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Abstract

This thesis is concerned with algorithms for scheduling without preemptions and it
contributes to research as follows.

The new area of research, which has gained attention only in the last 15 years,
is concerned with flow shop models where the storage requirement varies from job
to job and a job occupies the storage continuously from the start of its first oper-
ation till the completion of its last operation. This thesis contributes to research
by developing a new approach of constructing feasible solutions for such flow shop
problems with job-dependent storage. This approach utilises Lagrangian relaxation
and decomposition - the techniques that have never been used before for such flow
shop problems. In this thesis, several Lagrangian relaxation and decomposition-based
heuristics are developed for N P-hard flow-shop problems with job-dependent storage
and the effectiveness of these heuristics is demonstrated by the results of computa-
tional experiments.

In this thesis, a new discrete optimisation procedure is introduced. This opti-
misation procedure can be viewed as an alternative exact method to a branch and
bound algorithm for a class of discrete optimisation problems with certain properties.
This class includes several N P-hard scheduling problems. This discrete optimisation
procedure is an iterative algorithm, that searches for a feasible solution with the ob-
jective value of the current lower bound or determines that such a solution does not
exist. Various methods of how this search can be carried out are investigated, and
these methods are compared computationally in application to a scheduling problem.

The worst-case analysis of a polynomial-time approximation algorithm for a max-
imum lateness scheduling problem with parallel identical machines, arbitrary pro-
cessing times and arbitrary precedence constraints is provided. The algorithm is a
modification of the Brucker-Garey-Johnson algorithm originally developed as an exact
algorithm for the case of the problem with unit execution time tasks and precedence
constraints represented by an in-tree. For the case when the largest processing time
does not exceed the number of machines, a worst-case performance guarantee which
is tight for arbitrary large instances of the considered maximum lateness problem has
been obtained. It is shown that, if the largest processing time is greater than the num-



ber of machines, then the worst-case performance guarantee for the list algorithm,
obtained by Hall and Shmoys, is tight.

Thesis supervisors: Associate Professor Dr Yakov Zinder, Dr Hanyu Gu



Acknowledgments

o [ would like to express my gratitude to my supervisors, Associate Professor Dr.
Yakov Zinder and Dr. Hanyu Gu, for their guidance, for countless enlightening

talks and hundreds of hours spent to share with me their wisdom.

o I would like to thank my esteemed co-authors, Professor Dr. Alexander Kononov,
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of
Sciences, Novosibirsk, Russia, and Dr. Gaurav Singh, Research and Innovation

Manager, BHP, Perth, for sharing their knowledge and expertise with me.

o A huge thank you to my family - for their eternal patience and bearing with

me and this thesis for all these years.

o Finally, I would like to dedicate this thesis to my mother, Lubov Kuzminichna

Bazanova, who has always believed in me.






This doctoral thesis has been examined by a Committee of the School
of Mathematical and Physical Sciences, Faculty of Sciences, UTS as
follows:



10



Contents

1 Introduction and motivation for research 19
1.1 Thesis Organization . . . . . . . . . . .. ... ... .. ... ... 22
2 Background and literature overview 25
2.1 Scheduling theory: classification of problems . . . . . . . . ... ... 25
2.2 Flow shop problems and algorithms . . . . . . . ... ... ... ... 27
2.3 Lagrangian Relaxation . . . .. ... ... ... ... ... ...... 33
2.4 Scheduling problems on parallel machines . . . . . . .. .. ... ... 34

3 Lagrangian relaxation and decomposition-based algorithms for flow
shops with job-dependent buffer requirements 47
3.1 Introduction . . . . . . . . ... . 48

3.2  Two-stage flow shop with storage and objective to minimise total weighted

completion time . . . . . ..o 51
3.2.1 Problem Description . . . . ... .. ... 0oL 51
3.2.2 Lagrangian relaxation . . . . .. .. ... ... .. .. ... 52
3.2.3 Lagrangian heuristics . . . . . .. .. ... ... L. 54
3.2.4 Computational experiments . . . . . . ... .. .. ... ... 63
3.25 Conclusion . . . . . . ... 72

3.3 Two-stage flow shop with storage and objective to minimise maximum

completion time . . . . . ... 76
3.3.1 Problem Description . . . . .. ... ... ... ... ... .. 76
3.3.2 Lagrangian relaxation-based heuristic . . . . . . . ... .. .. 7

11



3.4

3.3.3 Bin-packing heuristic . . . . ... ... 81

3.3.4 Barrier heuristic . . . . . .. ..o Lo 83
3.3.5 Lower Bound . . . .. ... ... ... ... ... ... 86
3.3.6  Computational Experiments . . . . . . .. ... ... ... .. 87
3.37 Conclusion . . . . .. . ... 93

Two-stage hybrid flow shop with a storage and objective to minimise

total weighted tardiness . . . . . . . . ... ... ... .. 96
3.4.1 Problem Description . . . . ... .. ... L. 96
3.4.2  Choice of the Planning Horizon . . . . .. .. ... ... ... 97
3.4.3 Integer Programming Formulation . . . . . ... ... ... .. 99
3.4.4 Lagrangian relaxation and decomposition . . . . . . . . . . .. 102
3.4.5 Lagrangian relaxation-based optimisation procedure . . . . . . 104
34.6 Scaling . . .. ... 105
3.4.7 Permutation heuristic. . . . . . ... ..o 107
3.4.8 Computational experiments . . . . . .. ... ... ... ... 108
349 Conclusion . . . . . . ... 121

4 Discrete optimisation with polynomially detectable boundaries and

restricted level sets 123
4.1 Introduction . . . . . . . ... 125
4.2 Levelsets . . . . . . . 127
4.3 Examples of the problems with the considered properties . . . . . . . 128

4.4

4.3.1  Property 1: scheduling on dedicated machines - the boundary

of the feasible region . . . . . . . .. ... ... 128
4.3.2  Property 2 and Property 3: level sets of 1I£1Ja§Xn wi(z;) ... 132
4.3.3  Property 2 and Property 3 in multi-objective optimisation . . 133
Description of the Discrete Optimisation Procedure . . . . . . . . .. 136
4.4.1 Introduction . . . . . .. ..o 136
4.4.2 Descending method . . . . . . .. ... 0oL 137
4.4.3 Ascending method . . . . . ... ... oL 141



4.44 Descending-ascending method . . . . . ... ... ... ... 145

4.5 Application . . . ... 146
4.5.1 Description of the problem and preliminaries . . . . . . . . .. 146
4.5.2 Descending method . . . . . . .. ... 150
4.5.3 Ascending method . . . . . ... ... oL 154
4.5.4 Descending-ascending method . . . . . ... ... ... ... 160

4.6 Computational Experiments . . . . . .. .. ... ... ... .. .. 162

4.7 Conclusion . . . . . . . .. 165

5 The worst-case analysis for an approximation algorithm for a maxi-

mum lateness problem 167
5.1 Introduction and description of the problem . . . . .. .. ... ... 167
5.2 BGJ-algorithm . . . . . .. ..o 169
5.3 The structure of a schedule . . . . . . .. .. ... ... 171
5.4 Lower Bounds on the Optimal Value of G(o) . . . . . . . ... .. .. 174
5.5  Worst-Case Performance Guarantee . . . . . . . .. .. .. ... ... 176
5.6 The case of the problem when pe >m . . . . . .. . ... ... .. 182
5.7 Conclusion . . . . . . . . 192
6 Conclusion and further research 193

13



14



List of Figures

3-10
3-11
3-12
3-13
3-14
3-15

4-1

Upper and Lower bounds change with iterations: 25 jobs . . . . . .. 72
Upper and Lower bounds change with iterations: 50 jobs . . . . . .. 73
Relative error for 25 job instances, in % . . . . . . .. ... ... .. 73
Relative error for for 50 job instances, in % . . . ... ... ... .. 74
Average CPU time for instance with different number of jobs . . .. 74
Relative Error for 25 jobs instances . . . . . . . . ... ... ... .. 91
Relative Error for 50 jobs instances . . . . . . .. ... .. ... ... 92
Relative Error for 100 jobs instances . . . . . . .. .. .. ... ... 93
Average time per instance . . . . . . .. ... 94
LBbuffer yg [BIoMmson 94
Relative Error . . . . . . . . ..o 112
Step 7: comparison of scaling and no scaling options . . . . .. . .. 115
Convergence of the algorithms: upper and lower bounds . . . . . . . . 115
Relative Error - larger instances, 25 buffer size . . . . . . . . . . . .. 119
Average time per instance . . . . . ... ..o 120
Time per group of tasks . . . . . . . .. ... 165
Set of tasks: Pmax <M . . . L 183
Schedules: P <m . . . . Lo 184
Set of tasks: Pomaz >mM . . . . L 190
Schedules: pae >m . . . . Lo 191
G(o) = 2G(0%) . . . o 192

15



16



List of Tables

3.1 5 jobs instances, buffer size 2,0 . . . . . . ... 66
3.2 b5 jobs instances, buffer size 25 . . . . . ... oL 66
3.3 5 jobs instances, buffer size 250 . . . . . ..o L. 67
3.4 10 jobs instances, buffer size Q1o . . . . ... ... 67
3.5 10 jobs instances, buffer size 215 . . . . . ... ... 67
3.6 10 jobs instances, buffer size 209 . . . . . ... 68
3.7 25 jobs instances, buffer size 1o . . .. ..o 68
3.8 25 jobs instances, buffer size 215 . . . ... ... 69
3.9 25 jobs instances, buffer size 209 . . . . ..o 69
3.10 50 jobs instances, buffer size 1o . . . . . ... oL 70
3.11 50 jobs instances, buffer size Q15 . . . . . . ... 70
3.12 50 jobs instances, buffer size Q99 . . . . .. .0 71

3.13 Quality of solution for instances with buffer size 2, proportion of
instances, in % . . . . ... 89

3.14 Quality of solution for instances with buffer size €2 5, proportion of
instances, in % . . . . ... 90

3.15 Quality of solution for instances with buffer size )55, proportion of
instances, in % . . . .. ... 90

3.16 Quality of solution for instances with buffer size )5, proportion of

instances, in % . . . .. ... 90
3.17 5 —50 — 5 — 2, 0y instances relative error from the best, in % . . . . 110
3.18 5 —50 — 5 — 2, Q3 instances relative error from the best, in % . . . . 110
3.19 5 —50 —5— 2, Q5 instances relative error from the best, in % . . . . 110

17



3.20
3.21
3.22
3.23
3.24
3.25
3.26

3.27

3.28

3.29
3.30
3.31
3.32

4.1
4.2

5—100 — 5 — 2, Q, instances relative error from the best, in % . . . . 110

5—100 — 5 — 2, Q3 instances relative error from the best, in % . . . . 111
5—100 — 5 — 2, Q5 instances relative error from the best, in % . . . . 111
10 — 100 — 5 — 2, € instances relative error from the best, in % . . . 111
10 — 100 — 5 — 2, €3 instances relative error from the best, in % . . . 111
10 — 100 — 5 — 2, Q5 instances relative error from the best, in % . . . 112

Order on the 1st stage vs. order on the 2nd stage: 5 — 50 — 5 — 2
instances, in % . . . .. ... 113
Order on the 1st stage vs. order on the 2nd stage: 5 — 100 — 5 — 2
instances, in % . . . . ... 113
Order on the 1st stage vs. order on the 2nd stage: 10 — 100 — 5 — 2
instances, in % . . . . ... 114
Smaller planning horizon T: objective value and time, 5 — 50 — 2, 25 116
Smaller planning horizon T: objective value and time, 10—100—5—2, 5117
Lagrangian heuristic vs. permutation heuristic: instances with 10 batches118

Lagrangian heuristic vs. permutation heuristic: instances with 12 batches118

Proportion of instances, in %, solved to optimality . . . . . .. . . .. 164

Comparison of ascending and descending algorithms: number of itera-

18



	Title Page
	Declaration
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction and motivation for research
	1.1 Thesis Organization

	2 Background and literature overview
	2.1 Scheduling theory: classification of problems
	2.2 Flow shop problems and algorithms
	2.3 Lagrangian Relaxation
	2.4 Scheduling problems on parallel machines

	3 Lagrangian relaxation and decomposition-based algorithms for flow shops with job-dependent buffer requirements
	3.1 Introduction
	3.2 Two-stage flow shop with storage and objective to minimise total weighted completion time
	3.2.1 Problem Description
	3.2.2 Lagrangian relaxation
	3.2.3 Lagrangian heuristics
	3.2.4 Computational experiments
	3.2.5 Conclusion

	3.3 Two-stage flow shop with storage and objective to minimise maximum completion time
	3.3.1 Problem Description
	3.3.2 Lagrangian relaxation-based heuristic
	3.3.3 Bin-packing heuristic
	3.3.4 Barrier heuristic
	3.3.5 Lower Bound
	3.3.6 Computational Experiments
	3.3.7 Conclusion

	3.4 Two-stage hybrid flow shop with a storage and objective to minimise total weighted tardiness
	3.4.1 Problem Description
	3.4.2 Choice of the Planning Horizon
	3.4.3 Integer Programming Formulation
	3.4.4 Lagrangian relaxation and decomposition
	3.4.5 Lagrangian relaxation-based optimisation procedure
	3.4.6 Scaling
	3.4.7 Permutation heuristic
	3.4.8 Computational experiments
	3.4.9 Conclusion


	4 Discrete optimisation with polynomially detectable boundaries and restricted level sets
	4.1 Introduction
	4.2 Level sets
	4.3 Examples of the problems with the considered properties
	4.3.1 Property 1: scheduling on dedicated machines - the boundary of the feasible region
	4.3.2 Property 2 and Property 3: level sets of [𝘦𝘲𝘶𝘢𝘵𝘪𝘰𝘯]
	4.3.3 Property 2 and Property 3 in multi-objective optimisation

	4.4 Description of the Discrete Optimisation Procedure
	4.4.1 Introduction
	4.4.2 Descending method
	4.4.3 Ascending method
	4.4.4 Descending-ascending method

	4.5 Application
	4.5.1 Description of the problem and preliminaries
	4.5.2 Descending method
	4.5.3 Ascending method
	4.5.4 Descending-ascending method

	4.6 Computational Experiments
	4.7 Conclusion

	5 The worst-case analysis for an approximation algorithm for a maximum lateness problem
	5.1 Introduction and description of the problem
	5.2 BGJ-algorithm
	5.3 The structure of a schedule
	5.4 Lower Bounds on the Optimal Value of G(σ)
	5.5 Worst-Case Performance Guarantee
	5.6 The case of the problem when pₘₐₓ > m
	5.7 Conclusion

	6 Conclusion and further research
	Bibliography



