the adjacent 

soil. Table 2.1 presents a summary of the experimental investigations, including the 

applied apparatuses, pile materials, dimensions, and the methods used for each 

experiment on tapered piles. 

 

Table 2.1. Summary of the experimental investigations conducted on tapered piles 

Reference Pile 
material 

pile 
Length 

(m) 

Tapering 
angles 

(degree) 
Soil Method Apparatus 

Livneh and 
El Naggar 

(2008) 

Steel, 
square shaft 
helical pile 

1.5 2.12°, 
5.33° 

Sand with 
silty clay 

Screw into 
the ground 

by pile helix 
of a screw 

thread 

Field test 

El Naggar 
and Wei 
(1999a) 

Steel 1.524 
0°,  

0.6°,  
0.95° 

Coarse 
angular air-
dried sand 
(loose and 
medium) 

Raining 
technique 

Chamber 
VLPSC 

Fahmy and 
El Naggar 

(2017) 

Hollow 
close-ended 
helical pile, 
ductile iron 
with a very 

rough 
external 

surface and 
steel with a 

smooth 
surface 

(t=5.5mm) 

3.1 
0,  

0.46° Silty Sand 
ASTM 
D1143 Field test 

Paik et al. 
(2013)) Steel pipes 0.9 0, 1°,  

1.5° 
Jumoonjin 

sand Pluviation 
Calibration 

chamber 
test 
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Khan et al. 
(2008) 

Concrete 1.524, 
3.048 

0, 
0.95°, 
1.91° 

Layered 
soil 

consisted of 
sand and 

clay 

Cast-in-
place piles 

using a 
tapered 
auger 

Field test 

Rybnikov 
(1990) 

Steel 4.5 

0, 
1.2°, 
2°, 

2.4° 

Sandy 
loam, 

ordinary 
loam, and 

sand 

Bored cast-
in-place 

piles 
Field test 

Wei and El 
Naggar 
(1998) 

Steel 1.524 
0, 

0.6°, 

0.95° 

Coarse 
angular air-
dried sand 
(medium 

and dense) 

Raining 
technique 

Chamber 
(VLPSC) 

Paik et al. 
(2010) 

Steel pipes 
with a 
smooth 
surface 

0.9 
0, 
1°, 

1.5° 

Jumoonjin 
sand (SP) 

Raining 
technique 

Calibration 
chamber 

Sakr et al. 
(2004) 

Steel and 
FRP (fibre-
reinforced 
polymer 

using GFW 
(Glass 

Filament 
Wound) 

filled with 
self-

consolidated 
concrete 
(SCC) 

1.524 

0, 
0.53°, 
0.71°, 
1.13° 

Sand 
Toe driving 
technique 

Pressure 
chamber 

Wei (1998) Steel 1.52 
0, 

0.6°, 
0.95° 

Coarse 
angular air-
dried sand 

Raining 
technique 

Chamber 
(VLPSC) 

Spronken 
(1998) Steel pipe 0.362 

0, 
0.5°, 
1°, 
2° 

Sand (SP) Pluviation Pluviation 
tank 

El Naggar 
and Wei 
(2000) 

Steel 1.52 
0, 

0.6°, 
0.95° 

Loose and 
medium 

sand 

Pouring 
with no 

densification 

Chamber 
(VLPSC) 

Manandhar 
and 

Yasufuku 
(2013) 

Chromium-
plated steel 0.5 

0, 
0.7°, 
1.4° 

TO sand 
K-7 sand 
FB sand 

Speed 
control 
driving 
method 

Chamber 
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Ismael 
(2009) Concrete 5 Step-

Tapered 

Medium-
Dense sand 
with wick 

cementation 

Bored Piles Field test 

Horvath 
and 

Trochalides 
(2004) 

Close-ended 
steel pipe 
piles filled 

with 
concrete 

30 
0.33°, 
0.57°, 
0.95° 

Sand Pile driving Field test 

Sakr and El 
Naggar 
(2003) 

Cold drawn 
steel tubing 

with a 
thickness of 

0.88 

0.452 

0,  
0.35°, 
0.54°, 
1.02° 

Medium 
angular 

dried sand 
Sand falling Centrifuge 

Naggar and 
Sakr 

(2000) 

Cold drawn 
steel tubing 

with a 
thickness of 

0.88mm 

0.452 

0, 
0.35°, 
0.54°, 
1.02° 

Medium 
angular 

dried sand 

Driving 
(pile pushed 
into the soil) 

Centrifuge 

El Naggar 
and Wei 
(1999b) 

Steel 1.524 
0, 

0.6°, 
0.95° 

Sand Raining 
technique 

Chamber 
(VLPSC) 

Fellenius et 
al. (2000) 

Closed-end 
monotube 
filled with 
concrete 

21m 
long 
with 
7.6m 

tapered 

0.58° 

Layered 
soil (Marsh, 

sand, and 
clay 

Driving Field test 

Lee et al. 
(2009) 

Steel pipes 0.9 
0, 
1°, 

1.5° 

Jumoonjin 
sand 

Raining 
technique 

Calibration 
chamber 

CPT 

El Naggar 
and Wei 
(1999) 

Steel piles 1.524 
0, 

0.6°, 

0.95° 
Sand Rain 

technique 
Chamber 
(VLPSC) 

Sakr et al. 
(2005) 

FRP shell 
and steel 

piles 
1.524 

0, 
0.53°, 
0.71°, 

1.13° 
 

Dense sand 

Conventionl 
pile head 

and pile toe 
driving 

Pressure 
chamber 

 

 

Referring to Table 2, most of the experiments conducted on small scale model tests on 

tapered piles using chamber apparatus and a pluviation technique; while the pile 
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material used were steel pipes. The air-pluviation is a technique that dry sand particles 

are poured into the chamber through the air from a certain height with a constant 

velocity (Tabaroei et al. 2017). According to Table 2, a wide range of tapering angles 

have been used in the experiments (from 0° to 2.5°) and most of the tests performed 

in sand. However, to the best of authors' knowledge, a limited number of laboratory 

and field tests have been conducted to investigate the lateral behaviour of tapered and 

step-tapered piles. 

 

2.3.1.2 Tapering angle, overburden and relative density effects 

A wide range of experiments has been performed to inspect the effectiveness of 

tapered piles compared with constant cross-section piles with the same material input 

by El Naggar & Wei (1999a). Besides, a taper coefficient was introduced to calculate 

the shaft resistance of tapered piles. Equation 2.1 is used to obtain the shaft bearing of 

tapered piles. 

 

𝑄𝑆 = ∫ 𝐾𝑡

𝐿

0

𝐾𝑠𝜎𝑣𝑃. 𝑡𝑎𝑛𝛿. 𝑑𝑧 2.1 

       

Where 𝐾𝑠 is the at rest earth pressure coefficienct, 𝜎𝑣 is the vertical effective stress at 

depth z, 𝑃 is the perimeter of the pile section, 𝛿 is the soil-pile interaction friction 

angle, and Kt is the taper coefficient which is suggested by Figure 2.1 and defined as 

Equation 2.2: 
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Figure 2.1. Variation of shaft resistance coefficient Kt with lateral stress (after El Naggar 
and Wei, 1999a)

𝐾𝑡 =
unit shaft friction of tapered pile

unit shaft friction of cylindrical pile
       2.2

The remaining parameters are the same as those are used for estimating the shaft 

resistance of straight-sided wall piles. According to El Naggar & Wei (1999a) test 

results, the tapering effect is significantly beneficial for a depth of approximately 20 

pile diameters. According to Figure 2.1, higher lateral pressures may contribute to 

lower shaft resistance coefficient values.

The axial performance of tapered piles in compressive loading condition was studied 

by El Naggar & Sakr (2000) using centrifuge model tests. As a result of their research, 

an approach for designing tapered piles was developed. El Naggar & Sakr (2000)

recommended the ratio of the pile top section diameter to its length should be in the 

range of 20–25 for having the optimum efficiency. However, their small scale 

prototype piles were limited to only three different values of length to diameter ratios 

of 14, 18 and 26. In addition, the tested models were prepared in reduced scale of the 

prototypes; hence, proper field load tests need to be conducted to examine the 

optimum efficiency range of l/d ratio of the tapered piles. Figure 2.2 demonstrates the 

values of the taper coefficient, Kt, obtained from the experimental outcomes and the 

theoretical calculations. It indicates the influence of the rate of changing taper 

coefficient in different effective overburden pressures for three different lengths to 
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diameter ratios and tapering angles of piles. Figure 2.2 suggests the values for taper 

coefficient for L/D ratios of 14, 18 and 26, which relates to tapering angles of 1.02°, 

0.54°, and 0.35°, respectively. 

Figure 2.2. Taper coefficient values Kt obtained from the laboratory experiments and the 
theoretical values in different overburden pressures (after El Naggar and Sakr, 2000; Sakr 

and El Naggar, 2003)

Taper coefficient values for lower effective overburden pressures are much greater 

than 1, and by increasing the tapering angle from 0.35° to 1.02°, Kt can raise from 1.6 

to 4.3 at its maximum value, where the effective overburden pressure is less than 25 

kPa. Equation 2.3 is used as a theoretical relationship for obtaining Kt (El Naggar & 

Sakr 2000).

𝐾𝑡 =
tan(𝜃+𝛿)cot(𝛿)

1+2ln(
𝑟1
𝑟𝑚

) tan(𝜃)tan(𝜃+𝛿)
+

4𝐺 tan(𝜃)tan(𝜃+𝛿)cot(𝛿)

(1+2ln(
𝑟1
𝑟𝑚

) tan(𝜃)tan(𝜃+𝛿))𝐾𝑠𝜎𝑣
𝑆𝑟 2.3

Where, θ is the tapering angle, δ is the pile-soil interface friction angle, Ks is the 

coefficient of lateral earth pressure of the soil and G is the elastic shear modulus of 

soil. Besides, 𝜎′𝑣 is the effective vertical stress, and Sr is the settlement ratio (=Up /d). 

These experiments were conducted in sand with a relative density of 35% only. 

Therefore, the effect of relative density in Equation 2.3 has not been considered. In 

this equation, the lateral earth pressure of the soil assumed to be constant. However, it 
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is known that by each incremental settlement of the tapered piles, this coefficient can 

increase in the adjacent soil. The reason for this increase is associated with the soil 

densification adjacent to the pile wall that can be similar to the compacting process of 

the surrounding soil. Due to the wide range of Ks values, proposed in various sources 

for tapered piles (Bowles 1996; Nordlund 1963; Paik et al. 2013), and the key role of 

this parameter in obtaining the shaft capacity of tapered piles, it is recommended to 

consider Ks as a function of the relative density and the over-consolidation ratio of the 

soil. Although Fellenius (2017) mentioned that the concept of “critical depth” is a 

misconception and is based on incorrect understanding of test data and should not be 

considered, investigating the critical depth of tapered piles at which shaft resistance 

may reach a constant value relative to the initial sand density is of considerable 

significance in taper coefficient. Hence, field testing is of great significance to be 

carried out and also to analyse tapered piles behaviour with different l/d ratios to obtain 

the potential influence of critical depth for the tapered pile capacity. 

 

Experimental studies were performed by El Naggar & Sakr (2000) and Sakr & El 

Naggar (2003) to inspect the behaviour of tapered and straight-sided wall piles driven 

into loose sand using centrifuge tests. According to their study, the shaft resistance 

amplified by increasing the tapering angle, and the shaft bearing of the tapered pile 

reached to 1.85 times of its comparable straight-sided wall pile. However, it has not 

been stated that increasing the tapering angle should be limited to a specific value. 

They also compared the values with those calculated based on the theory by changing 

the effective overburden pressure, as shown in Figure 2.3. 
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Figure 2.3. Effects of tapering angle on (a) the base taper coefficient (TFb); (b) the shaft 

taper coefficient (TFs) for different lateral earth pressures (after Paik et al., 2013) 
 
 
Paik et al. (2013) investigations also demonstrate that the ultimate unit base bearing 

of a tapered pile increases when the mean stress, the relative density and the tapering 

angle of a pile magnifies. Nevertheless, the effect of critical depth in shaft capacity 

calculation was not considered by Paik et al. (2013). Moreover, based on their 

research, it is comprehended that the ultimate unit shaft bearing of a pile increases as 

the stress components, the relative density and the tapering angle increase. Figure 2.3 

indicates the relationship between the tapering angle of piles and the taper coefficients, 
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which are defined in Equations 2.4 and 2.5. Referring to these figures, by increasing 

the tapering angle, the base taper coefficient increases but only for lateral earth 

pressure coefficients greater than 0.4. However, shaft taper coefficient increases for 

all lateral earth pressure coefficients up to 1.8 for a tapering angle of 1.5°. 

 

Equations 2.4 and 2.5 are used to calculate the taper coefficients for the base and shaft 

resistance of tapered piles, respectively (Paik et al. 2013). The coefficients A and B in 

Figure 2.3 are functions of the relative density, at rest lateral earth pressure coefficient 

and the pile tapering angle, which have been substituted in Equations 2.4 and 2.5. 

 

𝑇𝐹𝑏 = 1 + [0.0005(𝐷𝑅)1.5 ln(𝐾0) + 0.359]휃  2.4 

 

𝑇𝐹𝑠 = 1 + [6.3 − 22.6 ln(𝐾0)]
𝜃

𝐷𝑅
  2.5 

         

where, DR is the relative density of soil, K0 is the lateral earth pressure coefficient of 

soil at rest, and 휃 is the tapering angle of pile. Equations 2.4 and 2.5 can be questioned, 

since by increasing the relative density of soil, the lateral earth pressure coefficient 

increases. However, in the proposed model by Paik et al. (2013) for a constant relative 

density of 86% a wide range for lateral earth pressure coefficients is assumed. In 

Equations 2.4 and 2.5, by increasing the tapering angle, the base and shaft taper 

coefficients increase, while the tapering angle should be limited to a certain value. 

Besides it is recommended that other affecting parameters such as the geometry of 

piles, the overconsolidation ratio of soil, the pile-soil interaction friction angle and the 

settlement of piles to be considered for obtaining the shaft taper coefficient. Figure 2.4 

demonstrates the effect of lateral earth pressure on the taper coefficient for an ultimate 

unit base and shaft resistance by different relative densities for a tapering angle of 1 

degree, respectively. 
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Figure 2.4. Effects of K0 for the tapering angle of 1° in different relative densities 
(a) Effect on the base taper coefficient (TFb); (b) Effect on the shaft taper coefficient (TFs) 

(after Paik et al., 2013)

Figure 2.4 suggests that by increasing at rest lateral earth pressure of the soil, the effect 

of relative density on taper coefficients of both shaft and base decreases. 

(b)

(a)
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Almost all of the efforts, performed to propose a taper coefficient in predicting the 

shaft resistance of tapered piles, have recommended value in the range of 1 to 4.5, 

which attributed to a tapering angle approximately between 0º and 1º, respectively. 

The conceptual three-dimensional diagram in Figure 2.5 illustrates different taper 

coefficients against confining pressures.  

 

 
Figure 2.5. Comparing different taper coefficients with different confining pressures 

presented by different researchers (data are taken from Naggar & Sakr, 2000; Paik et al., 
2013; Sakr & El Naggar, 2003) 

 

As can be seen in Figure 2.5, the variation of taper coefficient suggested by El Naggar 

& Sakr (2000) and Sakr & El Naggar (2003) is negligible in lateral pressure ranging 

from 5 kPa to 15 kPa. However, the effect of confining pressure on the model 

presented by Paik et al. (2013) is significant. This comparative diagram confirms that 

more investigations are required to quantify the taper coefficient value for obtaining 

the shaft capacity of a cone shaped pile. It should be remarked that the presented 

equations are developed only based on small scale models. Hence, it is recommended 

to validate these equations using field test results and rigorous numerical analysis. 

 

The Canadian Geotechnical Society Committee (1978), also suggests employing 

Equation 2.3 for determination of taper coefficient without considering the relative 

density of the soil, which can significantly affect the lateral earth pressure coefficient. 
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Manandhar & Yasufuku (2013) evaluated the skin resistance using cavity expansion 

theory and stress–dilatancy relationship. Besides, the base resistance of tapered piles 

assessed by defining a taper coefficient. Their results of experiments have illustrated 

that a slight increase in the tapering angle contributes to a higher skin resistance and 

affects the end bearing capacity in comparison with conventional cylindrical piles 

embedded in various types of sands and relative densities. Figure 2.6 illustrates the 

increasing shaft and point resistance of tapered piles up to the tapering angle of 1.4° 

comparing to the straight-sided wall pile.  

 

 
Figure 2.6. Effect of tapering angle on the normalized pile capacity using cavity expansion 

theory (any reference?) 
 

As shown in Figure 2.6, for a tapered pile having 1.4° tapering angle, the ratio of shaft 

friction capacity to its counterpart straight sided wall pile reaches to 10 at about 0.2 of 
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settlement to diameter ratio of the pile. This value for the base capacity in its maximum 

value is about 3. Hence, taper coefficients defined based on Figure 2.6 enlightenments 

are proving the effectiveness of tapered piles in both side and base resistance.   

 

On the other hand, the response of laterally loaded piles have been evaluated based on 

theory of elasticity (Budhu & Davies 1987; Pise 1984; Poulos 1971; Randolph 1981). 

Although, in order to consider the soil non-linearity, Poulos & Davis (1980) and 

Budhu & Davies (1987) have proposed some modifications based on yield factors, the 

effect of tapering angle has not been taken into account for their proposed model. The 

inclined body of tapered piles can affect the lateral earth pressure coefficient by 

mobilising a portion of passive pressure (𝐾𝑝) and subsequently the lateral 

performance. 

 

Under the lateral loading condition and according to El Naggar & Wei (1999b), the 

term subgrade reaction modulus deflection is defined as 𝐾ℎ = 𝑝/𝑦, representing the 

equivalent spring stiffness used as the elastic medium for the soil, where p is the soil 

resistance and y is the pile lateral deflection. Although this reaction modulus increases 

with increasing the tapering angle, it decreases with increasing of the pile lateral 

deflection, particularly for lesser confining pressures, as shown in Figure 2.7 (El 

Naggar & Wei 1999b). 

 
Figure 2.7. Decreasing trend of the horizontal subgrade modulus reaction with deflection 

(any reference?) 
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On the other hand, Sakr et al. (2005) have defined a taper coefficient for evaluating 

the lateral resistance of the piles. This factor has been defined as 𝐾𝑡𝑙, which refers to 

the ratio of the lateral resistance of a tapered pile to its counterpart cylindrical pile, 

and is defined in Equation 2.6 (Sakr et al. 2005). 

 

𝐾𝑡𝑙 = 𝑒0.45𝛼     𝑓𝑜𝑟       ( 0° ≤ 𝛼 ≤ 1.13°)  2.6 

 

Although Equation 2.6 can be used for flexible piles, it is limited to tapering angles in 

the range of  0° ≤ 𝛼 ≤ 1.13°. Hence, additional centrifuge tests or field tests are 

required to capture the effect of vertical and radial stress variations with depth on the 

aforementioned factor. 

 

2.3.1.3 Effect of confining pressure 

Wei & El Naggar (1998) found that the skin friction of tapered piles is capable of 

being 40% greater than their same volume conventional cylindrical piles. Based on 

their research, it is comprehended that for both pile types, the distribution of load along 

the pile shafts had a similar pattern, and that is a function of confining pressure. In 

addition, it is presumed that tapered piles can provide higher resistances than the 

straight-sided wall piles. On the other hand, they recommend using tapered piles with 

specific geometry properties (i.e. with a slenderness ratio less than 20). Figure 2.8 

illustrates the ultimate point load carrying capacity for various applied confining 

pressures. 
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Figure 2.8. Distribution of the ultimate load by pile point for various applied confining 

pressures (after Wei and El Naggar, 1998) 
 
 
As can be observed in Figure 2.8, in lower confining pressure levels, the point load-

carrying capacity of the cylindrical pile is higher than tapered piles. In higher 

confining pressures, the difference between the point load-carrying capacities of these 

piles is not significant. However, it should be noticed that the cross-section area of the 

cylindrical pile tip is larger than that of a tapered pile, which in turn proves the 

effectiveness of tapered piles.   

 

The results of El Naggar & Wei (2000b) study indicates that by increasing the 

confining pressure, the axial uplift resistance of a tapered pile increases. However, it 

is expected that by increasing the confining pressure, the vertical upside component 

of the force along the pile shaft will increase and push the pile in the upward direction. 

Accordingly, it can significantly decrease the uplift capacity of these piles. Figure 2.9 

demonstrates the influence of confining pressure on the shaft friction of two piles (S: 

Straight-sided wall pile, T1: Tapered pile with a tapering angle of 5º) under various 

confining pressures.  
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Figure 2.9. Shaft friction of tapered and straight-sided wall pile in-depth under various 

confining pressures in medium-dense sand (after El Naggar and Wei, 2000b) 
 

Although, the observed trend is similar to the cylindrical piles, reported by De Nicola 

& Randolph (1993), the ratios of the uplift load to compressive load which has been 

reported approximately between 0.6 and 0.7 are less matched for tapered piles. This 

discrepancy is probably due to the higher capacity of tapered piles under compressive 

loading and less under uplift loading. The relationship between the measured stress 

and the applied confining pressure is shown in Figure 2.10 (El Naggar & Wei 1999a).  

 
Figure 2.10. Measured stresses variation at different applied confining pressure levels (after 

El Naggar and Wei, 1999a) 
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El Naggar & Wei (1999a) employed transducers in their study to compute the average 

lateral stress at different confining pressure levels applied to the soil chamber. Their 

efforts, however, can be criticized since the values of the shaft resistance at the 

boundaries were neglected in their calculations due to the boundary effects. Since the 

behaviour of soil adjacent to the pile shaft is nearly plastic and for the accuracy and 

reliability of the results, the effect of boundaries, particularly at pile-soil interfaces, 

should be taken into consideration. According to their assumption, the shaft friction 

curve was found to be approximately uniform. However, the average might not 

represent an accurate estimation for the unit load transfer along the pile shaft.  

 

The confining pressure also plays a significant role in the lateral performance of 

truncated cone-shaped piles. As reported by Sakr et al. (2005), the moment distribution 

diagrams for piles having different tapering angles of 0°, 0.53°, 0.71° and 1.13° 

indicate that the maximum moment increases as the radial/vertical confining pressure 

increases. Figure 2.11 illustrates that the maximum moment also has a direct 

relationship with the tapering angle; as can be seen in Figure 2.11, under confining 

pressures of 30kPa and 60kPa, and from tapering angles from 0° (cylindrical pile) to 

1.13°, the moment increases more than 90%.  

 
Figure 2.11. Distribution of moment along pile shaft subjected to ultimate pile load using 

toe driving under 30 and60kPa confining pressures (after Sakr et al., 2005) 
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This change of moment distribution was also discussed by (El Naggar & Wei 1999b), 

where three different piles with tapering angles of 0°, 0.6° and 0.95° were tested under 

static lateral loading condition. According to El Naggar & Wei (1999b), under a zero 

confining pressure condition and the ultimate lateral loading capacity, the maximum 

moment of a tapered pile with 0.95° increases approximately 30%. However, under 

the same condition of loading and confining pressure of 100kPa, this increase is 

limited to around 20%. Figure 2.12 illustrates a comparative moment diagrams of both 

analyses performed by El Naggar & Wei (1999b) and Sakr et al. (2005) under a 

confining pressure of 60kPa. 

 

 
Figure 2.12. Comparative moment diagrams of both analyses at a confining pressure of 

60kPa 
 
 
2.3.1.4 Load-settlement behaviour  

Results of pile load tests obtained by Paik et al. (2010) indicated that the frictional 

resistance of tapered piles continuously increases with pile settlement. However, 

straight-sided wall piles reach the ultimate frictional bearing at a settlement of 2% of 

their diameter. According to their study, the ratio of the load-carrying capacity of 

tapered piles to their counterpart cylindrical ones was found to vary with both the 
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tapering angle and the sandy soil condition. It has been suggested that for all sandy

soil conditions, the ultimate unit shaft resistance of cylindrical piles is generally less 

than that of tapered piles (Paik et al. 2010). However, in terms of the unit base load 

carrying capacity, tapered piles only provide higher base resistance in dense sand with 

lateral earth pressure coefficients more than 0.4. Furthermore, taper coefficients are 

proposed to estimate the shaft and base resistances of tapered piles, but not considering 

the effect of overburden pressure or pile-soil interaction effect. Figure 2.13 is depicting 

the variation of base and shaft loads against the settlement of the piles. Each test is 

recognized by three symbolic letters (L for low, M for medium and H for high). The 

first letter designates the level of the relative density DR of the sample (H for 86% and 

M for 55%), and the second and third letters designate the levels of the initial vertical 

and horizontal stresses (𝜎𝑉
′ 𝑎𝑛𝑑 𝜎ℎ

′ ) at the mid-depth of the test piles, respectively.

Figure 2.13. Load-displacement curves for piles (a) base load and (b) shaft load (after Paik 
et al., 2010)

Figure 2.13 suggests that as tapering angle increases, regardless of the sandy soil stress 

state and relative density, the ultimate unit shaft resistance of piles increases, while 

the unit base resistance of piles increases in medium sand and decreases in dense sand. 

An experimental study has been conducted by Sakr et al. (2004) to inspect different 

parts of a pile at various stress levels. The load-transfer mechanism of tapered piles 

was observed in the axial compression loading condition. Moreover, pile performance 

characteristics evaluated considering the effect of pile material. Figure 2.14 illustrates 
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the load-displacement behaviour of tapered and straight-sided wall piles at low and 

high confining pressures using the head driving method.  

 

 

 
Figure 2.14. Load-settlement curves for piles tested using the head driving method at (a) low 

confining pressures (b) high confining pressure (after Sakr et al., 2004) 
Referring to Figure 2.14, by increasing the tapering angle of piles, the load-carrying 

capacity of piles increases. The results of the study of Wei (1998) has confirmed the 
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efficiency of tapered piles comparing to straight-sided wall piles with the same 

material and in all loading conditions. It is determined that tapered piles indicate a 

more reasonable distribution of pile material in a number of aspects. As can be 

observed in Figure 2.15, tapered piles can present more efficient behaviour in terms 

of bearing capacity and settlement, compared to their counterpart cylindrical piles. 

However, in dense sand, the amount of bearing capacity enhancement is not 

significant. 

 

 
Figure 2.15. Load-settlement diagrams for piles embedded in soil with different confining 

pressures (a) tapered pile in dense sand (b) straight side pile in dense sand (c) tapered pile 
in loose sand (d) straight side pile in loose sand (after Wei, 1998) 

 
 
Khan et al. (2008) investigated the construction and performance of bored tapered 

piles (made from concrete material) in frictional-cohesive soil. Their (Khan et al. 

2008) report illustrates that tapered piles having a tapering angle of 0.96 to 1.92 can 

provide a load-carrying capacity about1.5 times of their counterpart same volume 
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cylindrical piles. However, the obtained lab results from experiments are dependent 

on the specific site characteristics. Table 2.2 presents a comparison between tapered 

and same volume cylindrical piles based on unit capacity (capacity per unit volume) 

(Khan et al. 2008).  

 

Table 2.2. Comparison of the capacity of tapered and straight piles (after Khan et al., 2008) 

No. 
Tapering 

angle 
Length 

Concrete 

volume 

(m3) 

Volume 

difference 

(%) 

Axial 

Capacity 

(kN) 

Capacity 

increase 

(%) 

Unit 

capacity 

(kN/m3) 

Increase 

in unit 

capacity 

(%) 

1 0.95° 1.524 0.062 
24% 

more 
287 61 4629 30 

2 0.95° 1.524 0.038 24% less 205 15 5395 51.50 

3 1.91° 1.524 0.05 same 271 52 5420 52 

4 0 1.524 0.05 - 178 - 3560 - 

5 0.95° 3.048 0.1 same 412 28 4120 28 

6 0 3.048 0.1 - 321 - 3210 - 

 

According to the data summarised in Table 2.2, for piles having approximately 3m 

length, tapering effect contributed up to 28% in the unit capacity. This value for piles 

with 1.5 length reaches to 30% and 52% at tapering angles of 0.95° and 1.91°, 

respectively. According to Rybnikov (1990), the reason behind the increase in bearing 

capacity of a tapered pile (per m3 of material) is the wedge effect under loading. It is 

revealed that the practical benefit of bored cone shaped piles in non-saturated cohesive 

soils is obvious. In addition, it is clarified that they are specifically effective under 

highly confined pressures in reconstruction projects. However, the prime reason for 

not widely applying tapered piles in practice can be associated with insufficient 

investigations on their operating characteristics and lack of confidence in practising 

engineers. 

 

Fahmy & El Naggar (2017), investigated the axial capacity of spun-cast ductile iron 

(SCDI) tapered pile combined with a lower helical plate. Besides a 3D finite element 

analysis has been conducted in their effort to evaluate the axial performance of the 

system. According to their report, tapered helical piles demonstrated a stiffer response 
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and yielded higher capacities compared to the straight-sided ones. Livneh & El Naggar 

(2008) found that the load transfers in soil mainly through a cylindrical shear failure 

adjacent to the tapered profile. Test results of the study conducted by Spronken (1998) 

have shown that bearing capacity increases as volumetric displacement, confining 

pressure, tapering angle, and depth of driving increase. Consequently, tapered piles 

provided significantly greater bearing capacity under high confining pressure 

conditions. Figure 2.16 presents the variation of the lateral earth pressure coefficient 

surrounding the pile body by changing the tapering angle (Nordlund 1963).  

 

 
Figure 2.16. Variation of lateral earth pressure coefficient surrounding the pile body vs 

tapering angle (after Nordlund, 1963) 
 
 
Referring to Figure 2.16, the lateral earth pressure coefficient increases until the 

tapering angle reaches to 2°, which can prove the effectiveness of tapered piles.  Table 

2.3 presents the bearing capacity of straight and tapered piles in the laboratory with a 

length of 0.73 m (Spronken 1998). 
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Table 2.3. Bearing capacity of straight and tapered piles with 0.73 m length (after Spronken, 
1998) 

Capacity 0° 0.5° 1° 2° 

Total (N) 1,009 968 757 1,116 

Tip (N) 938 403 111 233 

Tip (kPa) 463 855 235 494 

Settlement (mm) 7.9 7.7 8.2 7.5 

Volume (cm3) 1,480 583 863 1,171 

%age of str. Vol. 100 % 39.4 % 58.3 % 79.1 % 

 

The analysis conducted by Fellenius et al. (2000) has determined the magnitude and 

distribution of the real shaft and base resistances along with the residual load. It is 

proving that most of the pile capacity has been developed in the base section of the 

pile approving with effective stress principles. At the maximum applied load, in the 

tapered section, the resistance has been provided by fully mobilized positive shaft 

resistance and the toe resistance component that is movement dependant.  

 

Gupta (2015) integrated some of the efforts related to tapered and step-tapered piles 

as a review report. Other studies have been conducted including field tests on single 

and group of step-tapered piles in cemented sand as well as pile load tests in clay under 

axial loading condition (Ismael 2001, 2003, 2006, 2009; Majumder & Chakraborty 

2018).  

 

The load-settlement behaviour of tapered piles under lateral loading is obtained for 

piles having the same length and volume of 1.524m and 0.033𝑚3, respectively, and 

various tapering angles of 0°, 0.53°, 0.71° and 1.13° (Sakr et al. 2005) and 0°, 0.6° 

and 0.95° (El Naggar & Wei 1999b). For predicting the p-y curves of tapered piles, 

Sakr et al. (2005) suggested using a taper coefficient in the model proposed by 

Bhushan & Askari (1984); Bhushan & Haley (1980); Bhushan et al. (1981); Meyer & 

Reese (1979) based on full-scale load test results in sand as presented in Equation 2.7.  

 

𝑝 = 𝐾𝑧𝐹1𝐹2𝐾𝑡𝑙 . 𝑦  2.7 
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where, k is a function of the lateral deflection (y), 𝐹1 and 𝐹2 are two factors dependent 

on the groundwater location and soil relative density, 𝐾𝑡𝑙 is defined in Equation 2.6, 

and z is the depth where the p-y curve is generated. While Sakr et al. (2005) have 

shown using a taper coefficient directly in Equation 2.7 can lead to reasonable results, 

the proposed model has not been accounted for pile geometry and material properties 

such as tapering angle and stiffness as well as soil continuity and homogeneity. Figure 

2.17 illustrates the p-y curves of the tested piles under the static lateral loading 

condition as a comparative diagram between the obtained results by Sakr et al. (2005) 

and El Naggar & Wei (1999b) at zero confining pressure.  

 

 
Figure 2.17. Comparative p-y diagrams of piles under static lateral loading condition at 

zero confining pressure 
 
 

2.3.2 Analytical investigations 

Many researchers have carried out a wide range of analytical investigations on tapered 

piles axially loaded. Some of them have considered the plastic behaviour of the soil 

near the ground surface into account or used the finite element method (Gotman 2000; 

Kurian & Srinivas 1995; Reddy & Ramasamy 1973).  Some researchers used the 

cavity expansion theory to propose analytical models for predicting the end resistance 

or investigated the buckling and load distribution pattern of a tapered pile (Lee et al. 

2018; Liu et al. 2012; Manandhar & Yasufuku 2012). A well-known study carried out 
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by Kodikara & Moore (1993) employing the axial behaviour of tapered piles in a 

cohesive-frictional ground. Based on their work, Equations 2.8 to 2.11 are presented 

for calculating the axial deformation of a tapered pile using Figure 2.18, which can 

illustrate the geometry of a complete tapered pile and its segment. 

 
Figure 2.18. The schematic of complete tapered pile and its element (complete tapered pile; 

and the element at depth x) (after Kodikara and Moore, 1993) 
 

𝑑𝐹𝑥
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2𝜏𝑥

[𝑟𝑚+(
𝐿

2
−𝑥) tan 𝛼]𝐸𝑝

  2.11 

                                                              

In the above equations and at depth 𝑥, 𝐴 is the area of the pile cross-section; 𝐸𝑝 is 

elastic modulus of the pile material; 𝐹𝑥 is the axial force; 𝜏𝑥  is a function of pile 
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deformation and 𝑢𝑝 denotes the vertical component of the stress at the pile-soil 

interface. Moreover, 𝑟𝑥 is the pile radius for a pile of embedded length 𝐿; 𝛼 is the 

tapering angle, and 𝑟𝑚 is the mean pile radius along the embedded length.  

 

2.3.2.1 Axial force distribution law  

The load transfer mechanism in a tapered rigid pile based on Mohr-Coulomb theory is 

presented by Liu et al. (2012). Based on their model, a tapered pile is divided into M 

segments. A local coordinate system Hi (for i = 1, 2. . . M) is defined for each segment, 

as shown in Figure 2.19, where Li is the length of the ith element, and α is the tapering 

angle.  

 
Figure 2.19. Schematic diagram of a single tapered pile and the element forces (after Liu et 

al., 2012) 
 

A segment of length dhi (which has been selected from the ith element) is considered. 

According to Hooke’s law and the vertical equilibrium state of this element, the 

controlling differential equations for the ith element are obtained as: 

 
𝜕2𝑝𝑖(ℎ𝑖)

𝜕ℎ𝑖
2 =

2

𝐸𝑝𝑟𝑖
𝑓𝑖(ℎ𝑖)  2.12 
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𝑁𝑖(ℎ𝑖) = −𝐸𝑝𝜋𝑟𝑖
2 𝜕𝑝𝑖(ℎ𝑖)

𝜕ℎ𝑖
  2.13 

 

where fi(hi) and pi(hi) are the skin friction resistance and vertical displacement for 

section hi of the ith pile, respectively, Ep is the pile elastic modulus, and ri is the average 

radius of the ith element. It is presumed that pi(hi) is the settlement of the ith element 

under the pile-top load. Based on the geometrical relationships, the soil radial 

displacement adjacent to the pile can be given by Equation 2.14: 

 

𝑑𝑐𝑖 = 𝑝𝑖(ℎ𝑖)𝑡𝑎𝑛𝛼  2.14 

 

The pile lateral pressure increment produced due to the settlement of the pile is defined 

as ζri, the corresponding soil radial displacement adjacent to the pile, based on elastic 

theory, can be yield acquired by Equation 2.15: 

 

𝑑𝑟𝑖 = 휁𝑟𝑖
(1+𝜐𝑠𝑖)𝑟𝑖

𝐸𝑠𝑖
  2.15 

 

where 𝜐𝑠𝑖  and Esi are the Poisson's ratio and Young's modulus of the ith layer of soil, 

respectively. Finally, based on the displacement compatibility condition, dci=dri, and 

pile lateral pressure increment produced due to the settlement of the pile can be 

determined by Equation 2.16: 

 

휁𝑟𝑖 =
𝐸𝑠𝑖  𝑡𝑎𝑛𝛼

(1+𝜐𝑠𝑖)𝑟𝑖
𝑝𝑖(ℎ𝑖)  2.16 

 

The limitation of Equation 2.16 for calculating the pile lateral pressure increment can 

be associated with some simplifications based on elastic theories, which may not lead 

to accurate results. Besides, according to Equation 2.16, the pile lateral pressure 

increment is not dependent on three key parameters of soil namely, the relative density, 

the lateral earth pressure coefficient and the overburden pressure, which still proves 

the insufficiency of the presented equation. 
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2.3.2.2 Analytical discussion 

Fellenius & Altaee (1999) generated an analytical discussion about the behaviour of 

tapered piles conducted by Wei & El Naggar (1999). The main part of the discussion 

is about enabling the lateral stress to be increased as the cylindrical test chamber lined 

with an "air bladder". The discussers stated their disagreement for the claiming that 

the lateral stress state of the model pile can be comparable to the real stress state of 

the prototype. Wei & El Naggar (1999) have replied by referring to Vesic (1977), amid 

others, who have recommended that unit shaft capacity for piles in sand is measured 

using the lateral effective soil stress, volumetric variations in soil, and the grain 

crushability and re-arrangement. Wei & El Naggar (1999) have also mentioned that 

the lateral pressure in the chamber test at the tip of the pile model was a suitable 

illustrative of the lateral effective pressure in the prototype at the pile tip. 

 

2.3.3 Numerical investigations 

Several researchers performed numerical analysis to investigate the behaviour of 

tapered piles under different loading conditions. Most of the studies conducted using 

the finite element method (FEM) and different commercially available software 

packages. In some studies a two-dimensional or three-dimensional numerical 

modelling has been applied to compare the bearing capacity and settlement of 

foundations with different geometries such as tapered and under-reamed piles (Hataf 

& Shafaghat 2015a, 2015b; Kong et al. 2013; Paik et al. 2013; Shafaghat 2013; 

Shafaghat et al. 2018; Vali et al. 2019; Zhan et al. 2012). Other studies performed to 

investigate the axial performance of square shaft helical tapered piles in sand under 

compressive and tensile loading (Fahmy & El Naggar 2017; Livneh & El Naggar 

2008). Similar to the well-known analytical equations proposed by Kodikara & Moore 

(1993), a numerical analysis has been performed by Kodikara et al. (2006). According 

to their study, the side resistance of tapered piles in mudstone has been evaluated, 

which clearly illustrates the beneficial effects of these kinds of piles comparing to 

cylindrical ones in mudstone.  

 

As mentioned above, the bearing capacity of tapered pile groups has been numerically 

compared using 3D FEM, and a study has been performed on optimizing the resistance 

of tapered piles in large scale (Hataf & Shafaghat 2015a, 2015b). Based on their 
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studies, to consider a foundation as a pile, it is usually conventional that the ratio of 

the pile depth to its width be greater than 6. According to this definition, the maximum 

tapering angle is 9.46 that can be considered for a tapered pile. The geometry of piles 

that have been investigated by (Hataf & Shafaghat 2015a, 2015b) are illustrated in 

Table 2.4.  

 

Table 2.4. The geometry properties of the modelled tapered pile (Hataf & Shafaghat, 2015) 

Pile 𝜶 (degree) L (m) RT (m) RB (m) V (m3) 

Cylindrical 0º 10 0.3 0.3 2.83 

Tapered1 0.4º 10 0.33 0.26 2.83 

Tapered2 0.8º 10 0.37 0.23 2.83 

Tapered3 1.2º 10 0.4 0.19 2.83 

Tapered4 1.6º 10 0.43 0.15 2.83 

 

In Table 2.4, α is tapering angle, L is the pile length, V is the volume of pile and RB 

and RT are the bottom and top radius of pile, respectively. Figure 2.20 illustrates the 

calculated optimum tapering angles of piles in three different relative densities of sand. 
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Figure 2.20. Optimum tapering angles of piles in sand with various friction angles (a) Loose 

sand, (b) Medium sand, (c) Dense sand (after Hataf and Shafaghat, 2015) 
 

Figure 2.20 suggests that by increasing the relative density of sand, the optimum 

tapering angle increases. Further numerical analysis is required to find the relation of 

the optimum tapering angle of piles with strength characteristics of soils as well as 

pile-soil interface properties. Besides to the above investigations, there are several 

studies around the tapered pile foundations under dynamic loading conditions and also 

around the bearing capacity behaviour of conventional cylindrical piles which is out 

of the scope of this research. 
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2.4 Dynamic axial and lateral loading conditions 

2.4.1 A brief review of experimental, numerical and theoretical models  

In order to pertain the axial and lateral dynamic response of cylindrical piles a limited 

number of experimental tests have been conducted. Some experimental investigations 

reported in the literature are related to the behaviour of full-scale single prototype piles 

(Elkasabgy & El Naggar 2013; Manna & Baidya 2009; Puri 1988). Some other 

laboratory tests have been performed to assess the response of small-scale pipes (open 

ended hollow piles) (El-Marsafawi et al. 1992; Han & Novak 1988; Novak & F. Grigg 

1976). However, based on the literature surveys, there are a limited number of 

experimental tests and numerical surveys have been performed to evaluate the axial 

and lateral response of tapered piles under dynamic loading conditions. Although 

some of the efforts in evaluating the response of tapered pile models under cyclic 

loading have been conducted by El Naggar & Sakr (2002) and El Naggar & Wei 

(2000a), the loading type has been categorised as nondynamic cyclic loading case 

similar to wave and wind loads or tidal effects where the load is applied with slow 

variations.  

 

Generally, several theoretical studies have been performed including developed 

models for investigating the dynamic axial and lateral behaviour of piles having a non-

uniform cross-section (Bryden et al. 2018a, 2020; Dehghanpoor & Ghazavi 2012; 

Ghazavi 2000a, 2000b, 2003, 2006; Ghazavi 2007, 2008; Ghazavi et al. 2003; Ghazavi 

et al. 2007; Ghazavi & Dehghanpour 2010; Ghazavi & Etaati 2001; Saha & Ghosh 

1986; Tavasoli & Ghazavi 2018, 2020; Xie & Vaziri 1991). Some of the proposed 

theoretical models have been incorporated the geometric damping, which is a 

governing form of energy dissipation and attributes to the deformed surface area 

during the wave propagation (Bryden et al. 2018a; Novak 1977). Other studies have 

not included the material damping, which according to Bryden et al. (2018b) can affect 

the dynamic response of piles (Ghazavi 2008; Saha & Ghosh 1986; Xie & Vaziri 

1991). Among the proposed models for examining the dynamic response of tapered 

piles, Ghazavi (2008) has developed a method which its fundamental concept is based 

on the elastodynamic model proposed by Novak (1974, 1977) using a segment by 

segment (SSM) method. 
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2.4.2 Tapering angle, slenderness ratio and stiffness effects 

Saha & Ghosh (1986) have presented an approximate method to analyse tapered piles 

under vertical vibration and account for soil-pile interaction. According to their model, 

with an increase in the tapering angle, the resonant amplitude decreases and the 

resonant frequency increases (Figure 2.21).  

 

 

 
Figure 2.21. Effect of tapering angle on resonant frequency and amplitude (a) 𝜗 = 0.33; 𝑣𝑠 =

105𝑓𝑡/𝑠𝑒𝑐; l/r=20; r=3.94in. b) 𝜗 = 0.33; 𝑣𝑠 = 315𝑓𝑡/𝑠𝑒𝑐; l/r=20; r=5.91in (after Saha and 
Ghosh, 1986). 
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This increase in the resonant frequency is dependent on two important parameters of 

soil stiffness and slenderness ratio (Saha & Ghosh 1986). This means for piles 

embedded in stiffer soil and having same slenderness ratio, the increasing resonant 

frequency with increasing tapering angle is more significant. According to Saha & 

Ghosh (1986), with an increase in the tapering angle, the stiffness of tapered piles 

increases and the damping decreases. The slenderness ratio also has similar effect on 

the stiffness and damping parameters of tapered piles with respect to tapering angle; 

however, for l/r ratios of less than 30, where l is the length and r is the mean radius of 

piles, the damping parameters have an increasing trend. In another survey, the 

response of elastic tapered piles to harmonic vibration loading condition has been 

predicted through a mathematical method (Ghazavi 2008). It is worth mentioning that 

the use of tapered piles is superior comparing to their counterpart cylindrical piles as 

dynamically loaded piles (Ghazavi 2008). This conclusion routes from the geometrical 

aspect of cone-shaped piles, which can compact the adjacent soil due to their inclined 

body. This advantage is even more highlighted when the pile has an optimum tapering 

angle as can be seen in Figure 2.20 (Hataf & Shafaghat 2015a, 2015b; Shafaghat 

2013). 

 

The lateral movement of tapered piles to seismic loading has been evaluated using the 

wave propagation theory (Ghazavi 2007). It has been found that tapered piles show 

more flexibility comparing to their same volume straight side piles under the same 

frequency (Ghazavi 2007). Hence, it is expected that due to the concentration of 

material around the top portion of tapered piles a greater base shear can be induced. 

Bryden et al. (2018a, 2020) have developed a theoretical model, which does not 

incorporate the segment by segment method (SSM), to obtain the damping and 

stiffness parameters of tapered piles. According to Bryden et al. (2018a), as the 

tapering angle increases, particularly under axial vibration loading condition, the 

resonant amplitude of tapered piles decreases (Figure 2.22). This advantage can make 

tapered piles more beneficial for dynamic design applications. 
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Figure 2.22. Dimensionless amplitude vs. vibration frequency for (a) end-bearing piles (b) 
floating piles (after Bryden et al., 2018)

2.4.3 Load-displacement behaviour

The load-displacement behaviour of tapered piles under cyclic loading condition has 

been obtained through several experimental tests and using chamber and centrifuge 

facilities (El Naggar & Sakr 2002; El Naggar & Wei 2000a). According to the results 

obtained from centrifuge tests, there is a degradation in shaft resistance of tapered piles 

in small settlements, while piles show a stiffer behaviour after cyclic loading in larger 
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settlement levels (El Naggar & Sakr 2002). Another important result is that due to the 

“shake down” phenomenon reported by Poulos (1982), and due to the considerable 

small amplitude of loading (comparing to the load capacity of pile), the deflection of 

tapered piles in the tests has been stabilized, particularly for the tapering of 0.35°. This 

phenomenon is due to the fact that the pile reaches to the state of residual stresses and 

permanent strains, which makes the pile to respond elastically to further loading 

cycles. A possible reason of the “shake down” phenomenon for tapered piles can be 

referred to the soil densification adjacent to their shaft because of their inclined body. 

The load-settlement diagrams of piles with different tapering angles embedded in sand 

with no confining pressure are illustrated in Figure 2.23, depicting the first and last 

load cycles (El Naggar & Wei 2000a). 

 

 
Figure 2.23. Load-settlement diagrams of piles having different tapering angles at no 

confining pressure (a) the first load cycles (b) the last (10th) load cycles (after El Naggar 
and Wei 2000a) 
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2.4.4 Mathematical developments 

Several mathematical relationships have been developed to obtain the dynamic 

response of tapered piles using various assumptions such as segment by segment 

method (Ghazavi 2003; Ghazavi 2007, 2008; Ghazavi et al. 2003; Ghazavi & Etaati 

2001), or by finite difference method (Saha & Ghosh 1986), or even the recent 

advanced computational method, which accounts for pile material damping (Bryden 

et al. 2018a, 2020). According to Saha & Ghosh (1986), the differential equation for 

damped vibration of a tapered pile is as follow: 

 

𝑚(𝑧)
𝜕2𝑊(𝑧,𝑡)

𝜕𝑡2 + 𝑐
𝑊(𝑧,𝑡)

𝜕𝑡
− 𝐸𝐴(𝑧)

𝜕2𝑊(𝑧,𝑡)

𝜕𝑧2 + 𝑆𝑤(𝑧, 𝑡) + 𝑆𝑅(𝑧, 𝑡) = 0  2.17 

 

where, 𝑚(𝑧)=pile mass (per unit length at depth z), 𝑐 is coefficient for damping of pile 

material, 𝐸 is the Young’s modulus, 𝐴(𝑧) is the area of pile cross-section at 𝑧 

elevation, 𝑆𝑤(𝑧, 𝑡) is the shaft reaction on the projected vertical surface at depth 𝑧 (per 

unit length), and 𝑆𝑅(𝑧, 𝑡) is the soil reaction on the projected horizontal circular surface 

at depth 𝑧 (per unit length). Ghazavi (2008) developed another mathematical method, 

using the segment by segment method (SSM), which assumes that the pile is 

embedded in an isotropic, homogeneous, and linearly viscoelastic media. The 

governing differential equation used by Ghazavi (2008) is inspired from the one 

represented by Novak & Aboul-Ella (1978) and similar to the abovementioned 

relationship (Equation 2.17). The only difference is that instead of considering the 

assumed vertical and horizontal projected planes and considering the forces on those 

planes, it accounts for the shear modulus of the surrounding soil and the time-

dependant complex amplitude at any 𝑧 level, and a dimensionless parameter of soil 

resistance. Moreover, Bryden et al. (2018a) have considered the inertial and damping 

forces within the tapered piles as well as shear modulus of the adjacent soil. 

 

On the other hand, for predicting the response of tapered piles under lateral harmonic 

loading condition Dehghanpoor & Ghazavi (2012) have developed a method which 

assumes the linear-elastic behaviour for tapered piles. This method is based on the 

governing differential equation, which has been proposed by Novak (1974) and is 

given as: 
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𝑚𝑝𝑗
𝜕2𝑢𝑗(𝑧,𝑡)

𝜕𝑡2 + 𝑐𝑝𝑗
𝜕2𝑢𝑗(𝑧,𝑡)

𝜕𝑡
+ 𝐸𝑝𝑗𝐼𝑝𝑗

𝜕4𝑢𝑗(𝑧,𝑡)

𝜕𝑧4 + 𝐺𝑠𝑗𝑆𝑢𝑗𝑢𝑗(𝑧, 𝑡) = 0  2.18 

 

where, 𝑚𝑝𝑗 denotes the mass (per unit length), 𝑐𝑝𝑗 is the coefficient of damping, 𝐸𝑝𝑗𝐼𝑝𝑗 

refers to the bending stiffness of the jth segment, 𝐺𝑠𝑗 denotes the soil shear  modulus, 

𝑢𝑗(𝑧, 𝑡) is the time-dependant complex amplitude at any 𝑧 level, and 𝑆𝑢𝑗 is a 

dimensionless parameter related to soil resistance. As can be seen, the existing 

equations are based on the assumptions that presume a linear-elastic behaviour for pile 

material embedded in a homogeneous isotropic soil layer. Hence, further analytical 

analysis highly seems demanding to observe the response of tapered piles subjected to 

dynamic axial and lateral loading conditions. Besides, the proposed analytical 

equations need to be validated with experimental test results or field measured data, 

which is a notable knowledge gap in this field. 

 

2.5 Case history on tapered piles application 

The application, behaviour and capacity of tapered steel pipe piles based on the load 

testing at John F. Kennedy International Airport (JFKIA) in the United States of 

America has been surveyed (Horvath 2004a, 2004b; Horvath & Trochalides 2004; 

Horvath et al. 2004a, 2004b). Figure 2.24 demonstrates the measured versus calculated 

load-settlement curves at JFKIA after approximately half a century.  

 

 
Figure 2.24. Measured versus Calculated Load-Settlement Curves for JFKIA (after Horvath 

and Trochalides, 2004) 
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Implementation of tapered piles has proven their reliability for use in significant 

projects.  For instance, their wide implementation at JFKIA has confirmed their ability 

to bear the total spectrum of axial and lateral loadings due to transportation 

applications. 

 

2.6 Pile group 

When a number of piles are close enough together, it is expected that the soil stresses 

created from either point bearing or side friction of adjacent piles overlap as illustrated 

in Figure 2.25. The amount of additional stress depends on the piles’ spacing, 

geometry, pattern, and other parameters related to the pile geometry or the soil 

properties. If these stresses sufficiently grow, the soil may fail in shear or additional 

settlements may take place. Hence, piles interact with each other in groups through 

the surrounding soil, resulting in what is called the group action or pile-soil-pile 

interaction.  Obviously, as spacing of piles increases, stress in overlapped zones 

noticeably decreases. 

 
Figure 2.25. Stresses surrounding a pile and the summing effects of a pile group (after 

Bowles 1996) 
 

In practice, piles are usually used in groups so as to transfer the structural burden to a 

stronger, and deeper soil strata and also to reinforce the surrounding soil. The other 

characteristic of a pile group is the cap which connects all piles together through their 

heads to act as a group. Usually the cap of a pile group is constructed to support 

structure columns and also to distribute load on piles evenly.  
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2.6.1 Efficiency of pile groups 

Most of the established analytical methods are presented for isolated single piles rather 

than pile groups; the complication assessment of pile group behaviour may be the 

reason of it. Concerning pile group design the two main problems are pile group 

efficiency (휂) and the group settlement factor (𝑆𝑓) as follows: 

 

휂 =  
𝑄𝑔

∑ 𝑄𝑠
  2.19 

 

𝑆𝑓 =
𝑆𝑔

𝑆𝑆
  2.20 

 

where, Qg  is the capacity of the pile group, Qs  is the capacity of a single pile, Sg  is 

the settlement of the pile group and Ss is the settlement of an individual pile. 

 

If the group capacity is the sum of all individual pile contributions, the group 

efficiency will be then 휂 = 1. The ASCE Committee on Deep Foundations report 

(CDF) suggests that friction piles in cohesionless soils at the usual spacing of s = 2D 

to 3D will have a group efficiency  휂 > 1. The reason assumed is that in frictional soil 

the pile displacement along with driving vibrations increases the soil density in a 

vicinity zone of the pile, which is further increased as other adjacent piles are driven. 

Considering friction piles in cohesive soils, the point bearing along with block shear 

of the group is used as the group capacity, but in this condition, rarely the group 

capacity is to be considered more than the single pile capacity times the number of 

piles. However, if the cap is laying on the ground, only the block bearing capacity 

should be involved. In this case the pile group will settle with the soil as the piles will 

also settle that much. For free standing cap, the group bearing capacity would be sum 

of the individual point capacities and block perimeter shear. According to the pile 

survey conducted by Focht and O'Neill (year?), basically the CDF recommendations 

for pile groups were being used. 

 

2.6.1.1 Existing group efficiency formulas 

There are several relations to predict the group efficiency for conventional cylindrical 

piles. Some of the relations concerning group of piles in sand and some can predict 
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the efficiency in clay. Besides, based on cap condition of the group, the efficiency 

relations are divided into two categories as blow: 

a) Pile group with cap laying on the ground

b) Pile group with free-standing cap

Most of the efficiency relations presented and applied for pile groups using below 

methods.

Terzaghi and Peck method

In this method and in case of block failure, a mathematical model is developed in order 

to estimate the ultimate capacity of pile groups. This equation can be expressed as 

follows:

𝑄𝑔 = 𝑞𝑏𝐵𝐿 + 𝐷𝑓(2𝐵 + 2𝐿)𝑠 2.21

where 𝑞𝑏 is ultimate capacity per unit area of a rectangular loaded area with 

dimensions 𝐵. 𝐿. 𝐷𝑓, 𝑄𝑔 is the ultimate capacity of pile group, 𝐵 is width of pile group, 

𝐿 is length of pile group, and 𝑠 is average shearing resistance of soil per unit area. It 

has been revealed that block failure does not take place unless the number of piles in 

group are pretty large and they are embedded in soft clay or silt. Furthermore, a pile 

group is considered safe against block failure if the total design load does not exceed 

𝑄𝑔/3. The total design load can be determined through the number of piles multiplied 

by the ultimate bearing capacity per pile.

Converse-Labarre method

According to Chellis (1961) one of the most primitive formulas for predicting the 

group efficiency used is Converse-Labarre formula (contained in the Uniform 

Building Code of the International Conference of Building Officials and 

Specifications of the American Association of State Highway Officials). In this 

method the efficiency of a pile group 휂𝑔 is expressed as: 

휂𝑔 = 1 −
𝜉

90° ∙ [
(𝑛−1)∙𝑚+(𝑚−1)∙𝑛

𝑚∙𝑛
] 2.22
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where, 𝑚 is number of rows, 𝑛 is number of piles in a row, 𝜉 = arctan(
𝑑

𝑠
) in degrees, 

𝑑 is the pile diameter, and 𝑠 is the centre-to-centre pile spacing. Converse-Labarre 

formula assumes the group action based on the pile diameter and the spacing between 

piles. It considers neither the pile length nor the soil properties for predicting the 

efficiency of pile groups.

Los Angeles Group Action method

This method considers another additional term that considers the influence of diagonal 

piles and it can be expressed as follows:

휂 = 1 −
𝑑[𝑚(𝑛−1)+𝑛(𝑚−1)+√2(𝑛−1)(𝑚−1)]

𝜋𝑆𝑚𝑛
2.23

Master’s method

In this method, the length of piles embedded in frictional soil is taken into 

consideration. This method is based on Boussinesq equations to predict the transferred 

load in soil. As Boussinesq method assumes only point load applying on plane 

boundary of a semi-infinite elastic isotropic solids, Master’s method validity is 

questionable.

Feld method

Feld proposed a rule of thumb to estimate the pile group efficiency. In this method, 

the summation of the capacities of individual piles multiplied by a coefficient (based 

on the number of piles) ranging between 0.72 and 0.94, is the capacity of the group. 

This method considers reducing the bearing capacity of single piles in the group by 

1/16 so that the effect of each neighbouring pile in the same row is considered. 

According to this method, different loads will be assigned to the piles based on their 

placement in a group, while in other revealed equations piles will bear equal loads.

Seiler & Kenney method

An empirical equation was offered by Seiler & Kenney (1944) based on the 

assumptions of Converse-Labarre theory. The relation can be expressed as:
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휂 = 1 −
11𝑆(𝑛+𝑚−2)

7(𝑆2−1)(𝑛+𝑚−1)
+

0.3

𝑛+𝑚
2.24

where, 𝑆 denotes spacing in feet (ft) and the definition of other parameters are similar 

to the Converse-Labarre equation. 

Whitaker method

Design diagrams are presented by Whitaker to estimate the efficiency of a pile group 

in clayey soil based on experimental results. These charts are used by U.S. Army Corps 

of Engineers and the U.S. Navy as the design manuals.

Poulos and Davis method

The pile group efficiency is defined as:

1

𝜂𝑔
2 = 1 + [

(𝑛∙𝑚)2∙𝑄𝑂
2

𝑄𝐵
2 ] 2.25

where, QB is the ultimate load capacity of the block of pile and QO is the ultimate load 

capacity of a single pile.

Pressure-area method

Chellis (1969) proposed a formula to predict the pile group efficiency. However, its 

application is only for the end bearing piles, since it assumes that the load is only 

transferred in vicinity of pile end surfaces and in a specific defined area of 2𝑆′ ∗ 2𝑆′

in plan as Figure 2.26. This relation, for a square pattern of piles in a group is expressed 

as:

휂 = 1 −
(2𝑘+𝑛)[2−(2𝑘+𝑛)]

(2𝑘𝑛)2 2.26

where, n is the number of piles in each row, k is defined as:

𝑘 =
𝑆′

𝑆
2.27
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where, S is the pile spacing and 𝑆′ is defined in Figure 2.26.

Figure 2.26. Distribution of vertical stress under individual pile and pile group (pressure-
area formula, after Chellis 1969)

Figure 2.26 shows the vertical stress distributions under a 3x3 pile group and a single 

pile. It also demonstrates the definition of the  parameter 𝑠′ in the efficiency equation 

proposed by Chellis (1969).

Kishida and Meyerhof method

Kishida and Meyerhof proposed a diagram to predict the pile group efficiency based 

on different internal friction angles of soils and S/D ratio, where S is the pile spacing 

and D is the diameter of piles. The diagram is presented in Figure 2.27.
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Figure 2.27. The diagram of group efficiency coefficient (after Kishida 1965)

Vesic method

According to this method, some diagrams are presented to evaluate the efficiency of 

pile groups. In this method, only the 4 and 9 pile groups are considered and the 

efficiency factors are obtained by piles spacing and diameter. However, this method 

considers the pile cap laying on the ground. The diagrams are illustrated in Figure 

2.28. 
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Figure 2.28. Group efficiency diagrams for various S/D ratios (after Vesic 1967)

Sayed and Bakeer method

Another relation has been developed to evaluate the group efficiency of pile groups 

under axially loaded conditions. This relation is based on the premise that only the 

shaft component should be taken into consideration. The equation is expressed as:

휂 = 1 − (1 − 휂′ ∙ 𝐾) ∙ 𝜌 2.28

where, 휂 is the group efficiency, 𝜌 is the friction factor, K is the interaction factor, 휂′

is the geometric efficiency and is defined as:

휂′ =
𝑃𝑔

∑ 𝑃𝑝
2.29

where, Pg is the perimeter of the pile group, and ∑ 𝑃𝑝 is the sum of perimeters of 

individual piles. Hence 휂′ can be written as:
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휂′ =
2∗[(𝑛−1)𝑆+𝐷]+[(𝑚−1)𝑆+𝐷]

𝜋𝑛𝑚𝐷
2.30

Das method

An empirical model is proposed by Das to estimate the group efficiency of frictional 

piles subjected to axial force. The equation can be expressed as:

휂 =
2𝑆(𝑛+𝑚−2)+4𝐷

𝑛𝑚
2.31

where, n is the number of piles in each row, m is the number of piles in each column, 

s is the spacing of piles, and D is the diameter of a pile. As it can be observed, this 

method doesn’t consider the effect of cap, soil, loading conditions, and pile’s length 

to diameter ratio (L/D), which is of great significance.

Several other equations have been proposed to predict the efficiency of pile groups 

considering different parameters. However, these relations are only for straight sided 

wall pile group foundations and none of the above equations considers all the 

parameters affecting efficiency coefficient simultaneously.

2.7 Summary and gap identification

In most of the equations proposing a taper coefficient, the lateral earth pressure of the 

soil has been assumed to be constant, while this coefficient will increase by each 

incremental settlement of a tapered pile. The reason for this increase is soil 

densification adjacent to the pile wall as plie installation can compact the surrounding 

soil. Due to the wide range of Ks values, which have been proposed in various sources 

for tapered piles (Bowles 1996; Nordlund 1963; Paik et al. 2013), and the key role of 

this parameter in obtaining the shaft capacity of tapered piles, it is recommended to 

consider Ks as a function of relative density and the over consolidation ratio of soil. 

For this purpose, insufficient field test results can be regarded as a limitation of the 

equations predicting taper coefficient for calculation of shaft capacity of tapered piles.
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According to most of the studies, tapered piles are an efficient pile type for increased 

load-carrying capacity in compression, but less effective under uplift loads. In fact, 

the performed studies to survey the uplift capacity of tapered piles were under a 

maximum confining pressure of 60 kPa. Since the confining pressure significantly can 

affect the uplift resistance of tapered piles, therefore, for higher confining pressures, 

the uplift capacity should be obtained from uplift load tests, particularly in the field. 

Although there might be uncertainty that additional efforts in understanding the 

behaviour of these types of piles are of limited practical use, only limited studies have 

proven the substantial benefits of the axial and lateral capacity of step-tapered piles 

(Ismael 2003, 2006, 2009). Since, these piles might be efficient in terms of material 

usage in some layered soils, which need to be optimised in terms of length and 

diameter in each layer to have an economical, effective, sustainable design. 

 

Substantial benefits of tapered piles installed in granular soil can be rendered, due to 

their significant shaft capacity increase. This is also because with increasing the 

relative stiffness of the surrounding soil, the bearing capacity of a tapered pile 

increases. Thus, it is more beneficial to construct tapered piles using stiff material such 

as high-strength concrete penetrated into sandy soils for the purpose of efficient 

densification. 

 

According to the literature, tapering angle has a significant effect on the stiffness and 

damping parameters of tapered piles. Besides, the “shake down” phenomenon due to 

a noticeably small loading amplitude (when compared to the pile load capacity), the 

deflection of tapered piles can reach to an approximately steady state. This 

phenomenon happens when the pile reaches to permanent strains and experiences the 

state of residual stresses, which makes the pile to react elastically to extra loading 

phases. The reason of the abovementioned phenomenon for tapered piles can be 

referred to soil densification around the tapered piles. 

 

Lack of experimental investigations for obtaining the response of tapered piles under 

axial and lateral dynamic loading condition is evident. These experimental and field 

test data are highly needed for validation of several complex mathematical models, 

which have been proposed to capture the behaviour of non-uniform cross-section piles. 
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In addition, numerical modelling of tapered piles under seismic loadings or even cyclic 

loadings have not been developed adequately. It seems to be a knowledge gap in 

comparing the dynamic aspects of tapered and cylindrical piles using numerical 

modelling.  
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Chapter
Methodology of the Numerical 

Modelling and Soil Calibration 
Exercise for Finding the Optimum 

Tapering Angle

3.1 Introduction 

In this chapter, firstly, the adopted soil behavioural model in finding the optimum 

tapering angle is introduced. In this section, the advantages and drawbacks of the 

adopted constitutive model is explained. Thereafter an overview of the model is 

discussed and the geometrical properties of the model piles were elaborated. Finally,

the soil calibration exercise is explained and the calibrated diagrams (deviatoric stress 

vs. axial strain and the volumetric strain vs. axial strain) are presented. At the end of 

the last section of this chapter, table of the soil properties for the numerical analyses 

is presented.

3.2 Adopted soil constitutive model 

UBC sand constitutive model developed by Beaty & Byrne (2011), which is a 

plasticity based model based on effective stresses in the granular materials such as 

sands capturing nonlinear stress-strain relationship, was used in this study. This model 

captures the impacts of soil compression adjacent to the tapered piles, which is a key 



63 
 

feature to analyse the realistic response of tapered piles subjected to axial loading in 

the numerical modelling. Indeed UBC sand constitutive model assumes a hyperbolic 

correlation between stresses and strains in the soil and can predict the associated 

volumetric variation of the soil skeleton by a flow rule, which is a function of the stress 

ratio. The elastic component of response is assumed to be isotropic and specified by a 

shear modulus, 𝐺𝑒 as follows (Byrne et al. 2004): 

 

𝐺𝑒 = 𝐾𝐺
𝑒𝑃𝑎 (

𝜎′

𝑃𝑎
)

𝑛𝑒

  3.1 

 

where, 𝐾𝐺
𝑒 is the shear modulus which depends on the relative density, 𝑃𝑎 is the 

reference atmospheric pressure, 𝜎′ is the mean stress in the plane of loading equal to  

(𝜎′
𝑥 + 𝜎′

𝑦)/2, 𝑛𝑒 is a model parameter, which varies between 0.2 and 0.6 as reported 

by Beaty & Byrne (2011); Brinkgreve et al. (2002); Byrne et al. (2004). 

 

In the adopted constitutive model, the yield surface and flow rule control the plastic 

strains. The plastic shear strain increment, 𝛾𝑝, is associated with the change in the 

shear stress ratio, 𝑑휂 (where 휂 =  𝜏
𝜎′⁄ ), and can be written as: 

 

𝑑𝛾𝑝 =
1

𝐺𝑝/𝜎′ 𝑑휂  3.2 

 

where, 𝐺𝑝 is representing the plastic shear modulus. Assuming a hyperbolic 

relationship between 휂 and 𝛾𝑝 as recommended by Beaty & Byrne (2011), the adopted 

𝐺𝑝 in the model can be written as: 

 

𝐺𝑝 = 𝐺𝑖
𝑝

. (1 −
𝜂

𝜂𝑓
. 𝑅𝑓)2  3.3 

 

where, 𝐺𝑖
𝑝 is the plastic modulus at zero stress ratio (i.e. 휂 = 0), 휂𝑓  is the stress ratio 

at failure, which is equal to 𝑠𝑖𝑛 (𝜙𝑓), 𝜙𝑓 is the peak friction angle and 𝑅𝑓 is the failure 

ratio used to truncate the best fit hyperbolic correlation and avoid the over‐prediction 

of strength at failure. Referring to Beaty & Byrne (2011); Byrne et al. (2004), the 
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associated increment of plastic volumetric strain, 휀𝑣
𝑝 , is correlated to the plastic shear 

strain increment, 𝑑𝛾𝑝 , through the flow rule as follows: 

 

𝑑휀𝑣
𝑝

= (𝑠𝑖𝑛 𝜙𝑐𝑣 −
𝜏

𝜎′) . 𝑑𝛾𝑝   3.4 

 

where, 𝜙𝑐𝑣 is the constant volume friction angle or phase transformation angle.  

 

This constitutive model is one of the recent soil models that has been added to Plaxis 

available soil model types. The soil calibration exercise is performed using Plaxis 

virtual lab and the data obtained from triaxial tests on three different soil types 

(Fukushima & Tatsuoka 1984; Lade & Bopp 2005; Lee & Seed 1967). Similar to other 

constitutive models, this model also has some advantages and drawbacks. This 

behavioural model is less common to be used in static conditions. However, as 

mentioned before, since this model considers the effects of soil densification in the 

vicinity of tapered piles, which is a key element to analyse the behaviour of this type 

of pile subjected to axial loading more accurately, this model was selected for this 

study (Brinkgreve et al. 2002). 

 

3.3 Overview of the model 

An array of numerical modelling for tapered piles capturing different tapering angles 

and soil characteristics were performed using the finite element method in this study. 

Piles with different geometries but identical volume of material were modelled and 

the load-settlement curves of each pile were extracted and compared. The geometrical 

properties of all piles used in the numerical modellings are presented in Table 3.1. 

 

In this study, piles with common slenderness ratios (L/D) of 10, 20, 30 and 40 were 

modelled and analysed in numerical simulations, which is a typical range for using 

piles in practice. For piles with L/D=10, which have the largest diameter compared to 

other models of this study, a radius of 0.75 m was selected for the cylindrical reference 

pile with a total length of 15m. After selecting the reference cylindrical piles 

dimensions for each set of analyses with a specific L/D ratio, tapered models were 

designed. For a given L/D, to keep the volume of all piles the same, the top radius of 
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the pile should increase while the bottom radius should decrease (as shown in Figure 

3.1). On the other hand, in order to reduce the influence of model size on results, based 

on suggestions in the literature (Khan et al. 2008), dimensions of more than 2.5L(1 −

𝜈) were used for the soil model in the numerical analyses, which covers the distance 

in which the shear stress develops. Hence, the shear stress bulbs (beneath the toe and 

surrounding the shaft) could be captured in the output results (as shown in Figure 3.1), 

and the inaccuracies due to the boundary effects could be minimised. 

 

Table 3.1. Geometry of all piles with various slenderness ratios used in numerical analysis 

      L/D  L/D   
10 20 30 40 10 20 30 40 

Pile α L (m) Top radius (mm) Bottom radius (mm) 
C 0° 15 750 375 250 187 750 375 250 187 
T1 0.1° 15 763 388 263 200 736 362 236 173 
T2 0.2° 15 776 400 275 212 723 348 223 160 
T3 0.3° 15 789 413 288 224 710 335 209 146 
T4 0.4° 15 801 426 300 237 697 321 196 132 
T5 0.5° 15 814 438 312 248 683 307 181 117 
T6 0.6° 15 827 450 324 260 670 293 167 102 
T7 0.7° 15 839 463 335 271 656 279 152 87 
T8 0.8° 15 852 474 347 281 642 265 137 72 
T9 0.9° 15 864 486 358 292 629 251 122 56 
T10 1.0° 15 877 498 369 301 615 236 107 40 
T11 1.1° 15 889 509 379 - 601 221 91 - 
T12 1.2° 15 901 521 390 - 587 206 75 - 
T13 1.3° 15 913 532 400 - 573 191 59 - 
T14 1.4° 15 925 543 409 - 559 176 43 - 
T15 1.5° 15 937 553 419 - 545 161 26 - 
T16 1.6° 15 949 564 - - 530 145 - - 
T17 1.7° 15 961 574 - - 516 129 - - 
T18 1.8° 15 973 585 - - 501 113 - - 
T19 1.9° 15 984 595 - - 487 97 - - 
T20 2.0° 15 996 605 - - 472 81 - - 
T21 2.1° 15 1008 - - - 458 - - - 
T22 2.2° 15 1019 - - - 443 - - - 
T23 2.3° 15 1030 - - - 428 - - - 
T24 2.4° 15 1042 - - - 413 - - - 
T25 2.5° 15 1053 - - - 398 - - - 
T26 2.6° 15 1064 - - - 383 - - - 
T27 2.7° 15 1075 - - - 368 - - - 
T28 2.8° 15 1086 - - - 352 - - - 
T29 2.9° 15 1097 - - - 337 - - - 
T30 3.0° 15 1107 - - - 321 - - - 
Volume of piles (𝒎𝟑) 26.5 6.6 2.9 1.6 26.5 6.6 2.9 1.6 
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Figure 3.1. The methodology to design tapered pile models used in the numerical analysis 

based on the cylindrical reference pile with constant volume, b) The shear stress bulbs 
beneath the toe and surrounding the pile shaft (i.e. cylindrical pile, loose sand, L/D=10) 
 

In this analysis, tapered piles having circular cross-section were modelled and 

analysed. The pile element was embedded in an elasto-plastic ground and a monotonic 

compressive axial load was applied on the head of the pile. An axisymmetric model 

type was selected for the numerical modelling as well as 15-noded element type. The 

enhanced meshing method was applied surrounding the pile for more accurate results 

(Figure 3.2 andFigure 3.3). 

 

  
Figure 3.2. Elements utilized by adopted finite-element model, a) Nodes, b) Stress points 

(a) (b) 
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Figure 3.3. Axisymmetry model of a tapered pile along with the interfaces and the meshed 

model 
 

The mesh refinement was considered around the structural elements, where the pile 

and soil are in contact through the interface plane. Figure 3.3 also illustrates the 

axisymmetric model of a tapered pile and the interfaces for shaft and toe of the pile 

along with the enhanced meshed system used for the analysis using PLAXIS 2D 

(Brinkgreve et al. 2002). This refinement could improve the mesh quality and hence 

more accurate predictions. For the purpose of modelling of the pile and the soil cluster, 

solid elements were used. The pile was modelled as a volumetric object to consider 

the tapering effect and capturing the stress states adjacent to the pile.  

 

The interface elements between pile and the adjacent soil were considered and the 

reduction factor (𝑅𝑓) of 0.7 was used. This factor applies to the strength and stiffness 

parameters of soil as shown in Equations 3.5 and 3.6. 

 

𝑡𝑎𝑛𝜙𝑖 = 𝑅𝑖𝑛𝑡𝑒𝑟  𝑡𝑎𝑛𝜙𝑠𝑜𝑖𝑙   3.5 

 

𝐺𝑖 = 𝑅2
𝑖𝑛𝑡𝑒𝑟 . 𝐺𝑠𝑜𝑖𝑙  3.6 
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where, 𝜈𝑖  is the Poisson’s ratio of the interface, 𝐺𝑖 is the shear modulus of the interface, 

𝐸𝑜𝑒𝑑,𝑖 denotes the Young’s modulus of the interface, 𝐺𝑠𝑜𝑖𝑙 is the shear modulus of the 

soil and 𝜙𝑖 is the internal friction angle of the interface. 

 

3.4 Soil calibration exercise  

In this study, sandy soils with different relative densities were selected to assess axial 

load-displacement of tapered piles. Experimental results for loose, medium dense and 

dense sand samples, obtained from (Lade & Bopp 2005), (Fukushima & Tatsuoka 

1984) and (Lee & Seed 1967) corresponding to relative densities of 30%, 40% and 

90%, respectively, were used for the model calibration. Therefore, before conducting 

the numerical analysis, the triaxial test results for three types of sands each subjected 

to three different confining pressures were used to obtain the required model 

parameters. Figure 3.4 illustrates diagrams of deviatoric stress versus axial strain of 

the soil samples from experimental tests in comparison to numerical predictions 

adopting calibrated model parameters for loose, medium and dense sand, respectively. 

Moreover, Figure 3.5 shows the volumetric strain changes with axial strain variations 

for the abovementioned soils.  
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Figure 3.4. Comparison of (deviatoric stress vs axial strain) data and numerical calibration 

for various confining pressures of drained triaxial compression tests on isotropically 
consolidated, (a) Loose Cambria sand, data taken from Lade & Bopp (2005), (b) Medium 

Toyoura sand, data taken from Fukushima & Tatsuoka (1984), (c) Dense Sacramento River 
sand, data taken from Lee & Seed (1967) 
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Figure 3.5. Comparison of (volumetric strain vs axial strain) data and numerical calibration 

for various confining pressures of drained triaxial compression tests on isotropically 
consolidated, (a) Loose Cambria sand, data taken from Lade & Bopp (2005), (b) Medium 

Toyoura sand, data taken from Fukushima & Tatsuoka (1984), (c) Dense Sacramento River 
sand, data taken from Lee & Seed (1967) 
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As evident, a good agreement between measurements and predictions were perceived, 
confirming suitability of the adopted constitutive model and calibrated model 
parameter in predicting the stress-strain response of the adopted soils. Summary of 
calibrated model parameters for loose sand (Cambria), medium dene sand (Toyoura) 
and dense sand (Sacramento River) are presented in  

Table 3.2. 

 

Table 3.2. Sandy soil properties obtained from soil calibration exercise using UBC sand 
model 

Soil Parameters 
Parameter Values 

Loose Medium Dense 

𝑘𝐵
𝑒  150 300 700 

𝑘𝐺
𝑒  300 400 800 

𝑘𝐺
𝑝 330 420 900 

𝑚𝑒 0.25 0.4 0.5 

𝑛𝑒 0.25 0.4 0.5 

𝑛𝑝 0.25 0.4 0.5 

𝜙𝑐𝑣 31 30 30 

𝜙𝑝 32 35 41 

𝑐 0 0 0 

𝑅𝑓 0.98 0.93 0.8 

𝑓𝑑𝑒𝑛𝑠 0.3 0.6 1 

𝛾𝑢𝑛𝑠𝑎𝑡 15.3 16 17 

𝛾𝑠𝑎𝑡  19.3 19.3 20 

(𝑁1)60 5 20 50 
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Chapter
Analytical and Numerical 

Approaches to Attain the Optimum 
Tapering Angle for Axially Loaded 

Bored Piles in Sandy Soils

4.1 Introduction

Obtaining the accurate bearing capacity of foundations have always been a matter of 

concern among geotechnical engineers considering different methods, such as limit 

equilibrium, limit (or bound) theorems of classical plasticity, or through load-

displacement diagrams (Kalourazi et al. 2019; Shafaghat et al. 2018; Wu et al. 2019; 

Xie et al. 2019; Yang et al. 2019; Zhou et al. 2019). Therefore, several methods have 

been developed to predict the bearing capacity of foundations, particularly for deep 

foundations based on experimental or numerical studies such as optimised machine 

learning approach (Abdlrahem & El Naggar 2020; Almallah et al. 2020; Han et al. 

2020; Jiang et al. 2020; Kardani et al. 2020).

Furthermore, due to the growing demand for designing more efficient and cost-

effective foundations, including tapered piles, determining the optimum tapering angle 

in which tapered piles can provide more capacity (while having less settlement) is in 

demand. Besides, new developments of piling machinery have permitted installation 

of large-scale bored piles having different shapes at lesser costs (Lee et al. 2009; Paik 
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et al. 2013; Rybnikov 1990). Straight-wall cylindrical bored piles (i.e. constant 

circular cross-section along the pile) have been regularly adopted in practice.  

 

Alternatively, tapered bored piles with variable cross-sectional area along the pile 

length (i.e. a larger pile head diameter and a smaller pile toe diameter) have not been 

as common as cylindrical piles due to different installation procedures and lack of 

current design standards. However, tapered piles have a great potential to be used as a 

cost effective alternative with enhanced performance. Indeed, geotechnical activities 

in undesirable soil conditions drive geotechnical engineers to design optimized 

foundation types, which require less material usage while yet not compromising 

safety. The idea of tapered piles accordingly can contribute to saving material usage 

such as concrete and reinforcement bars in pile foundations which in turn can be an 

environmentally friendly approach (Poulos & Davis 1980; Shafaghat & Khabbaz 

2020b). Referring to Poulos & Davis (1980), in loose sand, pile axial force reduces 

from top to bottom and thus, a larger pile top cross-section is perceived to be more 

preferable as is in tapered piles. This efficient geometry of tapered piles can bring 

substantial benefits in terms of transferring structural loads to stronger strata.  

 

In this study, initially a set of mathematical formulations are developed to determine 

the axial bearing capacity of bored tapered piles. The proposed bearing capacity 

equation captures the toe resistance, shaft friction and additional vertical resistance 

from the shaft, which is due to the inclination of tapered pile shaft. However, several 

model parameters are introduced which need to be calibrated against results from 

rigorous numerical modelling or comprehensive large scale experiments. Hence, a 

rigorous finite element modelling is conducted to find the aforementioned model 

parameters via plotting the axial bearing capacity predictions versus the tapering 

angle, and subsequently attaining the optimum tapering angles. The numerical 

modelling captures the nonlinear elasto-plastic response of the soil adopting 

UBCSAND constitutive model, calibrated against laboratory experimental results, and 

the results are compared with the proposed analytical formulations mentioned earlier.  

 

Finally, a simple empirical equation is proposed to obtain the optimum tapering angle 

of piles with different slenderness ratios and in different types of sands. This optimum 
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tapering angle should be selected in order to use less material, while not compromising 

safety and performance.  

 

4.2 Analytical development for ultimate axial bearing capacity of 

bored tapered piles in sand 

Based on Terzaghi (1943) ultimate bearing capacity theorem and Meyerhof (1963) 

method for calculation of pile bearing capacity, cylindrical piles can provide capacities 

through their shaft and base, which are known as frictional bearing and toe bearing 

components, respectively. However, there is an additional capacity component for 

tapered piles, which is due to the inclination of the body (Figure 4.1). This extra 

component, which is the normal resistance through the pile body surface, is due to the 

fact that tapered piles can resist against an upward vertical force as a result of the 

inclination of their body.  

 

 
Figure 4.1. Free body diagram of shaft resistance force component of an element 

 

 

Referring to existing state of practice for bearing capacity of the piles (Meyerhof 1963; 

Terzaghi 1943; Terzaghi et al. 1996), the toe (base) resistance, 𝑞𝑏, and the frictional 

(skin) resistance, 𝑞𝑠, of a single pile can be calculated as: 

 

 
𝑞𝑏 = 𝜎𝑏

′ 𝑁𝑞𝐴𝑏  4.1 

 

𝑞𝑠 = 𝑘𝜎𝑚
′ 𝑡𝑎𝑛 (𝛿)𝐴𝑠  4.2 
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where, 𝜎𝑏
′  and 𝜎𝑚

′  are the effective stresses at the toe and the mid-length of the pile, 

respectively; 𝐴𝑏 and 𝐴𝑠 are the pile toe area and the lateral surface area, respectively; 

𝑁𝑞, 𝛿 and 𝑘 are the bearing capacity factor, the pile-soil interface friction angle, and 

the lateral earth pressure coefficient, respectively. In this study, the effect of pile 

tapering on the lateral earth pressure coefficient has been taken into consideration 

using a taper coefficient (𝐾𝑡), which is a function of the pile tapering angle and the 

soil internal friction angle. This taper coefficient is multiplied by the at rest lateral 

earth pressure coefficient (𝐾0) in Equation 4.2, to obtain the frictional resistance of 

tapered piles. 

 

When using conventional bearing capacity equations to obtain the shaft resistance of 

a cylindrical pile (as expressed by Equation 4.2), at rest lateral earth pressure 

coefficient (𝐾0) is used. However, for tapered piles embedded in sand, the adjacent 

soil will be densified as the pile moves downward (see Figure 4.2) which is due to the 

mobilization of a portion of soil passive earth pressure in the vicinity of pile shaft. In 

this study, this effect has been taken into consideration as a taper coefficient (𝐾𝑡), 

which is a function of the tapering angle and the soil internal friction angle, and will 

be multiplied by the 𝐾0. 

 
Figure 4.2. Schematic diagram of the stress state for an element adjacent to pile shaft for 

both bored cylindrical and tapered piles embedded in sand (before and after loading) 
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Figure 4.2 illustrates that considering two elements of soil in vicinity of pile shafts at 

the same level, the one that is adjacent to the tapered pile will resist against an 

additional horizontal force component due to the inclination of pile’s body. Hence, by 

considering the equilibrium state, the ratio of the horizontal stress to the vertical stress 

for the tapered pile will increase. 

 

Accordingly, by increasing the tapering angle, the taper coefficient increases. In other 

words, for a pile having a tapering angle of 0°, this coefficient will be equal to 1 

(representing the condition for obtaining shaft resistance for a cylindrical pile), and 

for 𝛼=90°, the value of 𝐾𝑡 would be equal to 𝐾𝑝

𝐾0
 (representing the condition for 

obtaining friction beneath the pile toe surface), where 𝐾𝑝 is the passive earth pressure 

coefficient. However, since in this study the comparisons have been made for piles 

having the same volume, the tapering angle will not exceed the maximum available 

tapering angle (𝛼𝑚𝑎𝑥 = 𝑡𝑎𝑛−1(
√3𝑟𝑐

𝐿
)). Hence, the taper coefficient values for tapered 

piles (0 < 𝛼 < 𝛼𝑚𝑎𝑥) in this study will not be either equal to the maximum level (𝐾𝑡 =

𝐾𝑝

𝐾0
), or the minimum level (𝐾𝑡 = 1).  

 

The previously developed analytical equation by El Naggar and Wei (2000) was used 

as the reference model to derive an equation that predicts the taper coefficient as a 

function of soil internal friction angle and the pile tapering angle. The aforementioned 

reference model is a function of various parameters that are constant in this study, such 

as the pile displacement to diameter ratio (𝑆𝑟) and the stress level at pile toe (𝜎𝑉), 

which the former considered 0.1 (as the criterion used to define the ultimate bearing 

capacity) and the latter mainly depends on the pile length (15 m). It should be noted 

that in this study the analytical equations were used to find the optimum tapering angle 

based on the ultimate bearing capacity. For investigating the serviceability settlement 

criterion, the optimum tapering angles can be obtained through load-settlement 

diagrams (through numerical analysis). For the serviceability criterion, the vertical 

settlement of 10% of the pile diameter can be considered similar to the assumption for 

the diameter ratio (𝑆𝑟) above. Using other criterion (serviceability criterion) to find 



78 
 

the optimum tapering angle might have minor effect on the results (Hataf & Shafaghat 

2015a, 2015b). Hence, in order to capture the optimum tapering angle, a new 

simplified mathematical equation was proposed as a function of soil internal friction 

angle, pile tapering angle, and a model parameter. The model parameter 휁 represents 

the gradient at which the taper coefficient approached from 1 to 𝐾𝑡.𝑚𝑎𝑥  for tapered 

piles and was obtained 100, using regression analysis. The new proposed 𝐾𝑡 was 

plotted against the tapering angle for three different soil types (Loose Cambria sand, 

medium Toyoura sand and dense Sacramento River sand). 

 

It is reasonable to assume that the vertical effective stresses increase linearly with 

depth in a uniform soil medium, while the cross-sectional area of the tapered pile 

decreases exponentially with depth (i.e. order 2 exponent). The third component of the 

axial bearing capacity of a tapered pile, which is the vertical bearing resistance 

stemming from the body of a tapered pile (𝑞𝑠𝑣), can be established using a 

mathematical integration of effective normal stresses distributed along the pile body. 

Hence, by dividing the tapered pile into infinitesimal segments as shown in Figure 4.3, 

this extra resistance component (i.e. 𝑞𝑠𝑣) can be obtained using Equation 4.3. 

 

 
Figure 4.3. The schematic shape of a tapered pile divided into segments and the ledge force 
component (𝑟𝑐,𝐷𝑐 are radius and the diameter of the reference cylindrical pile with the same 

volume) 
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𝑞𝑠𝑣 = ∑ 𝑁𝑡𝜎𝑏𝑛
′ 𝐴𝑏𝑛

𝑛=∞
𝑛=1                  4.3 

 

where, 𝑁𝑡 is the bearing capacity factor for tapered piles, 𝐴𝑏𝑛 and 𝜎𝑏𝑛
′  are the projected 

area of the ledge of the segment (see Figure 4.4) and the effective vertical stress at the 

middle of the nth segment, respectively, and can be determined using Equations 4.4 

and 4.5, correspondingly. 

 

 
Figure 4.4. Schematic bottom perspective of a step-tapered pile with six ledges 

 

𝐴𝑏𝑛 = 𝜋(𝑟𝑛
2 − (𝑟𝑛 + 𝑑𝑟)2)  4.4 

 
𝜎𝑏𝑛

′ = 𝛾𝑧𝑚𝑛  4.5 

 

where, 𝑧𝑚𝑛 is the mid-elevation of the nth segment and can be defined using Equation 

4.6. 

 

𝑧𝑚𝑛 =
1

2
(𝑧𝑛 + 𝑧𝑛+1)  4.6 
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Where, 𝑧𝑛  and 𝑧𝑛+1 are the mid elevations of two consecutive segments. Indeed, the 

correlation between the depth (z) and the tapered pile geometrical characteristics can 

be presented as below:  

 

𝑧 =
(𝑟𝑡−𝑟)𝐿

(𝑟𝑡−𝑟𝑏)
  4.7 

 

In this study, the effective stress at mid-height of each pile's segment at depth z have 

been utilized (as presented in Equation 4.7 and depicted in Figure 4.3) to derive the 

mathematical equations.  

Equation 4.2 has been used for each element of a segmented tapered pile separately at 

various depths from the pile head to pile toe. Hence, the equations developed in this 

study, including those used for obtaining the shaft resistance components, are based 

on more accurate stress states depending on depth z and not only one average number 

as the stress level at mid-height of pile.  

  

The mathematical derivation for correlating z with the tapered pile geometries was 

performed based on keeping the volume of tapered piles identical to their counterpart 

cylindrical piles. Besides, since the radius of a tapered pile changes from head to toe, 

the variable r that represents the radius of a pile at depth z was considered as the 

primary variable in the equations of shaft resistance and the shaft vertical resistance 

component. Based on linear formulation (referring to Equation 4.7), the relationship 

between z and the radius of a pile at depth z was obtained, where z=0 represents the 

pile head elevation and z=L represents the pile toe elevation, as shown in Figure 4.3.  

 

On the other hand, the correlation between the top and bottom radii of piles having a 

tapering angle of α with the radius of the cylindrical reference pile was developed 

based on equating the two equations obtaining the volume of a tapered pile (Equation 

4.8) and the volume of the counterpart cylindrical pile (Equation 4.9). 

 

𝑉𝑡 =
1

3
𝜋𝐿(𝑟𝑡

2 + 𝑟𝑏
2 + 𝑟𝑏. 𝑟𝑡)  4.8 

 

𝑉𝑐 = 𝜋𝐿𝑟𝑐
2 4.9 
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In the above equations, 𝑉𝑐  is the volume of a cylindrical pile, 𝑉𝑡 is the volume of a 

tapered pile, L is the length of pile, 𝑟𝑐 is the radius of cylindrical reference pile, 

𝑟𝑡 and 𝑟𝑏 are the top and bottom radii of tapered piles, respectively. Afterward, by 

substituting 𝑟𝑏 in Equation 4.8 as a function of pile length and tapering angle (𝑟𝑏 =

𝑟𝑡 − 𝐿𝑡𝑎𝑛(𝛼)) yields Equation 4.10, which is the relationship between the radius of 

head of a tapered pile (𝑟𝑡), having a tapering angle of 𝛼, with the radius of its 

counterpart same volume cylindrical pile (𝑟𝑐). 

 

Substituting Equations 4.4 to 4.7 into Equation 4.3, yields: 

 

𝑞𝑠𝑣 = 𝜋𝛾𝑁𝑡 ∑
(2𝑟𝑑𝑟)(𝑟𝑡−𝑟)𝐿

(𝑟𝑡−𝑟𝑏)

𝑟=𝑟𝑡
𝑟=𝑟𝑏

  4.10 

 

Equation 4.10 can be rewritten as a finite integral as follows: 

 

𝑞𝑠𝑣 = 2𝜋𝛾𝑁𝑡 ∫
(𝑟)(𝑟𝑡−𝑟)𝐿

(𝑟𝑡−𝑟𝑏)

𝑟𝑡

𝑟𝑏
𝑑𝑟  4.11 

 

On the other hand, the top and bottom radii of tapered pile (i.e. 𝑟𝑡 and 𝑟𝑏) can be 

obtained as a function of the radius of the counterpart cylindrical pile with the same 

volume (i.e. 𝑟𝑐) and the tapering angle (𝛼) as follows: 

 

𝑟𝑡 =
𝐿𝑡𝑎𝑛(𝛼)+√4𝑟𝑐

2−(1 3)(𝐿𝑡𝑎𝑛(𝛼))2⁄

2
  4.12 

 

𝑟𝑏 = 𝑟𝑡 − 𝐿𝑡𝑎𝑛(𝛼)  4.13 

 

where, 𝛼 is the tapering angle and L is the length of the pile. By introducing parameter 

𝐷𝑎𝑣 as the average pile diameter as below: 

 

𝐷𝑎𝑣 = √4𝑟𝑐
2 − (1 3)(𝐿𝑡𝑎𝑛(𝛼))2⁄   4.14 
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Then by substituting Equations 4.12 to 4.14 into Equation 4.11, vertical bearing 

resistance stemming from the body of the tapered pile (𝑞𝑠𝑣) can be established as 

follows: 

 

𝑞𝑠𝑣 =
1

6
𝛾𝜋𝑁𝑡𝐿2 𝑡𝑎𝑛(𝛼) [3𝐷𝑎𝑣 − 𝐿𝑡𝑎𝑛(𝛼)]  4.15 

 

where, 𝐷𝑎𝑣 denotes the average diameter of tapered pile which is defined via Equation 

4.14. Similarly, for calculating the shaft resistance (𝑞𝑠𝑡), Equation 4.2 can be rewritten 

as a summation of frictional resistances stemming from all elements as reported in 

Equation 4.16.  

 

𝑞𝑠𝑡 = ∑ 𝑘𝑡𝑘0𝛾𝑧𝑐𝑜𝑠 (𝛼)𝑡𝑎𝑛 (𝛿)𝐴𝑠𝑛  4.16 

 

The lateral surface area of an element, 𝐴𝑠𝑛 can be written as: 

 

𝐴𝑠𝑛 = (
2𝜋𝑟𝑛

𝑠𝑖𝑛(𝛼)
)𝑑𝑟  4.17 

 

Substituting Equations 4.7 and 4.17 into Equation 4.16, yields: 

 

𝑞𝑠𝑡 = ∑
𝑘𝑡𝑘0𝛾𝐿𝑐𝑜𝑠 (𝛼)𝑡𝑎𝑛 (𝛿)

𝑠𝑖𝑛(𝛼)

2𝜋𝑟(𝑟𝑡−𝑟)

(𝑟𝑡−𝑟𝑏)
𝑑𝑟

𝑟=𝑟𝑡
𝑟=𝑟𝑏

  4.18 

 

Referring to Figure 4.3, by a simple substitution of 𝑟𝑡 − 𝑟𝑏 = 𝐿𝑡𝑎𝑛(𝛼), and 

transforming the summation into a definite integration, Equation 4.16 can be rewritten 

as follows: 

 

𝑞𝑠𝑡 = ∫
2𝜋𝑘𝑡𝑘0𝛾𝑐𝑜𝑠2 (𝛼)𝑡𝑎𝑛 (𝛿)(𝑟𝑡−𝑟)𝑟

𝑠𝑖𝑛2(𝛼)
𝑑𝑟

𝑟𝑡

𝑟𝑏
  4.19 

 

where, 𝑘𝑡 is the taper coefficient for a tapered pile and 𝛿 is the pile-soil interface 

friction angle. Since the lateral earth pressure depends on the soil movement as a result 

of soil displacement surrounding the tapered pile, the taper coefficient, 𝑘𝑡(𝛼), can be 

considered as a function of tapering angle, as presented in Equation 4.21. The taper 
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coefficient which has been presented in Equation 4.21, was obtained based on the 

Cavity Expansion Theory, proposed by El Naggar & Sakr (2000) in Equation 4.20. 

Since this study is focused on bored tapered piles at failure (for a settlement to 

diameter ratio of 𝑈𝑝 𝑑⁄ = 0.1) the proposed simplified equation for the taper 

coefficient in this study captures only the effect of tapering angle and the soil internal 

friction angle. Figure 4.5 demonstrates the correlation between the two equations for 

the taper coefficient proposed by El Naggar & Sakr (2000) and this study. 

 

 
Figure 4.5. Correlation between the assumed simplified equation for the taper coefficient 
(kt) and the equation proposed by El Naggar and Sakr (2000) (Assuming Sr=Up/D=0.1) 

                              

 

𝑘𝑡𝐶𝑣
(𝛼) =

𝑡𝑎𝑛(𝛼+𝛿)𝑐𝑜𝑡 (𝛿)

1+2𝜉 𝑡𝑎𝑛(𝛼)𝑡𝑎𝑛 (𝛼+𝛿)
+

4𝐺𝑡𝑎𝑛(𝛼) 𝑡𝑎𝑛(𝛼+𝛿)𝑐𝑜𝑡 (𝛿)𝑆𝑟

[1+2𝜉 𝑡𝑎𝑛(𝛼) 𝑡𝑎𝑛(𝛼+𝛿)].𝐾0𝜎𝑣
  4.20 

 

𝑘𝑡(𝛼) = 1 + (
𝐾𝑚𝑎𝑥−𝐾0

𝐾0
)

1−𝑒𝑥𝑝(−𝜁𝛼)

1−𝑒𝑥𝑝(−𝜁𝛼𝑚𝑎𝑥)
  4.21 

 

Where, 𝐺 is the shear stiffness of the soil and 𝑘0 is the at rest lateral earth pressure 

coefficient, 𝜉 is a coefficient depends on the radius of the pile and the extent where 
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the pressure bulb surrounding the pile assumes to be negligible (2.5L (1-𝜈)), where L 

denotes the length of pile and 𝜈 denotes the Poisson’s ratio, 𝑆𝑟 is the ratio of pile 

displacement to its diameter (𝑆𝑟 = 𝑈𝑝 𝐷⁄ ). 휁 is a correlation coefficient which 

represents the gradient at which taper coefficient approaches from 1 to 𝐾𝑡.𝑚𝑎𝑥  for 

tapered piles and obtained 100. It should be noted that when the tapering angle is zero 

(i.e. 𝛼 = 0), Equation 4.21 converges to 𝑘𝑡(𝛼) = 1, which resembles the condition 

for conventional cylindrical piles in terms of at rest condition for the lateral earth 

pressure coefficient; while when 𝛼 =  𝛼𝑚𝑎𝑥 , then Equation 4.21 converges to a 

maximum lateral earth pressure 𝑘𝑡(𝛼 = 𝛼𝑚𝑎𝑥) = 𝐾𝑡.𝑚𝑎𝑥, which is due to the 

mobilisation of a portion of passive earth pressure coefficient. In addition, 𝛼𝑚𝑎𝑥 is the 

maximum tapering angle that a pile can practically hold, while keeping its volume 

identical to its counterpart cylindrical pile. This angle can be calculated based on 

Equation 4.22. 

 

𝛼𝑚𝑎𝑥 = 𝑡𝑎𝑛−1(
√3𝑟𝑐

𝐿
)  4.22 

 

On the other hand, the bearing capacity factor, 𝑁𝑡(𝛼) for tapered pile can be presented 

as in Equations 4.24 and 4.25. It should be noted that the bearing capacity factor (𝑁𝑡) 

in this study is not the factor proposed by Terzaghi et al. (1996), but a modified factor 

based on Janbu (1976) proposed model of 𝑁𝑞 and the tapering factor for base 

resistance of bored piles proposed by Paik et al. (2013). Since the increase in pile point 

resistance is not linear, the proposed 𝑁𝑡 factor presented in Equation 4.24 was derived, 

considering three model parameters including, 𝜆, 𝛽 and 휁 , to capture the effect of 

tapering angle on the vertical effective stress adjacent to the pile, and the gradient at 

which 𝑁𝑡 approaches from 𝑁𝑞𝑐 for tapered piles. Figure 4.6 illustrates the correlation 

between the proposed equation for 𝑁𝑡 in this study and the model proposed by Paik et 

al. (2013) in Equation 4.23 by assuming that 𝑇𝐹𝑏 is equivalent to the term (𝜆 −

𝛽. 𝑒−
𝜋𝜁𝛼

180 ). 
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Figure 4.6. Correlation between the assumed simplified equation for the bearing capacity 

factor and the equation proposed by Paik et al. (2013) 
 

 

𝑇𝐹𝑏(𝛼) = [1 + (0.0005𝐷𝑟1.5 ln(𝐾0) + 0.359). 𝛼]  4.23 

 

𝑁𝑡(𝛼) = (𝜆 − 𝛽. 𝑒−
𝜋𝜁𝛼

180 ) . 𝑁𝑞𝑐  4.24 

 

𝑁𝑞𝑐 = [𝑒𝑥𝑝((
𝜋𝜓

90
)𝑡𝑎𝑛(𝜙))(𝑡𝑎𝑛(𝜙) + √1 + 𝑡𝑎𝑛(𝜙)2)2]  4.25 

 

Where, 𝐷𝑟 is the relative density of sand, 𝑁𝑞𝑐 is the bearing capacity factor for the 

counterpart cylindrical pile recommended by Janbu (1976), 𝜓 is a coefficient, 

corresponding to the soil relative density and its definition can be found in Figure 4.7, 

and can vary between 60° and 105° depending of the soil relative density as mentioned 

by Janbu (1976); 𝜙 is the friction angle of soil. In addition, 𝜆 and 𝛽 are model 

parameters, capturing the effect of tapering angle on the vertical effective stress 

adjacent to the pile. Referring to Figure 4.6, their values were obtained to be equal to 

1.11 and 0.11, respectively. It should be noted that the unit of 𝜓, 𝜙 and 𝛼 in the above 
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equations is degree. It should also be noted that when the tapering angle is zero (i.e. 

𝛼 = 0), Equation 4.24 is simplified to 𝑁𝑡(𝛼 = 0) = 𝑁𝑞𝑐 as expected.  

 

 
Figure 4.7. Schematic load transfer curve, the failure wedges beneath cylindrical and 

tapered piles and the ψ definition used in Nq factor (modified after Janbu 1976) 
 

Substituting Equations 4.12 to 4.14 and Equation 4.21 into Equation 4.19 and 

expanding the integration yields: 

 

𝑞𝑠𝑡 =
𝜋𝛾𝑘𝑡𝑘0𝐿2 𝑡𝑎𝑛(𝛿)

6
[3𝐷𝑎𝑣 − 𝐿𝑡𝑎𝑛(𝛼)]  4.26 

 

As evident, the above-proposed equations (i.e. Equations 4.15 & 4.26) can capture the 

effects of the tapering angle on the shaft resistance and the shaft vertical resistance 

component, and obviously the lateral earth pressure varies nonlinearly with the 

tapering angle. In contrary to a cylindrical pile that the pile axial movement would not 

compress the soil surrounding the shaft (i.e. at rest condition is maintained), soil 
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compression around the pile shaft and gradual mobilisation of passive earth pressure 

in the case of tapered pile impacts the lateral earth pressure. Therefore, the frictional 

interaction between the tapered pile and the surrounding soil will be impacted too.  

 

As mentioned earlier, the base area of the tapered pile can be written as a function of 

tapering angle and the radius of the counterpart cylindrical pile as presented in 

Equation 4.4. Hence, Equation 4.1 can be rewritten to obtain the base resistance of a 

tapered pile (𝑞𝑏𝑡): 

 

𝑞𝑏𝑡 =
𝜋𝐿𝛾

4
𝑁𝑡[𝐷𝑎𝑣 − 𝐿𝑡𝑎𝑛(𝛼)]2  4.27 

 

The bearing capacity of a tapered pile (𝑄𝑇) is the summation of three resistance 

components, namely base resistance, 𝑞𝑏𝑡, shaft resistance, 𝑞𝑠𝑡 , and the shaft vertical 

resistance, 𝑞𝑠𝑣𝑡 , as presented in Equation 4.28. 

 

𝑄𝑇 =  𝑞𝑏𝑡 +  𝑞𝑠𝑣 + 𝑞𝑠𝑡  4.28 

      

The term 𝐷𝑏 = [𝐷𝑎𝑣 − 𝐿𝑡𝑎𝑛(𝛼)] can be introduced, which is representing the base 

diameter of a tapered pile and 𝐷𝑎𝑣 is representing the average diameter of a tapered 

pile (refer to Equation (12)). Hence, by substituting Equations 4.15, 4.26 and 4.27 into 

4.28, the total bearing capacity (𝑄𝑇) can be determined as:  

 

𝑄𝑇 =
𝜋𝛾𝐿𝑁𝑡

4
𝐷𝑏

2 +
𝜋𝛾𝐿2

6
[𝑘𝑡𝑘0 𝑡𝑎𝑛(𝛿) + 𝑁𝑡 𝑡𝑎𝑛(𝛼)][2𝐷𝑎𝑣 + 𝐷𝑏]  4.29 

 

Equation 4.29 presents the axial bearing capacity of bored tapered piles embedded in 

sand considering three different components namely base resistance, shaft friction, 

and shaft vertical resistance. Equation 4.29 is a function of soil unit weight (𝛾), length 

of pile (L), tapering angle (𝛼), taper coefficient (𝑘𝑡), pile-soil interface friction angle 

(𝛿), bearing capacity factor for tapered pile (𝑁𝑡), pile average diameter (𝐷𝑎𝑣) and pile 

base diameter (𝐷𝑏). 
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The differentiation of the Equation 4.29 with respect to tapering angle (𝛼) is a complex 

practice, which includes a large number of terms. Hence, for a given set of parameters 

and performing a parametric study, the obtained Equations including (A.3), (A.4) and 

(A.5) can be solved (see Appendix A). The applied algorithm, shown in Figure 4.8, 

employed in the numerical solution, is based on Cauchy distribution and the initial 

guesses are real values and have a large spread of values on repeated calls, and Figure 

4.9 can be generated.  

 

 
Figure 4.8. Flow chart of the applied algorithm in numerical solution based on Cauchy 

method (after Baesso et al. 2007) 
 

The general formula of the Cauchy probability density function is as follows. 

        

𝑓(𝑥) =
1

𝑠𝜋(1+(
𝑥−𝑡

𝑠
)

2
)
  4.30 

  

Where, s is the scale parameter and t is the location parameter.  
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Figure 4.9. Variation of optimum tapering angle of piles having different L/D ratios 

embedded in different sands obtained from numerical solution 
 

Figure 4.9 illustrates that based on a numerical solution, for different slenderness ratios 

and soil friction angles, an optimum tapering angle exists. The value of this angle is 

dependent on the type of sandy soil and the slenderness ratio of the pile as a geometry 

factor. 

 

4.3 Numerical results and discussion  

Figure 4.10 to Figure 4.13 demonstrate the axial load-displacement behaviour of the 

tapered piles with different tapering angles (including cylindrical pile corresponding 

to 𝛼 = 0) for piles with different L/D ratios of 10, 20, 30 and 40, respectively, for 

various compaction levels including loose, medium dense and dense.  
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Figure 4.10. Load-displacement diagrams of tapered and straight-sided piles with L/D=10 

in loose (Cambria), medium (Toyoura) and dense (Sacramento River) sands 
 

 
Figure 4.11. Load-displacement diagrams of tapered and straight-sided piles with L/D=20 

in loose (Cambria), medium (Toyoura) and dense (Sacramento River) sands 
 

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160

Lo
ad

 o
n 

pi
le

 h
ea

d 
(M

N
)

Vertical displacement (mm)

L/D=10

Dense sand (Sacramento river)α=0°

Loose sand (Cambria)

Medium sand (Toyoura)

α=1.9°

α=1.6°

α=1.4°

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80

Lo
ad

 o
n 

pi
le

 h
ea

d 
(M

N
)

Vertical displacement (mm)

L/D=20

α=0°

α=1.3°

α=1.1°

α=0.9°

Dense sand (Sacramento river)

Loose sand (Cambria)

Medium sand (Toyoura)



91 
 

 
Figure 4.12. Load-displacement diagrams of tapered and straight-sided piles with L/D=30 

in loose (Cambria), medium (Toyoura) and dense (Sacramento River) sands 

 
Figure 4.13. Load-displacement diagrams of tapered and straight-sided piles with L/D=40 

in loose (Cambria), medium (Toyoura) and dense (Sacramento River) sands 
 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60

Lo
ad

 o
n 

pi
le

 h
ea

d 
(M

N
)

Vertical displacement (mm)

L/D=30

Dense sand (Sacramento River)

Loose sand (Cambria)

Medium sand (Toyoura)

α=0°

α=0.9°

α=0.8°

α=0.6°

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40

Lo
ad

 o
n 

pi
le

 h
ea

d 
(M

N
)

Vertical displacement (mm)

L/D=40

Dense sand (Sacramento River)

Loose sand (Cambria)

Medium sand (Toyoura)

α=0°

α=0.7°

α=0.6°

α=0.4°



92 
 

Figure 4.10 to Figure 4.13 also suggest that as slenderness ratio (L/D) increased, the 

optimum tapering angle decreased, while as the soil relative density increased, the 

optimum tapering angle increased. It is also clear that the shaft resistance of piles 

experienced a peak point when the optimum tapering angle was observed. This is 

mainly due to reduction of the lateral surface area of piles by increasing the tapering 

angle. Nevertheless, the base resistance decreased and the shaft vertical resistance 

increases continuously as tapering angle increases. Therefore, the summation of three 

different bearing capacity components, resulting in the total bearing capacity, shows 

a specific optimum tapering angle for piles depending on the slenderness ratios and 

relative densities.  

 

There are different techniques to interpret the axial load-displacement of piles to 

obtain the bearing capacity. As highlighted by Fellenius (2017); Fellenius (1991); 

Poulos & Davis (1980), the conventional methods in finding the bearing capacity 

through load-displacement curves such as double tangential method (Mansur & 

Kaufman 1956) or specific settlement method (based on 10% of the pile diameter) 

(EN 1997) would result in the serviceability bearing capacity. However, the analytical 

equations for bearing capacity similar to those reported in the previous section (see 

Equation 4.29) are representing the ultimate bearing capacity of piles since they adopt 

limit equilibrium theory, initially introduced by Coulomb in 1773. 

 

The diagrams of different components of bearing capacities, including the vertical 

shaft bearing, the toe bearing and the shaft frictional resistances are plotted for piles 

having different tapering angles in Figure 4.14 andFigure 4.15. The results illustrate 

the variation of abovementioned capacity components of piles having L/D ratios of 10, 

20, 30 and 40 in three different compaction levels, along with different tapering angles.  
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Figure 4.14. Variation of different components of ultimate bearing capacity for different 
tapering angels (L/D=10 & L/D=20) a) Total bearing (QT) b) Base resistance (BRT) c) 

Frictional resistance (FRT) d) Shaft Vertical resistance (SVRT) 
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Figure 4.15. Variation of different components of ultimate bearing capacity for different 

tapering angels (L/D=30 & L/D=40) (a) Total bearing (QT) (b) Base resistance (BRT) (c) 
Frictional resistance (FRT) (d) Shaft Vertical resistance (SVRT) 
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As can be seen in Figure 4.14 and Figure 4.15, the total bearing capacity diagram 

versus tapering angle, which were plotted based on the mathematical developed 

formulas (Equations 4.15, 4.26, 4.27 and 4.29), experienced a peak point indicating 

that an optimum tapering angle exists. In addition, by increasing the tapering angle 

from 0°, the shaft resistance and the total bearing capacity increased, and the base 

resistance decreased. However, after reaching the optimum tapering angle, there was 

a slight decrease in the total bearing capacity, meaning that the effect of tapering angle 

still is an advantage comparing to the same volume counterpart cylindrical pile. 

 

Figures 4.14 and 4.15 clearly indicate that by increasing the tapering angle, the shaft 

vertical resistance increased as the projected area of the shaft increased. However, the 

base resistance experienced a peak value when the pile had a zero tapering angle. 

Subsequently, due to the decrease in pile base area, the base resistance decreased, 

where at the maximum tapering angle it approached zero.  

 

Figure 4.16 demonstrates the relative shear stresses around piles. As can be seen, 

larger relative shear stress bulbs have been developed surrounding the tapered piles. 

By increasing the tapering angle, the adjacent soil was densified and accordingly the 

lateral earth pressure and the stiffness of the soil increased, which in turn could affect 

the shear stresses around the pile. In addition, since for tapered piles having an 

optimum tapering angle, the developed shear bulb surrounding and beneath the toe 

covers a larger area, the equivalent vertical stress at the toe level is also higher. Indeed, 

this increase is taken into account in the adopted equation for the bearing capacity 

factor, 𝑁𝑡, as a function of tapering angle, expressed in Equation 4.24.  
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C; C; 
Loose sand;Loose sand;
l/d=10; 

T1.4°; ; 
Loose sand;Loose sand;
l/d=10; 

C; C; 
Loose sand;Loose sand;
l/d=20; 

T0.9°; ; 
Loose sand;Loose sand;
l/d=20; 
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C; C; 
Loose sand;Loose sand;
l/d=30; 

T0.6°; ; 
Loose sand;Loose sand;
l/d=30; 

C; C; 
Loose sand;Loose sand;
l/d=40; 

T0.4°; 0.4°; 
Loose sand;Loose sand;
l/d=40; 
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C; C; 
Medium sand;sand;
l/d=10; 

T1.6°; T1.6°; 
Medium sand;sand;
l/d=10; 

C; C; 
Medium sand;sand;
l/d=20; 

T1.1°; ; 
Medium sand;sand;
l/d=20; 
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C; C; 
Medium sand;sand;
l/d=30; 

T0.8°; .8°; 
Medium sand;sand;
l/d=30; 

C; C; 
Medium sand;sand;
l/d=40; 

T0.6°; T0.6°; 
Medium sand;sand;
l/d=40; 
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C; C; 
Dense sand;Dense sand;
l/d=10; l/d=10; 

T1.9°; ; 
Dense sand;Dense sand;
l/d=10; l/d=10; 

C; C; 
Dense sand;Dense sand;
l/d=20; 0; 

T1.3°; T1.3°; 
Dense sand;Dense sand;
l/d=20; 0; 
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Figure 4.16. Relative shear stress distribution around piles with different slenderness ratios 
in sand with various relative densities (Loose Cambria sand, Medium Toyoura sand, and 

Dense Sacramento River sand), (C: Cylindrical, T: Tapered)

C; C; 
Dense sand;Dense sand;
l/d=30; 0; 

T0.9°; ; 
Dense sand;Dense sand;
l/d=30; 0; 

C; C; 
Dense sand;Dense sand;
l/d=40; 0; 

T0.7°; T0.7°; 
Dense sand;Dense sand;
l/d=40; 0; 
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Figure 4.17. Validation of the proposed analytical model for obtaining the bearing capacity 

with numerical results for various L/D ratios and different types of sand (a) L/D=10, (b) 
L/D=20, (c) L/D=30, (d) L/D=40 
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4.4 Simplified equation for selecting optimum tapering angle 

After generating the load-displacement curves from the numerical analysis, and 

obtaining the axial bearing capacity (i.e. load resistance at a certain settlement, 

𝑠𝑒 =10% of the pile diameter) for each series of analysis with a constant L/D ratio and 

various tapering angles, the angle with the highest pile axial capacity, is selected as 

the optimum tapering angle.  

 

Figure 4.17 presents the comparison between analytical predictions adopting proposed 

Equation 4.29 and finite element predictions for the axial bearing capacity of the 

tapered pile under different soil characteristics and pile geometries. The developed 

analytical equations for piles result in the ultimate bearing capacity of piles (Terzaghi 

et al. 1996), and the numerical modelling presents the serviceability capacity based on 

the aforementioned criteria using load-displacement curves (capacity at the settlement 

equivalent to 10% of the pile diameter) (EN 1997). In fact, the numerical modelling 

takes the soil stiffness into account and it captures the nonlinear elasto-plastic response 

of the soil. However, in this study, the proposed analytical bearing capacity equation 

has been validated through a calibration process to obtain the model parameters based 

on the aforementioned settlement criterion.  

 

Although there is a slight difference in validation diagrams of Figure 4.17, which is 

due to the non-linear behaviour of the calibrated soil using UBC sand model in the 

numerical modelling, the peak points that represent the optimum tapering angles 

obtained through both analytical and numerical models were matched. This proves the 

validity of not only the axial bearing capacity relationship as Equation 4.29, but also 

the optimum tapering angle. 

 

Figure 4.18 illustrates the variation of the optimum tapering angle for different 

compaction conditions for sandy soil including loose, medium dense and dense and 

different L/D ratios of 10, 20, 30 and 40. 
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Figure 4.18. Variation of optimum tapering angel versus length to diameter ratio for loose 
sand (Cambria), medium sand (Toyoura), dense sand (Sacramento River) obtained from 

numerical analysis 
 

Referring to Figure 4.18, the optimum tapering angle decreases as the pile becomes 

more slender (i.e. L/D increased). As Figure 4.18 shows, the relationship between the 

optimum tapering angle and the L/D ratio has a decreasing trend. However, the 

variation of the optimum tapering angle with respect to soil internal friction angle 

follows opposite pattern as evident in Figure 4.18. Referring to Figure 4.18, the impact 

of tapering angle on piles embedded in dense sand is quite notable. The reason can be 

related to the significant increase in both frictional and shaft vertical components. As 

captured in Equations 4.21 and 4.24, the increasing rate of soil lateral earth pressure 

coefficient by applying the taper coefficient 𝑘𝑡 and the bearing capacity factor 𝑁𝑡 with 

increasing tapering angle was more pronounced when internal friction angle of the soil 

increased. However, for more slender piles (i.e. increasing L/D), the effect of tapering 

angle was less noticed. Moreover, for a given L/D, a reduction in the optimum tapering 

angle was observed when soil compaction changed from dense toward loose sand. In 

other words, for a pile used in this study with L/D = 10, the optimum tapering angle 

decreased from 1.9° (corresponding to dense sand) to 1.4° (corresponding loose sand), 
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while this decrease as a result of changes in L/D was from 1.4° (corresponding to 

L/D=10) to 0.4° (corresponding to L/D=40) for piles embedded in loose sand. 

 

The optimum tapering angles obtained from analytical calculations and numerical 

analyses are computed and compared in Table 4.1.  

 

Table 4.1. Compared optimum tapering angels obtained from analytical and numerical 
methods 

L/D 

𝜶𝑶𝒑𝒕 

Loose 

(Cambria sand) 

𝜶𝑶𝒑𝒕 

Medium 

(Toyoura sand) 

𝜶𝑶𝒑𝒕 

Dense 

(Sacramento River 

sand) 

Analytical Numerical Analytical Numerical Analytical Numerical 

10 1.44° 1.4° 1.60° 1.6° 1.83° 1.9° 

20 0.87° 0.9° 1.03° 1.1° 1.24° 1.3° 

30 0.60° 0.6° 0.75° 0.8° 0.94° 0.9° 

40 0.44° 0.4° 0.59° 0.6° 0.75° 0.7° 

 

 

As can be seen, a good correlation exists between the predictions via analytical and 

the numerical methods in the obtained optimum tapering angles.  

 

Based on the results presented in Figure 4.17 and Figure 4.18, and considering the 

factors captured in the analytical solution (Equations 4.15, 4.26, 4.27 and 4.29), 

simplified Equation 4.31 is proposed to predict the optimum tapering angle for bored 

tapered piles as a function of friction angle of soil 𝜙, length of pile L, and diameter of 

the reference equivalent cylindrical pile D. Indeed, the proposed equation  represents 

the normalised optimum tapering angle as the ratio between the optimum tapering 

angle to the maximum feasible tapering angle of tapered piles (𝛼𝑟 =
𝛼𝑜𝑝𝑡

𝛼𝑚𝑎𝑥
).  
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𝛼𝑟 = 𝑡𝑎𝑛2(𝜙)(
𝑎

𝑒
√𝐷

𝐿

− 𝑏. 𝑡𝑎𝑛2(𝜙) 𝑒
√

𝐷

𝐿 )  4.31 

 

where, a and b are two model parameters, calibrated to be 1.43 and 0.51, respectively, 

using the result summarised in Figure 4.18 and Table 4.1. It should be mentioned that 

the maximum tapering angle (𝛼𝑚𝑎𝑥) can be calculated using Equation 4.22.  

 

Equation 4.31 is a simplified approximation to obtain the optimum tapering angle 

based on the soil and pile characteristics and can be used readily by practicing 

engineers to select the most efficient tapering angle for bored piles.  

 

4.5 Validation of the numerical model with field test results 

There is a limited number of field pile load tests on large scale bored tapered piles in 

sand to capture the beneficial effects of tapered piles and observing the optimum 

tapering angle. In this study, two bored piles embedded in sand were used to validate 

the numerical results and the developed mathematical relationships. The selected cases 

were two bored piles including one cylindrical and one tapered with a tapering angle 

of 1.2°, tested by Lee et al. (2009) at Iksan City in the southern area of the Republic 

of Korea.  

 

According to the in situ test results, the groundwater table is 8 m beneath the ground 

level. In addition, the representative NSPT value at the pile base and along the pile 

shaft were obtained as 10 and 12, respectively. Besides, the representative cone 

resistance, 𝑞𝑐 , was reported 4.35 MPa along the pile shaft and 5.25 MPa for the pile 

base. It should be noticed that before installing the piles, the top 2 m layer of silty clay 

has been removed. The geometry properties of piles used in the field pile load tests 

conducted by Lee et al. (2009) can be seen schematically in Figure 4.19.  
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Figure 4.19. Schematic of bored piles along with the manufactured augers by Lee et al. 

(2009) for installing and testing piles at Iksan City in the southern region of the Republic of 
Korea 

 

Figure 4.19, illustrates that two layers of soil consisted of 2 m of silty clay overlaying 

a deep clayey sand layer exist at the site of investigation and the soil parameters are 

presented in Table 4.2.  

 

Table 4.2. Soil properties at the site of Iksan City in the southern region of the Republic of 
Korea (after Lee et al. 2009) 

Soil type 

based on 

USCS 

Soil parameters 

𝛾𝑑 (kN/m3) 𝛾𝑡 (kN/m3) 𝜙𝑝 𝜙𝑐𝑠 Dr (%) 

SC 14.5 18.1 35.48° 31.08° 55 

 

 

A numerical analysis containing modelling of both piles, which have been tested at 

site, was performed and the load-displacement behaviour of piles obtained. A 

comparison was made for the load-displacement diagrams of piles obtained from field 

tests and numerical models, as shown in Figure 4.20.   
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Figure 4.20. Comparison between the load-displacement diagrams obtained from numerical 

modelling and pile load tests conducted by Lee et al. (2009) 
 

 

Figure 4.20 illustrates that the numerical model can predict accurate load-

displacement behaviour for cylindrical and tapered piles. The criterion for obtaining 

piles' ultimate bearing capacity in this study was based on the specific pile settlement 

to diameter ratio (𝑆𝑟 = 0.1). Since the diameter of the cylindrical reference pile tested 

at the site was 400 mm, the specific settlement of 40 mm was used to acquire piles' 

ultimate bearing capacity.  

 

On the other hand, using the proposed mathematical relationships (Equations 4.21, 

4.24 and 4.29), taper coefficient (𝑘𝑡), the bearing capacity factor (𝑁𝑡), and the total 

load capacity of piles (𝑄𝑇) can be obtained as presented in Table 4.3. It should be 

noticed that since the soil at the site contains about 30% clay, the coefficient 𝜓 of 

Equation 4.25 was assumed to be 100° for both piles. Table 4.3, summarizes the model 

parameters and bearing capacity factors obtained from the analytical approach and the 

total bearing capacities obtained from three different methods. 
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Table 4.3. Comparison of bearing capacity results obtained from various methods 

Calculation method 

Bearing capacity factors and model parameters 

Cylindrical Pile: 𝐶 (𝛼 = 0°) 

휁 𝜆 𝛽 𝑘𝑡  
𝑁𝑡 

(𝑁𝑞𝑐) 
𝑄𝑇 (kN) 

Analytical model result 100 1.11 0.11 1.0 48.6 578 

Numerical modelling 

result 
- - - - - 585 

Field test result - - - - - 598 

Calculation method 
Tapered Pile:𝑇 (𝛼 = 1.2°) 

휁 𝜆 𝛽 𝑘𝑡  𝑁𝑡 𝑄𝑇 (kN) 

Analytical model result 100 1.11 0.11 1.76 53.4 661 

Numerical modelling 

result 
- - - - - 670 

Field test result - - - - - 708 

 

 

Table 4.3 indicates that the proposed mathematical relationships and the numerical 

analyses can predict the bearing capacity of bored cylindrical and tapered piles with a 

reasonable degree of accuracy. Hence, these new relationships can be used by 

practicing engineers to make a quick comparison between the load capacities of these 

two types of piles with the same amount of material. 

 

 

4.6 Summary  

This study numerically proved that there is an optimum tapering angle for piles 

embedded in sand where the unit load capacity approaches to its maximum level.  

Firstly, a governing equation to obtain the axial bearing capacity of bored tapered piles 

in sand was developed analytically. Then, the acquired bearing capacity equation was 

differentiated with respect to the tapering angle, and solved numerically using the 
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Cauchy algorithm for a given set of model parameters. The roots of the solved equation 

proved the existence of the optimum tapering angle for piles, where the maximum 

bearing capacity was provided. Afterwards, the calibrated aforementioned model 

parameters of the analytical model were obtained against the results of comprehensive 

numerical modelling. 

 

An empirical equation for obtaining the optimum tapering angle for bored piles was 

presented, which practicing engineers can readily apply. The presented equation is a 

function of slenderness ratio of piles and the soil internal friction angle, and it is 

normalized to the maximum available tapering angle that a pile can have with the same 

volume of material. 

 

Both the total bearing capacity and the optimum tapering angle equations have been 

validated with numerical analysis using UBC sand model in three different soil models 

including loose Cambria, medium Toyoura and dense Sacramento River sands. The 

soil parameters were obtained through a calibration exercise using the UBC sand 

constitutive model. An optimum tapering angle was obtained for various sand types 

including loose, medium, and dense sand. 

 

The proposed analytical equation can predict the ultimate bearing capacity of a tapered 

pile based on the tapering angle and the diameter of the cylindrical reference pile with 

the same volume. While the bearing capacity of pile increases with increasing the 

tapering angle until reaching the optimum tapering angle, a tapered pile can provide 

up to 40% higher axial capacity comparing to its counterpart cylindrical pile.  

 

As the tapering angle exceeds the optimum value, the bearing capacity of tapered piles 

decreases gradually. However, those piles, having larger tapering angles, can still 

provide higher carrying capacities compared to their counterpart cylindrical piles. 

 

 

 

  



118

Chapter
Developing an Efficiency Equation 

for Tapered Pile Groups in Sand Using 
Mathematical and Numerical Analyses

5.1 Introduction

Capturing the behaviour of pile groups using numerical modelling, needs a three 

dimensional analysis which is a time-consuming effort. Hence, proposing an equation 

for predicting the bearing capacity of piles considering the important parameters such 

as the slenderness ratio, the pile spacing, the tapering angle, the sand internal friction 

angle and the number of piles, is of great significance. Although, several group 

efficiency equations have been proposed to date, to the best of authors’ knowledge, 

the effect of tapering angle has not been considered in the developed equations. On 

the other hand, most of the investigations on tapered piles are specified for isolated 

single piles rather than pile groups, relating to the complication assessment of pile 

group behaviour. The two main problems associated with pile group design are the 

pile group efficiency (휂) and the settlement factor (Sf), which are defined as Equations

2.19 and 2.20 in Chapter 2.

   

According to Equation 2.19, if the group capacity is equal to the sum of all individual 

pile capacities, then the group efficiency (휂) will be equal to 1. The ASCE Committee 
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on Deep Foundations (CDF) suggests that friction piles in cohesionless soils 

embedded at the usual spacing of s = 2D to 3D can have a group efficiency  휂 > 1 

(ASCE 1984). The reason assumed is that in frictional soil, the pile displacement along 

with driving vibrations increases the soil density in a vicinity zone of the pile. This 

effect is more significant in driven piles. However, considering friction piles in 

cohesive soils, the group capacity can be obtained as the summation of the point 

bearing along with block shear of the group. In this condition, the group capacity rarely 

can be more than the summation of single piles capacities.  

 

The presence of pile cap also plays a significant role in pile group capacity as well as 

the pile group efficiency. For instance, if the pile cap is laying on the ground, the pile 

group will settle with the soil as the piles will also settle that much. For a free standing 

cap, the group bearing capacity of cylindrical piles would be the sum of the individual 

point capacities and block perimeter shear. While, for tapered piles, an additional shaft 

vertical bearing component should be taken into account. Hence, for tapered pile 

groups, the corresponding bearing ratio will affect the group efficiency, particularly 

for piles having larger angles (Shafaghat & Khabbaz 2020b). 

 

Most of the developed relationships and guidelines are regarding to straight-sided wall 

piles. However, the attempt of this study is to investigate the characteristics of tapered 

piles featuring the effect of tapering angle. For this purpose, based on the mathematical 

definition of group efficiency factor, a new formula for a group of tapered piles is 

presented. The predicted relationship can be a function of a number of important 

parameters, as expressed in Equation 5.1. 

 

휂 = 𝑓(𝑚, 𝑛, 𝑠, 𝐿, 𝑑, 𝛼, 𝜙)  5.1 

 

In the above equation, m is the number of piles in a row of a group, n is the number of 

piles in a column of a group, S is the spacing between piles, d is the average diameter 

of piles (equivalent to the same volume counterpart straight-sided wall pile diameter), 

𝛼 is the tapering angle of piles, L is the length of piles, and 𝜙 is the internal friction 

angle of the granular soil. 
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Afterwards, an array of numerical analyses is performed to model the single bored 

cylindrical and tapered piles as well as pile groups with the same volume of material. 

Thereafter, the load-displacement diagrams of single and group of tapered piles are 

obtained through numerical survey and the mathematical developed efficiency 

relationship is verified. The constitutive model for sand, developed by the University 

of British Columbia, known as UBC sand constitutive model (Beaty & Byrne 2011), 

is used for the numerical analysis of piles in loose Cambria sand.  

 

5.2 Existing group efficiency equations 

There are several relationships to predict the group efficiency for conventional 

cylindrical piles. Some relationships are established for group of piles in sand and 

some can predict the efficiency in clay. Besides, based on the pile cap condition of 

pile group, the efficiency coefficients can be divided into two categories including, 

pile group with a cap laying on the ground and pile group with a free-standing cap. In 

Chapter 2.6 of this study, an overview of some of the well-known efficiency equations 

for cylindrical pile foundations was presented. Most of the equations provide the 

efficiency of pile groups with a free-standing cap. As can be seen, the effect of tapering 

angle has not been taken into consideration in obtaining the pile group efficiency.  

 

As described in Section 2.6 in Chapter 2, the most common parameters in predicting 

the pile group efficiency are the pile spacing, the pile diameter and the number of piles 

in each row and column. Even though, other factors, such as the interaction factor 

between the piles within a group, play a significant role in obtaining the efficiencies. 

 

Several other equations have been proposed to predict the efficiency of pile groups 

considering different parameters (Randolph 1994; Rao 2010; Tuan 2016a; Zhao 

1999). However, these relationships are only applicable for straight-sided wall pile 

groups and to the best of authors’ knowledge, none of the above equations can capture 

the effect of all above-mentioned parameters simultaneously. 
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5.3 Analytical approach 

The analytical solution is routed from the basic definition of efficiency coefficient, 

which is as Equation 2.19. In Equation 2.19, Qs is the bearing capacity of single pile 

and Qg is the bearing capacity of the group. The load Qs is conventionally divided into 

three components of shaft (skin) resistance (Qf ), the base (tip) resistance (Qb), and the 

vertical component of bearing along the length of tapered pile due to inclination of 

their body (Qsv). Figure 5.1 illustrates a tapered pile group along with separated 

resistance forces. 

 

𝑄𝑠 = 𝑄𝑓 + 𝑄𝑏 + 𝑄𝑠𝑣   5.2 

 

 
Figure 5.1. Tapered pile group and the separated resistance forces 

 

 

Vesic (1967) and Chellis (1969) have suggested that for piles embedded in sand, the 

group effect can be taken into consideration only for the shaft bearing component. 

According to this assumption, the group bearing capacity can be written as: 
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𝑄𝑔 = ∑ 𝑄𝑏 + 휂𝑠𝑣 ∙ ∑ 𝑄𝑠𝑣 + 휂𝑠 ∙ ∑ 𝑄𝑓   5.3 

 

where, the parameter 휂𝑠 is the shaft load efficiency which is similar to what has been 

suggested by Sayed & Bakeer (1992), but with a slight modification to consider the 

effect of tapering angle. In addition, 휂𝑠𝑣 is the shaft vertical load efficiency, which is 

derived similar to the former load efficiency and can be written as: 

 

휂𝑠 = 휂𝑠
′ ∙ 𝐾  5.4 

 
휂𝑠𝑣 = 휂𝑠𝑣

′ ∙ 𝐾  5.5 

 

where, 휂𝑠
′  is the geometric efficiency coefficient and K is the group interaction factor. 

Substituting Equations 5.3 to 5.5 in Equation 2.19 yields: 

 

휂𝑔 =
𝜂𝑠

′ ∙𝐾∙∑ 𝑄𝑓

∑ 𝑄𝑠
+

𝜂𝑠𝑣
′ ∙𝐾.∑ 𝑄𝑠𝑣

∑ 𝑄𝑠
+

∑ 𝑄𝑏

∑ 𝑄𝑠
  5.6 

 

Vesic (1980) has recommended that for a group having m × n piles, the ratio of  
∑ 𝑄𝑓

∑ 𝑄𝑠
 

is equal to the ratio of  𝑄𝑓

𝑄𝑠
 for a single pile. Hence, by assuming that the ratio of ∑ 𝑄𝑠𝑣

∑ 𝑄𝑠
 

is equal to the ratio of  𝑄𝑠𝑣

𝑄𝑠
 for a single pile in sandy soil, the efficiency equation for a 

pile group in sand can be written as,  

 

휂𝑔 = 1 + (휂𝑠
′ ∙ 𝐾 − 1) ∙

𝑄𝑓

𝑄𝑠
+ (휂𝑠𝑣

′ ∙ 𝐾 − 1) ∙
𝑄𝑠𝑣

𝑄𝑠
  5.7 

 

In addition, 휂𝑠
′  is defined in Equation 5.8 (Sayed & Bakeer 1992) and 휂′

𝑠𝑣
 is derived 

similar to the friction geometric efficiency coefficient as presented in Equation 5.9. 

                                       

휂𝑠
′ =

𝑃𝑔

∑ 𝑃𝑠
  5.8 

                                              

휂′
𝑠𝑣

=
𝐴𝑝

∑ 𝐴𝑏+∑ 𝐴𝑠𝑣
  5.9 
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where, 𝑃𝑔 is the perimeter of the pile group, 𝐴𝑝 is the area of the end surface of the 

block of pile group (as an equivalent large pile), ∑ 𝑃𝑠, ∑ 𝐴𝑏 , and ∑ 𝐴𝑠𝑣 are the 

summations of the single piles lateral perimeter, the summation of base area of single 

piles, and the summation of shaft horizontal projected area corresponding to the 

vertical load bearing of single piles, respectively, as illustrated in Figure 5.2.  

 

 

 
Figure 5.2. Bottom view of a typical pile group pattern and the geometry efficiency 

coefficients definition a) shaft geometry efficiency (휂𝑠
′ ) b) shaft vertical bearing geometry 

efficiency (휂𝑠𝑣) 
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Accordingly, knowing that 𝐴𝑠𝑣 + 𝐴𝑏 =
𝜋

4
𝐷𝑡𝑜𝑝

2  and for a circular pile group, 휂𝑠
′  and 

휂′
𝑠𝑣

 can be defined as: 

휂𝑠
′ = 2 × [

[(𝑚−1)×𝑠+𝐷𝑎𝑣]+[(𝑛−1)×𝑠+𝐷𝑎𝑣]

𝜋×𝑛×𝑚×𝐷𝑎𝑣×cos (𝛼)
]  5.10 

 

휂′
𝑠𝑣

= 4 × [
[(𝑚−1)×𝑠+𝐷𝑏𝑜𝑡].[(𝑛−1)×𝑠+𝐷𝑏𝑜𝑡]

𝜋×𝑛×𝑚×𝐷𝑡𝑜𝑝
2 ]  5.11 

 

Hence, the final mathematical model for the efficiency of bored tapered pile groups in 

sand can be derived by Equation 5.12. 

 

{휂𝑔 = 1 − (1 − 2 × [
[(𝑚−1)×𝑠+𝐷𝑎𝑣]+[(𝑛−1)×𝑠+𝐷𝑎𝑣]

𝜋×𝑛×𝑚×𝐷𝑎𝑣×cos (𝛼)
] . 𝐾) ∙

𝑄𝑓

𝑄𝑠
−

(1 − 4 × [
[(𝑚−1)×𝑠+𝐷𝑏𝑜𝑡].[(𝑛−1)×𝑠+𝐷𝑏𝑜𝑡]

𝜋×𝑛×𝑚×𝐷𝑡𝑜𝑝
2 ] . 𝐾) ∙

𝑄𝑠𝑣

𝑄𝑠
}  

5.12 

 

where, 𝐾 can be obtained through existing data reported by Sayed & Bakeer (1992). 

Equation 5.12 gives the pile group efficiency by considering pile geometry 

parameters, including tapering angle and the sandy soil properties. It should be noted 

that for finding the total bearing capacity of piles using load-displacement diagrams, 

the load on pile heads corresponding to 0.05𝐷𝑎𝑣 of pile settlement (which is 75mm) 

is used. Moreover, for a single pile (assuming m=n=1), the geometry efficiency 

coefficients should be modified as the pile cross-sections were assumed to be circular, 

but the arrangements assumed to be square. While, for a single pile the geometry 

efficiency coefficients must be equal to 1. It is also worth mentioning that by 

increasing the spacing to large values, the group interaction factor approaches to zero. 

Hence, the group interaction factor has an inverse relationship with the pile spacing. 

Hence, the terms 휂𝑠
′ 𝐾 and 휂𝑠𝑣

′ 𝐾 approach 1 for large spacing values. 
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5.4 Three-dimensional finite element modelling and overview of the 

numerical models 

The numerical modelling conducted in this study includes two sets of pile group 

models and two sets of single pile models with different geometries, but identical 

volume of material. Piles were modelled using a finite element software package, 

PLAXIS 3D (Brinkgreve et al. 2002), and the interface elements were used for shaft 

and toe of piles. In this analysis, piles with circular cross-section were embedded in 

an elasto-plastic ground and a monotonic compressive axial load was applied on their 

heads. It should be noticed that piles in each group were loaded individually with the 

same amount of loading as single pile models. Hence the results of this study can 

represent a free standing cap situation, where each pile in group partakes equal amount 

of loading. A summary of geometrical properties of piles considered in the numerical 

modelling with different tapering angles and various top and bottom radii are 

presented in Table 5.1. 

 

Table 5.1. Geometry of the piles used in the numerical analyses 

L/D Piles 

Tapering 

angle 

(Degrees) 

Top 

radius 

(mm) 

Bottom 

radius 

(mm) 

Length 

(m) 

Volume 

(𝒎𝟑) 

10 
CL 0 750 750 15 26.5 

TL 1.4 925 559 15 26.5 

 

The enhanced meshing system was applied surrounding each pile, where the pile and 

soil interact through the interface plane as shown in Figure 5.3. This refinement could 

improve the mesh quality and consequently contribute to more accurate results. Piles 

were modelled as solid elements and volumetric objects to consider the tapering effect 

and to capture the stress states surrounding them.  
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Figure 5.3. Enhanced meshed system used for piles in 3D numerical analyses, (a) Single pile 

and group of four piles, (b) Pile group along with the adjacent soil used in numerical 
analysis 

 

(a) 

(b) 
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The interface elements between pile and the adjacent soil were considered and the 

reduction factor (𝑅𝑓) of 0.7 was used. This factor applies to the strength and stiffness 

parameters of soil as captured in Equations 3.5 and 3.6. 

 

In the abovementioned equations, 𝜙𝑖 is the internal friction angle of the interface, 

𝜙𝑠𝑜𝑖𝑙  is the internal friction angle of the soil, 𝐺𝑖 is the shear modulus of the interface, 

and 𝐺𝑠𝑜𝑖𝑙 is the shear modulus of the soil. Figure 5.4 illustrates the three-dimensional 

model of piles embedded in soil along with the interfaces surrounding the piles as well 

as interfaces around pile group blocks. 

 

 
 

(a) 
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Figure 5.4. Interfaces surrounding the individual piles and at the lateral and bottom faces of 

pile blocks (a) Pile block along with the single pile and the interfaces (b) The interface of 
pile group below the pile block (bottom view) (c) Pile toe interfaces (bottom view) 

(b) 

(c) 
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5.5 Validation of the obtained efficiency equation using 3D FEM 

numerical analysis 

The load-displacement behaviour of modelled piles are considered as reference data 

to calculate the bearing capacities (𝑄𝑓 , 𝑄𝑠𝑣, 𝑄𝑠) using numerical integration of vertical 

effective stress on the base surface area of piles (Hataf & Shafaghat 2015a, 2015b; 

Shafaghat & Khabbaz 2020a; Shafaghat et al. 2018). Therefore, these load-

displacement diagrams for a single pile and group of piles are extracted as a result of 

three dimensional numerical modelling, as shown in Figure 5.5 andFigure 5.6.  

 

Both single piles and pile groups with an arrangement of 2×2 and slenderness ratio of 

 
𝐿

𝐷𝑐
= 10 (where 𝐷𝑐 is the diameter of the reference same volume cylindrical pile) are 

modelled in loose Cambria sand. It can be noted that the UBC sand model is used for 

the numerical analysis. The pile model material parameters including the Poisson’s 

ratio, Young’s modulus, unit weight and its behavioural model are presented in Table 

5.2, respectively. The spacing of 𝑆 = 3𝐷𝑡𝑜𝑝 is used to model the piles in groups for 

this study as it is perceived to be the optimum spacing of piles to have efficient 

interaction in group (Poulos 1979; Poulos & Davis 1980). The reference settlement of 

piles for interpreting different components of bearing capacity is assumed to be 

as 𝛿𝑟𝑒𝑓 = 0.05𝐷𝑎𝑣. Moreover, concerning the group interaction factor (K), which is a 

function of pile spacing, the method of pile installation, and type of soil, its values 

ranging from 0 to 1 (Hanna et al. 2004; Sayed & Bakeer 1992). According to the 

relative density of the target sand, and based on the recommendations in the literature 

(Hanna et al. 2004), the group interaction factor (K) for a 2×2 bored pile group, 

embedded in loose sand, is K=0.5. 

 

Table 5.2. Pile material parameters 

Parameters 
𝛾(

𝑘𝑁

𝑚3
) 

(Unit weight) 

𝜈 

(Poisson’s 

ratio) 

E (GPa) 

(Elastic 

modulus) 

Material model 

Values 24 0.15 25 Linear-Elastic 
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Table 5.3 represents the input parameters of soil properties used in the numerical 

modelling based on the UBC sand model.  

 

Table 5.3. Sandy soil properties adopted for numerical analysis based on UBC sand model 
(loose Cambria sand) 

𝒌𝑩
𝒆  150 

𝒌𝑮
𝒆  300 

𝒌𝑮
𝒑 330 

me 0.25 

ne 0.25 

np 0.25 

𝝓𝒄𝒗 31° 

𝝓𝒑 32° 

c 0 

𝑹𝒇 0.98 

𝒇𝒅𝒆𝒏𝒔 0.3 

𝜸𝒖𝒏𝒔𝒂𝒕(
𝒌𝑵

𝒎𝟑
) 15.3 

𝜸𝒔𝒂𝒕(
𝒌𝑵

𝒎𝟑
) 19.3 

(𝑵𝟏)𝟔𝟎 5 

 

 

In Table 5.3, 𝑘𝐵
𝑒  is the elastic bulk modulus factor,  𝑘𝐺

𝑒  is the elastic shear modulus 

factor,  𝑘𝐺
𝑝 is the plastic shear modulus factor, me is the rate of stress-dependency of 

elastic bulk modulus, ne is the rate of stress-dependency of elastic shear modulus, np 

is the rate of stress-dependency of plastic shear modulus,  𝜙𝑐𝑣 is the constant volume 

friction angle,  𝜙𝑝 is the peak friction angle, c is the cohesion,  𝑅𝑓 is the failure ratio, 

 𝑓𝑑𝑒𝑛𝑠 is the densification factor and  (𝑁1)60 is the corrected SPT value. 

 



131 
 

 
Figure 5.5. Load-displacement curves for single and group of cylindrical pile modellings, 

(Loose Cambria sand) 
 

 
Figure 5.6. Load-displacement curves for single and group of tapered pile modellings, 

(Loose Cambria sand) 
 

 

According to the load-displacement results of Figure 5.5 andFigure 5.6 obtained from 

the three-dimensional numerical modelling, and based on the numerical calculation 

techniques used to find the various components of resistances (Hataf & Shafaghat 
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2015a), the friction bearing ratio and the shaft vertical bearing ratio are obtained and 

presented in Table 5.4. 
 
 

Table 5.4. Bearing capacity ratios of a single same volume cylindrical and tapered piles 

Bearing capacity ratios Cylindrical pile 
Tapered pile 

with α=1.4° 

Shaft bearing ratio (𝑄𝑓

𝑄𝑠
) 0.23 0.27 

Shaft vertical bearing ratio (𝑄𝑠𝑣

𝑄𝑠
) 0 0.35 

 

According to Figure 5.5 andFigure 5.6 and using Equation 2.19 the pile group 

efficiencies of both 2×2 cylindrical and tapered piles are 0.90 and 1.1, respectively. 

On the other hand, using Equation 5.12, the pile group efficiencies are obtained 0.91 

and 1.06, which shows the presented efficiency equation can simply predict the pile 

group efficiency while considering the tapering angle with a reasonable accuracy. 

Figure 5.7 andFigure 5.8 illustrate the relative shear stress state and the vertical 

displacement of piles at the end of the block of cylindrical and tapered groups, 

respectively.  
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Figure 5.7. Relative shear stress state on the end surface of the block of pile groups (bottom 

view), (a) Cylindrical pile group, (b) Tapered pile group (α=1.4°) 
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Figure 5.8. Vertical displacement state on the end surface of the block of pile groups 

(bottom view), (a) Cylindrical pile group, (b) Tapered pile group (α=1.4°) 
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Figure 5.8 illustrates that the vertical displacement of the soil at the centre part of the 

tapered pile group is more uniform comparing to the vertical displacement of the 

cylindrical pile group. This is due to the shaft inclination of tapered piles which makes 

the upper cross-section bigger than the toe. In other words, the tapering effect can 

compact the surrounding soil downward, which in turn densifies the adjacent soil 

while the pile experiences incremental settlement. Hence, for tapered piles embedded 

in sand, the lateral earth pressure coefficient will increase by each incremental 

settlement of pile. This will lead to increase in both the shaft friction resistance as well 

as the shaft vertical resistance component. Accordingly, single tapered piles provide 

more bearing capacity comparing to their counterpart same volume cylindrical piles, 

and will improve the efficiency when used in a group. 

 

5.6 Validation of the obtained efficiency equation using field test 

data 

In order to validate the proposed mathematical model for predicting the efficiency of 

bored pile groups, a set of experimental tests as well as field tests conducted by several 

researchers was used (Brown et al. 1988; McVay et al. 1995; Ruesta & Townsend 

1997; Shibata et al. 1989). The field tests have been conducted for groups with 3x3 

arrangement and various spacing to diameter ratios from 2 to 5. Table 5.5 presents the 

efficiency values obtained from the proposed model of this study and values obtained 

from other sources, including numerical, theoretical and experimental investigations. 

 

Table 5.5. Comparison between pile group efficiencies achieved from the proposed model of 
this study and values obtained from other sources, including numerical, theoretical and 

experimental investigations 

Reference Method 
S/D 

2 3 5 6 8 10 

Mathematical model of this study Mathematical 0.81 0.84 0.86 0.91 0.96 1.0 

Numerical analysis of this study Numerical 0.85 0.95 - - - - 

Brown et al. (1988) 
Full scale 

field load test 
- 0.75 - - - - 

Sayed & Bakeer (1992) Mathematical 0.66 0.81 0.89 0.96 1.0 1.0 
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McVay et al. (1995) 
Experimental 

(Centrifuge) 
- 0.73 0.92 - - - 

Ruesta & Townsend (1997) 
Full scale 

field load test 
- 0.80 - - - - 

Shibata et al. (1989) 
Experimental 

(Centrifuge) 
0.58 - 1.0 - - - 

Tuan (2016b) Mathematical 0.65 0.82 0.87 1.0 1.0 1.0 

Converse-Labarre (Bolin (1941)) Mathematical 0.60 0.73 0.83 0.86 0.89 0.92 

 

5.7 Summary 

This study presents a new simple equation for prediction of pile group efficiency 

considering the effect of tapering angle in cohesionless soil under vertical loading. 

Firstly, a simple analytical relationship based on the mathematical definition of the 

pile group efficiency is developed. However, the effect of tapering angle is captured 

by defining a new geometry efficiency coefficient associated with the shaft vertical 

bearing component of tapered piles. Thereafter, a mathematical equation is developed 

by taking into account the shaft vertical bearing ratio and the new geometry efficiency 

coefficient. On the other hand, a numerical analysis is performed for modelling a 

single bored cylindrical pile and a tapered pile with the same volume as well as bored 

tapered pile groups to validate the proposed mathematical equation. The UBC sand 

constitutive model is adopted for the modelling of piles in loose Cambria sand. 

Subsequently, the load-displacement diagrams of single and group of piles are 

obtained. Then, the bearing capacities of cylindrical and tapered bored piles both as 

single and group are computed and compared, using a specific settlement criterion. 

Besides, the friction resistance ratio and the shaft vertical bearing ratio are separated, 

applying numerical methods. Having calculated the ratios of various components of 

bearing capacity, pile group efficiencies can be obtained from both numerical and 

mathematical models. The results show that the proposed equation can predict the pile 

group efficiency incorporating the tapering angle as well as other influencing 

parameters as a simple and novel relationship. 
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Chapter
Numerical Evaluation of Bearing 

Capacity of Step-tapered Piles Using 
p-y Curves Analysis

6.1 Introduction

Step-tapered piles can provide bearing capacity through their shaft, base, and the end 

surface of stepped section. This specific kind of deep foundation has a larger upper 

diameter (for an assigned pile length) and smaller diameters in the lower parts. Step-

tapered piles have a more efficient distribution of material through their body. As the 

upper sections endure higher forces compared to the lower parts, accumulation of 

material distribution in the upper part is more efficient to resist against greater forces. 

Most of the relationships, developed for predicting the behaviour of piles, are 

associated with the conventional cylindrical piles or prismatic ones, while for step-

tapered piles, there are limited analytical solutions. By and large, in the last three 

decades, the growing tendency to investigate the behaviour of tapered and step-tapered 

piles has made it inevitable to conduct more research in this area. Figure 1 

demonstrates some different bored cast piles having various shapes (Bowles 1996). 
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Referring to Figure 1.1 (h), a step-tapered pile is demonstrated schematically. This 

study aims to investigate the behaviour of these piles installed in sand. The load-

displacement diagram of each model is obtained separately, and a detailed comparison 

is made to quantify the behaviour of piles with different shapes, but having the same 

volume. By altering the stepped length of the pile, the stress contours developed 

around the shaft will change due to changes in the stress level and the lateral earth 

pressures.  

 

6.2 Modelling in PLAXIS 2D 

In this study, the width of the cluster is considered to be at least ten times greater than 

the pile diameter, equal to 6m, and the depth of the cluster is considered to be at least 

three times greater than the pile length, equal to 30m. After creating a soil cluster, the 

state of underground water level is determined and also some properties of the soil are 

attributed to this cluster. The level of underground water is placed at a depth of 20m 

from the ground. The meshing of the entire soil cluster and pile volume is performed 

using the properties given in Table 6.1. 

 

Table 6.1. Meshing properties used in modelling 
Elements type 15-node 

Number of soil elements 1381 
Number of nodes 11332 

The average of elements size (m) 0.57 
 

 

The meshing of the model is refined at the pile-soil interface. Since piles are 

considered bored cast in situ, the analysis is performed in three stages; the first stage 

is the initial condition, which resembles the soil without any structural element in it, 

the second and the third stages include placing of the pile in the soil and loading on 

the pile head, respectively. For loading on piles, an estimated load of almost twice the 

capacity of a pile bearing capacity is used; hence, the obtained load-settlement 

diagrams will advance enough to apply different methods for bearing capacity 

calculations. 
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6.3 Calculation of bearing capacity of piles 

In order to obtain the bearing capacity of each pile, two loading series are required to 

be applied. Each pile is initially subjected to a vertical loading that is approximately 

twice the estimated capacity through analytical solutions. By the completion of the 

analysis, the load-settlement diagram of the model is obtained.  Then, by employing a 

MATLAB code, written by the authors, and using the double tangential method, the 

bearing capacity of each pile is calculated. Thereafter, the pertained pile is analysed 

under the obtained load capacity once again, so that the actual stress distribution 

proportional to the bearing capacity of each model at the end of the pile or around the 

pile walls can be observed. Likewise, in order to obtain end the bearing capacity of 

each pile, the effective stress distribution perpendicular to the end surface elements 

are acquired and by the use of appropriate mathematical methods the amount of end 

bearing capacity of the pile is estimated. The frictional resistance of piles can also be 

calculated by subtracting the two last values from the total bearing capacity. However, 

that end bearing capacity due to the stepping of piles should be calculated similarity 

according to the number of steps. According to Figure 6.1 and applying Equations 6.1 

to 6.5), the value of end bearing capacity of step-tapered piles can be calculated.  
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Figure 6.1. The schematic shape of a step-tapered pile and the failure zone beneath the 

ledge 

 
The area of the end surface of the pile stepped section is calculated by: 

 

𝐴𝑠𝑡 = 𝜋𝑟𝑡
2 − 𝜋𝑟𝑏

2  6.1 

 
where, rt and rb are the radii of upper and lower parts of the pile, respectively.  

The area of the pile end surface is: 
 

𝐴𝑏 = 𝜋𝑟𝑏
2  6.2 

 
The end bearing capacity due to the stepped section is obtained using: 

 

𝑞𝑏−𝑠𝑡 = 𝑞𝑠𝑡. (𝜋𝑟𝑡
2 − 𝜋𝑟𝑏

2)  6.3 

 

where 𝑞𝑏−𝑠𝑡 is the end bearing of stepped section and 𝑞𝑠𝑡 is the effective normal stress 

on the stepped section. The end bearing capacity of the pile at its toe is: 
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𝑞𝑏−𝑡 = 𝑞𝑏. (𝜋𝑟𝑏
2)  6.4 

 

where, 𝑞𝑏−𝑡 is the end bearing of the pile toe and 𝑞𝑏 is the effective normal stress on 

the pile toe. Hence, the total end bearing capacity is obtained by: 

 

𝑞𝑉 = 𝑞𝑏−𝑠𝑡 + 𝑞𝑏−𝑡  6.5 

 

6.4 Model properties selection 

In this study, three series of piles are analysed separately. Each series consists of five 

pile models with different geometries. Within each series, all variables of sand are 

constant, and each five series of piles are analysed under the same loading condition. 

The first series is examined in loose sand with a friction angle of  𝜙 = 33°, a dilation 

angle of 𝜓 = 3° , elastic modulus of 30MPa and a lateral pressure coefficient of 𝐾0 =

0.45.  The key properties of 3 series of soils, implemented in the numerical analysis, 

are summarised in Table 6.2. 

 
Table 6.2. Different considered conditions for modelling in sand 
Set 1 

(loose sand) 

Set 2 

(medium sand) 

Set 3 

(dense sand) 

=33 =37 =41 

E=30MPa E=45MPa E=60MPa 

=3 =7 =11 

K=0.45 K=0.40 K=0.33  

 

Three series of pile models in sand with different 𝜙, 𝜓, elastic modulus and different 

at rest lateral earth pressure coefficients are analysed and compared. Then comparison 

is made for models within a series and also for series with each other. To illustrate the 

point, consider the first series of piles, which consisted of five piles, including a 

cylindrical pile and four step-tapered piles that can be compared to each other. Pile 

models are selected and made in a way to be practically applicable in real scale. 

Stepped models with a cylindrical reference model are possible to be made in two 

ways. The first method is to maintain the upper cross-section of pile constant and 
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reduce the lower cross-section of the pile. The volume of step-tapered piles 

constructed with this method in comparison with the cylindrical reference pile is 

reduced. Therefore, this method is out of the scope of this research. The second method 

is to consider a cylindrical reference pile and change the upper and lower section of 

pile simultaneously. Hence, the smaller lower cross-section and the larger upper cross-

section of pile are made and by a change in the length of the upper part of the pile, 

different models of piles having the same volume are made. Since the purpose is to 

make a comparison of load-displacement diagrams of step-tapered piles with their 

counterpart cylindrical ones having the same volume, the research is focused on the 

second method. The length of the cylindrical reference model is considered 10m, and 

its diameter is selected 0.6 m. Hence, by changing the length and the diameter of the 

upper part of the pile, different pile models are created. The properties of different 

step-tapered models are presented in Table 6.3. 

 

Table 6.3. Properties of step-tapered piles having the same volume as cylindrical reference 
piles 

Pile L' =𝒉𝒊
𝒉

⁄ ∗ 𝟏𝟎𝟎 𝒓𝒕 𝒓𝒃 𝑳𝒕 𝑳𝒃 h (m) V (m3) 

C 100 0.3 0.3 10 - 10 2.8 

ST1 20 0.45 0.25 2 8 10 2.8 

ST2 30 0.4 0.25 3 7 10 2.8 

ST3 40 0.36 0.25 4 6 10 2.8 

ST4 50 0.34 0.25 5 5 10 2.8 
 

 

In Table 6.3, hi is the length of the upper part of the step-tapered pile, h is the total 

length of the pile and hi/h *100 is the ratio of the length of the upper part to the total 

length of the pile, or in other words it is the percentage of the total length of the pile 

with a greater diameter. Lt and Lb are the height of the upper and lower sections of the 

stepped section, rt and rb are the radii of the upper and lower parts of the pile 

respectively and V is the total volume of the pile. In this study in order to make stepped 

models of the same volume, the diameter of the lower part of the pile for all models is 
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considered constant and equal to 0.5m and the diameter of the upper part of the pile 

changes. Therefore, there can be different pile models as shown in Figure 6.2.  

 

 
Figure 6.2. The schematic shape of step-tapered along with their cylindrical reference pile 

 
Pile models of the study are made of concrete material and a linear elastic model has 

been designated for piles. The assigned properties of concrete, used in simulations, are 

given in Table 6.4. 

 

Table 6.4. Properties of used concrete in modelling 
Material Concrete 

Material Model Linear Elastic 

Drainage Type Non-Porous 

)( 3m
kN


 

27 

)( 2m
kNE

 
31×106 

  0.15 

 

Since soil-facing mechanical interactions play a significant role in obtaining the 

pile bearing capacity, numerical analysis of pile foundations entails the use of interface 

elements between different component materials to analyse the soil-structure 
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interactions and to observe the shear transfer and normal stresses through the 

discontinuities. When adopting finite element analysis using PLAXIS, soil-structure 

interactions can be simulated using “zero-thickness” interface elements between the 

two different components of soil and the structure. The elements of the interface use 

a strength reduction factor which directly affects the soil strength parameters in the 

interface zone. In order to consider the interaction effect between the soil and concrete 

interface, the strength value in this study is considered as Rinter = 0.7 as suggested by 

Brinkgreve et al. (2002). Figure 6.3 illustrates the step-tapered pile (ST3) model 

embedded in sand along with the point load on pile head and the pile-soil interface. 
 

 
Figure 6.3. Step-tapered pile model in Plaxis 2D along with the pile-soil interface 

 

6.5 The properties of used soil 

Soil selection for the purpose of modelling has been made so that the results can be 

verified with a practical case. For this purpose, the results of three common types of 

sandy soil (loose, medium, and dense) were evaluated and compared. In sandy soil, 

more focus is on the internal friction angle, dilation angle and the lateral pressure 

coefficient of the soil. The soil properties are selected and shown in Table 6.5. 
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Table 6.5. Properties of used sand in modelling 

Material 

model 



)( 3m
kN

 

sat

)( 3m
kN

 

E 

(MPa) 

 

(degree) 
 K˳ 𝝊 

C 

(kPa) 
RINTER 

Hardening 

soil (Drained) 

15 18 30 33° 3° 0.45 0.2 0 0.7 

17 19 45 37° 7° 0.4 0.2 0 0.7 

18 20 60 41° 11° 0.33 0.2 0 0.7 

 

As mentioned, for the purpose of sensitivity analysis, the internal friction angle (), 

the dilation angle (), and the lateral pressure coefficient (K) are considered as three 

variables.  

 

6.6 Results and discussion 

The load-displacement diagrams of models are obtained and finally to determine the 

effectiveness of step-tapered piles a comparison is made. 

 

6.6.1 Results of bearing capacity and settlement 

After conducting several numerical analyses, the p-y curve of each straight-sided wall 

pile and step-tapered pile obtained. Figure 6.4 illustrates the load-settlement curves of 

piles in sand with an internal friction angle of 33º. 
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Figure 6.4. The P-Y curves of cylindrical reference pile and step-tapered piles in sand with 

Φ=33º 
 

 End bearing capacity of each pile is assessed using numerical integration of effective 

normal stress on the pile toe and stepped toe as well. Then frictional resistance of piles 

is calculated by subtracting the end bearing component from total resistance of pile. It 

should be noted that the bearing capacity of step-tapered piles is the sum of the three 

values: 1- The friction values of the body; 2-End bearing of the pile toe; 3-End bearing 

of the stepped part of the pile. 

 

6.6.2 Stress states and plastic points around piles

According to Figure 6.5 and Figure 6.6, for cylindrical piles under axial load, the stress 

direction and plastic points are beneath the pile toe. A straight-sided wall pile has a 

larger toe cross-sectional area than that of its counterpart same volume step-tapered 

pile. Hence, the end bearing capacity provided by cylindrical piles is only at the base 

and is more than that of step-tapered piles. However, for step-tapered piles, the end 

resistances is achieved by mobilising the soil beneath the toe and the stepped part as 

well. Indeed, due to the soil densification beneath the stepped part, the shaft resistance 

boosts. As can be seen in Figure 6.6, the soil beneath the stepped part densifies the soil 

adjacent to the pile. Therefore, the lateral earth pressure coefficient of the soil 
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increases, and consequently, the effective lateral pressure and shaft resistance of pile 

are boosted. 

 

 
Figure 6.5. Distribution of plastic points around the piles (a) Cylindrical pile, 

 (b) Step-tapered pile ST1 
 

 
Figure 6.6. Principal stress directions around (a) Cylindrical pile (b) Step-tapered pile ST1 
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As Figure 6.5 and Figure 6.6 suggest, the stepped part of the step-tapered piles can 

provide the shaft with higher resistances. The distribution of plastic points illustrates 

that cylindrical piles are not using all the potential shaft capacity as a larger area 

around the shaft is still in the elastic zone. Hence, existing a step on the pile body can 

increase the pile resistance by providing more capacity through more hardening and 

cap points. Table 6.6 to 6.8, illustrate some differences between the bearing capacity 

of step-tapered piles and their counterpart cylindrical piles with the same volume for 

three different series of models. Since the ledge section of the ST1 pile has a longer 

shaft beneath (comparing to the rest of step-tapered piles), the densification of the soil 

in the vicinity of pile allow pile to provide a higher shaft friction. In other words, the 

ledge section in the ST1 applies an additional confined stress to a longer depth of the 

soil elements adjacent to the pile, while for ST4 this soil mobilisation applies to a less 

depth. 
 

Table 6.6. Comparison between the bearing capacities of same volume piles in loose sand 
(Set 1) 

Piles 
End bearing 

capacity (kN) 

Friction bearing 

capacity (kN) 

Total bearing 

capacity (kN) 

C 170 54 224 

ST1 192 69 261 

ST2 181 57 238 

ST3 176 56 232 

ST4 174 55 229 

 

Table 6.7. Comparison between the bearing capacities of same volume piles in medium sand 
(Set 2) 

Piles 
End bearing 

capacity (kN) 

Friction bearing 

capacity (kN) 

Total bearing 

capacity (kN) 

C 457 152 609 

ST1 500 203 703 

ST2 520 173 693 

ST3 495 165 660 

ST4 465 155 620 
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Table 6.8. Comparison between the bearing capacities of same volume piles in dense 
sand (Set 3) 

Piles 
End bearing 

capacity (kN) 

Friction bearing 

capacity (kN) 

Total bearing 

capacity (kN) 

C 716 306 1022 

ST1 803 373 1176 

ST2 769 329 1098 

ST3 740 317 1057 

ST4 731 313 1044 
 
 

 
6.6.3 The state of stress on the end surface of the pile (base) 

The state of shear stress on the pile shaft is indicated in Figure 6.7 for two cylindrical 

and step-tapered (ST4) piles. According to Figure 6.7, it can be perceived that for 

cylindrical piles, the shear stress state is relatively high at the pile toe, while for step-

tapered piles the shear stress state is higher at both the stepped part and pile toe. As 

can be seen, providing higher shear stresses beneath the stepped part can increase the 

shaft capacity of the pile. Hence, this proves that step-tapered piles have the potential 

to be used in granular soil or even layered soil. 

 

 
Figure 6.7. Relative shear stress distribution on the pile shaft  

a) Cylindrical pile b) Step-tapered pile 

(a) (b) 
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6.7 Summary 

Step-tapered piles are those with a larger top diameter, and a smaller diameter at 

lower sections as the body gets slender stepwise from top to toe in one or some steps. 

This study aimed to investigate the behaviour of step-tapered piles having only one 

step under axial loading condition. Three series of piles embedded in sand were 

examined numerically using the three-dimensional finite element method. Each set 

consists of five piles, including one reference straight sided wall pile and four step-

tapered piles having the same volume. Different internal friction angles of 33°, 37°, 

41° (to represent loose, medium and dense sands, respectively) and corresponding 

elastic modulus and lateral earth pressure coefficients were considered to observe 

their effect on the bearing capacity and settlement of piles. The load-displacement 

diagram of each pile was obtained, and accordingly, the frictional and end bearing 

resistances were calculated using conventional methods. A code was developed using 

MATLAB software to acquire the numerical data and carry out the calculations. 

Moreover, the normal and shear stress states, plastic points, and deformations around 

the step and toe of piles were computed and compared. According to the results, the 

advantages of step-tapered piles over their counterpart cylindrical ones in terms of 

bearing capacity and settlement were discussed. Finally, the optimum stepped length 

of the pile was determined. 
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Chapter
Conclusions and Ideas for Future 

Research on Tapered Piles

7.1 Summary

The main aim of this study has been establishing a relationship for estimating the 

optimum tapering angle of bored tapered piles associated with sand properties 

(varying with the relative density) and the pile geometry. The optimum tapering angle 

is associated to the maximum axial resistance of piles, while keeping the volume of 

material in the tapered pile the same as their counterpart cylindrical one. Analytical 

formulations were derived to obtain the axial resistance of bored tapered piles 

embedded in sand. The developed governing equations can estimate the shaft vertical 

bearing component of the tapered pile, which is related only to tapered piles and 

varies nonlinearly with the tapering angle. After differentiating the acquired bearing 

capacity relationship with respect to the tapering angle, the optimum tapering angle 

for that specific condition (specific sand type and pile geometry including the 

slenderness ratio) can be achieved. 

The finite element method was used to perform the numerical modelling and to 

calibrate the model parameters of the derived analytical equation, considering the soil 

nonlinear behaviour and the pile-soil interaction. UBC sand behavioural model was

adopted to simulate the soil behaviour adjacent to the tapered pile and the model 

parameters were calibrated against laboratory test results for sandy soils with various

relative densities.  Thereafter, a numerical approach was adopted to acquire the 

results. Consequently, the load-displacement curves of the tapered piles were

obtained through numerical calculations, and the optimum tapering angle, resulting 

in the maximum axial capacity was attained.
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Additionally, a simple equation to obtain the group efficiency of bored piles 

incorporating the tapering angle was developed. A new geometry efficiency 

coefficient was developed for the shaft vertical bearing component of tapered piles. 

This new factor has a significant effect on calculating the pile group efficiency as 

this bearing component increases by increasing the tapering angle. The proposed 

equations can be employed by practicing engineers to predict the behaviour of 

cylindrical and tapered pile groups embedded in sand in a simple and time saving 

manner. 

 

Moreover, the bearing capacity of step-tapered piles under axial load were analysed 

and compared with their counterpart same volume straight piles. The behaviour of 

step-tapered piles under axial loading showed that they have the potential to provide 

more bearing capacity in some conditions (depending on soil type and stepped 

length). Hence, they might also be an efficient type of deep foundation in layered soil 

(which requires more research in the area) where the stepped section can be design 

to be located on top of each layer to increase the vertical effective stress adjacent to 

the pile. Where the pile body faces a cohesive soil, the stepped section can increase 

the end resistance and where the body interacts with a non-cohesive soil, the shaft 

resistance can provide capacity. 

 

7.2 Concluding remarks 

It was concluded that the optimum tapering angle is a function of soil properties and 

the geometry of piles, particularly the soil relative density and the pile slenderness 

ratio. From loose to dense sand, the optimum tapering angle increases for piles, 

having the same L/D ratio. However, this increase is small, particularly for more 

slender piles with L/D>20. On the other hand, considering one type of sand, the 

optimum tapering angle significantly decreases as L/D ratio increases, where it tends 

to reach approximately a constant value, when the value of L/D is greater than or 

equal to 40. Accordingly, for a pile used in this study with L/D = 10, the optimum 

tapering angle decreased from 1.9° (corresponding to dense sand) to 1.4° 

(corresponding loose sand), while this decrease as a result of changes in L/D was 
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from 1.4° (corresponding to L/D=10) to 0.4° (corresponding to L/D=40) for piles 

embedded in loose sand. 

 

On the other hand, according to the efficiency values for a 2×2 pile group, it is 

obvious that the tapering angle can significantly affect the bearing capacity of piles 

when arranged in a group. If the tapering angle increases from 0° to 1.4°, the 

efficiency will enhance more than 15%. The load-displacement diagrams of single 

piles in the elastic zone represent a more stiff behaviour than piles in a group (for 

settlements less than 0.01𝐷𝑎𝑣). However, for a group of tapered piles and for 

settlements more than 0.01𝐷𝑎𝑣, the load-displacement diagram locates above the 

load-settlement diagram of a single pile, which in turn can contribute to higher 

efficiency values. 

 

Moreover, by increasing the tapering angle, the friction bearing and the shaft vertical 

bearing ratios increase. This increase is mainly due to the decrease in the end surface 

area of the piles and the increase of shaft horizontal projected area. Accordingly, 

there should be an increase in the group interaction factor by increasing the tapering 

angle. Field test data is required to investigate this finding more precisely. 

 

Furthermore, step-tapered piles provide more end bearing capacity through the base 

and stepped section, thus these piles can be an alternative to conventional straight-

sided wall piles. The maximum bearing capacity was provided from the stepped pile 

which had the shortest step (ST1) with the bearing capacity ratio of around 1.15 with 

respect to its counterpart same volume cylindrical pile.  

 

For step-tapered piles placed in sand, due to the soil densification and compaction 

beneath the stepped section lateral earth pressure coefficient of the soil increases and 

consequently the shaft resistance and finally total bearing capacity increase. 
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7.3 New directions and ideas for future research on tapered pile 

foundations 

Based on the detailed review of the efforts conducted to shed light on the behaviour 

of tapered and step-tapered piles, the following directions and ideas for future 

research on tapered piles are presented: 

 

Firstly, it is clear that the majority, if not all of the studies surveyed in this review, 

were carried out on small scale model tests and do not represent prototype conditions. 

Hence, the real data gap in this regard is the lack of field data from instrumented 

prototype tapered piles. 

 

According to the literature, to develop proper input parameters for analytical models 

of tapered piles, pressure-meter tests (PMT) can be useful, as there are strong 

theoretical relationships between them. To minimize the costs, it is not necessary to 

make the whole length of a pile to be tapered. Since in some situations, it might be 

efficient to optimize the pile tapering length for design purposes and a specific project 

application. 

 

There is an optimum tapering angle for tapered piles, which can provide higher 

values of capacity and less settlements (as proved in this study). This angle can be a 

function of internal friction angle of soil, lateral earth pressure coefficient, dilation 

angle of soil, the ratio of length to diameter of pile, and pile-soil interface material. 

So far, limited investigations have been conducted to obtain and clarify this angle, 

and if not all, most of the researchers concluded that by increasing tapering angle the 

bearing capacity increases, which may not be accurate. There is a gap area to 

investigate this optimum tapering angle experimentally by considering other 

important factors such as type of soil (cohesive soils) and soil elastic modulus. 

Besides, the cross-section geometry of tapered and step-tapered piles can be 

considered circular, triangular, hexagonal, etc. 

 

The effect of tapering angle in a group of piles needs to be investigated through 

experimental investigation methods. Particularly, when this tapering angle can 
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directly influence the stress zone around the pile, which in turn can significantly 

affect the interaction factor of the group. There are several relationships to predict 

the group efficiency for conventional cylindrical piles as discussed in this study. 

Some of the relationships concerning group of piles in sand with a free-standing cap 

or laying cap have been investigated (Chellis 1969; Kishida 1965; Poulos & Davis 

1980; Vesic 1967). Although a large number of empirical and analytical equations 

have been developed to predict the efficiency of cylindrical pile groups, the effect of 

the tapering angle has not been taken into consideration. To investigate the impact of 

tapering angle on pile group efficiency and pile-soil-pile interaction factor, 

experimental, analytical and numerical analysis based on the finite element method 

using available software packages is recommended (Brinkgreve et al. 2002). 

 

Although there are a few generic methodologies for calculating the bearing capacity 

of bored and driven tapered piles in cohesionless soil, analytical relations that have 

been developed to predict the bearing capacity and settlement of tapered piles are 

complex or impractical. In addition, for the implementation of the equation 

developed by Kodikara & Moore (1993), software needs to be developed and to be 

commercially available. Hence, investigating the behaviour of driven tapered piles 

having various type of materials through experiments and numerical modellings is 

required. For step-tapered piles, a practical relationship needs to be presented as well 

to predict the settlement and bearing capacity of the piles. 

 

Most of the equations presented are associated with the application of tapered piles 

in coarse-grained soils. However, in cohesive frictional soils and under high 

confining pressures, the vertical component of force along the pile length can 

increase the compression capacity significantly. 

 

The effect of time on the bearing capacity of tapered piles should be taken into 

consideration for tension and compression loadings, particularly in the emerging 

analytical methods. Since by each incremental settlement of tapered piles, the 

adjacent soil will be compacted and accordingly, the lateral earth pressure and finally 

shaft resistance will increase. Then, the analytical model might precisely be verified 

with the actual load-displacement measurements. 
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As an assessment of the present and because of the proceeding demonstrations and 

discussion, it seems that taper coefficient needs to be calculated using some field test 

results. It is found that the taper coefficient, presented in Canadian Foundation 

Engineering Committee (1978), needs to be modified and classified based on the pile 

installation method. Since the fact that whether the pile is installed using driving 

method or as bored cast-in-place will have a significant effect on shaft capacity of 

pile. 

  

Due to several important signs of progress in recent years, the technology of tapered 

piles has the potential to be recognized worldwide. Moreover, the application of 

tapered pile groups can be investigated for inshore and offshore structures facing 

massive lateral forces. Finally, tapered pile groups having a cap laying on the ground 

or having free-standing cap should be examined experimentally and numerically. 

 

 Numerical modelling of various types of structures constructed on tapered pile 

groups under seismic loading conditions such as earthquake loading, can lead to have 

a better insight into their response. In fact, due to the concentration of the material 

on the upper portions of these cone shaped piles, the induced base shear arising from 

the seismic loading might be greater comparing to the case of having cylindrical same 

volume pile group. Hence, push-over analysis is recommended for examining the 

drift of high-rise buildings constructed on tapered pile foundations. 

 

Tapered piles have the ability to mobilize a portion of passive earth pressure 

coefficient adjacent to their shaft. Hence, when subjected to axial harmonic loadings 

such as machine foundation loading, these piles might provide more bearing capacity. 

However, conducting experimental or field tests under axial and lateral dynamic 

loading condition can be of great importance to prove the aforementioned 

presumption.  

 

Effects of scouring on stiffness and damping coefficients of tapered piles have not 

been analysed whether analytically, experimentally or numerically. Because of the 

tapering angle, which causes a non-uniform material distribution along tapered piles 
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and due to the inclined body, the stiffness and damping parameters for these piles can 

change considerably, which need further analysis. 
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Appendix A – Differentiations with 
respect to tapering angle 

This appendix presents the differentiation of the axial bearing capacity of tapered 

pile (i.e. Equation 4.29) in an attempt to show the presence of optimum tapering angle 

and identifying the parameters impacting the optimum tapering angle.  Hence, the 

derivation of Equation 4.29 with respect to tapering angle 𝛼 can be written as follows: 

 
𝜕𝑄𝑇

𝜕𝛼
=

𝜕𝑞𝑏𝑡

𝜕𝛼
+

𝜕𝑞𝑠𝑣

𝜕𝛼
+

𝜕𝑞𝑠𝑡

𝜕𝛼
  (A.1) 

  

Then by solving the following equation, the optimum tapering angle can be 

achieved. Hence: 

 
𝜕𝑞𝑏𝑡

𝜕𝛼
+

𝜕𝑞𝑠𝑣

𝜕𝛼
+

𝜕𝑞𝑠𝑡

𝜕𝛼
= 0  (A.2) 

      

Referring to Equations 4.15, 4.26 and 4.27 and by differentiating each component, 

Equations (A.3) to (A.5) can be obtained. For the sake of concise presentation, 

however, since these equations are long and complex, it has broken into smaller 

equations defined as 𝑓 functions.  

            

{
𝜕𝑞𝑏𝑡

𝜕𝛼
=

11

7
(𝛾𝐿𝑡𝑎𝑛(𝜙)𝑓1𝑓2𝑓3𝑓5

2 + 𝛾𝐿𝑓1𝑓2𝑓3𝑓5 (𝐿𝑓4 +
𝐿2 𝑡𝑎𝑛(𝛼)𝑓4

3𝑓6
)) +

                
11

14
𝛾𝛽𝐿𝑒−𝛼𝛽𝑓1𝑓2𝑓5

2}  

(A.3) 

 

{
𝜕𝑞𝑠𝑣

𝜕𝛼
= −

9

17
(𝛾𝐿2 𝑡𝑎𝑛(𝛼) 𝑓1𝑓2𝑓3 (𝐿𝑓4 +

𝐿2 𝑡𝑎𝑛(𝛼)𝑓4

𝑓6
) + 𝛾𝐿2𝑓1𝑓2𝑓3𝑓4𝑓7 +

                 𝛾𝛽𝐿2𝑒−𝛼𝛽 𝑡𝑎𝑛(𝛼) 𝑓1𝑓2𝑓7) −
22

21
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(A.4) 
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{
𝜕𝑞𝑠𝑡

𝜕𝛼
=

22

21
(𝛾𝐿2 𝑡𝑎𝑛(𝛼) 𝑡𝑎𝑛(𝛿) 𝑠𝑒𝑐(𝛼)2 𝑓8𝑓9 +

              
𝛾𝐿2𝜁 𝑡𝑎𝑛(𝛿) 𝑠𝑖𝑛(𝜙)(𝑠𝑖𝑛(𝜙)−3) 𝑠𝑒𝑐(𝛼)2𝑓9𝑓11

(𝑠𝑖𝑛(𝜙)−1)𝑓13
) +

              
9

17
(

𝛾𝐿3 tan(𝛿)(𝑓12+√3𝐿𝑡𝑎𝑛(𝛼))(1+𝑡𝑎𝑛(𝛼)2) sec(𝛼)2𝑓8

𝑓12
)}  

(A.5) 

                               

𝑓1 = 𝑒𝑡𝑎𝑛 (𝜙)(2𝛼+
10𝜋𝜓

9
)  (A.6) 

                       

𝑓2 = (𝑡𝑎𝑛(𝜙) + √1 + 𝑡𝑎𝑛 (𝜙)2)
2
  (A.7) 

                  

𝑓3 = 𝜆 − 𝑒−𝛼𝛽   (A.8) 

                           

𝑓4 = 1 + 𝑡𝑎𝑛 (𝛼)2  (A.9) 

                   

𝑓5 = 𝐿𝑡𝑎𝑛(𝛼) − 𝑓6  (A.10) 

                             

𝑓6 = √4𝑟𝑐
2 −

𝐿2𝑡𝑎𝑛 (𝛼)2

3
  (A.11) 

             

𝑓7 = 𝐿𝑡𝑎𝑛(𝛼) − 3𝑓6  (A.12) 

                        

𝑓8 = 𝑠𝑖𝑛(𝜙) +
𝑠𝑖𝑛(𝜙)(𝑠𝑖𝑛(𝜙)−3)

𝑓10
−

𝑓4𝑠𝑖𝑛(𝜙)(𝑠𝑖𝑛(𝜙)−3)

𝑓10
− 1  (A.13) 

            

𝑓9 = 𝐿𝑡𝑎𝑛(𝛼) − √3𝑓12   (A.14) 

 

𝑓10 = (𝑠𝑖𝑛(𝜙) − 1)𝑓13    (A.15) 

                    

𝑓11 = 𝑒−2𝛼𝜁    (A.16) 

             

𝑓12 = √12𝑟𝑐
2 − 𝐿2 𝑡𝑎𝑛(𝛼)2  (A.17) 
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𝑓13 = 𝑒−𝜋𝜁 − 1  (A.18) 

                                

Due to the complexity of the above equations to establish the optimum tapering 

angle analytically, Equations A.3 to A.5 were developed and solved numerically 

using MATHEMATICA and MATLAB software packages. 
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Appendix B – Developed MATLAB 
codes 

 

Generated code for obtaining the bearing capacity components of tapered bored 

piles in sand as well as optimum tapering angle: 

 
Clear 

clc 

close all 

%---------------------------------------------------------------------- 

% Importing the data from the excel file containing the optimum tapering 

angles obtained through the numerical modelling for the comparison  

Aopt_Plaxis=xlsread('Ed3-Optimum tapering angles','B4:E6'); 

 %---------------------------------------------------------------------- 

%% The code can be used based on the requested input data from user 

% syms G A L D K RC 

%w2=input ('Enter the number of variations for pile tapering angle?='); 

% RC1=input ('Enter the value for the radius of counterpart same volume 

cylindrical pile (meter)? RC='); 

% A2=input ('Enter the tapering angle of the pile? Alpha='); 

% %K1=input ('Enter the value for the lateral earth pressure coefficient 

of the soil? K='); 

% G1=input ('Enter the value for the soil density (kN/m^3)? G='); 

% L1=input ('Enter the value for length of pile (meter)? L='); 

% phi1=input ('Enter the value for the soil internal friction angle 

(degree)? phi='); 

% Dr1=input ('Enter the value for soil relative density (percent)? Dr='); 

%K1=input ('Enter the value for the lateral earth pressure coefficient of 

the soil? K='); 

%---------------------------------------------------------------------- 

syms phiz Jz Az RCz Dz Lz Gz Drz 

% w3z is the maximum tapering angle can be defined based on the referenced 

cylindrical pile (having the same volume)  

w3z=atan(3^0.5*RCz./Lz); 

% K0z is the at rest lateral earth pressure coefficient  

K0z=1-sin(phiz); 

% Kpz is the passive lateral earth pressure coefficient  

Kpz=(1+sin(phiz))./(1-sin(phiz)); 

% Ktz is the taper coefficient which applies to the earth pressure 

coefficients (Jz is a model parameter)                                                                                     
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Ktz=[-1.*((0.2*Kpz-K0z)./(1-exp(-3.*Jz.*2*w3z))).*exp(-

6.*Jz.*Az)+K0z+((0.2*Kpz-K0z)./(1-exp(-3.*Jz.*2*w3z)))];      

% Nqc0z is the bearing capacity factor for cylindrical piles based on 

Janbu (1976)                                                                                  

Nqc0z=(((tan(phiz)+(1+(tan(phiz)).^2).^0.5).^2.*exp(2*(((100).*Drz.*pi/180

)+0).*tan(phiz)))); 

% Nqz is the bearing capacity factor for tapered piles (Az is tapering 

angle) 

Nqz=[(2-0.2*exp(-100.*Az))].*Nqc0z/1.8; 

% SVRz is the Shaft Vertical Resistance component of tapered piles 

SVRz =-(3537115888337719*Gz.*Lz.^2.*Nqz.*tan(Az).*(Lz.*tan(Az) - 

3.*(4*RCz.^2 - (Lz.^2.*(tan(Az)).^2)/3).^(1/2)))./6755399441055744; 

% BRTz is the Base Resistance component of piles 

BRTz =(3537115888337719*Gz.*Lz.*Nqz.*(Lz.*tan(Az) - (4*RCz.^2 - 

(Lz.^2.*(tan(Az)).^2)./3).^(1/2)).^2)./4503599627370496; 

% FRTz is the Frictional Resistance component of piles 

FRTz =-(3537115888337719*Gz.*Ktz.*Lz.^2.*tan(Dz).*(Lz.*tan(Az) - 

3*(4*RCz.^2 - 

(Lz.^2.*(tan(Az)).^2)./3).^(1/2)))./(6755399441055744*cos(Az).^2); 

QTz=SVRz+BRTz+FRTz.*cos(Az); 

diffrentiation1z=diff(QTz,Az); 

DIFz=simplify(diffrentiation1z,'Steps',50); 

%---------------------------------------------------------------------- 

% G1 is the soil unit weight 

G1=17; 

% RC2 is the radius of the reference cylindrical pile 

RC2=0.75; 

% L1 is the pile length 

L1=15; 

% n is the number of piles 

n=1; 

M=ones(3,4); 

M2=ones(3,4); 

Manalytical=sym('Manalytical',[3,4]); 

psi1=1; 

% J is the model parameter which has been calibrated 

J=100/6; 

% flag=0; 

% while flag~=1;    

for ii=-1:1; 

    phi3=32; 

    phi4=phi3+(ii+1)^2*3^(ii+1)*2^(-1*ii*(ii+1)); 

    psi3=1; 

    psi4=phi4-30; 
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for i=1:4;  

    RC1=RC2./(i) 

    phi1=phi4 

    phicv1=30; 

    psi1=psi4; 

if  phi1==32; 

    psi1=phi1-31; 

end 

% Dr1 is the soil relative density and Dr3 is the model parameter defined 

by Janbu (1976) 

if  phi1==32; 

    Dr1=0.3; 

    Dr3=0.6; 

elseif phi1==35; 

    Dr1=0.4; 

    Dr3=0.65; 

    elseif phi1==41; 

    Dr1=1; 

    Dr3=0.75; 

end 

% w and w3 are the maximum tapering angles of piles corresponding to the 

reference cylindrical pile (in degrees and radians, respectively) 

w=(180/pi)*atan(3^0.5*RC1./L1); 

w3=atan(3^0.5*RC1./L1); 

% A2 is the tapering angles increments by 0.05 degree, as a vector 

A2=0:0.05:w; 

w1=size(A2); 

w2=w1(1,2); 

G=sym('G',[1,w2]); 

N=sym('N',[1,w2]); 

A=sym('A',[1,w2]); 

L=sym('L',[1,w2]); 

D=sym('D',[1,w2]); 

K=sym('K',[1,w2]); 

RC=sym('RC',[1,w2]); 

Dr=sym('Dr',[1,w2]); 

if min(RC1)*min(L1)*min(G1)*min(phi1)==0; 

    clear 

    clc 

    ANS='Restart' 

elseif RC1>0 

    if max(size(RC1))==1; 

    RC1=RC1*ones([1,w2]); 

    end 
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    if max(size(A2))==1; 

        A2=A2*ones([1,w2]); 

    end 

    if max(size(G1))==1; 

        G1=G1*ones([1,w2]); 

    end 

    if max(size(L1))==1; 

        L1=L1*ones([1,w2]); 

    end 

    if max(size(phi1))==1; 

        phi1=phi1.*ones([1,w2]); 

    end 

     if max(size(phicv1))==1; 

         phicv1=phicv1.*ones([1,w2]); 

     end 

    if max(size(psi1))==1; 

        psi1=psi1.*ones([1,w2]); 

    end 

     J1=J*ones([1,w2]); 

    LD=max(L1./(2.*RC1)); 

    A1=pi*A2./180; 

    phi2=pi.*phi1./180; 

    phicv2=pi.*phicv1./180; 

    psi2=pi.*psi1./180; 

    D1=(0.7).*phi2; 

    if max(size(D1))==1; 

        D1=D1.*ones([1,w2]); 

end 

%---------------------------------------------------------------------- 

    K0=1-sin(phi2); 

    if max(size(K0))==1; 

        K0=K0.*ones([1,w2]); 

    end 

    Kp=(1+sin(phi2))./(1-sin(phi2)); 

    if max(size(Kp))==1; 

    Kp=Kp.*ones([1,w2]); 

    end                                                                            

Kt=[-1.*((0.2*Kp-K0)./(1-exp(-3.*J.*2*w3))).*exp(-6.*J.*A1)+K0+((0.2*Kp-

K0)./(1-exp(-3.*J.*2*w3)))]; 

    if max(size(Kt))==1; 

       Kt=Kt*ones([1,w2]); 

    end 

    Kc=min(Kt)*ones([1,w2]); 

%---------------------------------------------------------------------- 
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% In case the bearing capacity factor proposed by Terzaghi () is required 

%     a1=cos((A2)*pi/180); 

%     a2=exp((tan(phi1*pi/180)).*(360-4*phi1-4*(-1)*A2)*pi/180); 

%     a4=tan((45-0.5*phi1)*pi/180);  

%     a3=tan((45-0.5*phi1)*pi/180); 

%     a4=cos((phi1+A2)*pi/180);  

%     Nqc0=[(a1.*a2)./(a3.*a4)].*(2-exp(-1000.*A1)) 

%     Nq=((exp(pi+2*A2*pi/180)).*(tan((45+phi1./2+A2)*pi/180)).^2); 

%     1.*[((1+2.*A1.*Kt)./3).*(3+A1)./(1+2.*A1)]; 

%----------------------------------------------------------------------                              

Nqc0=(((tan(phi2)+(1+(tan(phi2)).^2).^0.5).^2.*exp(2*(((100).*Dr3.*pi/180)

+0).*tan(phi2)))); 

Nq=[(2-0.2*exp(-100.*A1))].*Nqc0/1.8;   

Nqc=Nq(1,1); 

Nqc=Nqc*ones([1,w2]);  

%----------------------------------------------------------------------   

SVR =-(3537115888337719*G.*L.^2.*N.*tan(A).*(L.*tan(A) - 3.*(4*RC.^2 - 

(L.^2.*(tan(A)).^2)/3).^(1/2)))/6755399441055744; 

SVRx=eval(subs(SVR,[G,L,N,RC,A],[G1,L1,Nq,RC1,A1]));     

BRT =(3537115888337719*G.*L.*N.*(L.*tan(A) - (4*RC.^2 - 

(L.^2.*(tan(A)).^2)./3).^(1/2)).^2)./4503599627370496; 

BRTx=eval(subs(BRT,[G,L,N,RC,A],[G1,L1,Nq,RC1,A1])); 

FRT =-(3537115888337719*G.*K.*L.^2.*tan(D).*(L.*tan(A) - 3*(4*RC.^2 - 

(L.^2.*(tan(A)).^2)./3).^(1/2)))./(6755399441055744*cos(A).^2); 

FRTx=eval(subs(FRT,[G,L,RC,D,K,A],[G1,L1,RC1,D1,Kt,A1])) 

BRC =(3537115888337719*G.*L.*N.*RC.^2)./1125899906842624; 

BRCx=eval(subs(BRC,[G,L,N,RC],[G1,L1,Nqc,RC1])); 

FRC =(3537115888337719*G.*K.*L.^2.*RC.*tan(D))/1125899906842624; 

FRCx=eval(subs(FRC,[G,L,RC,D,K],[G1,L1,RC1,D1,Kc])); 

DIFx1=subs(DIFz,[phiz,Jz,RCz,Dz,Lz,Gz,Drz],[phi2(1,1),J1(1,1),RC1(1,1),D1(

1,1),L1(1,1),G1(1,1),Dr3(1,1)]);     

QT=(SVRx+BRTx+FRTx.*cos(A1)); 

QC=BRCx+FRCx; 

Ratio=(SVRx+BRTx+FRTx.*cos(A1))./(BRCx+FRCx); 

%---------------------------------------------------------------------- 

syms z; 

P1=polyfit(A2,QT,4); 

QTeq=P1(1,1).*z.^4+P1(1,2).*z.^3+P1(1,3).*z.^2+P1(1,4).*z.^1+P1(1,5); 

q3=diff(QTeq,z); 

q4=eval(simplify(solve(q3==0, z,'maxdegree',3,'Real',true),'steps',50)); 

q5=min(q4); 

M(ii+2,i)=q5.*M(ii+2,i); 

Manalytical(ii+2,i)=DIFx1; 

q6=(vpasolve(Manalytical(ii+2,i)==0, Az)); 



 

177 
 

q6=min(q6); 

q6=(180./pi).*q6 

M2(ii+2,i)=q6.*M2(ii+2,i); 

errorNumerical=Aopt_Plaxis-M; 

%---------------------------------------------------------------------- 

figure('Position',[100,100,800,600]) 

subplot(2,2,1) 

plot(A2,SVRx) 

subplot(2,2,2) 

plot(A2,BRTx) 

hold on; 

subplot(2,2,2) 

plot(A2,BRCx) 

% hold off; 

subplot(2,2,3) 

plot(A2,FRTx.*cos(A1)) 

hold on; 

subplot(2,2,3) 

plot(A2,FRCx) 

% hold off; 

subplot(2,2,4) 

plot(A2,QT) 

hold on; 

subplot(2,2,4) 

plot(A2,QC) 

% hold off; 

end 

end 

end 

M2 

M 

errorNumerical; 

ERR=abs(abs(max(max(errorNumerical)))+abs(min(min(errorNumerical)))); 

%---------------------------------------------------------------------- 
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Generated code based on double-tangential method to obtain the bearing capacity of 

piles based on p-y curve: 

 

%---------------------------------------------------------------------- 

%% Double tangent to obtain the bearing capacity of piles based on p-y curve 

%---------------------------------------------------------------------- 

clc, clear 

%% Input data 

AB=xlsread('Cylindrical-groups-p-y'); 

ABS=size(AB); 

ABS1=ABS(1,2); 

odd=1:2:ABS1; 

even=2:2:ABS1; 

Q=AB(:,even); 

S=AB(:,odd); 

a=[1,1]; 

ABS2=ABS1/2; 

aa=ones(1,ABS2); 

for ii=1:ABS2 

QQ=Q(:,ii); 

SS=S(:,ii); 

for i=1:119 

if isnan(QQ(i,1));isnan(SS(i,1)); 

QQ(i,1)=0;SS(i,1)=0; 

end 

end 

Qx1=size(QQ); 

Qx2=Qx1(1,1); 

Qx3=Qx2-3; 

Qx4=Qx2-2; 

Qx6=QQ(Qx2,1); 

Sx1=size(SS); 

Sx2=Sx1(1,1); 

Sx3=Sx2-3; 

Sx4=Sx2-2; 

Sx6=SS(Sx2,1); 

while Qx6<0.000001 

Qx2=Qx2-1; 

Sx2=Sx2-1; 

Qx3=Qx2-3; 

Qx4=Qx2-2; 

Sx3=Sx2-3; 

Sx4=Sx2-2; 
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Qx6=QQ(Qx2,1); 

Sx6=SS(Sx2,1); 

C=[SS(Qx3,1),QQ(Qx3,1)]; 

D=[SS(Qx4,1),QQ(Qx4,1)]; 

A=[SS(2,1),QQ(2,1)]; 

B=[SS(3,1),QQ(3,1)]; 

end 

m1=(A(1,2)-B(1,2))/(A(1,1)-B(1,1)); 

m2=(C(1,2)-D(1,2))/(C(1,1)-D(1,1)); 

L1=[m1 A(1,2)-m1*A(1,1)]; 

L2=[m2 C(1,2)-m2*C(1,1)]; 

U=[1 -m1;1 -m2]; 

T=[L1(1,2);L2(1,2)]; 

AAA=U\T; 

AAA=AAA'; 

BB=AAA.*a; 

F=BB(1,1); 

aa(1,ii)=F.*aa(1,ii); 

end 

display (aa) 

%---------------------------------------------------------------------- 
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Generated code for obtaining the pile group efficiency considering the tapering 

effect: 

 
%---------------------------------------------------------------------- 

% Find the pile group efficiency considering the tapering effect 

%---------------------------------------------------------------------- 

 

clear 

clc 

close all 

G1=17; 

RC2=0.75; 

L1=15; 

n=1; 

M=ones(3,4); 

M2=ones(3,4); 

Eff=ones(3,4); 

Manalytical=sym('Manalytical',[3,4]); 

psi1=1; 

J=100/6; 

for i=1:1;  

RC1=RC2./(i) 

end 

phi1=32; 

Dr1=0.3; 

Dr3=0.6; 

G1=17; 

L1=15;  

w=(180/pi)*atan(3^0.5*RC1./L1); 

w3=atan(3^0.5*RC1./L1); 

A2=0; 

w1=size(A2); 

w2=w1(1,2); 

G=sym('G',[1,w2]); 

N=sym('N',[1,w2]); 

A=sym('A',[1,w2]); 

L=sym('L',[1,w2]); 

D=sym('D',[1,w2]); 

K=sym('K',[1,w2]); 

RC=sym('RC',[1,w2]); 

Dr=sym('Dr',[1,w2]); 

if max(size(RC1))==1; 

RC1=RC1*ones([1,w2]); 

end 
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if max(size(A2))==1; 

A2=A2*ones([1,w2]); 

end 

if max(size(G1))==1; 

G1=G1*ones([1,w2]); 

end 

if max(size(L1))==1; 

L1=L1*ones([1,w2]); 

end 

if max(size(phi1))==1; 

phi1=phi1.*ones([1,w2]); 

end 

phi2=pi.*phi1./180; 

J1=J*ones([1,w2]); 

LD=max(L1./(2.*RC1)); 

A1=pi*A2./180; 

D1=(0.7).*phi2; 

if max(size(D1))==1; 

D1=D1.*ones([1,w2]); 

end 

%---------------------------------------------------------------------- 

K0=1-sin(phi2); 

if max(size(K0))==1; 

K0=K0.*ones([1,w2]); 

end 

Kp=(1+sin(phi2))./(1-sin(phi2)); 

if max(size(Kp))==1; 

Kp=Kp.*ones([1,w2]); 

end 

Kt=[-1.*((0.2*Kp-K0)./(1-exp(-3.*J.*2*w3))).*exp(-6.*J.*A1)+K0+((0.2*Kp-

K0)./(1-exp(-3.*J.*2*w3)))];                                                                               

if max(size(Kt))==1; 

Kt=Kt*ones([1,w2]); 

end 

Kc=min(Kt)*ones([1,w2]); 

%---------------------------------------------------------------------- 

Nqc0=(((tan(phi2)+(1+(tan(phi2)).^2).^0.5).^2.*exp(2*(((100).*Dr3.*pi/180)

+0).*tan(phi2)))); 

Nq=[(2-0.2*exp(-100.*A1))].*Nqc0/1.8; 

Nqc=Nq(1,1); 

Nqc=Nqc*ones([1,w2]); 

SVR=-(3537115888337719*G.*L.^2.*N.*tan(A).*(L.*tan(A) - 3.*(4*RC.^2 - 

(L.^2.*(tan(A)).^2)/3).^(1/2)))/6755399441055744; 

SVRx=eval(subs(SVR,[G,L,N,RC,A],[G1,L1,Nq,RC1,A1])); 
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BRT=(3537115888337719*G.*L.*N.*(L.*tan(A) - (4*RC.^2 - 

(L.^2.*(tan(A)).^2)./3).^(1/2)).^2)./4503599627370496; 

BRTx=eval(subs(BRT,[G,L,N,RC,A],[G1,L1,Nq,RC1,A1])); 

FRT=-(3537115888337719*G.*K.*L.^2.*tan(D).*(L.*tan(A) - 3*(4*RC.^2 - 

(L.^2.*(tan(A)).^2)./3).^(1/2)))./(6755399441055744*cos(A).^2); 

FRTx=eval(subs(FRT,[G,L,RC,D,K,A],[G1,L1,RC1,D1,Kt,A1])); 

BRC =(3537115888337719*G.*L.*N.*RC.^2)./1125899906842624; 

BRCx=eval(subs(BRC,[G,L,N,RC],[G1,L1,Nqc,RC1])); 

FRC =(3537115888337719*G.*K.*L.^2.*RC.*tan(D))/1125899906842624; 

FRCx=eval(subs(FRC,[G,L,RC,D,K],[G1,L1,RC1,D1,Kc])); 

Az,'maxdegree',3,'Real',true),'steps',50))); 

QT=(SVRx+BRTx+FRTx.*cos(A1)); 

QT2=(SVRx+BRTx+FRTx); 

QC=BRCx+FRCx; 

Ratio=(SVRx+BRTx+FRTx.*cos(A1))./(BRCx+FRCx); 

%---------------------------------------------------------------------- 

% Efficiencies 

D_ave=(4.*RC1.^2-(1/3).*(L1.^2).*(tan(A1)).^2).^0.5; 

D_top=D_ave+L1.*(tan(A1)); 

D_bot=D_ave-L1.*(tan(A1)); 

m=3; n=3;  

sf1=2:0.5:10; 

S=D_top.*sf1;  

IF_K=0.35; 

Eff_1=2.*(((m-1).*S+D_ave)+((n-1).*S+D_ave))./(pi.*m.*n.*D_ave.*cos(A1)) 

Eff_2=4.*(((m-1).*S+D_bot).*((n-1).*S+D_bot))./((pi.*m.*n.*D_top.^2)) 

Friction_factor=FRTx./QT2; 

Base_factor=(SVRx)./QT2; 

Eff_friction=1-(Friction_factor).*(1-Eff_1.*IF_K)-(Base_factor).*(1-

Eff_2.*IF_K) 

Eff_base_component=(Base_factor).*(1-Eff_2.*IF_K) 

Eff_friction_component=(Friction_factor).*(1-Eff_1.*IF_K) 

%------------------------------------------------------------------------- 
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