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Abstract

This thesis is concerned with algorithms for scheduling without preemptions and it
contributes to research as follows.

The new area of research, which has gained attention only in the last 15 years,
is concerned with flow shop models where the storage requirement varies from job
to job and a job occupies the storage continuously from the start of its first oper-
ation till the completion of its last operation. This thesis contributes to research
by developing a new approach of constructing feasible solutions for such flow shop
problems with job-dependent storage. This approach utilises Lagrangian relaxation
and decomposition - the techniques that have never been used before for such flow
shop problems. In this thesis, several Lagrangian relaxation and decomposition-based
heuristics are developed for NP -hard flow-shop problems with job-dependent storage
and the effectiveness of these heuristics is demonstrated by the results of computa-
tional experiments.

In this thesis, a new discrete optimisation procedure is introduced. This opti-
misation procedure can be viewed as an alternative exact method to a branch and
bound algorithm for a class of discrete optimisation problems with certain properties.
This class includes several NP -hard scheduling problems. This discrete optimisation
procedure is an iterative algorithm, that searches for a feasible solution with the ob-
jective value of the current lower bound or determines that such a solution does not
exist. Various methods of how this search can be carried out are investigated, and
these methods are compared computationally in application to a scheduling problem.

The worst-case analysis of a polynomial-time approximation algorithm for a max-
imum lateness scheduling problem with parallel identical machines, arbitrary pro-
cessing times and arbitrary precedence constraints is provided. The algorithm is a
modification of the Brucker-Garey-Johnson algorithm originally developed as an exact
algorithm for the case of the problem with unit execution time tasks and precedence
constraints represented by an in-tree. For the case when the largest processing time
does not exceed the number of machines, a worst-case performance guarantee which
is tight for arbitrary large instances of the considered maximum lateness problem has
been obtained. It is shown that, if the largest processing time is greater than the num-
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ber of machines, then the worst-case performance guarantee for the list algorithm,
obtained by Hall and Shmoys, is tight.

Thesis supervisors: Associate Professor Dr Yakov Zinder, Dr Hanyu Gu
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Chapter 1

Introduction and motivation for

research

This thesis is concerned with algorithms for scheduling without preemptions. Schedul-

ing theory as a branch of operations research is dedicated to the optimal allocation

of limited resources, over time, to a set of activities [6, 72, 87]. For more than sixty

years scheduling algorithms have been used as a tool to improve efficiency in man-

ufacturing, infrastructure, supply chains and computer systems - virtually in any

facet of modern life. In the words of the excellent review on fifty years of research

in scheduling [88], “scheduling has become a major field within operational research

with several hundred publications appearing each year”.

Many scheduling problems are exceptionally hard to solve: these scheduling prob-

lems are NP -hard. NP -hardness of a problem implies that the corresponding decision

problem is NP -complete [6]. Further, if there is a polynomial-time algorithm to solve

an NP -complete problem then any problem from the class NP can be solved in poly-

nomial time, and hence the class of P problems equals to the class of NP problems.

However, whether or not P = NP is one of the millennium problems [15].

There is a wide variety of scheduling problems that are classified in terms of

machine environment, job characteristics and optimality criteria. A change of one of

the parameters of a problem, which may seem insignificant, can change the problem’s

complexity from being polynomially solvable to an NP -hard problem.
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For example, consider the following classical scheduling problem: a set of tasks is

processed on identical parallel machines, there are precedence constraints, all tasks

are of unit execution time. The objective is to minimise the makespan - the maximum

completion time among all tasks.

• If there are two parallel machines, then there are several polynomial algorithms

to solve the problem [12, 27, 111];

• If there are three parallel machines, the question about the complexity of the

problem is still open [30];

• If the number of the parallel machines is arbitrary, then the problem is NP −hard

in a strong sense [71, 101].

Another classical scheduling problem is a flow shop problem: there is a set of

jobs, and each job has the same number of operations. Each operation is processed

on a particular machine corresponding to a stage of the flow shop, and the order

of operations is the same for each job; the objective is to minimise the maximum

completion time of all jobs:

• if there are two stages, then the problem is polynomially solvable [57];

• if there are more than two stages, the problem is NP -hard [31].

Flow shops with job-dependent storage requirement

The flow shop problem above, as well as many other classical flow shop problems

assume that there is an infinite buffer between the stages, that is once a job has

completed its processing on a current stage, and if the next stage is still occupied,

this job does not prevent the current machine from processing another job [19, 87].

However, real-life applications may require more accurate models, such as flow shops

with storage (a buffer)[69, 103]. The flow shop models with job-dependent storage

requirement have come into the focus of research only in the last ten-fifteen years. In

these models, the storage requirement varies from job to job and a job occupies the

storage continuously from the start of its first operation till the completion of its last
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operation. This thesis contributes to this research by developing a new approach of

constructing feasible solutions for such flow shop problems with job-dependent stor-

age. This approach utilises Lagrangian relaxation and decomposition - the techniques

that never has been used before for such flow shop problems. In this thesis, several

Lagrangian relaxation and decomposition-based heuristics are developed for NP -hard

flow-shop problems with job-dependent storage and the effectiveness of these heuris-

tics is demonstrated by the results of computational experiments.

Discrete optimisation procedure

Besides heuristics, which do not necessarily provide an optimal solution, another

approach to deal with the NP -hard problems such as the aforementioned scheduling

problems on parallel machines and flow shops, is to use exact algorithms. An exact

algorithm is essentially an intelligent enumeration of all possible solutions. There is

a wealth of literature on the branch and bound algorithm, the exact algorithm, first

proposed in 1960 [65]. However, [112, 113] have described another exact method for

solution of NP -hard problems on parallel machines. In these papers, it has been

shown that this method is superior to the branch and bound algorithm, hence paving

the ground for generalisation. In this thesis, a new discrete optimisation procedure

is introduced. This optimisation procedure can be viewed as an alternative exact

method for a class of discrete optimisation problems with certain properties. These

properties are not too restrictive as they allow to include in this class several NP -hard

scheduling problems. This discrete optimisation procedure is an iterative algorithm,

that searches for a feasible solution with the objective value of the current lower bound

or determines that such solution does not exists. Various methods of how this search

can be carried out are investigated, and these methods are compared computationally

in application to a scheduling problem.

Worst-case analysis of an approximation algorithm

Finally, this thesis provides an analysis of an approximation algorithm. Approx-

imation algorithms are polynomial-time scheduling algorithms that generate feasible

solutions within a guaranteed deviation from an optimal solution. Optimal solutions
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are usually not known for NP -hard problems, thus making the task of obtaining a

worst-case performance guarantee difficult [88]. The maximum lateness scheduling

problem with parallel identical machines is a classical scheduling problem [6, 72, 87]).

A significant attention in the literature was dedicated to the case of the problem when

all tasks have unit execution times. Much less is known about the case of the prob-

lem when all jobs have arbitrary processing times and there are arbitrary precedence

constraints - despite this case’s role in the theory and practice (see, for example,

[6, 72, 87]). Further, all known worst-case performance guarantee results, with the

only exception of [46], were obtained for the criterion of maximum completion time

- the particular case of the criterion of maximum lateness. In this thesis, this gap

in the literature is addressed: a worst-case analysis of a polynomial-time approxima-

tion algorithm for the maximum lateness scheduling problem with parallel identical

machines, with arbitrary processing times and arbitrary precedence constraints, is

provided. The algorithm is a modification of the Brucker-Garey-Johnson algorithm

[7], that was originally developed as an exact algorithm for the case of the problem

with unit execution time tasks and precedence constraints represented by an in-tree.

A worst-case performance guarantee is obtained for the case when the largest pro-

cessing time does not exceed the number of machines. The guarantee is tight for

arbitrary large instances of the considered maximum lateness problem. It is shown

that, if the largest processing time is greater than the number of machines, then the

worst-case performance guarantee for the list algorithm, obtained in [46], is tight.

All scheduling problems, considered in this thesis do not allow preemptions, mean-

ing that once the processing of a job has been commenced, it should be completed

without interruptions.

1.1 Thesis Organization

This thesis is organised as follows:

• Chapter 2: This chapter presents the background and literature overview for

the problems and algorithms discussed in this thesis.
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• Chapter 3: In this chapter a Lagrangian relaxation and decomposition-based

approach to construct solutions for several NP -hard flow shop problems with a

job-dependent buffer is presented. For each problem, a Largangian relaxation

and decomposition-based heuristic is discussed, complemented by the results of

computational experiments.

• Chapter 4: This chapter is dedicated to a discrete optimisation procedure for a

class of discrete optimisation problems which is defined by certain properties of

the boundary of the feasible region and level sets of the objective function. The

considered solution method is an iterative procedure which at each iteration

computes a lower bound on the optimal objective value and searches for a feasi-

ble solution attaining this bound. The chapter describes three search methods -

descending search, ascending search, and their combination. These methods are

illustrated by an application to a scheduling problem. The resultant algorithms

are compared using computational experiments.

• Chapter 5: This chapter presents a worst-case analysis of a polynomial-time

approximation algorithm for a maximum lateness scheduling problem with par-

allel identical machines, arbitrary processing times and arbitrary precedence

constraints. The algorithm is a modification of the Brucker-Garey-Johnson al-

gorithm. For the case when the largest processing time does not exceed the

number of machines, a worst-case performance guarantee is obtained. This

guarantee is tight for arbitrary large instances of the considered maximum late-

ness problem. It is shown that, if the largest processing time is greater than

the number of machines, then the worst-case performance guarantee for the list

algorithm, obtained in [46], is tight.

• Chapter 6: This final chapter gives a summary of the thesis and its contribution

to research.
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Chapter 2

Background and literature

overview

The work in this thesis draws upon the following areas of the scheduling theory: flow

shop problems with a buffer, Lagrangian relaxation methods applied to such flow

shops; scheduling problems on parallel machines - approximate and exact algorithms.

In this chapter, we will touch upon scheduling problems classification and provide a

literature overview of these research areas.

2.1 Scheduling theory: classification of problems

Scheduling theory deals with an allocation of limited resources over time. The source

of the first scheduling models were real-life processes, hence the terms in which the

scheduling problems are described have inherited some terminology from the manu-

facturing/transportation problems [16]. Scheduling models are defined in terms of a

set of jobs (or tasks) with certain characteristics, machine environment - what sort

of machines are used to process the jobs and how many machines are used, and an

objective function. A schedule is an allocation of time on the machines to each of the

jobs. To construct a feasible schedule is to assign to each job a completion time in

this schedule in a way that all constraints of the problem are satisfied. The following

three-field notation is used to describe a scheduling problem: α|β|γ [6, 87], where α
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signifies the machine environment, β defines jobs’ characteristics and γ sets out the

objective function. To describe the problems discussed in this thesis we will specify

some values of these fields. A comprehensive classification of scheduling problems can

be viewed, for example, in [6].

α Machine environment is the set of the machines {M1, M2, ..., Mq}, where q is a

positive integer. The machine environments differ by how the machines work

and process the jobs. For example, in parallel machines environment any job

can be processed by any machine, and all machines are identical - that is each

job requires the same processing time on any machine. Parallel machines are

signified by α = P , and if the number of machines is specified, for example,

if there are two or three parallel machines, then these models are signified

by α = P 2 and α = P 3, correspondingly. Another machine environment,

which is considered in this thesis, is a flow shop. In this environment, each

job is processed in stages, and each machine represents a stage. Each job is

represented by the same number of operations, which have to be processed in

the same order, and each operation is processed by one machine corresponding

to this operation stage. Similarly, the number of stages in a flow shop can

be specified, for example, α = F2 signifies that this is a two-stage flow shop

problem.

β A set of jobs N = {1, 2, ..., n}, where n is a positive integer, may have char-

acteristics that are related to the jobs’ properties, such as processing time or

precedence constraints, or characteristics which specify how the jobs are pro-

cessed. If a set of jobs has precedence constraints, then prec is included in

the field β. Sometimes the form of the precedence constraints is specified, for

example, if the precedence constraints are in the form of an intree, then intree

is included. The field β may include the processing times of jobs. For example,

pi = 1 indicates that all jobs are of unit execution time (UET). If job’s process-

ing can be interrupted, then prmt is included in β, indicating that preemptions

are allowed. If each job has a specific time, after which it can be processed and
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not earlier, then ri in the field β signifies that there are release times for each

job. If there are communication delays, β would include the duration of the

delays. For example, cij = 1 signifies that there are unit communication delays.

γ This field signifies an optimality criterion, that is the function for which we

wish to find the optimal value on the set of all feasible schedules. In this thesis

we will consider the problems which require finding the minimum value of a

given criterion. Let Ci(σ) be the completion time of job i in a schedule σ. The

following optimality criteria are defined in terms of jobs’ completion times:

– makespan, or Cmax(σ) - which is a maximum completion time of the given

set of jobs and defined as Cmax(σ) = maxi∈N Ci(σ);

– maximum lateness Lmax(σ) - each job i is assigned a due date di - the time

when the job should be completed. Then the job’s lateness is defined as

Li(σ) = Ci(σ) −di and the Lmax(σ) is defined as Lmax(σ) = maxi∈N Li(σ);

– total completion time is defined as
∑

i∈N Ci(σ) and total weighted comple-

tion time is defined as
∑

i∈N wiCi(σ), where wi is a non-negative weight

assigned to a job i ∈ N ;

– maximum tardiness Tmax(σ) - each job i is assigned a due date di - the

time when the job should be completed. Then the job’s tardiness is defined

as Ti(σ) = max{Ci(σ) − di, 0} and the Tmax(σ) is defined as Tmax(σ) =

maxi∈N Ti(σ);

– total tardiness is defined as
∑

i∈N Ti(σ) and total weighted tardiness is

defined as
∑

i∈N wiTi(σ), where wi is a non-negative weight assigned to a

job i ∈ N .

2.2 Flow shop problems and algorithms

Flow shop problems have been studied intensively the past few decades due to their

theoretical difficulty and practical importance [87], however, flow shop problems are
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notoriously difficult to solve, and they are known for their intractability [66]. One of

the first results is concerned with F2||Cmax problem. This problem is polynomially

solvable by Johnson’s algorithm [57], but if the number of machines is greater than

two, this problem is NP -hard [31]. Further, if a flow shop consists of two or three

machines only, then for the Cmax criterion it is sufficient to consider only permutation

schedules, that is the schedules, where the order of jobs’ operations on each machine is

the same [14]. As the general flow shop problem even with three machines is NP -hard,

a lot of efforts were put into developing effective heuristics for the permutation flow

shop problem, where jobs are processed on each stage in the same order. The classical

heuristics include Gupta-Palmer’s heuristic [44, 85], which uses a certain priority

list to construct the permutation; Campell-Dudek-Smith (CDS) heuristic [10], which

uses Johnson’s algorithm as an auxiliary algorithm to solve series of complementary

two-stage flowshop problems; NEH heuristic proposed in [84] places the job with a

longer total processing time first. The NEH heuristic is considered one of the most

efficient algorithms for permutation flow shop problem [96]. A task of systematic

classification and review of heuristics for the permutation flow shop problem with

makespan criterion seems to be not an easy one, due to a large number of heuristics

developed over the years and lack of common data to compare the performance. In the

excellent review [90], the benchmark instances proposed in [97] were used to compare

over twenty heuristics. Another review [23] aimed to classify heuristics according

to the framework defined by index development, solution construction and solution

improvement.

Other examples of NP -hard flow shop problems are [70]: the makespan problem

with release times F2|ri|Cmax; the makespan problem with precedence constraints

represented by a tree F2|tree|Cmax; the maximum lateness problem F2||Lmax. Some

particular cases of the flow shop problems are polynomially solvable, such as the two

machine flow shop makespan problem with precedence constraints represented by a

tree and unit execution time jobs F2|tree, pi = 1|Cmax [70], or the two-machine flow

shop makespan problem with preemptions F2|prmt|Cmax [35]. However, the latter

problem becomes NP -hard , if the number of machines is three - F3|prmt|Cmax [35].
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The aforementioned problems are examples of a “classical” flow shop problem - the

classical flow shop problem implicitly assumes that there is an infinite buffer between

the stages, that is once a job has completed its processing on a current stage, and if

the next stage is still occupied, this job does not prevent the current machine from

processing another job [19, 87]. This assumption makes flow shop problems simpler

- though many of them are still NP -hard even with this assumption, however, real-

life applications may require more accurate flow shop models. These models include

no-wait flow shops, flow shops with blocking and flow shops with buffers:

• No-wait flow shops: This model assumes that a job is processed through all

stages of the flow shop without any wait between the stages. Such requirement

can reflect the manufacturing processes, where no storage/buffer is available,

or it is being dictated by the technology of the process, such as, for example,

in steel manufacturing - steel has to be of a certain temperature while going

through all technological stages; in food processing, canning of food should

happen immediately after the food is prepared, or in various chemical processes,

once a reaction has started on the first stage, it should be completed through

all stages without delay to avoid deterioration of the product (see, for example,

[19, 47, 91]). The two-stage no-wait flow shop makespan problem can be solved

in polynomial time [34], however it has been shown in [86] that a no-wait flow

shop makespan problem with 4 or more stages is an NP -hard problem. A few

years later it was established in [89] that even the three-stage no-wait flow shop

makespan problem is NP -hard.

• Flow shops with blocking: The model assumes that there is no storage/buffer

to upload jobs once they have been processed by a machine, if the downstream

machine is not available. Hence the job “blocks” the current machine till the

next machine is free to process the job [19]. A comprehensive review of papers

dedicated to the flow shops with blocking is provided in [82]. According to

the review, the majority of papers are concerned with metaheuristics and local

search algorithms.
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• Flow shops with intermediate buffers: This model assumes that there

is storage between stages where the job can be uploaded till the next stage

machine becomes available and the buffer capacity is limited by some number

of jobs. The model has been extensively studied in the literature:

– it has been established in [86] that a makespan flow shop problem with

intermediate buffers is NP -hard;

– one of the early papers [69] formulates the flow shop problem with an

intermediate buffer, describes three types of a buffer: limited (in a number

of jobs), zero buffer, and an unlimited buffer; the paper also introduces

heuristics for permutation and general flow shops with intermediate buffers,

which are either an adaptation of heuristics for the flow shops with an

unlimited buffer, or take the buffer constraint explicitly into account.

– in [8] a tabu search algorithm for a makespan flow shop problem with

intermediate buffers and an arbitrary number of stages is developed. The

algorithm utilises a polynomial-time procedure that constructs a feasible

schedule for the given sequence of jobs on each stage.

– in [9], chapter “Job shop problems with limited buffers”, formulations of

job-shop and flow shop problems with various intermediate buffers are

discussed: a general buffer problem, where any operation can be placed in

a buffer; job-dependent buffer problem, where each job has its own buffer;

pairwise buffer problem where a buffer depends on a pair of different stages’

machines and an output and input buffer problems, where all jobs which

either leave or about to be processed on a certain machine have to be

placed in the buffer after or before being processed.

– [3] and [76] are examples of the flow shop and job shop models with inter-

mediate buffers inspired by real-world applications and develop heuristics

that can provide sufficiently good solutions.

• Flow shops with storage (buffer): The models with the buffer requirement,

which varies from job to job, and the buffer is occupied by a job for its entire
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processing, have been studied only recently, though such models may better

reflect the real-world applications [103]. The scheduling problems with such

a buffer arise in supply chains when the change of vehicles involves unloading

and loading, using certain storage space or in digital libraries, where files for

presentations are downloaded from remote storage and stored in limited mem-

ory. In what follows we consider in detail the results on flow shops with storage

(buffer), which varies from job to job, and the buffer is occupied by a job for

its entire processing.

Flow shops with storage (buffer):

Perhaps [75] was the first publication in which a new flow shop model with a buffer

requirement, which varies from job to job, and the buffer is occupied by a job for

its entire processing, was formulated. This paper was motivated by the necessity

to control a lag during a multimedia presentation, which requires a few files to be

downloaded before the presentation can commence. The following problem was for-

mulated:

F2|buffer, b(i)|Cmax, (2.2.1)

where F2 signifies that this is a two-machine flow shop problem, buffer and b(i) imply

that there is a limited buffer capacity, which should not be violated at any time, and

each jobs i occupies b(i) units of the buffer from the start till the finish of the job’s

processing by the flow shop. It has been shown in [73] that (2.2.1) is NP -hard in

a strong sense. The other early papers considered (2.2.1) with both “passive” and

“active” pre-fetch - [60], where buffer space may be used more aggressively and allows

a partial download of a job to resume broadcast and investigated the complexity of

these “passive” and “active” models - [59]. The optimisation methods proposed in

the early papers are branch-and-bound methods [73, 74], various implementations of

variable neighbourhood search [59, 62]. All these publications are concerned with the

minimisation of the time required for completion of all jobs or/and due dates based

objective functions.

More recent papers contributed to the further research of complexity of flow shops
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with the buffer, considered the objective functions other than Cmax, proposed new

models of flow shops with the considered buffer and applied the methods which have

never been used before on such models:

• it has been proven in [25], that there are instances for which the set of all optimal

schedules does not contain a permutation schedule, that is, a schedule in which

both machines process the jobs in the same order. Even the decision problem,

requiring an answer to the question of whether or not the given instance is one

of the instances that do not have an optimal schedule that is a permutation

one, is NP -complete;

• it has been shown in [38] the problem remains NP -hard in the strong sense even

under the restriction that, on one of the machines, the jobs are to be processed

in a given sequence;

• if the duration of each operation of a job does not exceed one-fifth of the buffer

capacity, it has been proven in [61] that there exists a polynomial-time algorithm

which constructs an optimal schedule;

• in [4] the (2.2.1) problem with variable buffer capacity Ω(t) was considered and

it was established that the problem remains NP -hard in a strong sense even if

all jobs’ operations are of unit execution time;

• even in the restricted cases such as when for each job the duration of operation

on a second-stage machine is the same and the buffer requirement is proportional

to the duration of the job’s operation on the first-stage machine the (2.2.1)

remains NP -hard as shown in [68].

• in [20] a two-stage flexible flow shop has been considered, with first and second-

stage machines put in disjoint pairs, each pair being assigned a buffer capacity,

which varies from pair to pair. It has been shown that this problem is NP -hard

for both objectives - makespan Cmax and a total completion time
∑

Ci.
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• [108] gives a comprehensive analysis of complexity of the problem considered in

this paper by providing a classification of the particular cases of the problem

into families according to certain properties, and giving a complexity analysis

of these cases.

2.3 Lagrangian Relaxation

Lagrangian relaxation is a technique that allows replacing a “difficult” problem with

an easier one by “relaxing” some constraints or conditions. The Lagrangian relaxation

was invented in 1797 by Joseph Louis Lagrange (1736 - 1813) as an extension of

his work on equations for minimum/maximum functionals. Lagrangian relaxation

is used extensively for solution of difficult combinatorial problems [33, 42, 43, 79].

In applications to integer programming problems, “bad” constraints are relaxed and

placed to objective function with Lagrangian multipliers in a hope that the resulting

problem with the remaining “easy” constraints can be solved for the current set

of the multipliers. The resulting solution vector is used to update the Lagrangian

multipliers.

In the early 70s in [50] and [51] Lagrangian relaxation was used to solve traveling

salesman problem, and [32, 33] discussed some theoretical results for Lagrangian

relaxation and the use of Lagrangian relaxation in linear programming-based branch-

and-bound method. The classical paper on the application of Lagrangian relaxation

to integer programming problems is [22], which is an excellent brief review and a guide

to various aspects of Lagrangian relaxation application - basic concepts, construction

and solution of Lagrangian relaxation problems, description of subgradient method,

challenges of selection of the constraints to relax and construction of feasible solutions.

This paper uses the results from [52], in which the convergence of the subgradient

method was established. Another practical tutorial on the application of Lagrangian

relaxation to integer programming problems is provided in [21].

[102] gives a comprehensive analysis of Lagrangian relaxation applications to

scheduling problems, including integer programming formulations and Lagrangian
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relaxation for single machine problems, identical and non-identical parallel machines

and flow shops. Decomposition techniques such as surrogate relaxation are described,

and it is demonstrated that Lagrangian relaxation provides tight lower bounds for

branch-and-bound algorithms.

Further, Lagrangian relaxation can be adopted not only to provide lower bounds

on an optimal solution but also to obtain feasible solutions and allow to evaluate the

quality of these solutions. For example, [77] and [78] show that Lagrangian relaxation

and decomposition applied to parallel identical machines provide both lower bounds

and allow to develop algorithms that deliver nearly optimal feasible solutions. An-

other application of Lagrangian relaxation and decomposition, which allows deriving

both lower bounds and a feasible solutions, is discussed in [18], where scheduling on

parallel unrelated machines with additional resource problem is considered.

Lagrangian relaxation approach has been applied to flow shop problems such as,

for example, hybrid flow shop problems modelling steel-making continuous casting

process [79, 99]; there are only few papers on flow shop problems with buffers: for

example, [56, 79, 98, 100] consider the implementation of Lagrangian relaxation-based

algorithms in application to hybrid flow shop problems with intermediate buffers

between the stages with the buffer capacity restricted by a number of jobs. However

to the best of my knowledge, Lagrangian relaxation and decomposition techniques

have never been applied to flow shops with a job-dependent buffer - this gap in

literature is addressed in this thesis.

2.4 Scheduling problems on parallel machines

One of the most studied scheduling problems is the problem of minimising the max-

imum lateness on parallel machines, and its particular case, the so-called makespan

problem, when all due dates are equal to zero. The interest in this problem arises,

for example, from its practical importance related to the running of multiprocessor

time-sharing computer systems. The important case related to the maximum late-

ness problem on parallel identical machines, which received significant attention in
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the literature is the case where all tasks have unit execution times. Despite its role

in the theory and practice (see, for example, [6, 72, 87]), much less is known about

the case of the problem with arbitrary processing times and precedence constraints

P | prec | Lmax. The complexity of this problem is due to the presence of arbitrary

precedence constraints, in particular even the P | prec, pj = 1 | Cmax problem is NP -

hard in the strong sense [71, 101]. The P | prec, pj = 1 | Cmax problem remains NP -

hard in the strong sense when the precedence constraints are in the form of a bipartite

graph [110]. Furthermore, P | prec, pj = 1 | Lmax is NP -hard in the strong sense even

if the precedence constraints are in the form of an out-tree [7]. Other factors which

contribute to the complexity are arbitrary processing times and the restriction that a

task’s processing cannot be preempted, for example, P || Cmax, which does not have

precedence constraints, is NP -hard in the strong sense [29]. It has been shown in [95]

that it is NP -hard to approximate P |prec|Cmax problem within any factor strictly

less than two even in the case of unit processing times.

One of the main approaches used for the development of the approximation al-

gorithms for scheduling problems is list scheduling. List algorithm is an iterative

procedure, which at each iteration corresponds to some point in time t. The tasks

form a priority list, and at the first iteration t = 0. At each iteration, the algorithm

scans the list from the first position on the left to the right, and chooses the first task

on the list, which is ready to be processed, and assigns the task a completion time

t + pi, where pi is a processing time of task i. After that, the task is deleted from

the list. The notion of the task’s “readiness” depends on the problem at hand. For

example, if precedence constraints and release times are present, the task is ready to

be processed if t is greater than the task’s release time and all task’s predecessors if

exist, have been processed. If the end of the list is reached, t is replaced by the next

available time t′ > t, and the next iteration starts. The procedure is repeated until

the completion time is assigned for all tasks.

One of the first papers with an analysis of the performance of the list algorithm

is provided in [36]. In this paper, the author applies the list algorithm to a makespan

scheduling problem on parallel identical machines and investigates how the relaxation
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of precedence constraints, changing the number of machines, decreasing the processing

times of the tasks, or simply changing the priority list affects maximum completion

time of a schedule. It has been shown that

Cmax(sL)

Cmax(s∗)
≤ 2 −

1

m
, (2.4.1)

where Cmax(sL) refers to the maximum completion time of the schedule sL constructed

by a list algorithm, and Cmax(s∗) is the maximum completion time of the optimal

schedule s∗. The proof is based on the property of the list algorithm to assign a task

to an idle machine if there is a task available, hence at least one task is processed in

every time interval.

Problems with unit execution times

It easy is to see that for P |prec, pi = 1|Cmax and P |prec, pi = 1|Lmax schedul-

ing problems there exists a list for an optimal schedule. Thus several two-phase

approximation algorithms, which use the list algorithm, have been developed. The

first phase of the algorithms is concerned with assigning priorities to the tasks and

thus creating a priority list, and the second phase is constructing a schedule by the

list algorithm according to the priority list, created in the first phase. The classical

two-phase approximation algorithms are:

• Hu’s critical path algorithm: In [55] P |intree, pi = 1|Cmax scheduling prob-

lem is considered and it is shown that by assigning the length of the longest chain

of successors as a priority to each task and executing tasks in non-increasing

order of these priorities results in the optimal schedule.

• Coffman and Graham algorithm: [12] describes an algorithm for P 2|prec, pi =

p|Cmax scheduling problem. The algorithm is an extension of Hu’s algorithm,

and it constructs an optimal schedule. However, it has been demonstrated that

the algorithm does not necessarily provide an optimal schedule if the number

of machines is arbitrary or tasks have arbitrary execution times.

• Garey-Johnson algorithm: this algorithm is presented in [27]. The al-
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gorithm constructs an optimal schedule for P 2|prec, pi = 1|Lmax scheduling

problem. Priority assignment is based on the following observations: tasks with

smaller due dates should be processed sooner and each task has to be executed

before all its successors. These two observations lead to the due date modifica-

tion algorithm. Each task’s modified due date d′
i is defined as

d
′

i = min

{

di, min
j∈K(i)

{

d′
j −

⌈

|{k : k ∈ K(i) and d′
k ≤ d′

j}|

2

⌉}}

,

where K(i) is the set of all successors of task i and di is a task’s due date before

modification. The priority list is constructed in the non-decreasing order of the

modified due dates. This algorithm was extended by the same authors to the

P 2|prec, ri, pi = 1|Lmax scheduling problem in [28].

• Brucker-Garey-Johnson algorithm: The proposed algorithm [7] gener-

alises Hu’s critical path algorithm, which was developed for the makespan

problem, to the problem of minimising the maximum lateness: P |intree, pi =

1|Lmax. The priority of each task is its modified due date. The modification

algorithm takes into account the modified due dates of the task’s successors:

d′
i = min

{

di, min
j∈K(i)

{d′
j − 1}

}

.

The Brucker-Garey-Johnson algorithm solves P |intree, pi = 1|Lmax in polyno-

mial time.

Each of the above algorithms has been a subject of further research. Indeed,

the worst-case performance of the Coffman-Graham algorithm was investigated in

[64] followed by [5], where the following tight worst-case performance guarantee was

obtained:

Cmax(sCG) ≤
(

2 −
2

m

)

Cmax(s∗) − r(m), (2.4.2)

r(m) =







m−3
m

, for odd m ;

m−2
m

, for even number of machines m,
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where m is the number of parallel identical machines, Cmax(sCG) refers to the maxi-

mum completion time of the schedule sCG constructed by the Coffman-Graham algo-

rithm, and Cmax(s∗) is the maximum completion time of the optimal schedule s∗. The

2.4.2 was further improved by [26], where it was proved that for P |prec, pi = 1|Cmax

problem with more than 3 parallel machines there exists an approximation polynomial

algorithm with the following worst-case performance guarantee:

Cmax(sGR) ≤
(

2 −
7

3m + 1

)

Cmax(s∗),

where Cmax(sGR) is the maximum completion time of the schedule sGR constructed

by the Gangal-Ranade algorithm, and Cmax(s∗) is the maximum completion time of

the optimal schedule s∗. The Gangal-Ranade algorithm is not a list algorithm: it

assigns each task a priority based on precedence constraints, however, the important

feature of the algorithm is that it analyses predecessors of an unscheduled task and

re-arranges already scheduled predecessors to allow the task to be scheduled earlier.

The worst-case performance guarantee for the Garey-Johnson algorithm for the

maximum lateness problem with an arbitrary number of machines has been un-

known for more than 30 years. In 2009 the tight worst-case performance guarantee

was obtained for the algorithm generalised for an arbitrary number of machines for

P |prec, ri, pi = 1|Lmax scheduling problem in [48]:

Lmax(sGJ) − Lmax(s∗) ≤ (1 − α(m))(1 + max
1≤j≤n

rj),

where Lmax(sGJ) refers to the maximum lateness of the schedule sGJ constructed by

the Garey-Johnson algorithm, and Lmax(s∗) is the maximum lateness of the optimal

schedule s∗ and

α(m) =







2
m+1

, for odd m ;

2
m

, for even m.

The ratio derived for an even number of machines is the best known for this problem.

In [94] the Brucker-Garey-Johnson algorithm was generalised to the case of prece-

dence constraints in a form of an arbitrary acyclic graph for the P |prec, pi = 1|Lmax
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problem and the following tight upper bound for the worst-case performance was

derived:

Lmax(sBGJ ) ≤
(

2 −
1

m

)

Lmax(s∗) +
(

1 −
1

m

)

max
1≤j≤n

dj −
(

m − 1

m

)

,

where Lmax(sBGJ) refers to the maximum lateness of the schedule sBGJ constructed

by the Brucker-Garey-Johnson algorithm, and Lmax(s∗) is the maximum lateness of

the optimal schedule s∗. To obtain the bound, the structure of sBGJ is investigated

and a set of tasks, which can not occupy fewer time slots than in sBGJ , is selected.

This set includes a task with minimal completion time among all the tasks which

provide the value of the objective function. The bound is obtained by estimating how

much the value of the criterion on the set can be minimised in an optimal schedule.

The mentioned above proof technique was developed in [111], where it presents

an approximation algorithm for P |prec, pi = 1|Lmax scheduling problem and provides

a tight worst-case performance guarantee. This is the best-known guarantee for the

problem:

Lmax(sZR) ≤
(

2 −
2

m

)

Lmax(s∗) +
(

1 −
2

m

)

max
1≤j≤n

dj − r(m), (2.4.3)

r(m) =







m−3
m

, for odd m ;

m−2
m

, for even number of machines m,

where Lmax(sZR) refers to the maximum lateness of the schedule sZR constructed

by the Zinder-Roper algorithm and Lmax(s∗) is the maximum lateness of the optimal

schedule s∗. The Zinder-Roper algorithm has two phases: it calculates tasks’ priorities

in the first phase and uses a list algorithm to construct a schedule in the second phase.

Initially a priority of each task i is the difference of the maximum due date and the

task’s due date: γi = max
1≤j≤n

dj −di. It is shown that maximum lateness can be replaced

by the following criterion:

G(s) = max
1≤j≤n

(Cj + γj), (2.4.4)

where Cj is the completion time of task j in a schedule s. Tasks’ priorities are then
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modified as follows. If a task has successors, a schedule s′ is constructed with the help

of the Zinder-Roper algorithm on the set of the task’s successors. Then the modified

priority of the considered task is set as the maximum between its initial priority and

the value of the criterion G(s′). During the second phase of the algorithm, schedule

sZR is constructed in non-increasing order of the modified priorities. As a corollary

of (2.4.3), the algorithm constructs an optimal schedule in the case of two machines.

The algorithm has been generalised to P |prec, ri, pi = 1|Lmax problem and shown

that the bound (2.4.3) is tight in [106].

All the above-mentioned two-phase approximation algorithms can be associated

with the family of priority algorithms. It has been shown in [107] that the Zinder-

Roper algorithm is the strongest priority approximation algorithm for P |prec, pi =

1|Lmax scheduling problem, thus providing the best possible worst-case performance

guarantee.

Problems with arbitrary execution times

Possibly the earliest result concerning the worst-case performance of an approxi-

mate algorithm for makespan problem on parallel identical machines and the set of

tasks scheduling with arbitrary processing times was provided in [37]. It was shown

that the bound (2.4.1) can be improved for a set of independent tasks with arbitrary

execution times, if the priority list is constructed according to LPT rule - “longest

processing time” first. Then the worst-case performance has the following tight upper

bound:
Cmax(sLP T )

Cmax(s∗)
≤

4

3
−

1

3m
, (2.4.5)

where Cmax(sLP T ) refers to the maximum completion time of the schedule sLP T con-

structed by the list algorithm according to LPT rule, and Cmax(s∗) is the maximum

completion time of the optimal schedule s∗ and m is the number of parallel machines.

The multifit approximation algorithm, presented in [13], uses a technique, quite

different from list scheduling. This technique allowed to improve (2.4.5) for P ||Cmax

scheduling problem. The algorithm is based on the observation that the problem

of scheduling independent tasks on parallel machines and the bin-packing problem
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are dual problems. Indeed, if the primal problem is the scheduling problem where

a set of n independent tasks with arbitrary processing times pj to be assigned to m

parallel machines with the objective to minimise maximum completion time, then

the dual problem would be to determine the maximum minimal capacity of the bins

required to pack the n pieces with sizes pj, such that the minimum number of the bins

with this capacity does not exceed m. Thus the multifit algorithm employs a binary

search between upper and lower bounds for the optimal value of Cmax, and for each

new capacity it uses an approximation algorithm to determine whether or not the

optimal number of bins of this capacity necessary to pack all pieces, is exceeding m.

The approximation bin-packing algorithm used on each iteration is first fit decreasing

algorithm or FFD algorithm. The FFD algorithm re-arranges the pieces in non-

increasing order of their sizes and places a piece in this order in the first bin it fits

without violating the bin capacity. After k iterations the multifit approximation

algorithm produces the following upper bound

Cmax(sMF )

Cmax(s∗)
≤ 1.22 +

(
1

2

)k

,

where Cmax(sMF ) refers to the maximum completion time of the schedule sMF con-

structed by the multifit algorithm, and Cmax(s∗) is the maximum completion time of

the optimal schedule s∗. This bound was improved in [105]:

Cmax(sMF )

Cmax(s∗)
≤

13

11
,

and the bound is tight. A similar approach was applied in [53], where a polynomial

approximation scheme for P ||Cmax scheduling problem was introduced. This scheme

delivers a solution s for any ε > 0 such that

Cmax(s) ≤ (1 + ε)Cmax(s∗),

where s∗ is an optimal schedule. Here we note that the algorithm is polynomial in

O((n
ε
)

1
ε2 ), thus making it infeasible for real-life applications. To give more practical
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estimation of the algorithm performance, it is shown that after k iterations, the

resulting solution sk provides the following approximation:

Cmax(sk) ≤ (1 + ε)(1 + 2−k)Cmax(s∗).

In [58] the P |intree, pi|Cmax scheduling problem was considered and Hu’s algo-

rithm was applied to a set of tasks with arbitrary processing times and precedence

constraints represented by an in-tree. Hu’s idea of assigning a length of the path

from a task to the root of a tree as a task’s priority was generalised to the case of

arbitrary processing times, and the tasks were executed in non-increasing order of

priorities by a list algorithm: a priority or a level lj of a task j is defined by both its

processing time and priority of its successor i: lj = pj + li. Hu’s critical or the longest

path algorithm is known to be optimal for in-trees with tasks of unit execution time;

it is shown that in the case of arbitrary processing times, the algorithm is “almost

optimal” [58]:

Cmax(sHpmtn) ≤ Cmax(s∗) ≤ Cmax(sLP ) ≤ Cmax(sHpmtn) + pmax −
pmax

m
,

where sHpmtn - is the schedule obtained by Hu’s longest path algorithm with preemp-

tions allowed after each unit of time, s∗ is the optimal schedule without preemptions

and sLP is the schedule obtained by the longest path (LP) algorithm without pre-

emptions.

Graham’s conjecture that the bound (2.4.1) for list algorithm can be improved in

some cases was confirmed in [63]. If precedence constraints are represented by a tree

and LP rule is used to compile the list for a list algorithm, then the following bound

holds for P |tree|Cmax problem:

Cmax(sLP )

Cmax(s∗)
≤ 2 −

2

m + 1
,

where Cmax(sLP ) refers to the maximum completion time of the schedule sLP con-

structed by the LP algorithm - list algorithm with the list comprised according to
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the LP rule, and Cmax(s∗) is the maximum completion time of an optimal schedule

s∗. The LP list is constructed in the non-decreasing order of the longest chain of a

given task’s predecessors, including the task’s processing time.

A similar result is derived in [104], where the problem on parallel machines with

delivery times is considered and the objective function is

Hmax(s) = max
1≤i≤n

(Ci(s) + qi) , (2.4.6)

where Ci(s) is the completion time of task i in a schedule s and qi a delivery time of

the task i. In the three-filed notation this pronlem could be described as P |qi|Hmax.

It is shown that the criterion of minimising the maximum lateness is equivalent to

minimizing the criterium (2.4.6). The proposed Mixed Delivery and Processing Time

List Scheduling heuristic (MLS heuristic) is a list algorithm with the priorities which

take into account both - the task’s processing time and its delivery time: w(i) =

(m − 1)pi + mqi, where m is the number of parallel machines, pi and qi are processing

and delivery times for task i, correspondingly. It is shown that the worst-case upper

bound for the MLS heuristic is

Hmax(sMLS)

Hmax(s∗)
≤ 2 −

2

m + 1
,

where sMLS is the schedule constructed by the MLS heuristic, and s∗ is an optimal

schedule.

The Naive algorithm for P |ri|Lmax problem is described in [45]. The naive algo-

rithm is essentially a list algorithm, in which at any iteration only the tasks with a

release time greater than the current time t are scheduled in the non-decreasing or-

der of due dates; t is selected as the minimum of the largest of busy times among all

machines. The following tight upper bound for the worst-case performance is derived:

Lmax(sN) − Lmax(s∗) ≤
(

2 −
1

m

)

pmax, (2.4.7)

where Lmax(sN) refers to the maximum lateness of the schedule sN constructed by
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the naive algorithm, Lmax(s∗) is the maximum lateness of the optimal schedule s∗

and pmax is the maximum processing time of the considered set of tasks. In case of

equal processing times the (2.4.7) can be improved:

Lmax(sN) − Lmax(s∗) ≤ p, (2.4.8)

where p is the processing time of any task. Further, if all due dates and release times

are multiples of p, the naive algorithm solves the scheduling problem in polynomial

time.

The approach applied to P |rj|Lmax scheduling problem in [46] results in an almost

optimal schedule for the problem. The problem is presented in a “delivery” form with

Lmax replaced by the maximum completion time with delivery times (2.4.6), and it is

assumed that all tasks can be delivered at the same time. The approach utilises the

notions of outline and Optimal Outline Scheme (OOS). An outline is some partial

information about a schedule, such that the schedule can be restored using its outline;

Optimal Outline Scheme is the algorithm, which for any given outline of a schedule

s constructs a schedule s′ with the value of the objective function not greater than

that of s. Using the definition, the (1 + ε)OOS allows to find “close enough” optimal

schedule if the number of possible outlines for the OOS is polynomial, or a polynomial-

size subset of outlines which includes an optimal solution, can be determined. The

solution is found by running OOS for each possible outline for the given instance and

selecting the best (minimal) solution. The (1 + ε)OOS guarantees that for any ε > 0

the objective value of the found solution will be only 1 + ε of the optimal value:

Hmax(s) ≤ (1 + ε)Hmax(s∗),

where s∗ is an optimal schedule. The algorithm considers the various combinations

of effective release times - the modified release times, such that there exists a feasible

schedule with the modified release times. For each combination, the algorithm splits

the tasks into sets according to their processing times and effective release dates.

The long tasks in each group are followed by the small tasks, scheduled in a greedy
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manner, so the total processing time of the small tasks in each group just exceeds a

certain constant, which in turn depends on the value of ε.

Another classical result discussed in [46] is the upper bound on the performance

of list algorithm for P |prec, rj|Lmax scheduling problem:

Hmax(sL)

Hmax(s∗)
< 2, (2.4.9)

where sL is a schedule constructed by a list algorithm and s∗ is an optimal schedule.

Exact algorithms

As exact methods for solving NP -hard problems are concerned, the branch and

bound method is a very popular exact algorithm [6, 72, 87], first proposed in 1960

in [65]. The branch and bound algorithm splits the decision space into sub-regions

(branching), and each sub-region is the basis for another branching. There is a wealth

of literature dedicated to various aspects of the method applied to scheduling on

parallel machines, such as efficient lower bounds and pruning techniques: [1, 2, 11,

17, 67, 83] - to name a few.

An alternative exact method was proposed and implemented in [112, 113]: the

considered solution method is an iterative procedure that at each iteration computes

a lower bound on the optimal objective value and searches for a feasible solution

attaining this bound. This method was implemented for the following problems:

P |prec, pij = 1|Cmax - in [112], and for P |prec, cij , pij = 1|Cmax - in [113], and

the computational experiments have demonstrated the superiority of the method in

comparison with a conventional branch-and-bound algorithm. Chapter 4 of this thesis

extends the results of these two papers.
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Chapter 3

Lagrangian relaxation and

decomposition-based algorithms

for flow shops with job-dependent

buffer requirements

The results of this chapter have been published in the following conference proceedings

and a journal:

• [38]: Hanyu Gu, Alexander Kononov, Julia Memar, and Yakov Zinder. “Efficient

lagrangian heuristics for the two-stage flow shop with job dependent buffer

requirements”. Journal of Discrete Algorithms, 52-53: pp.143 – 155, 2018.

• [61]: Alexander Kononov, Julia Memar, and Yakov Zinder. “Flow shop with

job–dependent buffer requirements—a polynomial–time algorithm and efficient

heuristics”. In International Conference on Mathematical Optimisation Theory

and Operations Research, pp 342–357. Springer, 2019.

• [39]: Hanyu Gu, Julia Memar, and Yakov Zinder. “Scheduling batch processing

in flexible flowshop with job dependent buffer requirements: Lagrangian relax-

ation approach”. In International Workshop on Algorithms and Computation,

pp 119–131. Springer, 2018.
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• [41]: Hanyu Gu, Julia Memar, and Yakov Zinder. “Improved Lagrangian relaxation-

based optimisation procedure for scheduling with storage”. IFAC-PapersOnLine

52, no. 13, pp 100-105. 2019.

The results of this chapter have been presented at the following conferences:

• the 28th Workshop on Combinatorial Algorithms IWOCA 2017, Newcastle,

Australia, 17-21 July 2017.

• the 12th International Conference, WALCOM 2018, Dhaka, Bangladesh, March

3-5, 2018.

• the International conference on Mathematical Optimisation Theory and Op-

erations Research MOTOR 2019, Ekaterinburg, Russian Federation, 8-12 July

2019.

• the 9th IFAC Conference on Manufacturing, Management and Control MIM

2019, Berlin, Germany, 27-30 August 2019.

3.1 Introduction

In this chapter, a Lagrangian relaxation and decomposition-based approach is applied

to NP -hard two-stage flow shop scheduling problems with a job-dependent buffer.

This approach allowed to develop heuristics - the algorithms, which do not guarantee

an optimal solution, however, these algorithms are efficient in practice. This approach

can be summarised as follows:

1. an integer linear programming formulation for a considered problem is devel-

oped;

2. some “bad” constraints in this formulation are dualised and a Lagrangian re-

laxation is obtained;

3. this relaxation is then decomposed into subproblems which are solved separately

by a recursive procedure, developed in this chapter;
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4. to find a good set of Lagrangian multipliers for the Lagrangian relaxation, the

standard iterative procedure known as the subgradient method [22] is utilised:

4.1 at each iteration the Lagrangian relaxation for the current set of La-

grangian multipliers is solved;

4.2 as a result of the Lagrangian relaxation permutations of jobs are obtained

- one for each stage. These permutations do not necessarily represent a

feasible schedule - the algorithms developed in this chapter are used to

construct a feasible schedule;

4.3 the value of the objective function for this feasible schedule is compared

with the best value of the objective function found so far, and the best value

is used as the current upper bound on the optimal value of the objective

function in the calculation of a new set of Lagrangian multipliers.

5. after a chosen number of iterations, the feasible schedule with the best value of

the objective function found in the course of these iterations is considered as

the solution produced by the Lagrangian heuristic.

All computational experiments for this chapter were conducted on a personal

computer with Intel Core i5 processor CP U@1.70Ghz, using Ubuntu 14.04 LTS,

with base memory 4096 MB. The algorithms were implemented in C programming

language. The CPLEX_OPTIM_STUDIO_12.6.1 software was also used for the

computational experiments.

Each of the considered in this chapter problems is NP -hard in a strong sense:

• it has been shown in [31], that a two-stage flow shop problem without a job-

dependent buffer and batches, and the objective of the total completion time

is strongly NP -hard - this problem is a particular case of the two considered

problems: F2|buffer|ΣwiCi and F2|buffer, batch|
∑

wkTk;

• the strong NP -hardness of F2|buffer|Cmax problem is due to [73].
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This chapter is organised as follows:

Section 3.2: Lagrangian relaxation and decomposition is applied to F2|buffer|ΣwiCi prob-

lem; several ways to construct a feasible schedule are proposed; the resulting

algorithms are compared computationally;

Section 3.3: Lagrangian relaxation and decomposition is applied to F2|buffer|Cmax prob-

lem; the resultant heuristic is compared computationally with two other algo-

rithms;

Section 3.4: Lagrangian heuristic developed to solve F |buffer, batch|
∑

wkTk problem. Sev-

eral ways to improve the performance of this heuristic are discussed, and the

resultant algorithms are compared computationally.
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3.2 Two-stage flow shop with storage and objec-

tive to minimise total weighted completion time

3.2.1 Problem Description

In what follows, the Lagrangian relaxation and decomposition are applied to the

following problem. The set of n jobs N = {1, ..., n} is to be processed by two machines

- the first-stage machine and the second-stage machine. Each job i is processed on the

first-stage machine during p1
i (the first operation of the job) and on the second-stage

machine during p2
i (the second operation of the job) time units. All processing times

are integer. The second operation of a job can commence on the second-stage machine

only after the completion of its first operation on the first-stage machine. Once an

operation has started, it cannot be interrupted, i.e. no preemptions are allowed. Each

machine can process at most one job at a time, and each job can be processed by at

most one machine at a time. The processing of jobs commences at time t = 0.

To be processed, each job i requires b(i) units of the buffer space. This buffer

space is occupied by a job continuously from the start of its first operation till the

completion of its second operation. At any point in time t the buffer capacity Ω can

not be exceeded by the total buffer requirement of all jobs that started their processing

before or at t and have a completion time of their second operation greater than t.

Similar to [59], [62], [73], [74] and [75] it is assumed that the buffer requirement of

each job is determined by the duration of the first operation: b(i) = p1
i for all i ∈ N .

For each job i, let S1
i and S2

i be the starting times of the job’s first and second

operation, respectively. The goal is to construct a schedule with the smallest total

weighted completion time
∑

i∈N wiCi, where wi is a positive weight, characterising i,

and Ci = S2
i +p2

i is the completion time of job i. The considered problem is NP -hard

in a strong sense, as even a particular case of the problem, when all weights are equal

to one and there is no buffer, is NP -hard in a strong sense [31].
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3.2.2 Lagrangian relaxation

In any optimal schedule, the completion time of a job can not exceed the following

value of the planning horizon T :

T =
∑

i∈N

(p1
i + p2

i ).

For each i ∈ N , integer 0 ≤ t < T , m ∈ {1, 2}, let

xm
it =







1, if Sm
i = t;

0, otherwise.

Each decision variable xm
it signifies whether or not job i has started on machine m at

time t. Similar to [62], the considered scheduling problem can be formulated as the

following integer linear program:

min
n∑

i=1

wi

(
T −1∑

t=1

tx2
it + p2

i

)

(3.2.1)

subject to

T −1∑

t=0

xm
it = 1, for 1 ≤ i ≤ n and m ∈ {1, 2} (3.2.2)

n∑

i=1

t∑

τ=max{0,t−pm
i

+1}

xm
iτ ≤ 1, for 0 ≤ t < T and m ∈ {1, 2} (3.2.3)

T −1∑

t=1

tx2
it −

T −1∑

t=1

tx1
it ≥ p1

i , for 1 ≤ i ≤ n (3.2.4)

n∑

i=1

b(i)





t∑

τ=0

x1
iτ −

t−p2
i∑

τ=0

x2
iτ



 ≤ Ω, for 0 ≤ t < T (3.2.5)

xm
it ∈ {0, 1}, for 1 ≤ i ≤ n, 0 ≤ t < T, and m ∈ {1, 2} (3.2.6)

Constraint (3.2.2) ensures that each job is scheduled only once on each machine;

constrains (3.2.3) and (3.2.5) are capacity constraints for the number of machines

on each stage and the buffer capacity, correspondingly; (3.2.4) enforces the order of

operations for each job and (3.2.6) indicates that all decision variables are binary.
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Dualising (3.2.3) and (3.2.5) for chosen nonnegative Lagrange multipliers vtm and

ut, where 0 ≤ t < T and m ∈ {1, 2}, gives the following Lagrangian relaxation:

min
n∑

i=1

wi

(
T −1∑

t=1

tx2
it + p2

i

)

+
T −1∑

t=0

2∑

m=1

vtm





n∑

i=1

t∑

τ=max{0,t−pm
i

+1}

xm
iτ − 1





+
T −1∑

t=0

ut





n∑

i=1

b(i)





t∑

τ=0

x1
iτ −

t−p2
i∑

τ=0

x2
iτ



 − Ω





subject to (3.2.2), (3.2.4) and (3.2.6). Let v be the set of all vtm and u be the set of

all ut. Let LR(v, u) be the optimal value of the objective function of the Lagrangian

relaxation above. For each i ∈ N , let Zi(v, u) be the optimal value of the objective

function of the integer linear program

min wi

T −1∑

t=1

tx2
it +

T −1∑

t=0

2∑

m=1

vtm

t∑

τ=max{0,t−pm
i

+1}

xm
iτ + b(i)

T −1∑

t=0

ut





t∑

τ=0

x1
iτ −

t−p2
i∑

τ=0

x2
iτ



 (3.2.7)

subject to

T −1∑

t=0

xm
it = 1, for m ∈ {1, 2} (3.2.8)

T −1∑

t=1

tx2
it −

T −1∑

t=1

tx1
it ≥ p1

i (3.2.9)

xm
it ∈ {0, 1}, for 0 ≤ t < T and m ∈ {1, 2} (3.2.10)

It is easy to see that

LR(v, u) =
n∑

i=1

Zi(v, u) +
n∑

i=1

wip
2
i −

T −1∑

t=0

2∑

m=1

vtm − Ω
T −1∑

t=0

ut (3.2.11)

Hence, for chosen Lagrange multipliers, the Lagrangian relaxation can be solved by

solving n separate integer linear programs (3.2.7) - (3.2.10). Each of these n problems

can be solved with the technique described below.

Recursive procedure

According to (3.2.8), for each i ∈ N exactly one x1
it and exactly one x2

it must be equal

to 1 and all others must be zero. If x1
is = 1 and x2

ir = 1 for some s and r , then the
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corresponding value of the objective function (3.2.7) is

wir +
s+p1

i
−1

∑

t=s

vt1 +
r+p2

i
−1

∑

t=r

vt2 + b(i)
r+p2

i
−1

∑

t=s

ut.

Observe that, by virtue of (3.2.9), s ≤ r − p1
i . Consider function f(r) defined for all

p1
i ≤ r ≤ T − p2

i as follows

f(r) = min
0≤s≤r−p1

i





s+p1
i −1

∑

t=s

vt1 + b(i)
r+p2

i −1
∑

t=s

ut



 . (3.2.12)

If r > p1
i , then f(r) can be found as

f(r) = min




f(r − 1) + b(i)ur+p2

i
−1,

r−1∑

t=r−p1
i

vt1 + b(i)
r+p2

i −1
∑

t=r−p1
i

ut




 (3.2.13)

The initial value of f(r) is for r = p1i :

f(p1
i ) =

p1
i
−1

∑

t=0

vt1 + b(i)
p1

i
+p2

i
−1

∑

t=0

ut. (3.2.14)

Hence, using (3.2.13) and (3.2.14), all values f(r) can be calculated recursively in

O(T ) operations, and by virtue of

Zi(v, u) = min
p1

i
≤r≤T −p2

i



f(r) + wir +
r+p2

i
−1

∑

t=r

vt2



 ,

the integer linear program (3.2.7) - (3.2.10) can be solved in O(T ) operations.

3.2.3 Lagrangian heuristics

The Lagrangian relaxation specifies two orders: the order in which the jobs are to

start on the first-stage machine and the order in which the jobs are to start on the

second-stage machine. It is convenient to refer to these orders as permutations π1 and

π2 of the set N . Please note that a feasible schedule where the jobs are processed on
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the first-stage machine according to π1 and on the second-stage machine according to

π2 may not exist. In this section, two algorithms that construct a feasible schedule are

described. The Algorithm NO-WAIT is a greedy algorithm in which the permutations

π1 and π2 set the priority between the jobs on each machine and the algorithm can

violate the order specified by these permutations. Whereas the Algorithm WAIT

strictly follows these permutations if possible. A necessary and sufficient condition of

the existence of a feasible schedule for a pair of permutations is also presented.

Description of NO-WAIT algorithm

The NO-WAIT algorithm uses Stage 1 procedure to schedule jobs on the first-stage

machine and Stage 2 procedure - to schedule jobs on the second-stage machine. Stage

1 selects the first unscheduled job in the permutation π1, that “fits” in the buffer and

assigns this job on the first-stage machine. Stage 1 goes through π1 and continues to

assign jobs to the first-stage machine while there are jobs which can be placed in the

buffer or the last job in π1 is reached. If no job is placed in the buffer during current

iteration of Stage 1, the algorithm proceeds to Stage 2 procedure. Stage 2 assigns

the first available job in the permutation π2 to the second-stage machine. Stage 2

continues to assign jobs to the second-stage machine while there are unscheduled

available jobs.

Denote by t1 and t2 the current starting time on the first and the second-stage

machine, correspondingly. Let In be the sum of buffer requirements of the jobs which

are currently in buffer. Denote by U1 the set of unscheduled jobs, by U2 the set of jobs

assigned on the first-stage machine and not yet assigned to the second-stage machine,

and by UB the set of jobs in the buffer at time t. For convenience, a dummy job n+1

is added at the end of permutations π1 and π2 and set b(n + 1) = 0. The NO-WAIT

algorithm can be summarized as follows:

Algorithm NO-WAIT

1: Set U1 = N ∪ {n + 1}, U2 = {n + 1}, UB = ∅, t1 = 0, t2 = 0, In = 0, S1
n+1 = 0;

2: Set p1
n+1 = 0, p2

n+1 = 0, k1 = 0, k2 = 0, k = 0.

3: while U1 6= {n + 1}(the stopping criterion is not fulfilled) do
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4: Let k = min{π−1
1 (j)|j ∈ U1 & In + b(j) ≤ Ω}. Set i = π1(k).

5: Stage 1

6: Stage 2

7: end while

Stage1 procedure

1: while i < n + 1 or t1 < t2 do

2: if i < n + 1 then

3: set S1
i = t1, U1 = U1 \ {i}, U2 = U2 ∪ {i}, UB = UB ∪ {i}, t1 = t1 + p1

i ,

In = In + b(i);

4: else

5: Let τ = min{S2
j + p2

j |j ∈ UB}. Set t1 = τ.

6: end if

7: for j ∈ UB do

8: if S2
j + p2

j ≤ t1 then

9: UB = UB \ {j}, In = In − b(j);

10: end if

11: end for

12: Let k1 = min{v > k|π1(v) = j &j ∈ U1 & In + b(j) ≤ Ω}.

13: Set i = π1(k1), k = k1.

14: end while

Stage2 procedure

1: Set k = 0.

2: Let τ = min{S1
j + p1

j |j ∈ U2}. Set t2 = max{t2, τ}.

3: while k2 ≤ n do

4: Let k2 = min{v > k|π2(v) = j &j ∈ U2 & Sj
1 + pj

1 ≤ t2}. Set i = π2(k2),

k = k2.

5: if i < n + 1 then

6: set S2
i = t2, U2 = U2 \ {i}, t2 = t2 + p2

i .

7: if S2
i + p2

i ≤ t1 then
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8: UB = UB \ {i}, In = In − b(i).

9: end if

10: end if

11: end while

According to line 3 of the NO-WAIT algorithm and line 12 of the Stage 1 procedure

the buffer capacity is not exceeded at any moment of time, since a job is scheduled on

the first-stage machine only if there is sufficient space in the buffer to accommodate

the job. At each iteration of the cycle while the Stage 2 procedure assigns to the

second-stage machine only the jobs which have been already assigned by the Stage

1 procedure to the first-stage machine. Further, the Stage 1 procedure is called

until there are unscheduled jobs. Thus the NO-WAIT algorithm constructs a feasible

schedule.

Description of WAIT algorithm

First, a necessary and sufficient condition of the existence of a feasible schedule

for a pair of permutations is presented. A pair of permutations (π1, π2) is feasible if

there exists a schedule such that the jobs on the first-stage machine are processed in

the order specified by π1 and on the second-stage machine the jobs are processed in

the order specified by π2.

Definition 1 Job i ∈ N is ordinary, if

∑

1≤u≤π−1
1 (i)

b(π1(u)) > Ω. (3.2.15)

Definition 2 For every ordinary job i ∈ N critical position 1 ≤ ki ≤ n is defined as

the smallest index v such that

∑

1≤u≤π−1
1 (i)

b(π1(u)) −
∑

1≤u≤v

b(π2(u)) ≤ Ω. (3.2.16)

Lemma 1 If the pair of permutations (π1, π2) is feasible, then for each ordinary i ∈ N

π−1
2 (i) > ki. (3.2.17)
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Proof: Consider an arbitrary feasible schedule, in which the jobs are processed in the

orders, specified by π1 and π2, and assume that ki > π−1
2 (i) for a job i. Consider all

the jobs which are completed on the second-stage machine by the time τ = S2
i + p2

i .

Since the considered schedule is feasible, S1
i +p1

i ≤ S2
i , hence {j : π−1

1 (j) ≤ π−1
1 (i)} ⊆

{j : S1
j ≤ τ}. At the same time {j : S2

j + p2
j ≤ τ} ⊆ {j : π−1

2 (j) ≤ π−1
2 (i)}. For the

feasible schedule the capacity of the buffer Ω should not be exceeded in any moment

of time, for example τ :

∑

u: S1
u≤τ

b(u) −
∑

u: S2
u+p2

u≤τ

b(u) ≤ Ω. (3.2.18)

Since ki > π−1
2 (i), by virtue of the definition 2 and (3.2.18),

∑

u: S1
u≤τ

b(u) −
∑

u: S2
u+p2

u≤τ

b(u) ≥
∑

1≤u≤π−1
1 (i)

b(π1(u)) −
∑

1≤u≤π−1
2 (i)

b(π2(u)) > Ω,

which contradicts (3.2.18). If ki = π−1
2 (i), then by the definition 2,

∑

1≤u<π−1
1 (i)

b(π1(u)) −
∑

1≤u≤π−1
2 (i)

b(π2(u)) ≤ Ω − b(i), (3.2.19)

which implies that job i has to be processed on the second-stage machine and leave

the buffer before it can start on the first-stage machine, which contradicts to the

assumption that the considered schedule is feasible.�

Lemma 1 demonstrates that (3.2.17) is a necessary condition for feasibility of pair

(π1, π2). To prove that (3.2.17) is also a sufficient feasibility condition, the results of

the following lemma are required.

Lemma 2 If for the pair (π1, π2) the inequality (3.2.17) holds for each ordinary i ∈

N , then for any q such that π−1
2 (q) ≤ ki, π−1

1 (q) < π−1
1 (i).

Proof: If q is not an ordinary job and π−1
1 (q) ≥ π−1

1 (i), then

∑

1≤u≤π−1
1 (i)

b(π1(u)) ≤
∑

1≤u≤π−1
1 (q)

b(π1(u)) ≤ Ω,

which contradicts i being ordinary job. Assume that q is an ordinary job and π−1
1 (q) ≥
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π−1
1 (i). Then by virtue of (3.2.17), kq < π−1

2 (q) ≤ ki. Thus, by the assumption and

taking into account definition 2,

∑

1≤u≤π−1
1 (q)

b(π1(u)) −
∑

1≤u≤kq

≥ b(π2(u))
∑

1≤u≤π−1
1 (i)

b(π1(q)) −
∑

1≤u≤kq

b(π2(u)) > Ω,

which contradicts to the fact that kq is the critical position for job q. �

If a pair of permutations (π1, π2) is feasible the Algorithm WAIT described below

constructs a schedule in which the order of execution of jobs on each machine coincides

with permutations π1 and π2. Otherwise, the algorithm modifies the permutation π2

in order to construct a feasible schedule. To determine, whether or not the pair π1

and π2 is feasible, the algorithm calculates a critical position ki for all ordinary jobs

i ∈ N by going through permutation π1 and determining whether or not (3.2.17) is

satisfied for every job. Denote by t1 and t2 the current starting time on the first

and the second-stage machine, correspondingly. Let pos2 be the position of the last

job in π2, scheduled in the current iteration. Let ξm(i) , m = {1, 2}, be equal to

1 if the job i is already assigned to the machine m in the current schedule and 0

otherwise. Let Calculate(π1, π2) be the procedure which calculates ki for all ordinary

jobs i ∈ N and assigns ki = −1 if job i is not ordinary. Further, Calculate(π1, π2)

sets P air(π1, π2) = True, if the pair is feasible, and P air(π1, π2) = False, otherwise.

Let Repair(i, pos2) be the procedure which modifies the π2 if the pair (π1, π2) is not

feasible. For a permutation π assume that |π| signifies the number of elements in π.

The WAIT algorithm can be summarised as follows:

Algorithm WAIT

1: Set π′
1 = π1, π′

2 = π2, t1 = 0, t2 = 0 and pos2 = 0.

2: Calculate(π1, π2).

3: while |π′
1|> 0 or |π′

2|> 0 do

4: if |π′
1|> 0 then

5: Set i = π′
1(1);

6: if ξ2(π′
1(ki)) = 1 then

7: Set S1
i = max{t1, S2

π′
2(ki)

+ p2
π′

2(ki)}; t1 = S1
i + p1

i , ξ1(i) = 1;
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8: Delete i from π′
1.

9: else

10: if NOT(P air(π1, π2)) then

11: Repair(i, pos2).

12: end if

13: end if

14: end if

15: if |π′
2|> 0 then

16: Set j = π′
2(1);

17: if ξ1(j) = 1 then

18: Set S2
j = max{t2, S2

π′
1(j) + p2

j}; t2 = S2
j + p2

j , ξ2(j) = 1, pos2 = pos2 + 1;

19: delete j from π′
2.

20: end if

21: end if

22: end while

Calculate(π1, π2) procedure

1: Set P air(π1, π2) = True, j = 1.

2: while j ≤ n and P air(π1, π2) do

3: Set i = π1(j);

4: if
∑

1≤u≤π−1
1 (i) b(π1(u)) ≤ Ω, then

5: Set ki = −1;

6: else

7: Set ki = min{v :
∑

1≤u≤π−1
1 (i) b(π1(u)) −

∑

1≤u≤v b(π2(u)) ≤ Ω};

8: if ki ≥ π2(i) then

9: set P air(π1, π2) = False.

10: end if

11: end if

12: end while
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Repair(i, pos2) procedure

1: Set r = 1;

2: if ki < π−1
2 (i) then

3: while r ≤ ki and π−1
1 (π2(r)) < π−1

1 (i) do

4: Set r = r + 1;

5: end while

6: end if(we have checked whether or not all jobs on positions in π2 up to ki are on

positions less than π−1
1 (i) in π1)

7: if ki ≥ π−1
2 (i) or r ≤ ki then

8: Set γ = pos2;

9: while
∑

1≤u≤π−1
1 (i) b(π1(u)) −

∑

1≤u≤γ b(π2(u)) > Ω do

10: Set µ = min{v > γ|π2(v) = j &ξ1(j) = 1};

11: Set h = π2(µ), γ = γ + 1, r = µ;

12: for γ < r ≤ µ do

13: Set α = π2(r − 1), π2(r) = α

14: end for

15: Set π2(γ) = h.

16: end while

17: Set ki = γ;

18: Set j = 1;

19: for j ≤ |π′
2| do

20: Set π′
2(j) = π2(pos2 + j) (here we are updating π′

2).

21: end for

22: end if

Algorithm WAIT constructs a feasible schedule as lines 6, 9 of the algorithm and lines

7, 9 of the Repair procedure ensure that an ordinary job is scheduled on the first-stage

machine only after the job on the corresponding critical position is completed on the

second-stage machine, hence by definition of a critical position the buffer capacity

is never violated; line 16 of the algorithm ensures that a job is scheduled on the

second-stage machine only after its completion on the first-stage machine. Observe
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that in Repair procedure the job on the position µ in line 10 of the procedure always

exits, as otherwise all the jobs which have been already scheduled on the first-stage

machine, would also have been scheduled on the second-stage machine before pos2,

which contradicts the line 9 of the Repair procedure. Please also note that if π1 = π2,

than the pair (π1, π2) is feasible.

Description of Lagrangian Heuristics

Each of the proposed Lagrangian heuristics is an iterative procedure that utilises

the subgradient method [22]. At each iteration, a Lagrangian relaxation for the cur-

rent set of Lagrangian multipliers is solved and a feasible schedule is constructed

using either NO-WAIT or WAIT algorithm. The objective value provided by the

Lagrangian relaxation and the objective value provided by the feasible schedule are

used to update the set of Lagrangian multipliers. It is convenient to use the follow-

ing notation for the Lagrangian heuristics summary, which is provided below. Let

LowerBound(v, u) be a procedure which calculates the objective function of the La-

grangian relaxation according to (3.2.11) for the current set of Lagrangian multipliers

(v, u). The Lagrangian relaxation provides starting times of jobs on each machine.

These starting times determine the permutations of jobs π1 and π2 for the first and

the second-stage machines, correspondingly. Essentially the WAIT and NO-WAIT

Lagrangian heuristics are different only in the way a feasible schedule is constructed.

Let FEASIBLE(π1, π2) signify the value of the objective function provided by the

feasible schedule constructed by either WAIT or NO-WAIT algorithm. Let InitialUB

be the value of the objective function provided by the feasible schedule constructed

by either WAIT or NO-WAIT algorithm in non-increasing order of W 0
i = wi

(p1
i
+p2

i
)
,

i ∈ N . Denote by NImax the maximum number of iterations. Let X be the optimal

solution vector, obtained during Lagrangian relaxation stage for the current set of

(v, u), with coordinates Xh = xm
it for 0 ≤ h < 2nT , where 1 ≤ i ≤ n, 0 ≤ t < T ,

m ∈ {1, 2}. Denote by A the matrix of the coefficients of the left hand sides of the

dualised constraints (3.2.3) and (3.2.5), and by B the vector of the corresponding

right hand sides. Let λ be a positive coefficient 0 < λ ≤ 2.
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Lagrangian Heuristic

1: Set vtm = 0 and ut = 0 for 0 ≤ t < T , m ∈ {1, 2}; set k = 0.

2: Set BestLB = 0; BestUB = InitialUB.

3: while k < NImax do

4: LB = LowerBound(v, u).

5: if LB > BestLB then

6: BestLB = LB.

7: end if

8: UB = FEASIBLE(π1, π2).

9: if UB < BestUB then

10: BestUB = UB.

11: end if

12: Set τ = λBestUB−LB
‖AX−B‖2 .

13: (v, u) = (v, u) + τ(AX − B)

14: end while

The above Lagrangian heuristic will be referred to as the NO-WAIT heuristic, if on

the step 8 the NO-WAIT algorithm is used to obtain the current upper bound; and

as to the WAIT heuristic, if on the step 8 the WAIT algorithm is used to obtain the

current upper bound.

3.2.4 Computational experiments

The computational experiments aimed to compare the NO-WAIT and WAIT heuris-

tics. The test instances were generated randomly with processing times chosen from

the interval [1, 10], and jobs’ weights chosen from the interval (0, 2]. Each set con-

sisted of 15 instances. An instance is described in the form n − Ωk, where n is the

number of jobs, and Ωk is the size of the buffer. The experiments were conducted for

instances with 5, 10, 25 and 50 jobs and for buffer sizes Ω1 = bmax, Ω1.5 = 1.5bmax

and Ω2 = 2bmax, where bmax is the maximum buffer requirement among all jobs of

an instance. Recall that Lagrangian relaxation provides two permutations - π1 and
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π2, defined by the starting times of jobs on the first and the second-stage machine,

correspondingly. Denote by NW 1 and NW 2 the NO-WAIT heuristic, with the same

orders of jobs on both machines defined by either π1 or π2 only, and by NW 3 - the NO-

WAIT heuristic, with the orders of jobs on first and second-stage machines defined

by π1 and π2, correspondingly. Similar, denote by W1 and W2 the WAIT heuristic,

with the same orders of jobs on both machines defined by either π1 or π2 only, and by

W3 - the WAIT heuristic, with the orders of jobs on first and second-stage machines

defined by π1 or π2, correspondingly. In each heuristic the subgradient algorithm was

run for 1000 iterations, the time limit was 25 minutes for the small instances with 5

and 10 jobs, and 30 minutes for 25 and 50 jobs instances.

For each job i the parameter

W 0
i =

wi

(p1
i + p2

i )

was calculated, and the list of jobs in non-increasing order of W 0
i was constructed.

To obtain an initial value of the upper bound NO-WAIT or WAIT algorithm was

employed with this order for both machines. Hence the initial upper bounds for

NW 1, NW 2 and NW 3 had the same value INW ; similarly, the initial upper bounds

for W1, W2 and W3 had the same value IW . “Swapping” the initial upper bounds by

running WAIT algorithm with the initial upper bound INW and running NO-WAIT

algorithm with the initial upper bound IW did not lead to significant changes in the

resulting solutions, with the change of the values within 5%.

The Tables 3.1 - 3.12 compare the quality of the objective function values provided

by WAIT and NO-WAIT heuristics and CPLEX (results by CPLEX are for 5 and

10 jobs instances only) and the tables are constructed as follows. The first column

represents an instance number. For each instance the second column represents the

difference D, in %, between the initial upper bounds provided by NO-WAIT and

WAIT algorithms, and calculated as

D =
(

1 −
IW

INW

)

× 100%.
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The columns 3 − 5 show the improvement, in %, of the upper bound I, calculated as

I =
(

1 −
UB

INW

)

× 100%,

where UB is a value of the objective function provided by a feasible schedule, con-

structed by NW 1, NW 2 and NW 3 correspondingly. The columns 6 − 8 show the

improvement, in %, of the upper bound I, calculated as

I =
(

1 −
UB

IW

)

× 100%,

where UB is a value of the objective function provided by a feasible schedule, con-

structed by W1, W2 and W3 correspondingly. Columns 9 − 15 show the deviation of

the objective value UB, provided by a heuristic (NW 1, NW 1, NW 2, NW 3, W1, W2,

W3 and CPLEX - for 5 and 10 jobs sets) from the best value among the heuristics,

calculated as
(

UB

BestV alue
− 1

)

× 100%.

Observe that more than one heuristic can provide the best value.

For small instances of 5 and 10 jobs all heuristics provided optimal/near-optimal

solutions for most instances, compared with the solutions obtained by CPLEX soft-

ware.

For most instances across all numbers of jobs and buffer sizes the heuristic W1

provided the best values, which indicates that the order of starting times on the first-

stage machine, obtained during the Lagrangian relaxation stage, is more significant,

than the order on the second-stage machine. Moreover, WAIT heuristics W1 and

W2 provided smaller upper bounds, than NO-WAIT and W3 heuristics for most of

the instances. Observe that WAIT algorithm also provided the smallest initial upper

bound for most instances.

The graphs on Figures 3-1 - 3-2 illustrate how the upper and lower bounds change

with each iteration for instances 50 − Ω2 and 25 − Ω2 for each heuristic. At each

iteration the upper bound UB is the smallest value of the objective function so far,
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Table 3.1: 5 jobs instances, buffer size Ω1.0
Initial UB,

1-IW/INW,%
Improvement,
1-UB/INW, %

Improvement,
1-UB/IW, %

Best UB,
UB/Best UB -1, %

Instance D ,% NW1 NW2 NW3 W1 W2 W3 NW1 NW2 NW3 W1 W2 W3 CPLEX
1 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0
2 -3 0 0 0 3 3 3 0 0 0 0 0 0 0
3 14 15 14 15 2 0 0.4 0 2 0 0 2 2 0
4 -3 1 1 1 3 3 3 0 0 0 0 0 0 0
5 5 0 0 0 0 0 0.3 5 5 5 0 0 0 0
6 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0
8 -2 0 0 0 2 2 2 0 0 0 0 0 0 0
9 8 6 1 6 1 1 0.1 4 9 4 0 0 1 0
10 6 0 0 0 0 0 0 7 7 7 0 0 0 0
11 -4 0 0 0 4 4 4 0 0 0 0 0 0 0
12 6 4 4 4 4 4 4 7 7 7 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 23 10 0 10 0 0 0 18 30 18 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.2: 5 jobs instances, buffer size Ω1.5
Initial UB,

1-IW/INW,%
Improvement,
1-UB/INW, %

Improvement,
1-UB/IW, %

Best UB,
UB/Best UB -1, %

Instance D ,% NW1 NW2 NW3 W1 W2 W3 NW1 NW2 NW3 W1 W2 W3 CPLEX
1 0 0.1 0 0.1 0.1 0 0 0 0.1 0 0 0.1 0.1 0
2 -9 0 0 0 8 8 8 0 0 0 0 0 0 0
3 18 28 23 28 13 13 13 2 8 2 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 10 0 0 0 11 11 11 26 26 26 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 13 19 19 19 7 7 7 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 3 0 0 0 0 0 0 3 3 3 0.4 0 0.4 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 -10 1 1 1 10 10 10 0 0 0 0 0 0 0
13 -7 0 0 0 6 6 6 0 0 0 0 0 0 0
14 -1 0 0 0 1 1 1 0 0 0 0 0 0 0
15 -2 0 0 0 0 2 0 0 0 0 2 0 2 0

66



Table 3.3: 5 jobs instances, buffer size Ω2.0
Initial UB,

1-IW/INW,%
Improvement,
1-UB/INW, %

Improvement,
1-UB/IW, %

Best UB,
UB/Best UB -1, %

Instance D ,% NW1 NW2 NW3 W1 W2 W3 NW1 NW2 NW3 W1 W2 W3 CPLEX
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0.5 0.5 0.5 1 1 1 0 0 0 0
3 0 8 8 8 8 8 7 0 0 0 0 0 1 0
4 0 7 7 7 7 7 0 0 0 0 0 0 8 0
5 -1 0 0 0 5 5 5 4 4 4 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 6 6 6 6 6 0 0 0 0 0 0 7 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 5 0 0 0 0 0 0 5 5 5 0 0 0 0
10 0 0 0 0 0.05 0.05 0.05 0.05 0.05 0.05 0 0 0 0
11 0 2 2 2 2 2 2 0 0 0 0 0 0 0
12 0 5 5 5 8 8 8 3 3 3 0 0 0 0
13 0 0 0 0 1 1 0 1 1 1 0 0 0.9 0
14 3 0 1 0 0.3 0 0 3 2 3 0 0.3 0.3 0
15 6 0 0 0 0 0 0 6 6 6 0 0 0 0

Table 3.4: 10 jobs instances, buffer size Ω1.0
Initial UB,

1-IW/INW,%
Improvement,
1-UB/INW, %

Improvement,
1-UB/IW, %

Best UB,
UB/Best UB -1, %

Instance D ,% NW1 NW2 NW3 W1 W2 W3 NW1 NW2 NW3 W1 W2 W3 CPLEX
1 -3 2 1 2 4 4 4 0 0.2 0 0.2 0.2 0.2 0
2 0 0 0 0 0 0 0 0 0 0 0.4 0.4 0.4 99
3 -5 0 0 0 7 7 7 2 2 2 0.02 0.02 0.02 0
4 4 5 7 5 6 10 3 9 7 9 4 0 7 263
5 -4 5 6 5 10 10 10 1 0 1 0.1 0.1 0.1 0
6 5 11 11 11 8 7 8 2 2 2 0.4 1 0 0
7 -7 4 4 4 10 10 10 0 0 0 0 0 0 1
8 -4 6 6 6 9 10 5 0.4 0.4 0.4 1 0 5 0
9 -8 0 0 0 8 9 8 1 1 1 0.5 0 1 0.5
10 -3 6 1 5 13 10 9 6 12 7 1 4 6 0
11 -2 4 4 4 7 7 7 2 1 2 0 0.1 0.2 112
12 2 7 7 7 10.0 10.0 9.7 4 4 4 0 0 0.3 2
13 8 5 5 5 2 2 1 6 6 6 0.03 0.03 1 0
14 9 16 14 16 7 7 6 0 2 0 1 1 2 0
15 -1 4 6 4 7 8 7 3 1 3 1 0 1 1

Table 3.5: 10 jobs instances, buffer size Ω1.5
Initial UB,

1-IW/INW,%
Improvement,
1-UB/INW, %

Improvement,
1-UB/IW, %

Best UB,
UB/Best UB -1, %

Instance D ,% NW1 NW2 NW3 W1 W2 W3 NW1 NW2 NW3 W1 W2 W3 CPLEX
1 -5 13 13 13 17 16 15 0.2 0.2 0.2 0.2 2 2 0
2 -14 4 2 4 14 11 9 0 2 0 2 5 7 2595
3 8 10 9 12 7 5 0 4 6 3 0.4 2 8 0
4 26 32 29 29 8 10 2 2 7 7 2 1 9 0
5 4 3 3 3 3 3 2 5 5 5 1 1 1 0
6 0.1 2 0.1 0.1 6 5 5 6 7 7 1 2 2 0
7 -10 0.6 1.0 0.6 13 10 7 4 3 4 0 3 6 2435
8 -8 4 2 2 11.7 12.1 7.2 1 4 3 1 0.4 6 0
9 13 12 12 12 4 3 2 7 6 6 1 3 4 0
10 11 20 18 18 8 8 2 0.1 3 3 1 1 9 0
11 1 6 6 6 9 8 9 5 5 5 1 2 1 0
12 13 8 10.7 11.0 2.3 1.9 0.9 8 5 5 0 0.4 1 0
13 3 0.2 0.2 0.2 3 3 2 6 6 6 0.05 0.05 0.4 0
14 15 26 14 24 13 9 8 0 16 3 0 5 6 0
15 9 7.0 14.2 14.0 6.80 6.82 2.6 9 1 1 0.02 0 5 1
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Table 3.6: 10 jobs instances, buffer size Ω2.0
Initial UB,

1-IW/INW,%
Improvement,
1-UB/INW, %

Improvement,
1-UB/IW, %

Best UB,
UB/Best UB -1, %

Instance D ,% NW1 NW2 NW3 W1 W2 W3 NW1 NW2 NW3 W1 W2 W3 CPLEX
1 3 18 18 18 15 15 12 0.2 0.2 0.2 0.2 0.2 5 0
2 14 12 6 12 3 3 1 6 13 6 0 0.001 1 0
3 -2 2 2 2 7.1 6.8 6.6 3 3 3 0 0.3 0.5 0
4 -3 0 1 0 3 4 3 1 0 1 1 0 1 0
5 0 3 3 3 4 4 4 1 1 1 0 0 0 0
6 0.3 0.3 0.3 0.2 2.2 2.2 2.1 2 2 2 0 0 0.1 0
7 -2 2 2 2 4 4 0.7 0 0 0 0 0 3 0
8 -1 7 7 6 7 9 5 0.3 0.3 2 1 0 4 0
9 0 1.5 1.6 1.5 2 2 2 0.2 0.1 0.2 0 0 0 0
10 5 11 8 11 8.1 7.7 6.2 4 7 4 2 2 4 0
11 1 12 12 12 12.200 12.201 12.200 2 2 2 0.002 0 0.002 0
12 8 9.8 9.6 10.0 2 2 2 0.4 1 0.1 0 0 0 0
13 3 5 4 4 2 1 1 0 0.5 0.5 0.1 0.5 1 0
14 6 10 10 10 5 5 5 1 1 1 0 0 0 0
15 3 11 6 9 11 11 10 3 9 6 1 1 2 0

Table 3.7: 25 jobs instances, buffer size Ω1.0
Initial UB,

1-IW/INW,%
Improvement,
1-UB/INW, %

Improvement,
1-UB/IW, %

Best UB,
UB/Best UB -1, %

Instance D ,% NW1 NW2 NW3 W1 W2 W3 NW1 NW2 NW3 W1 W2 W3
1 18 14 14 19 11 9 0 18 18 10 0 2 12
2 12 14 13 13 10 9 0 8 9 10 0 1 11
3 0.5 9 8 8 11 13 7 5 6 6 2 0 6
4 10 16.1 16.0 15.7 11 8 1 4 5 5 0 3 11
5 6 15.0 13 14.8 13.00 13.03 5 4 7 5 0.03 0 9
6 2 12 11 13 13.126 13.129 10.7 3 5 2 0 0 3
7 8 13 13 14 7 5 1 1 1 1 0 2 6
8 6 8 3 8 15 14 10 16 21 16 0 1 5
9 9 6 10 6 6.4 6.8 1.6 10 6 10 0.4 0 6
10 8 10 10 14 11 9 5 10 9 4 0 2 6
11 -13 4 2 4 11.6 12.0 9 0 1 0.0 3 3 6
12 -2 6 8 7 14.3 12.9 6 8 5 6 0 2 9
13 12 16.49 15 16.48 14.3 14.5 11 12 13 12 0.2 0 4
14 2 4.2 4.5 4.7 4 6 1 4 4 3 2 0 6
15 2 6.4 4 5.6 5 4 1 0.4 3 1 0 1 4
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Table 3.8: 25 jobs instances, buffer size Ω1.5
Initial UB,

1-IW/INW,%
Improvement,
1-UB/INW, %

Improvement,
1-UB/IW, %

Best UB,
UB/Best UB -1, %

Instance D ,% NW1 NW2 NW3 W1 W2 W3 NW1 NW2 NW3 W1 W2 W3
1 22 18 17 15 9 7 0 16 16 19 0 2 10
2 10 14 16 13 9.4 8.7 1 6 2 6 0 1 10
3 7 10 10 11 9 7 0 6 6 5 0 2 10
4 6 16 14 13 11 13 0 3 5 6 2 0 15
5 5 15 17 15 13.2 12.9 12 3 1 3 0 0.4 2
6 7 9 12 9 5 5 0 3 0.1 3 1 0 5
7 1 16 15 15 12 14 1 0 2 1 4 2 17
8 -2 6 5 4 18 17 11 13 14 15 0 2 9
9 12 17 15 12 12 10 0 7 9 14 0 2 14
10 13 24 22 22 17 16 8 5 7 8 0 1 11
11 6 13 12 14 6 5 0 1 3 0 2 4 9
12 10 17.2 16.9 15.9 6 7 0 0 0.3 2 2 1 9
13 20 19.1 19.5 19.6 9 12 0 15 15 15 4 0 14
14 16 19 7 18 11 11 0 9 24 9 1 0 13
15 2 12.6 12.7 12.6 13 16 4 7 7 7 3 0 15

Table 3.9: 25 jobs instances, buffer size Ω2.0
Initial UB,

1-IW/INW,%
Improvement,
1-UB/INW, %

Improvement,
1-UB/IW, %

Best UB,
UB/Best UB -1, %

Instance D ,% NW1 NW2 NW3 W1 W2 W3 NW1 NW2 NW3 W1 W2 W3
1 19 18 12 15 5 8 0 9 17 13 3 0 8
2 2 6 9 7 8 7 2 5 2 4 0 1 7
3 4 11.10 10.8 11.08 7 8 2 0.2 0.5 0.2 1 0 6
4 3 12 3 10 11 12 5 3 13 5 0.3 0 7
5 10 19.4 19.5 19.6 12.7 13.2 5 3 3 3 1 0 10
6 1 7.8 8.1 7.8 7.6 8.1 2 1 1 1 0.4 0 6
7 7 13.02 13.08 13.06 7.8 7.6 0 1 1 1 0 0.3 8
8 8 14 13 16 15 14 13 9 11 7 0 1 2
9 9 11.38 11.26 11.43 7 6 0 5 6 5 0 1 8
10 9 19.3 18.6 18 13 15 3 4 5 5 2 0 13
11 -0.2 7 8 7 6 7 0 0.5 0 1 1 0.5 8
12 6 13 12 12 7.0 6.9 0 0.1 1 1 0 0.1 8
13 12 17 15 11 11 12 0 8 10 15 1 0 14
14 19 24 21 24 8 6 2 2 6 2 0 2 7
15 5 17.3 16.5 17.0 13 12 8 1 2 1 0 2 6
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Table 3.10: 50 jobs instances, buffer size Ω1.0
Initial UB,

1-IW/INW,%
Improvement,
1-UB/INW, %

Improvement,
1-UB/IW, %

Best UB,
UB/Best UB -1, %

Instance D ,% NW1 NW2 NW3 W1 W2 W3 NW1 NW2 NW3 W1 W2 W3
1 9 11.0 10.5 8 7 6 0 4 5 8 0 1 7
2 7 11.6 12.0 12 15 15 6 12 11 12 0 1 11
3 16 10 5 10 5 7 0 15 21 15 2 0 7
4 21 16 19 16 8 5 0 16 12 16 0 4 9
5 -7 3 3.8 4.2 15.4 15.1 7 8 6 6 0 0.4 10
6 -4 3 1 2 9 8 0 2 4 4 0 1 10
7 6 4 4 11 11 10 0 14 14 7 0 1 12
8 13 15 11 11 10 9 0 9 14 13 0 1 11
9 -5 9 6 10 15 14 6 3 7 2 0 1 11
10 10 9 6 7 5 3 0 7 10 9 0 2 5
11 4 8 11 10 10 10 0 7 4 5 0.3 0 11
12 12 11 8 13 12 9 0 15 18 12 0 3 13
13 14 7 6 7 6 6 0 16 17 16 0 0.5 7
14 6 10 7 9 11 10 0 7 10 8 0 1 12
15 13 17.6 14 17.8 12 8 0 8 13 8 0 5 13

Table 3.11: 50 jobs instances, buffer size Ω1.5
Initial UB,

1-IW/INW,%
Improvement,
1-UB/INW, %

Improvement,
1-UB/IW, %

Best UB,
UB/Best UB -1, %

Instance D ,% NW1 NW2 NW3 W1 W2 W3 NW1 NW2 NW3 W1 W2 W3
1 -4 0 3 4 8 7 0 5 2 0 1 2 9
2 18 16 13 16 12 11 0 17 22 17 0 1 14
3 12 21 18 18 10.1 9.8 0 0 4 4 1 1 12
4 23 15 15.55 15.62 6 4 0 17 16 16 0 2 6
5 -3 7 6 5 10 7 0 1 2 2 0 3 11
6 8 14 12 13 11 8 0 5 7 7 0 3 12
7 4 7 4 7 14 13 0 12 17 12 0 1 16
8 13 22 19 19 11 10 0 0 5 4 0.1 1 12
9 15 20 21 21 5 5 0 2 0.4 0 2 2 8
10 9 14 11 10 8 4 0 3 7 8 0 3 8
11 7 20 17 20 12 10 0 0 5 0 3 5 17
12 14 20 19 19 13 12 0 6 8 8 0 2 15
13 12 17 19 18 13 14 0 9 6 8 1 0 16
14 17 20 20 21 13 11 0 11 10 9 0 2 15
15 20 17 19 17 5 3 0 9 8 9 0 3 5
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Table 3.12: 50 jobs instances, buffer size Ω2.0
Initial UB,

1-IW/INW,%
Improvement,
1-UB/INW, %

Improvement,
1-UB/IW, %

Best UB,
UB/Best UB -1, %

Instance D ,% NW1 NW2 NW3 W1 W2 W3 NW1 NW2 NW3 W1 W2 W3
1 -1 5.4 4.8 4.5 6 7 0 1 1.9 2 2 0 8
2 24 23 17 19 9 7 0 11 20 16 0 2 10
3 14 18 13 16 9 8 0 5 11 6 0 1 9
4 19 19.1 19.0 17 5 5 0 4 4 7 0 0.1 5
5 10 17.9 17.6 18.2 9 9 0 1 1 1 0 1 10
6 7 13 11 12 9 8 0 3 5 4 0 1 10
7 17 17 14 16 10 10 0 12 15 13 0.02 0 12
8 6 11 7 8 5 5 0 1 5 4 0 1 6
9 11 15.0 11 14.6 7 6 0 3 8 3 0 1 8
10 19 20 13 16 2 3 0 1 10 6 0.1 0 3
11 4 13 12 13 9 9 0 0 2 1 2 1 11
12 20 23 20 21 9 8 0 7 10 9 0 1 10
13 16 18 10 15 10 8 0 9 20 13 0 2 11
14 16 21 20 19 7 7 0 1 3 4 0 0.5 8
15 18 20.24 20.18 18 6 5 0 3 3 6 0 0.2 6

which is provided by a feasible schedule, constructed by corresponding WAIT or

NO-WAIT algorithm; and the lower bound LB is the largest value of the objective

function of the Lagrangian relaxation (3.2.11) so far. Clearly, WAIT heuristics W1

and W2 have the smallest relative errors RE, in %, which is calculated as

RE =
UB − LB

UB
× 100%.

The relative error was calculated for each instance within each set - the results are

represented by box-plot charts on Figures 3-3 - 3-4. Relative errors for larger buffer

size Ω2 is smaller for all heuristics; relative errors provided by W1 and W2 are con-

siderably smaller than the relative errors provided by W3 and NO-WAIT heuristics

and the values have less variability across each set of instances.

In terms of average CPU time required to process an instance, both WAIT and

NO-WAIT heuristics surpass direct integer programming approach - as illustrated on

Figure 3-5, where the average CPU time in seconds is shown for instances of 5, 10,

15, 25 and 50 jobs and the buffer size Ω2. If for the instances with 5 and 10 jobs

the times are comparable, for the instances of 15 jobs the average time to obtain an

optimal solution is already considerably greater. CPLEX failed to obtain a solution

for a 15 jobs instance with buffer Ω1 within 3 hours limit; for a 25 jobs instance with
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Figure 3-1: Upper and Lower bounds change with iterations: 25 jobs

buffer Ω2 CPLEX failed to obtain a solution within 10 hours limit.

In summary, the results demonstrate that WAIT heuristics, which follow the order

of jobs provided during the Lagrangian relaxation stage, produce feasible schedules

with a smaller value of the objective function, than NO-WAIT heuristics. It appears

that the order of jobs on the first-stage is more significant, as WAIT heuristic W1,

in which the jobs are scheduled in each machine exactly in the order, obtained by

the Lagrangian relaxation and defined by starting times of jobs on the first-stage

machine, provided the smallest value of the objective function for most instances,

and had smaller relative errors. All Lagrangian heuristics provide feasible solutions

in a much shorter time than CPLEX.

3.2.5 Conclusion

This section is concerned with Lagrangian relaxation and decomposition-based ap-

proach applied to the two-stage flow shop problem with a job-dependent buffer and

the objective of minimisation of the total weighted completion time. The buffer re-
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Figure 3-2: Upper and Lower bounds change with iterations: 50 jobs

Figure 3-3: Relative error for 25 job instances, in %
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Figure 3-4: Relative error for for 50 job instances, in %

Figure 3-5: Average CPU time for instance with different number of jobs
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quirement in this scheduling model varies from job to job and a job occupies the

buffer continuously from the start of its first operation till the completion of its sec-

ond operation. The Lagrangian relaxation and decomposition-based approach utilises

a fast recursive algorithm for each subproblem, obtained by this decomposition. The

resulting WAIT and NO-WAIT Lagrangian heuristics are compared by the means of

computational experiments. The computational experiments demonstrate that the

heuristics’ results surpass the straightforward application of CPLEX optimisation

software.
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3.3 Two-stage flow shop with storage and objec-

tive to minimise maximum completion time

3.3.1 Problem Description

In what follows, the Lagrangian relaxation and decomposition are applied to the

following problem. A set of jobs N = {1, ..., n} is to be processed by two machines -

the first-stage machine and the second-stage machine. Each job i is processed on the

first-stage machine during p1
i (the first operation of the job) and on the second-stage

machine during p2
i (the second operation of the job) time units. All processing times

are integer. The second operation of a job can commence on the second-stage machine

only after the completion of its first operation on the first-stage machine. Once an

operation has started, it cannot be interrupted, i.e. no preemptions are allowed. Each

machine can process at most one job at a time, and each job can be processed by at

most one machine at a time. The processing of jobs commences at time t = 0. To

be processed, each job i requires b(i) units of the buffer space. This buffer space is

occupied by a job continuously from the start of its first operation till the completion

of its second operation. At any point in time t, the total buffer requirement of all

jobs that started their processing before or at t and have a completion time of their

second operation greater than t, can not exceed Ω - the buffer capacity. Again, similar

to [59], [62], [73], [74] and [75] it is assumed that the buffer requirement of each job

is determined by the duration of the first operation: b(i) = p1
i for all i ∈ N . A

schedule σ specifies for each j ∈ N the points in time S1
j (σ) and S2

j (σ), when job

j starts processing, and C1
j (σ) and C2

j (σ), when job j completes processing on the

first and the second-stage machine, correspondingly. Thus S1
j (σ) + p1

j = C1
j (σ) and

S2
j (σ) + p2

j = C2
j (σ). The goal is to minimise the makespan Cmax(σ) = maxj∈N C2

j (σ).

The considered problem is NP -hard in a strong sense [73].
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3.3.2 Lagrangian relaxation-based heuristic

Integer Programming formulation

Denote by T the planning horizon, i.e. T is a non-negative number such that for

an optimal schedule σ the value of makespan Cmax(σ) ≤ T.

One obvious choice for the planning horizon T is
∑

i∈N(p1
i +p2

i ). However, a smaller

planning horizon T may improve the convergence of an algorithm. To obtain a tighter

T , WAIT algorithm (from section 3.2) is run with the permutation defined by non-

increasing order of p1
i + p2

i , and then T is set to the resulting value of the makespan.

Define xm
it , i ∈ N , 0 ≤ t < T , m ∈ {1, 2}, as

xm
it =







1, if Sm
i = t;

0, otherwise.

Denote by Cmax = maxi∈N

∑T −1
t=1 tx2

it + p2
i . The considered scheduling problem can be

formulated as:

min Cmax (3.3.1)

subject to

T −1∑

t=0

xm
it = 1, for 1 ≤ i ≤ n and m ∈ {1, 2} (3.3.2)

n∑

i=1

t∑

τ=max{0,t−pm
i

+1}

xm
iτ ≤ 1, for 0 ≤ t < T, m ∈ {1, 2} (3.3.3)

T −1∑

t=1

tx2
it −

T −1∑

t=1

tx1
it ≥ p1

i , for 1 ≤ i ≤ n (3.3.4)

n∑

i=1

b(i)





t∑

τ=0

x1
iτ −

t−p2
i∑

τ=0

x2
iτ



 ≤ Ω, for 0 ≤ t < T (3.3.5)

T −1∑

t=1

tx2
it + p2

i ≤ Cmax, for 1 ≤ i ≤ n (3.3.6)

xm
it ∈ {0, 1}, for 1 ≤ i ≤ n, 0 ≤ t < T, m ∈ {1, 2}; Cmax ≥ 0 (3.3.7)

The constraints (3.3.2) signify that each job can start only once on each machine,

the constraints (3.3.3) imply that only one operation is processed on each machine
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at a time, the constraints (3.3.4) ensure the correct order of operations for each job,

the constraints (3.3.5) enforce that the overall buffer capacity is not exceeded at any

time, (3.3.6) define the value of Cmax and the constraints (3.3.7) is non-negativity

constraint.

Lagrangian relaxation and decomposition

To obtain the Lagrangian relaxation the capacity constraints (3.3.3) and (3.3.5) are

relaxed. To relax (3.3.6) the technique described in [102] is utilised: for multipliers

λi ≥ 0 with at least one λj > 0, the constraints (3.3.6) are aggregated:

n∑

i=1

λi

(
T −1∑

t=1

tx2
it + p2

i

)

≤
n∑

i=1

λiCmax

or
n∑

i=1

λi
∑n

j=1 λj

(
T −1∑

t=1

tx2
it + p2

i

)

≤ Cmax. (3.3.8)

Denote by qi = λi∑n

j=1
λj

, i ∈ N , and let vtm ≥ 0 and ut ≥ 0, m ∈ {1, 2}, 0 ≤ t < T , be

Lagrangian multipliers. Then the following Lagrangian relaxation is obtained:

min Cmax +
n∑

i=1

qi

(
T −1∑

t=1

tx2
it + p2

i

)

− Cmax

+
T −1∑

t=0





2∑

m=1

vtm





n∑

i=1

t∑

τ=max{0,t−pm
i

+1}

xm
iτ − 1









+
T −1∑

t=0

ut





n∑

i=1

b(i)





t∑

τ=0

x1
iτ −

t−p2
i∑

τ=0

x2
iτ



 − Ω





subject to (3.3.2), (3.3.4) and (3.3.7). Let (v, u, q) be the sets of all Lagrangian

multipliers, and L(v, u, q) be the optimal value of the Lagrangian relaxation above.

For each i ∈ N denote by Li(v, u, q) the optimal value of the following integer linear
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program:

min qi

T −1∑

t=1

tx2
it +

T −1∑

t=0

2∑

m=1

vtm

t∑

τ=max{0,t−pm
i

+1}

xm
iτ

+b(i)
T −1∑

t=0

ut





t∑

τ=0

x1
iτ −

t−bi∑

τ=0

x2
iτ



 (3.3.9)

subject to

T −1∑

t=0

xm
it = 1, for m ∈ {1, 2} (3.3.10)

T −1∑

t=1

tx2
it −

T −1∑

t=1

tx1
it ≥ p1

i (3.3.11)

xm
it ∈ {0, 1}, for 0 ≤ t < T, and m ∈ {1, 2} (3.3.12)

Therefore, for the chosen set of Lagrangian multipliers (v, u, q), L(v, u, q) could be

computed as the sum of all Li(v, u, q) and a linear combination of parameters:

L(v, u, q) =
n∑

i=1

Li(v, u, q) +
n∑

i=1

qip
2
i −

T −1∑

t=0

2∑

m=1

vtm − Ω
T −1∑

t=0

ut (3.3.13)

Consequently, for the given set (v, u, q), the L(v, u, q) can be found by solving n

separate integer problems (3.3.9)-(3.3.12).

Recursive procedure

If job i starts at the time s on the first-stage machine and at the time r - on the

second-stage machine, then by virtue of (3.3.10), only x1
is = 1 and x2

ir = 1, hence the

value of the objective function (3.3.9) is

qir +
s+p1

i
−1

∑

t=s

vt1 +
r+p2

i
−1

∑

t=r

vt2 + b(i)
r+p2

i
−1

∑

t=s

ut.

Define the function f(r) for p1
i ≤ r ≤ T − p2

i as

f(r) = min
0≤s≤r−p1

i





s+p1
i
−1

∑

t=s

vt1 + b(i)
r+p2

i
−1

∑

t=s

ut



 . (3.3.14)
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Observe that the initial value of f(r) = f(p1
i ) :

f(p1
i ) =

p1
i
−1

∑

t=0

vt1 + b(i)
p1

i
+p2

i
−1

∑

t=0

ut,

and hence for r > p1
i the following recursive relation holds:

f(r) = min




f(r − 1) + b(i)ur+p2

i
−1,

r−1∑

t=r−p1
i

vt1 + b(i)
r+p2

i
−1

∑

t=r−p1
i

ut




 (3.3.15)

Finally, the value of Li(v, u, q) can be found as

Li(v, u, q) = min
p1

i
≤r≤T −p2

i



f(r) + qir +
r+p2

i
−1

∑

t=r

vt2



 .

Description of LR heuristic

The notation similar to that of the previous section will be used to describe the

Lagrangian relaxation-based heuristic (hereafter referred to as LR heuristic). Let

LowerBound(v, u, q) be the procedure that for the current set of Lagrangian multipli-

ers (v, u, q) calculates the objective function for the Lagrangian relaxation according

to (3.3.13). Let π be the permutation of jobs, defined by the Lagrangian relaxation

in order of starting times of jobs on the first-stage machine. Let WAIT (π) signify

the value of the objective function provided by the feasible schedule constructed by

the WAIT algorithm with the order π on both machines. Denote by NImax the max-

imum number of iterations. Let X be the optimal solution vector, obtained during

Lagrangian relaxation for the current set of (v, u, q), with coordinates Xh = xm
it for

0 ≤ h < 2nT , where 1 ≤ i ≤ n, 0 ≤ t < T , m ∈ {1, 2}. Denote by A the matrix

of the coefficients of the left hand sides of the dualised constraints (3.3.3), (3.3.5)

and (3.3.6), and by B the vector of the corresponding right-hand sides. Let λ be a

positive coefficient 0 < λ ≤ 2. The LR heuristic can be summarised as follows:

LR heuristic

1: Set vtm = 0, ut = 0 for 0 ≤ t < T , m ∈ {1, 2}; set k = 0.

2: Set q1 = 1 and qi = 0 for 1 < i ≤ n.
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3: Set BestLB = 0; BestUB = T .

4: while k < NImax do

5: LB = LowerBound(v, u, q).

6: if LB > BestLB then

7: BestLB = LB.

8: end if

9: UB = WAIT (π).

10: if UB < BestUB then

11: BestUB = UB.

12: end if

13: Set τ = λBestUB−LB
‖AX−B‖2 .

14: (v, u, q) = (v, u, q) + τ(AX − B), k = k + 1.

15: end while

3.3.3 Bin-packing heuristic

As the name suggests, the bin-packing heuristic utilises the idea of bin-packing. This

idea seems to be particularly consonant with “packing” jobs into a buffer in the way

allowing to process all the jobs as fast as possible similar to one of the methods of

bin-packing [13]. The Bin-packing heuristic partitions all jobs into bins of size Ω,

by checking whether a job “fits” into one of the existing bins, and creating a new

bin, if the job does not “fit” to any of existing bins. The order of jobs in each bin is

determined by Johnson’s rule [57], which can be summarized as follows:

• partition N into two sets: L1 = {i ∈ N : p1
i < p2

i } and L2 = {i ∈ N : p1
i ≥

p2
i };

• first schedule the jobs from L1 in a non-decreasing order of p1
i , and

• then schedule the jobs from L2 in a non-increasing order of p2
i .

This order provides an optimal makespan for the set of jobs within each bin [57].

Then the bins are ordered in a non-decreasing order of the total buffer requirement
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of jobs within each bin. The resulting permutation of all jobs is used by WAIT

algorithm with this permutation on both machines. Let Sort(P riority, P erm) be

the procedure that sorts a set of elements in a non-decreasing order of elements’

priorities P riority; the resultant permutation of the elements is recorded in P erm.

Let JohnsonSort(Set, P erm) be the procedure that sorts a set of jobs Set ⊆ N

according to Johnson rule and the resultant permutation is recorded in P erm. Let

WAIT (π) signify the value of the objective function provided by the feasible schedule

constructed by WAIT algorithm with the order π on both machines. Denote by

Bin[i] ⊆ N a subset of jobs i and let load1
i and load2

i signify the sum of p1
j and p2

j ,

correspondingly, of all jobs j ∈ Bin[i]. Let Nb be the number of “bins”, and initially

Nb = 0. The Bin-packing heuristic can be summarised as follows:

Bin-packing heuristic

1: Set Nb = 0;

2: for all i ∈ N do

3: Set priority[i] = p1
i

4: end for

5: Sort(priority, π);

6: for i = 1 to N do

7: allocate = TRUE;

8: if p1
π(i) > Ω

2
then

9: Bin[Nb] = π(i); load1
Nb

= p1
π(i); load2

Nb
= p2

π(i), Nb = Nb + 1;

10: else

11: while allocate do

12: Set j = 0;

13: while j < Nb do

14: if load1
j + p1

π(i) ≤ Ω and load2
j + p2

π(i) ≤ Ω then

15: Bin[j] = Bin[j] ∪ π(i); load1
j = load1

j + p1
π(i); load2

j = load2
j + p2

π(i),

16: j = Nb; allocate = FALSE;

17: else

18: j = j + 1;
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19: end if

20: end while

21: if allocate then

22: Bin[Nb] = π(i); load1
Nb

= p1
π(i); load2

Nb
= p2

π(i)

23: Nb = Nb + 1; allocate = FALSE;

24: end if

25: end while

26: end if

27: end for

28: for all 0 ≤ i < Nb do

29: Set priority[i] = 1
load1

i

;

30: end for

31: Sort(priority, πbins); Set π = ∅, k = 1;

32: for i = 0 to Nb − 1 do

33: JohnstonSort(Bin[πbins(i)], πJ
πbins(i));

34: for j = 1 to |Bin[πbins(i)]| do

35: π(k) = πJ
πbins(j); k = k + 1;

36: end for

37: end for

38: WAIT (π).

3.3.4 Barrier heuristic

The Barrier heuristic utilises the polynomial-time algorithm described in [61]. This al-

gorithm constructs an optimal schedule for a particular case of the considered schedul-

ing problem - when the following condition is satisfied:

max
i∈N

{p1
i , p2

i } ≤
Ω

5
. (3.3.16)

Hence there is a reasonable expectation that the permutation obtained with the help

of this algorithm would allow to construct good quality schedules for arbitrary in-
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stances of the problem. Below a brief description of the polynomial-time algorithm

is provided, followed by a description of the Barrier heuristic.

The polynomial-time algorithm

The polynomial-time algorithm, described in [61] constructs a schedule for an

extended set of jobs obtained by adding some auxiliary jobs. To determine the set

of the auxiliary jobs, a schedule σJ is constructed on the set of jobs N ignoring the

buffer requirement. The σJ is a permutation schedule (a permutation schedule is a

schedule with the same order of jobs on both machines), constructed according to

Johnson’s rule, and CJ
max is the maximum completion time provided by this schedule.

Let

p1
max = max

i∈N
p1

i and p2
max = max

i∈N
p2

i .

Denote by Idle1 and Idle2 the total idle time in σJ in the interval [0, CJ
max] on first

and second-stage machines, respectively. Let X and Y be two sets of auxiliary jobs

of cardinality

|X|=

⌈

Idle2

p2
max

⌉

and |Y |=

⌈

Idle1

p1
max

⌉

and such that p1
i = 0 and p2

i = Indle2
|X|

for any i ∈ X and p1
i = Indle1

|Y |
and p2

i = 0 for

any i ∈ Y . Observe that for any auxiliary job i p1
i ≤ p1

max and p2
i ≤ p2

max. Let σ′ be

the permutation schedule where the jobs of the set N ′ = N ∪ X ∪ Y are scheduled

as follows. The first |X| jobs are the jobs constituting X, sequenced in arbitrary

order; these jobs are followed by all jobs in N , scheduled according to Johnson’s rule;

the jobs from N are followed by the arbitrary ordered remaining jobs, i.e. the jobs

constituting Y . Let πJ be the permutation of all jobs in N ′ induced by the order in

which these jobs are processed in σ′ and π1 and π2 be the permutations of the jobs in

L′
1 = L1 ∪ X; and L′

2 = L2 ∪ Y ;

respectively, induced by πJ . The algorithm below constructs a permutation π which

specifies the order in which the jobs are processed in an optimal permutation schedule.
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It is convenient to use the following notation:

n′ = n + |X|+|Y |;

lk,1(π) =
k∑

j=1

p1
π(j), for all 1 ≤ k ≤ n′;

lk,2(π) =
k∑

j=1

p2
π(j), for all 1 ≤ k ≤ n′;

Rk(π) = lk,2(π) − lk,1(π), for all 1 ≤ k ≤ n′

Let π = ∅ indicate that the permutation π is not specified.

Polynomial(π) algorithm

1: Set i = 1, i1 = 1, i2 = 1, π = ∅, R0(π) = 0, l0,1(π) = 0, l0,2(π) = 0, H = 2Ω
5

.

2: while i ≤ n′ do

3: if Ri−1(π) < H and i1 ≤ |L′
1| then

4: set π(i) = π1(i1), i1 = i1 + 1;

5: else

6: set π(i) = π2(i2), i2 = i2 + 1;

7: end if

8: set S1
π(i)(σ) = li−1,1(π) and S2

π(i)(σ) = li−1,2(π); set i = i + 1;

9: end while

10: return permutation π and schedule σ.

Essentially the Polynomial(π) algorithm constructs the permutation π which ensures

that in the resulting schedule the value of Rk(π) does not deviate much from the “bar-

rier” H , which allows to observe the buffer capacity Ω. Let JonhsonCmax(N, CJ
max)

be a procedure which for the given set of jobs N constructs a schedule using John-

son’s rule and returns the value of its makespan CJ
max. As before, let WAIT (π) signify

the value of the objective function provided by the feasible schedule constructed by

WAIT algorithm with the order π on both machines. The Barrier heuristic can be

summarised as follows:

Barrier heuristic

1: JohnstonSort(N, πJ); JohnsonCmax(N, CJ
max);
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2: Set H = 2 maxi∈N{p1
i , p2

i };

3: Set Idle1 = CJ
max − Σi∈N p1

i , and Idle2 = CJ
max − Σi∈N p2

i ;

4: Set nx =
⌈

Idle2

p2
max

⌉

, x = Idle2

nx
, X = ∅;

5: Set ny =
⌈

Idle1

p1
max

⌉

, y = Idle1

ny
, Y = ∅;

6: for i = 1 to nx do

7: Set job i : p1
i = 0, p2

i = x, X = X ∪ {i}

8: end for

9: for i = 0 to ny − 1 do

10: Set job i : p1
i = y; p2

i = 0; Y = Y ∪ {i}

11: end for

12: Set L1 = X, L2 = ∅, i = 1;

13: while p1
πJ (i) < p2

πJ (i) do

14: L1 = L1 ∪ {πJ(i)}; i = i + 1

15: end while

16: while i ≤ n do

17: L2 = L2 ∪ {πJ(i)}; i = i + 1

18: end while

19: Set L2 = L2 ∪ Y .

20: Run P olynomial(π′) with sets L1 and L2 and barrier H .

21: Set n′ = n + |X|+|Y |, π = ∅; j = 1

22: for i = 1 to n′ do

23: if (π′(i) /∈ X) and (π′(i) /∈ Y ) then

24: π(j) = π′(i), j = j + 1

25: end if

26: end for

27: WAIT (π).

3.3.5 Lower Bound

To assess the quality of solutions provided by the described heuristics, for each in-

stance of the considered problem F2|buffer|Cmax the Johnson’s rule could be used to
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obtain a lower bound by ignoring the buffer requirement and constructing an optimal

schedule. However, if there is a method which explicitly incorporates the size of the

buffer Ω, one could expect that this method would calculate better lower bounds.

The proposed method to calculate lower bound on the optimal value of the makespan

can be described as follows.

Assume that all jobs i ∈ N are numbered in a non-increasing order of p1
i . Let

LargeJobs = {1, 2, ..., k} be the set of the jobs i with buffer requirement p1
i > Ω

2
.

Obviously, no two jobs from this set can be in the buffer together. Hence in any

schedule the time, required to process a subset Bl = {1, 2, ..., l} ⊆ LargeJobs, 1 ≤

l ≤ k, is at least Σl
i=1(p1

i + p2
i ). In addition, for the subset Bl there may exist a

subset of smaller jobs Sl = {i > l : p1
i + p1

l > Ω} such that none of the smaller jobs

from Sl can occupy the buffer together with any job from Bl. Note that N = S0

when LargeJobs = ∅. Let C(Sl)
J be the maximum completion time in a permutation

schedule where the jobs from Sl are scheduled according to Johnson’s rule and the

buffer restriction is ignored. The minimum time required to process sets Bl and Sl is

at least

Σl
i=1

(

p1
i + p2

i

)

+ C(Sl)
J .

Hence the lower bound LBbuffer can be calculated as

LBbuffer = max
1≤l≤k

{

Σl
i=1

(

p1
i + p2

i

)

+ C(Sl)
J

}

(3.3.17)

Denote by LBJohnson = C(N)J . Hence the lower bound LB can be found as

max{LBbuffer, LBJohnson} (3.3.18)

It is easy to see, that if there are no large jobs, then LBbuffer = LBJohnson.

3.3.6 Computational Experiments

The computational experiments were run for the LR, Bin-packing and Barrier heuris-

tics and aimed to compare their performance against the lower bound (3.3.18).
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The test instances were generated randomly with processing times chosen from

the interval [1, 20]. There were 50 instances in each tested set. In what follows, an

instance is described as n−Ωk, where n is the number of jobs, and Ωk is the size of the

buffer. The experiments were run for sets of instances with 25, 50 and 100 jobs and

for buffer sizes Ω1 = pmax, Ω1.5 = 1.5pmax, Ω2.5 = 2.5pmax and Ω4.5 = 4.5pmax, where

pmax = max{p1
max, p2

max} is the maximum processing time of an instance. Subgradient

algorithm in the LR heuristic was run for 300 iterations; there was a 30 minute time

limit per instance for all heuristics.

The Tables 3.13 - 3.16 illustrate the quality of solutions provided by each of the

three heuristics: Lagrangian, Bin-packing or Barrier heuristics. Each table represents

data for sets of instances with one of the four considered buffer sizes: Ω1, Ω1.5,

Ω2.5 or Ω4.5. For each instance denote by C1
max, C2

max and C3
max the value of the

objective function obtained for this instance by LR, Bin-packing or Barrier heuristic

correspondingly, and let Best be the smallest of the three values. Then for each Ci
max,

i = 1, 2, 3, the relative difference δi is calculated as follows:

δi =
Ci

max − Best

Best
× 100.%

Further, δi is attributed to one of the following categories:

• δi = 0, hence the heuristic obtained the smallest value of the objective function;

• 0 < δi ≤ 2%, the heuristic obtained the value of the objective function within

2% from the Best;

• 2% < δi ≤ 5%, the heuristic obtained the value of the objective function between

2% and 5% from the Best;

• 5% < δi ≤ 10%, the heuristic obtained the value of the objective function 5%

and 10% from the Best;

• δi > 10%, the heuristic obtained the value of the objective function exceeding

the Best by at least 10%.
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Next for each heuristic and for each category above the portion, in %, of the instances

in a set with δi in the considered category is calculated. Hence each column 2 − 10

in the Tables 3.13 - 3.16 represents the proportion of the instances in each of the

five categories for sets with 25, 50 or 100 jobs processed by either LR, Bin-packing

or Barrier heuristics. The tables show that buffer size and number of jobs affect the

performance of the heuristics:

• The LR and Bin-packing heuristics provided better results for instances with

smaller buffer sizes Ω1 and Ω1.5, whereas the Barrier heuristic provided the best

solutions for absolute majority of instances with larger buffer Ω2.5 and Ω4.5.

• The LR heuristic obtained solutions within 0 − 2% of the best for 80-90% of

instances with 25 jobs; the Bin-packing heuristic showed best results for 50−Ω1.0

and 100 − Ω1.0 by providing 98-100% of solutions within 0 − 2% of the best.

• The Barrier heuristic provided best solutions for 96−100% of all instances with

larger buffer sizes Ω2.5 and Ω4.5, with only exception of 25 − Ω2.5 instances, for

which the LR heuristic provided solutions within 0 − 2% of the best for 78% of

the instances.

Table 3.13: Quality of solution for instances with buffer size Ω1.0, proportion of
instances, in %

25 jobs 50jobs 100 jobs
LR Bin Barrier LR Bin Barrier LR Bin Barrier

Best, δi = 0 76 30 2 20 80 2 2 98 0
0% ≤ δi ≤ 2% 14 22 2 28 8 2 4 2 4
2% ≤ δi ≤ 5% 10 38 10 40 10 18 36 0 32
5% ≤ δi ≤ 10% 0 10 48 12 2 62 58 0 56

δi > 10% 0 0 38 0 0 16 0 0 8

The box-plot charts on Figures 3-6 - 3-8 represent the the relative error for in-

stances with 25, 50 and 100 jobs correspondingly, where the relative error REi is

calculated for each Ci
max as

REi =
Ci

max − LB

LB
× 100%,
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Table 3.14: Quality of solution for instances with buffer size Ω1.5, proportion of
instances, in %

25 jobs 50jobs 100 jobs
LR Bin Barrier LR Bin Barrier LR Bin Barrier

Best, δi = 0 74 24 6 56 32 14 22 64 14
0% ≤ δi ≤ 2% 8 14 2 18 26 14 8 26 32
2% ≤ δi ≤ 5% 10 10 12 20 14 30 46 10 20
5% ≤ δi ≤ 10% 4 32 30 6 22 34 20 0 22

δi > 10% 4 20 50 0 6 8 4 0 12

Table 3.15: Quality of solution for instances with buffer size Ω2.5, proportion of
instances, in %

25 jobs 50jobs 100 jobs
LR Bin Barrier LR Bin Barrier LR Bin Barrier

Best, δi = 0 56 0 58 18 0 88 0 0 100
0% ≤ δi ≤ 2% 30 18 20 24 0 10 2 0 0
2% ≤ δi ≤ 5% 14 22 18 46 2 2 52 0 0
5% ≤ δi ≤ 10% 0 30 4 12 32 0 46 2 0

δi > 10% 0 30 0 0 66 0 0 98 0

Table 3.16: Quality of solution for instances with buffer size Ω4.5, proportion of
instances, in %

25 jobs 50jobs 100 jobs
LR Bin Barrier LR Bin Barrier LR Bin Barrier

Best, δi = 0 48 26 100 20 8 100 12 0 100
0% ≤ δi ≤ 2% 36 52 0 60 4 0 52 0 0
2% ≤ δi ≤ 5% 16 12 0 18 20 0 34 16 0
5% ≤ δi ≤ 10% 0 6 0 2 30 0 2 84 0

δi > 10% 0 4 0 0 38 0 0 0 0
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where lower bound LB is calculated according to (3.3.18).

Figure 3-6: Relative Error for 25 jobs instances

For smaller buffer sizes Ω1.0 and Ω1.5 the LR and the Bin-packing heuristics have

smaller relative errors then the Barrier heuristic for most of the instances with 25 and

50 jobs, however for instances with 100 jobs Bin-packing heuristic provided tighter

solutions than the Barrier and LR heuristics. For larger buffer sizes Ω2.5 and Ω4.5

the Barrier heuristic had the tightest solutions - for instances with Ω2.5 all relative

errors were within 5−10%, and for the buffer size Ω4.5 the heuristic provided optimal

solutions for all instances (with RE = 0%). The LR heuristic had solutions with

relative errors within 5 − 10% for the larger buffer sizes, however the Bin-packing

heuristic provided solutions within larger relative errors of 10 − 20% for most of

instances with the larger buffer sizes Ω2.5 and Ω4.5.

The average time spent by each heuristic per instance is presented on the Figure

3-9. Both Barrier and Bin-packing heuristics were fast and spent 0.000041 − 0.00068

seconds per instance, while the LR heuristic was significantly slower and its CPU time

varied between 1.6 − 7.2 seconds per 25 jobs instance, 10.3 − 48.3 seconds per 50 jobs

instance and 1.5−6 minutes per 100 jobs instance. In comparison, when ten 25−Ω4.5

instances were tested by running a straightforward integer program (CPLEX), it took
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Figure 3-7: Relative Error for 50 jobs instances

30 minutes for each instance to only determine that an integer solution exists, and

for every instance the best “exit” value of the objective function was greater than

the corresponding values obtained by the heuristics. It is reasonable to assume that

the Barrier and Bin-packing heuristics were faster due to two factors: firstly, due to

taking into account the buffer size explicitly while deriving the permutation of jobs,

and secondly, due to less computational effort required to obtain this permutation

than that of LR heuristic.

The comparison of LBbuffer vs LBJohnson is represented on the Figure 3-10. For

each instance the δ was calculated as:

δ =
LBbuffer − LBJohnson

LBJohnson
× 100%

The box plots of the δs were constructed for instances with 25, 50 and 100 jobs

and buffer sizes Ω1.0 and Ω1.5. Please note that for larger buffer sizes Ω2.5 and Ω4.5

LBbuffer = LBJohnson. It is clear that for the instances with the buffer size Ω1.0

LBbuffer was better (greater) than lower bound the LBJohnson by 5% − 57% across

all instances with a median improvement δ = 29% . However, for the buffer size Ω1.5
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Figure 3-8: Relative Error for 100 jobs instances

LBbuffer was smaller than LBJohnson for absolute majority of instances by median

δ = 20%.

In summary, the computational experiments demonstrated that all three heuris-

tics provide good feasible solutions for the considered scheduling problem. Further,

the Barrier heuristic is a fast algorithm that generates near-optimal/optimal sched-

ules for the instances with a larger buffer size. The LR and Bin-packing heuristics

provide tighter results for the instances with smaller buffer and 25-50 jobs. The pro-

posed method to calculate the lower bound considerably tightens the relative error

for instances with buffer size Ω1.0. All three heuristics outperform the straightforward

integer programming approach (CPLEX).

3.3.7 Conclusion

In this section, Lagrangian relaxation and decomposition-based approach, developed

in the previous section was applied to a different flow shop problem with a job-

dependent buffer: the problem of minimisation of the maximum completion for the

two-stage flow shop with a a job-dependent buffer. Two other heuristics are also pre-

sented: Bin-packing and Barrier heuristics. The three heuristics are fast algorithms

93



Figure 3-9: Average time per instance

Figure 3-10: LBbuffer vs LBJohnson
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that provide good feasible solutions for the considered problem. All heuristics’ results

surpass the straightforward application of CPLEX optimisation software.
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3.4 Two-stage hybrid flow shop with a storage and

objective to minimise total weighted tardiness

3.4.1 Problem Description

In what follows, the Lagrangian relaxation and decomposition are applied to the

problem that is motivated by various systems where the change of the means of

transportation requires considerable storage space (a buffer). For example, in the case

of supply chains of mineral resources, the material is transported by a fleet of trains

or trucks and is stored in a stockpile on the so-called pads before being loaded for the

second stage of transportation. At this second stage the stockpiles are transported in

groups. It is common to reserve the entire space for all stockpiles of a group before

the arrival of the first load for these stockpiles and to release this space only after

the completion of loading all stockpiles of the group for further transportation [24].

There can be several loaders involved in the uploading the groups of stockpiles. The

problem can be described as follows.

The set of jobs N = {1, ..., n} is to be processed on a two-stage flow shop; all

jobs are partitioned into nb predefined batches; batch k is comprised of a set of jobs

Nk, 1 ≤ k ≤ nb; m1 and m2 are the numbers of parallel identical machines on the

first and the second stage, correspondingly. Let pi be the processing time of job i

on a first-stage machine and ρk be the processing time of batch k. All processing

times are integer. Each batch k has an associated due date dk and a weight wk and

requires b(k) units of the buffer capacity which it seizes from the start of processing

of the earliest job of the batch on a first-stage machine till the batch’s completion

on a second-stage machine. At any time, the total buffer requirement cannot exceed

the buffer capacity Ω. It is assumed that the processing of jobs commences at time

t = 0. A schedule is the two sets, {S1
1 , ..., S1

n} and {S2
1 , ..., S2

nb
}, where S1

i is the

time when a first-stage machine starts processing job i and S2
k is the time when a

second-stage machine starts processing batch k. The objective is to minimise the total

weighted tardiness
∑nb

k=1 wkTk, where Ck = S2
k + ρk is the completion time of batch
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k and Tk = max{0, Ck − dk} is the tardiness of batch k. The considered problem is

NP -hard in a strong sense, as even a particular case of the problem, when each stage

constitutes of only one machine, all weights are equal to one, and all due dates are

equal to zero and there is no buffer, is NP -hard in a strong sense [31].

3.4.2 Choice of the Planning Horizon

Let T be the planning horizon, i.e. Ck ≤ T for all batches. A choice of T has

a significant impact on the efficiency of the solution method such as Lagrangian

relaxation. One obvious value for T can be estimated as

T =
∑

i∈N

pi +
∑

1≤k≤nb

ρk. (3.4.1)

However, this upper bound of the planning horizon can be tightened which is beneficial

to the performance of the Lagrangian relaxation solution approach.

Let σ∗ be an optimal schedule for criterion of the total weighted tardiness. It is

assumed that σ∗ is an active schedule.

Definition 3 A time interval is incomplete, if during the entire interval at least one

machine is idle on the first-stage at any point of time, and there are no batches

processed on the second stage.

Definition 4 A time interval is full, if during the entire interval there are no idle

machines on the first-stage at any point of time, and there are no batches processed

on the second stage.

Definition 5 A time interval is loaded, if during the entire interval there is a batch

processed on the second stage at any point of time.

Lemma 3 For any incomplete time interval there is at least one machine on the first

stage which is idle during the entire time interval.

Proof: Consider the machine on the first stage which is idle at the start of the

interval. If any job starts on this machine during the interval, it would imply that
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either the schedule is not active and the job could start earlier, or that there was

not enough space in the buffer before the start of the job, hence a batch had to be

released from the buffer immediately before the job started. This would imply that

the batch has been processed during the interval, which contradicts to the interval

being incomplete.�

Definition 6 Let the list of batches be constructed in non-decreasing order of batches’

completion times. An incomplete time interval is canonically partitioned, if it is

partitioned into subintervals such that for each subinterval there is a job selected as

follows. Among all jobs which are processed during the entire subinterval, select a job

from the batch on the earliest position on the list of batches. The selected job is a

canonical cover of the subinterval.

Theorem 1 The set of canonical covers of all incomplete intervals contains at most

one job from each batch.

Proof: Assume that for the incomplete intervals [t1, t2] and [t3, t4], t2 ≤ t3, the

corresponding canonical covers are jobs i1 and i2, and both jobs are from the same

batch j and S1
i2

> t1. If the intervals are consecutive, i.e. t2 = t3, then by virtue

of Lemma 3, there is an idle machine on the first stage for the entire time interval

[t1, t2], hence i2 could start earlier, which contradicts to the schedule being active.

Assume that the intervals are not consecutive, i.e t2 < t3. Then there is at least

one machine from either stage that is not idle on the interval [t2, t3], overwise the

schedule would not be active. Assume that a batch k starts on second stage at time

S2
k , and t2 ≤ S2

k < t3. There are two possibilities: either the second-stage machine

is idle before batch k starts and there is a job h from the batch k such that the

completion time of the job Ch = S2
k and the starting time of job h S1

h > t2; or there

are batches scheduled on the second stage before k which prevent k to start earlier.

Observe, that since both intervals are incomplete, the batches will have to start and

complete during the interval [t2, t3].

In the former case, if S1
h ≤ t1, then h had to be selected as the canonical cover for

the interval [t1, t2], as batch k completes before batch j. If S1
h > t1, then by virtue of
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Lemma 3 there is an idle machine at time t1 on the first stage, hence h could have

started earlier, which contradicts to the schedule being active. In the latter case,

select the batch which started before k with the earliest starting time such that the

second-stage machine is idle before the batch starts on the second stage and repeat

the reasoning for the former case.

Since both intervals are incomplete, there is no batch processed on the entire

interval [t1, t4]. Hence there is at least one machine is not idle on the first stage

during the interval [t2, t3]. If there is a full interval within [t2, t3], then some batch

must have completed on the second stage to release buffer space immediately before

the full interval started, overwise by virtue of Lemma 3 some job scheduled during

the full interval could have started earlier on an idle machine. However, it has been

shown above that no batch is processed during [t1, t4]. Hence the only option left to

consider is that [t2, t3] is an incomplete interval. Similar to the above, in this case by

virtue of Lemma 3 there is an idle machine on the first stage on both intervals [t1, t2]

and [t2, t3], and hence i2 could have started earlier, which contradicts to the schedule

being active. �

Let I,F and L be the total length of incomplete, full an loaded time intervals,

correspondingly, in the schedule σ∗. Then taking into account the Theorem 1,

max
1≤k≤nb

Ck(σ∗) = L + F + I

≤
∑

1≤k≤nb

ρk +

∑

i∈N pi − I

M
+ I =

∑

1≤k≤nb

ρk +

∑

i∈N pi

M
+ (1 −

1

M
)I

≤
∑

1≤k≤nb

ρk +

∑

i∈N pi

M
+ (1 −

1

M
)

∑

1≤k≤nb

max
i∈Nk

pi (3.4.2)

3.4.3 Integer Programming Formulation

By virtue of (3.4.2), set the value of the planning horizon as following:

T =
∑

1≤k≤nb

ρk +

∑

i∈N pi

m1

+ (1 −
1

m1

)
∑

1≤k≤nb

max
i∈Nk

pi (3.4.3)
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For a job i ∈ N and an integer index t ∈ [0, T ), define

xit =







1, if S1
i = t

0, otherwise.

For a batch k, 1 ≤ k ≤ nb, and an integer index t ∈ [0, T ), define

ykt =







1, if S2
k = t

0, otherwise.

For a batch k, 1 ≤ k ≤ nb, and an integer index t ∈ [0, T ), define

zkt =







1, if
∑

i∈Nk

t∑

τ=0

xiτ > 0

0, otherwise.

Hence if there is i ∈ Nk such that S1
i ≤ t, then zkt = 1. The considered scheduling

problem can be formulated as the following integer linear program:

min
nb∑

k=1

wkTk, (3.4.4)
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subject to

T −1∑

t=0

xit = 1, for 1 ≤ i ≤ n (3.4.5)

n∑

i=1

t∑

τ=max{0,t−pi+1}

xiτ ≤ m1, for 0 ≤ t < T (3.4.6)

∑

i∈Nk

t∑

τ=0

xiτ − zkt|Nk|≤ 0, for 0 ≤ t < T, 0 ≤ k ≤ nb (3.4.7)

∑

i∈Nk

t∑

τ=0

xiτ − zkt ≥ 0, for 0 ≤ t < T, 0 ≤ k ≤ nb (3.4.8)

T −1∑

t=0

t(ykt − xit) ≥ pi, for i ∈ Nk, 0 ≤ k ≤ nb (3.4.9)

nb∑

k=1

b(k)

(

zkt −
t−ρk∑

τ=0

ykτ

)

≤ Ω, for 0 ≤ t < T (3.4.10)

nb∑

k=1

t∑

τ=max{0,t−ρk+1}

ykτ ≤ m2, for 0 ≤ t < T (3.4.11)

T −1∑

t=0

ykt = 1, for 1 ≤ k ≤ nb (3.4.12)

Tk ≥
T −1∑

t=0

tykt + ρk − dk and Tk ≥ 0, for 1 ≤ k ≤ nb (3.4.13)

xit, ykt, zkt ∈ {0, 1}, for i ∈ N, 0 ≤ t < T, 1 ≤ k ≤ nb (3.4.14)

The constraints can be summarised as follows: (3.4.5) and (3.4.12) guarantee that a

job or a batch starts only once on the first or on the second stage, correspondingly;

(3.4.7) and (3.4.8) define the value of zkt; (3.4.6), (3.4.10) and (3.4.11) are capacity

constraints for the first, the second stages and the buffer, correspondingly; (3.4.9)

guarantees that the job cannot start processing on the second stage till the job is

completed on the first stage; (3.4.13) defines tardiness Tk.
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3.4.4 Lagrangian relaxation and decomposition
To obtain the Lagrangian relaxation the constraints (3.4.6), (3.4.10) and (3.4.11) are

dualised:

min
nb∑

k=1

wkTk +
T −1∑

t=0

vt





n∑

i=1

t∑

τ=max{0,t−pi+1}

xiτ − m1





+
T −1∑

t=0

ut

(
nb∑

k=1

b(k)

(

zkt −
t−ρk∑

τ=0

ykτ

)

− Ω

)

+
T −1∑

t=0

qt





nb∑

k=1

t∑

τ=max{0,t−ρk+1}

ykτ − m2



 , (3.4.15)

where vt, ut, qt, 0 ≤ t < T , are nonnegative Lagrangian multipliers, subject to

(3.4.5), (3.4.7)-(3.4.9), (3.4.12)-(3.4.14). This problem can be decomposed into nb

subproblems as follows. Let (v, u, q) be the sets of all vt, ut and qt. For each batch k,

1 ≤ k ≤ nb, and chosen (v, u, q) define the following linear integer program:

min wkTk +
∑

i∈Nk

T −1∑

t=0

vt

τ∑

τ=max{0,t−pi+1}

xit

+b(k)
T −1∑

t=0

ut

(

zkt −
t−ρk∑

τ=0

ykτ

)

+
T −1∑

t=0

qt

t∑

τ=max{0,t−ρk+1}

ykτ (3.4.16)

subject to

T −1∑

t=0

xit = 1, for i ∈ Nk (3.4.17)

∑

i∈Nk

t∑

τ=0

xiτ − zkt|Nk|≤ 0, for 0 ≤ t < T (3.4.18)

∑

i∈Nk

t∑

τ=0

xiτ − zkt ≥ 0, for 0 ≤ t < T (3.4.19)

T −1∑

t=0

t(ykt − xit) ≥ pi, for i ∈ Nk (3.4.20)

T −1∑

t=0

ykt = 1 (3.4.21)

Tk ≥
T −1∑

t=0

tykt + ρk − dk and Tk ≥ 0, (3.4.22)

xit, ykt, zkt ∈ {0, 1}, for i ∈ Nk, 0 ≤ t < T (3.4.23)
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Then the optimal value LR(v, u, q) of the objective function (3.4.15) can be expressed

as the sum of the optimal values Zk(v, u, q) of the objective functions (3.4.16) for

1 ≤ k ≤ nb and the linear combination of the parameters m1, m2, Ω and the chosen

Lagrangian multipliers:

LR(v, u, q) =
nb∑

k=1

Zk(v, u, q) −
T −1∑

t=0

(vtm1 + utΩ + qtm2) (3.4.24)

To solve the Lagrangian relaxation for the chosen Lagrangian multipliers it is

sufficient to solve nb separate integer linear programs (3.4.16) - (3.4.23). Each of the

nb subproblems is solved by the dynamic programming procedure described below.

Recursive procedure

Assume that a batch k starts on the first stage at time s and it is completed on

the second stage at time t + ρk. Hence the batch k must be completed on the first

stage by the time t. Then (3.4.16) can be presented as

min wkTk +
∑

i∈Nk

t−1∑

τ=s

vτ

τ∑

λ=max{s,τ−pi+1}

xiλ

+b(k)
t+ρk−1

∑

τ=s

uτ +
t+ρk−1

∑

τ=t

qτ

τ∑

λ=max{t,τ−ρk+1}

ykλ (3.4.25)

Define g(s, t) and f(s, t) as follows:

g(s, t) = wkTk + b(k)
t+ρk−1

∑

τ=s

uτ +
t+ρk−1

∑

τ=t

qτ ,

f(s, t) = min
∑

i∈Nk

t−1∑

τ=s

vτ

τ∑

λ=max{s,τ−pi+1}

xiλ.

Taking into account that t − s ≥ pi, for each job i ∈ Nk define fi(s, t) as follows:

fi(s, t) = min
xiτ =1;τ=s,...,t−pi

t−1∑

λ=s

vλ

λ∑

α=max{0,λ−pi+1}

xiα.
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Since
λ∑

α=max{0,λ−pi+1}

xiα = 1 only for τ ≤ λ ≤ τ + pi − 1,

fi(s, t) = min
τ=s,...,t−pi

τ+pi−1
∑

λ=τ

vλ.

For a fixed s the initial value of fi(s, t) is

fi(s, s + pi) =
s+pi−1

∑

λ=s

vλ.

Further,

fi(s, t + 1) = min{fi(s, t),
t∑

λ=t−pi+1

vλ.}

Hence

f(s, t) = min
i∈Nk







s+pi−1
∑

λ=s

vλ +
∑

j 6=i;j∈Nk

fj(s, t)






;

Zk(v, u, q) = min
[s,t]

(f(s, t) + g(s, t)) , 0 ≤ s < s + ρk ≤ t ≤ T − ρk.

3.4.5 Lagrangian relaxation-based optimisation procedure

To describe the Lagrangian relaxation-based optimisation procedure (hereafter re-

ferred to as LR procedure) the notation similar to that of the previous sections is

used. Let LowerBound(v, u, q) be a procedure which for the current set of Lagrangian

multipliers (v, u, q) calculates the objective function for the Lagrangian relaxation ac-

cording to (3.4.24). Let π be the permutation of batches, defined by the Lagrangian

relaxation in order of starting times of batches on the first stage, and πk be the permu-

tation of jobs in a batch k, defined by the Lagrangian relaxation in order of starting

times of the jobs on the first or on the second stage. Let WAIT (π, π1, ..., πk) signify

the value of the objective function provided by the feasible schedule constructed by

the following modification of the WAIT algorithm: batches are scheduled with the

order π on both stages, and jobs of each batch k are scheduled in order πk on the first
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stage. Denote by NImax the maximum number of iterations. Let X be the optimal

solution vector, obtained during Lagrangian relaxation for the current set of (v, u, q),

with coordinates Xh = xit for 0 ≤ h < nT and Xh = ykt for nT ≤ h < kT + nT ,

where 1 ≤ i ≤ n, 0 ≤ t < T , 1 ≤ k ≤ nb and 0 ≤ t < T . Denote by A the matrix

of the coefficients of the left hand sides of the dualised constraints (3.4.6), (3.4.10)

and (3.4.11), and by B the vector of the corresponding right hand sides. Let λ be a

positive coefficient 0 < λ ≤ 2. The LR procedure can be summarised as follows:

LR Procedure

1: Set vt = 0, ut = 0 and qt = 0 for 0 ≤ t < T , m ∈ {1, 2}; set k = 0.

2: Set BestLB = 0; BestUB = T .

3: while k < NImax do

4: LB = LowerBound(v, u, q).

5: if LB > BestLB then

6: BestLB = LB.

7: end if

8: UB = WAIT (π, π1, ..., πk).

9: if UB < BestUB then

10: BestUB = UB.

11: end if

12: Set τ = λBestUB−LB
‖AX−B‖2 .

13: (v, u, q) = (v, u, q) + τ(AX − B), k = k + 1.

14: end while

3.4.6 Scaling

In this subsection we will look at the vector AX −B introduced above in more detail.

Denote by ai, 0 ≤ i < 3T , the coordinates of the current vector AX − B. Observe

that the coordinates corresponding to the buffer capacity constraint (3.4.10) have
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indices T ≤ i < 2T . Then ‖AX − B‖2 can be presented as

‖AX − B‖2=
T −1∑

i=0

a2
i +

3T −1∑

i=2T

a2
i

︸ ︷︷ ︸

machines′ constarints

+
2T −1∑

i=T

a2
i

︸ ︷︷ ︸

buffer constarints

(3.4.26)

It was observed in the initial computational experiments that if the size of the buffer

requirements is significantly larger than the size of other requirements (say, the num-

ber of machines on each stage), then the magnitude of the coordinates ai, correspond-

ing to the buffer constraints, is several times greater than the magnitude of the other

coordinates. As a result of the disproportion, the step τ , defined in step 13 of the

LR procedure, converges to zero after just a few iterations, which in turn does not

allow to update the Lagrangian multipliers efficiently. To improve the convergence of

the algorithm, the coordinates of AX − B, which correspond to the buffer capacity

constraints, can be scaled by replacing the buffer capacity Ω by Ω̃ = αΩ and by

replacing the buffer requirement b(k) by ˜b(k) = αb(k) for each batch k, 1 ≤ k ≤ nb,

where α > 0 is a scaling coefficient. Observe that the integer program with the scaled

buffer requirements and buffer capacity is equivalent to the original integer program.

The coefficient α can be either a chosen constant, for example α = 0.0001, or it can

be adjusted dynamically at each iteration as follows:

α =

√
√
√
√

∑T −1
i=0 a2

i +
∑3T −1

i=2T a2
i

∑2T −1
i=T a2

i

Then the squared magnitude of the vector with adjusted coordinates ‖ÃX − Ω̃‖2 is

‖ÃX − Ω̃‖2=
T −1∑

i=0

a2
i +

3T −1∑

i=2T

a2
i + α2

j

2T −1∑

i=T

a2
i = 2

(
T −1∑

i=0

a2
i +

3T −1∑

i=2T

a2
i

)

.

Thus the magnitude of the larger coordinates does not interfere with τ ’s size, τ

converges to zero more gradually, which in turn improves the convergence of the LR

procedure.
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3.4.7 Permutation heuristic

Theoretically, the optimal value of (3.4.4) can be found by the complete enumeration

of all possible permutations of batches and jobs. However, it is infeasible to even

generate all possible permutations for more than twenty elements (see, for example,

[93] - [92]). Instead, in the proposed permutation heuristic a certain order of the

jobs within each batch is selected without enumerating all possible permutations of

the jobs; then only permutations of batches are enumerated; finally, the batches are

scheduled on the first and the second stages in the same order.

It has been shown in [37] that for a set of independent jobs, scheduled by a list

algorithm on m parallel machines with the LPT (Longest Processing Time first) rule,

the maximum completion time of the set CLP T
max is bounded by the following tight

worst-case performance guarantee

CLP T
max

C∗
max

≤
4

3
−

1

3m
,

where C∗
max is the optimal value of the makespan criterion. The permutation heuristic

schedules jobs of each batch on the first stage parallel machines with the LPT rule;

and it enumerates all possible permutations of the given nb batches and schedules

batches with the same order on each stage; then the schedule with the best value of

the objective function is chosen. The initial computational experiments showed that

this approach is very fast for small instances of 25-50 jobs with 3-5 batches and it

produces values within 5% of the optimal value delivered by CPLEX for about 90%

of the instances. Denote by Np = nb! the total number of permutations of nb batches,

and let πi be the current permutation of batches, and πk be the permutation of jobs

in a batch k, defined by the LPT rule. Let WAIT (πi, π1, ..., πk) signify the value of

the objective function provided by the feasible schedule constructed by the following

modification of the WAIT algorithm: batches are scheduled with the order πi on both

stages, and jobs of each batch k are scheduled in order πk on the first stage. The

permutation heuristic can be summarised as follows:
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Permutation heuristic

1: Set BestUB = T .

2: for i = 1 to Np do

3: UB = WAIT (πi, π1, ..., πk).

4: if UB < BestUB then

5: BestUB = UB.

6: end if

7: end for

3.4.8 Computational experiments

The test instances were generated randomly with the processing times chosen from the

interval [1, 10], the weights chosen from the interval (0, 2] and the buffer requirements

chosen from the interval [100, 1000]. A due date for each batch k was chosen from

the interval [ρk + 10, 2(ρk + 10)]. In what follows, each type of the tested instances

is described in the format nb − N − m1 − m2, where nb is the number of batches in

the instance, N - the total number of jobs, m1 and m2 are the numbers of parallel

machines on the first and the second stage, correspondingly. For each instance type,

there were ten instances tested. The buffer capacity is denoted by Ωh = hbmax, where

bmax is the maximum buffer requirement among all batches of an instance and h is

an integer.

The first group of experiments aimed to compare the LR procedure, the permu-

tation heuristic and CPLEX. It was also explored whether the scaling improves the

performance of the procedure, and what scaling technique provides better results.

In addition, it was investigated what order of batches, defined by starting times of

batches obtained by Lagrangian relaxation, on the first or second stage, is more sig-

nificant. The experiments were run for 5−50−5−2, 5−100−5−2 and 10−100−5−2

instances for the buffer sizes Ω2, Ω3 and Ω5. The permutations for the permutation

heuristic were generated by Heap’s algorithm [49]. The subgradient algorithm within

the LR procedure was run for 150 iterations. The time limit for all tested algorithms
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was 30 minutes.

The results presented in the Tables 3.17 - 3.25 compare the values of the objective

function, provided by the LR procedure with and without scaling, by the permu-

tation heuristic and CPLEX. The first column of each table is the test instance’s

number; columns 2 − 4 and 5 − 7 contain the results for the LR procedure, with

WAIT algorithm using the order of batches defined by starting times of batches,

provided by Lagrangian relaxation, on the first or second stage, correspondingly;

columns with heading no scaling, k = 0.0001, adjustable contain results of the LR

procedure with no scaling or with scaling coefficient of 0.0001 or the adjustable scal-

ing coefficient, correspondingly; columns 8 and 9 contain the results provided by the

permutation heuristic and CPLEX, correspondingly. The 10th column signifies the

status of CPLEX solution: either optimal, or the best integer solution found, or there

is no integer solution found within the given time frame. Each value RV in columns

1 − 9 is calculated as

RV =
V − BestV

BestV
× 100%,

where V signifies the smallest value of the objective function, provided by a feasible

schedule constructed by the algorithm in the column title, and BestV is the smallest

value among the 8 algorithms. The results demonstrate that the LR procedure with

scaling provided smaller values of the objective function (mostly within 5% of the

best) than the procedure without scaling; the permutation heuristic provided the best

results for larger instances of 100 jobs; CPLEX provided optimal or the best solutions

for smaller instances with 50 jobs, however, did not provide any best solutions for

instances with 100 jobs.

The box-plots depicted on the Figure 3-11 compare the tightness of solutions for

the LR procedure with or without scaling for buffer sizes Ω2, Ω3 and Ω5. For each

instance a relative error was calculated as follows:

RE =
UB − LB

UB
× 100%,

where UB is the best value of the objective function provided by a feasible schedule,
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Table 3.17: 5 − 50 − 5 − 2, Ω2 instances relative error from the best, in %
LR-1st stage order LR-2nd stage order

Instance No scaling k=0.0001 Adjustable No scaling k=0.0001 Adjustable Permut CPLEX CPLEX solution
0 19.96 8.58 8.58 82.81 9.46 0.00 0.00 239198.92 did not find a solution
1 19.58 0.00 0.15 19.58 0.00 1.38 1.38 0.00 solution exists
2 70.94 2.00 2.00 38.80 0.00 1.68 2.00 2.32 solution exists
3 29.29 2.36 2.62 18.41 2.36 2.62 2.62 0.00 solution exists
4 225.14 5.31 8.61 225.14 5.31 8.61 8.86 0.00 optimal
5 63.70 0.00 0.00 20.16 0.00 0.00 0.00 0.00 optimal
6 316.40 4.25 4.25 310.39 14.00 17.00 4.25 0.00 optimal
7 0.06 0.06 0.00 0.00 0.00 0.00 3.86 0.00 optimal
8 118.27 0.00 0.00 45.02 0.00 0.00 2.17 0.00 optimal
9 29.17 5.26 25.41 22.71 19.28 17.28 4.04 0.00 solution exists

Table 3.18: 5 − 50 − 5 − 2, Ω3 instances relative error from the best, in %
LR-1st stage order LR-2nd stage order

Instance No scaling k=0.0001 Adjustable No scaling k=0.0001 Adjustable Permut CPLEX CPLEX solution
0 117.21 0.50 0.50 126.65 0.50 0.50 0.50 0.00 optimal
1 21.06 1.24 1.39 21.06 1.24 1.39 2.63 0.00 optimal
2 11.40 2.07 2.07 43.39 2.07 2.07 2.07 0.00 optimal
3 44.66 0.26 0.26 44.66 0.00 0.26 0.26 2.30 solution exists
4 225.14 4.31 4.56 225.14 4.56 4.56 8.61 0.00 optimal
5 273.96 0.00 0.00 59.72 0.00 0.00 0.00 0.00 optimal
6 313.40 4.25 1.25 296.95 4.25 3.00 4.25 0.00 optimal
7 53.96 0.06 3.80 38.57 0.00 0.06 3.86 0.00 solution exists
8 115.54 0.00 0.00 49.20 0.00 0.00 2.17 0.00 optimal
9 29.17 0.00 2.00 3.21 2.00 2.00 3.21 0.00 optimal

Table 3.19: 5 − 50 − 5 − 2, Ω5 instances relative error from the best, in %
LR-1st stage order LR-2nd stage order

Instance No scaling k=0.0001 Adjustable No scaling k=0.0001 Adjustable Permut CPLEX CPLEX solution
0 116.13 0.00 0.00 125.52 0.00 0.00 0.00 10.46 solution exists
1 21.06 1.24 1.39 21.06 1.24 1.39 2.63 0.00 optimal
2 126.11 0.00 0.00 40.48 0.00 0.00 0.00 1.21 solution exists
3 44.66 0.26 0.26 44.66 0.26 0.26 0.26 0.00 solution exists
4 225.14 0.50 4.56 225.14 4.31 4.56 8.61 0.00 optimal
5 273.96 0.00 0.00 89.19 0.00 0.00 0.00 0.00 optimal
6 312.89 3.00 3.00 310.39 3.00 3.00 4.25 0.00 optimal
7 53.90 3.80 3.80 38.57 0.00 0.06 3.86 0.00 solution exists
8 115.54 0.00 0.00 49.20 0.00 0.00 2.17 0.00 optimal
9 29.17 0.00 2.00 3.21 2.00 2.00 3.21 0.00 optimal

Table 3.20: 5 − 100 − 5 − 2, Ω2 instances relative error from the best, in %
LR-1st stage order LR-2nd stage order

Instance No scaling k=0.0001 Adjustable No scaling k=0.0001 Adjustable Permut CPLEX CPLEX solution
0 3.66 0.00 0.00 3.66 0.00 0.00 0.00 30.03 solution exists
1 1.81 0.00 0.73 1.81 0.00 0.73 1.47 10224.84 did not find a solution
2 7.73 0.39 0.39 7.73 0.00 0.39 0.39 4749.51 did not find a solution
3 10.20 0.01 0.01 10.20 0.01 0.00 0.53 2.49 solution exists
4 12.36 0.26 0.00 12.36 0.26 0.00 0.26 19.72 solution exists
5 17.84 0.00 0.74 24.59 0.00 0.24 0.97 5561.49 did not find a solution
6 29.71 0.36 0.00 29.71 0.36 0.00 0.36 6372.69 did not find a solution
7 1.63 0.00 0.00 0.17 0.01 0.01 0.17 9451.17 did not find a solution
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 81.02 solution exists
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 34.37 solution exists
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Table 3.21: 5 − 100 − 5 − 2, Ω3 instances relative error from the best, in %
LR-1st stage order LR-2nd stage order

Instance No scaling k=0.0001 Adjustable No scaling k=0.0001 Adjustable Permut CPLEX CPLEX solution
0 2.31 0.00 0.00 3.66 0.00 0.00 0.00 76.55 solution exists
1 38.14 0.90 0.00 38.14 0.91 0.73 1.47 3.44 solution exists
2 7.73 0.39 0.00 7.73 0.00 0.39 0.39 44.49 solution exists
3 10.26 0.52 0.53 9.87 0.13 0.00 0.53 34.99 solution exists
4 12.06 0.00 0.00 12.06 0.00 0.00 0.00 2.98 solution exists
5 2.99 0.97 0.74 16.86 0.48 0.00 0.97 36.33 solution exists
6 27.75 0.00 0.00 27.75 0.00 0.00 0.64 2.71 solution exists
7 10.15 1.22 1.21 8.73 0.02 1.21 1.37 0.00 solution exists
8 17.55 0.00 0.00 17.55 0.00 0.00 0.00 71.57 solution exists
9 14.97 0.00 0.00 14.97 0.00 0.00 0.00 72.94 solution exists

Table 3.22: 5 − 100 − 5 − 2, Ω5 instances relative error from the best, in %
LR-1st stage order LR-2nd stage order

Instance No scaling k=0.0001 Adjustable No scaling k=0.0001 Adjustable Permut CPLEX CPLEX solution
0 2.31 0.00 0.00 1.20 0.00 0.00 0.00 89.72 solution exists
1 36.91 0.00 0.00 36.91 0.00 0.00 0.56 6.54 solution exists
2 7.73 0.39 0.00 7.73 0.39 0.39 0.39 23.35 solution exists
3 10.53 0.00 0.53 10.39 0.53 0.00 0.53 54.91 solution exists
4 12.06 0.26 0.00 12.06 0.26 0.00 0.00 2.98 solution exists
5 38.32 0.74 0.00 38.32 0.74 0.74 0.97 35.22 solution exists
6 43.53 0.64 0.00 32.59 0.00 0.64 0.64 42.36 solution exists
7 10.85 0.46 0.46 6.31 0.00 0.46 0.46 3.33 solution exists
8 17.55 0.00 0.00 17.55 0.00 0.00 0.00 3.96 solution exists
9 14.97 0.00 0.00 14.97 0.00 0.00 0.00 72.94 solution exists

Table 3.23: 10 − 100 − 5 − 2, Ω2 instances relative error from the best, in %
LR-1st stage order LR-2nd stage order

Instance No scaling k=0.0001 Adjustable No scaling k=0.0001 Adjustable Permut CPLEX CPLEX solution
0 53.12 0.79 0.79 44.44 1.21 1.21 0.00 5954.00 did not find a solution
1 63.33 2.77 0.00 44.92 2.77 0.00 0.00 4760.30 did not find a solution
2 31.00 16.06 14.80 19.74 18.78 12.27 0.00 3487.81 did not find a solution
3 83.30 3.60 0.29 77.79 12.87 0.00 0.00 5037.96 did not find a solution
4 3.63 2.67 0.15 2.80 3.00 2.44 0.00 6055.28 did not find a solution
5 99.53 12.61 7.29 46.69 14.28 7.87 0.00 3025.54 did not find a solution
6 23.24 4.36 7.39 16.30 1.28 1.28 0.00 6568.36 did not find a solution
7 40.02 0.09 0.10 14.49 0.10 0.10 0.00 8915.47 did not find a solution
8 15.23 2.72 2.72 1.35 1.52 2.72 0.00 3604.25 did not find a solution
9 24.03 3.07 1.43 34.99 2.77 1.38 0.00 3914.56 did not find a solution

Table 3.24: 10 − 100 − 5 − 2, Ω3 instances relative error from the best, in %
LR-1st stage order LR-2nd stage order

Instance No scaling k=0.0001 Adjustable No scaling k=0.0001 Adjustable Permut CPLEX CPLEX solution
0 81.09 0.00 0.00 69.56 0.20 0.37 0.00 7.98 solution exists
1 123.08 0.00 0.00 75.14 0.00 0.00 0.00 5010.30 did not find a solution
2 33.60 1.91 3.67 25.24 5.21 4.10 0.00 3680.27 did not find a solution
3 169.59 5.38 1.24 106.04 3.80 2.27 0.00 5609.47 did not find a solution
4 65.32 1.07 2.29 7.17 0.00 0.02 0.02 6648.30 did not find a solution
5 58.43 0.59 0.06 21.54 1.92 1.92 0.00 153.57 solution exists
6 53.57 3.62 4.32 43.55 0.43 0.43 0.00 7418.98 did not find a solution
7 40.17 0.10 0.10 41.13 0.10 0.10 0.00 8923.81 did not find a solution
8 11.01 0.00 0.00 9.26 0.00 0.00 0.25 3832.09 did not find a solution
9 56.39 0.00 0.47 61.78 0.00 0.00 0.00 4706.26 did not find a solution
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Table 3.25: 10 − 100 − 5 − 2, Ω5 instances relative error from the best, in %
LR-1st stage order LR-2nd stage order

Instance No scaling k=0.0001 Adjustable No scaling k=0.0001 Adjustable Permut CPLEX CPLEX solution
0 88.13 0.12 0.00 82.67 0.37 0.37 0.00 3.25 solution exists
1 72.24 0.00 0.00 54.79 0.00 0.00 0.00 26.75 solution exists
2 37.18 0.00 0.20 22.57 0.00 0.00 0.20 3777.17 did not find a solution
3 140.42 0.00 0.00 80.96 0.00 0.00 0.00 54.01 solution exists
4 108.54 0.29 0.38 8.94 0.38 0.38 0.00 6.11 solution exists
5 86.12 0.00 0.00 23.23 0.00 0.00 0.00 65.66 solution exists
6 97.44 0.00 0.43 72.24 0.00 0.00 0.00 16.41 solution exists
7 73.11 0.10 0.10 53.29 0.10 0.10 0.00 0.32 solution exists
8 114.56 0.90 0.90 79.28 0.90 0.90 1.15 0.00 solution exists
9 220.74 0.10 0.10 156.08 0.59 0.38 0.00 5.55 solution exists

Figure 3-11: Relative Error

constructed by the corresponding LR procedure with the order of jobs defined by the

starting times of batches on the first stage, obtained by Lagrangian relaxation, and

LB is the best value of (3.4.24). The smallest relative errors are provided by the

LR procedure with the adjustable scaling coefficient provided the tightest solutions

with less variability across all instances: for 50 job instances the relative errors vary

between 23% − 49%, for 100 job instances with 5 batches - between 20% − 40%, for

100 job instances with 10 batches - between 20% − 30%.

The Tables 3.26 - 3.28 compare the results provided by LR procedure with or

without scaling when the order of batches is defined by the starting times of batches,

obtained by Lagrangian relaxation, on the first or the second stage, correspondingly.
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Table 3.26: Order on the 1st stage vs. order on the 2nd stage: 5−50−5−2 instances,
in %

Ω2 Ω3 Ω5

Instance No scaling k=0.0001 Adjustable No scaling k=0.0001 Adjustable No scaling k=0.0001 Adjustable
0 -34.38 -0.81 8.58 -4.16 0.00 0.00 -4.16 0.00 0.00
1 0.00 0.00 -1.21 0.00 0.00 0.00 0.00 0.00 0.00
2 23.16 2.00 0.32 -22.31 0.00 0.00 60.95 0.00 0.00
3 9.19 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 -0.24 0.00 0.00 -3.65 0.00
5 36.23 0.00 0.00 134.13 0.00 0.00 97.66 0.00 0.00
6 1.46 -8.55 -10.90 4.14 0.00 -1.70 0.61 0.00 0.00
7 0.06 0.06 0.00 11.10 0.06 3.74 11.06 3.80 3.74
8 50.51 0.00 0.00 44.46 0.00 0.00 44.46 0.00 0.00
9 5.27 -11.75 6.93 25.15 -1.96 0.00 25.15 -1.96 0.00

Table 3.27: Order on the 1st stage vs. order on the 2nd stage: 5 − 100 − 5 − 2
instances, in %

Ω2 Ω3 Ω5

Instance No scaling k=0.0001 Adjustable No scaling k=0.0001 Adjustable No scaling k=0.0001 Adjustable
0 0.00 0.00 0.00 -1.30 0.00 0.00 0.00 0.00 0.00
1 0.00 0.001 0.00 0.00 -0.003 -0.72 0.00 0.001 0.00
2 0.00 0.39 0.00 0.00 0.39 -0.39 0.00 0.39 0.00
3 0.00 0.00 0.01 0.35 0.39 0.53 0.00 0.00 0.01
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 -5.42 0.00 0.51 -11.87 0.49 0.74 -5.42 0.00 0.51
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 1.46 -0.01 -0.01 1.30 1.20 0.00 1.46 -0.01 -0.01
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The experiments were run for 5 − 50 − 5 − 2 and 10 − 100 − 5 − 2 instances with

buffer sizes Ω2, Ω3 and Ω5. For each instance the comparative value CV , in %, was

calculated as

CV =

(

1stStageV alue

2ndStageV alue
− 1

)

× 100%,

where 1stStageV alue and 2ndStageV alue are the best values of the objective function

provided by the corresponding LR procedure with the order of batches defined by

the starting times of batches, obtained by Lagrangian relaxation, on the first or the

second stage, correspondingly. The results demonstrate, that for LR procedure with a

scaling coefficient, the difference is not significant, with results with order the first or

the second stage being within at most 3% from each other for the absolute majority

of instances. However, the results for LR procedure without scaling show greater

variability with differences up to 100%.

The Figures 3-12 and 3-13 represent the typical graphs of how the step τ and
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Table 3.28: Order on the 1st stage vs. order on the 2nd stage: 10 − 100 − 5 − 2
instances, in %

Ω2 Ω3 Ω5

Instance No scaling k=0.0001 Adjustable No scaling k=0.0001 Adjustable No scaling k=0.0001 Adjustable
0 6.01 -0.41 -0.41 6.80 -0.20 -0.36 2.99 -0.24 -0.36
1 12.70 0.00 0.00 27.37 0.00 0.00 11.27 0.00 0.00
2 9.40 -2.29 2.25 6.67 -3.14 -0.41 11.92 0.00 0.20
3 3.10 -8.22 0.29 30.85 1.52 -1.01 32.86 0.00 0.00
4 0.81 -0.32 -2.24 54.26 1.07 2.27 91.43 -0.09 0.00
5 36.02 -1.46 -0.53 30.35 -1.31 -1.82 51.03 0.00 0.00
6 5.97 3.04 6.04 6.98 3.18 3.88 14.63 0.00 0.43
7 22.29 -0.01 0.00 -0.68 0.00 0.00 12.93 0.00 0.00
8 13.70 1.18 0.00 1.60 0.00 0.00 19.68 0.00 0.00
9 -8.12 0.30 0.05 -3.34 0.00 0.47 25.25 -0.49 -0.28

the relative error change with each iteration of the LR procedure. The provided

graphs show the changes for 5 − 100 − 5 − 2 instance with Ω3 buffer, and the per-

mutation defined by starting times of batches on the first stage, provided by La-

grangian relaxation, being used as the batches’ order on both stages. On the first

graph no scaling, k = 0.0001, adjastable signify values of the step τ for the LR

procedure without no scaling, with the scaling coefficient k = 0.0001 and the ad-

justable scaling coefficient, correspondingly. On the second graph the no scaling_LB,

0.0001_LB, adjustable_LB signify the current values of lower bound (3.4.24) and

no scaling_UB, 0.0001_UB, adjustable_UB signify the current values of upper

bound (the value of the current feasible solution) provided at each iteration by the

LR procedure without scaling, with the scaling coefficient k = 0.0001 and the ad-

justable scaling coefficient, correspondingly. The graphs explicitly demonstrate that

the LR procedure with scaling provides more gradual decrease of the step τ than the

LR procedure without scaling, and that the corresponding relative error and the up-

per bound - and hence the resulting value of the objective function - are significantly

smaller.

The next group of experiments aimed to investigate the impact of the smaller

horizon T : the LR procedure with and without scaling was run for the instances

5 − 50 − 5 − 2 and 10 − 100 − 5 − 2 with the buffer size Ω2 using the larger planning

horizon (3.4.1) and the smaller planning horizon (3.4.3); Tables 3.29 - 3.30 represent

the results of these experiments. For each instance the relative difference in value and
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Figure 3-12: Step τ : comparison of scaling and no scaling options

Figure 3-13: Convergence of the algorithms: upper and lower bounds
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Table 3.29: Smaller planning horizon T: objective value and time, 5 − 50 − 2, Ω2

Improvement, 1-NewValue/OldValue, in % Improvement, 1-NewTime/OldTime, in %
instance no scaling k=0.0001 Adjustable no scaling k=0.0001 Adjustable

0 38.2 -0.3 0.0 84.4 84.4 84.4
1 0.0 0.2 0.0 86.1 86.1 86.1
2 28.4 20.4 -1.7 84.0 84.0 84.0
3 0.0 0.3 0.0 84.8 84.8 84.8
4 0.0 3.0 -3.6 85.2 85.2 85.2
5 -31.2 0.0 0.0 84.9 84.9 84.9
6 -1.5 0.0 0.0 85.5 85.5 85.5
7 0.0 0.0 0.1 84.7 84.7 84.7
8 0.0 0.0 0.0 85.6 85.6 85.6
9 0.0 15.2 2.0 88.7 88.7 88.7

time were calculated as follows:

(

1 −
NewV alue

OldV alue

)

× 100% and
(

1 −
NewTime

OldT ime

)

× 100%,

where NewV alue and NewTime are the value of the objective function and the

time spent to obtain the value with the smaller planning horizon, and OldV alue

and OldT ime are the value of the objective function and the time spent to obtain the

value with the larger planning horizon. In each table, column 1 signifies the instance’s

number, columns 2-4 represent an improvement in the value of the objective function,

in %, provided by the LR procedure without scaling, with scaling coefficient k =

0.0001 and the adjustable scaling coefficient, correspondingly; columns 5-7 represent

an improvement in time, in %, provided by the LR procedure without scaling, with

scaling coefficient k = 0.0001 and the adjustable scaling coefficient, correspondingly.

The change of the value of the objective function for LR procedure without scaling

showed mixed results - for some instances the procedure with a smaller T provided a

smaller value than the procedure with a larger T , for other instances - another way

around. For the LR procedure with scaling the relative difference in the value of the

objective function was not significant - within 0 −4% for most of instances. However,

for all instances the time required to obtain a value of the objective function has

improved dramatically with the smaller T - by 81% − 89%.

Another group of the experiments aimed to compare the LR procedure and per-
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Table 3.30: Smaller planning horizon T: objective value and time, 10−100−5−2, Ω2

Improvement, 1-NewValue/OldValue, in % Improvement, 1-NewTime/OldTime, in %
instance no scaling k=0.0001 Adjustable no scaling k=0.0001 Adjustable

0 -1.9 0.0 0.0 82.2 81.4 81.2
1 1.3 -1.4 0.0 82.5 81.6 79.1
2 6.9 -1.0 -4.5 81.5 81.6 79.8
3 18.9 0.2 -0.3 81.6 82.3 80.3
4 33.4 0.3 2.4 82.6 83.3 80.0
5 -1.7 0.1 4.2 82.2 81.5 80.1
6 18.0 0.0 0.0 81.5 81.3 81.0
7 -16.1 0.0 0.0 81.8 80.9 79.8
8 1.3 0.0 0.0 83.2 83.0 82.6
9 9.8 0.6 0.0 83.2 81.5 81.6

mutation heuristic for larger instances. The experiments were run for instances

10−200−5−2, 10−300−5−2, 10−500−5−2 and 12−200−15−4, 12−300−15−4,

12 − 500 − 15 − 4 and the buffer size Ω5. The LR procedure utilised was the LR pro-

cedure with adjustable scaling coefficient and the order of batches, defined by the

starting times of batches on the first stage and obtained by Lagrangian relaxation.

The results are summarised in Tables 3.31 - 3.32. For the instances with 12 batches,

the permutation heuristic was run for the first 44 million permutations, as the total

number of the permutations is very large (12! = 479, 001, 600). The time limit for

both algorithms was 30 min. For each instance the relative errors from the best value

RE1 and RE2 were calculated as follows:

RE1 =
LR − Best

Best
× 100% and RE2 =

P ermut − Best

Best
× 100%,

where LR and P ermut are the values of the objective function provided by the LR

procedure and permutation heuristic, correspondingly, and Best is the best (smallest)

value of the two. For the instances with 10 batches both heuristics provided values

within 1% from each other. However, for the instances with 12 batches, the LR

procedure provided the best values for all instances. In addition, for the instances

with 300 jobs the permutation heuristic went through 36 − 37 mln permutations

within the given time, and for instances with 500 jobs - only through about 24 mln

permutations.
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Table 3.31: Lagrangian heuristic vs. permutation heuristic: instances with 10 batches
200 jobs 300 jobs 500 jobs

instances LR−Best
Best

P ermut−Best
Best

LR−Best
Best

P ermut−Best
Best

LR−Best
Best

P ermut−Best
Best

0 0.00 0.14 0.00 0.01 0.00 0.00
1 0.00 0.00 0.00 0.11 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00
3 0.39 0.00 0.00 0.00 0.00 0.00
4 0.00 0.01 0.00 0.00 0.00 0.04
5 0.00 0.11 0.00 0.21 0.00 0.10
6 0.00 0.00 0.00 0.00 0.00 0.18
7 0.00 0.04 0.17 0.00 0.00 0.00
8 0.26 0.00 0.20 0.00 0.00 0.00
9 0.00 0.00 0.17 0.00 0.00 0.16

Table 3.32: Lagrangian heuristic vs. permutation heuristic: instances with 12 batches
200 jobs 300 jobs 500 jobs

instances LR−Best
Best

P ermut−Best
Best

LR−Best
Best

P ermut−Best
Best

LR−Best
Best

P ermut−Best
Best

0 0.00 49.07 0.00 42.00 0.00 79.90
1 0.00 35.82 0.00 26.90 0.00 42.83
2 0.00 19.10 0.00 12.49 0.00 2.41
3 0.00 4.77 0.00 61.73 0.00 0.05
4 0.00 7.34 0.00 72.60 0.00 19.40
5 0.00 56.52 0.00 14.69 0.00 33.28
6 0.00 4.90 0.00 0.36 0.00 40.33
7 0.00 56.74 0.00 115.36 0.00 8.25
8 0.00 73.21 0.00 41.30 0.00 31.75
9 0.00 2.34 0.00 57.21 0.00 98.15
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Figure 3-14: Relative Error - larger instances, Ω5 buffer size

The box-plots depicted in Figure 3-14 show the relative errors, in %, provided by

the LR procedure for the larger instances calculated as

RE =
LR − LB

LR
× 100%,

where LR is the value of the objective function provided by the LR procedure and

LB is the best lower bound (largest), provided by Lagrangian relaxation. For larger

instances with 200 − 500 jobs the LR procedure provides even tighter solutions then

for smaller instances with 50-100 jobs, with the relative error within 13 −23% for 200

instances; 13 −29% - for 300 jobs instances and 22−35% - for the 500 jobs instances.

The graph in Figure 3-15 reflects the average time required to obtain the best

feasible schedule for instances with various parameters provided by the LR procedure

(with adjustable scaling coefficient and the order of batches defined by the starting

times of batches on the first stage, obtained by Lagrangian relaxation) and permuta-

tion heuristic. The buffer size for all instances is Ω5. The graph demonstrates that for

LR procedure the time is affected by several factors and increases with the number
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Figure 3-15: Average time per instance

of jobs, number of batches and may decrease if the number of machines on each stage

increases. However, while the permutation heuristic is much faster for the instances

with 50-100 jobs and up to 10 batches, the time increases dramatically, once the

number of batches is greater than 10. In comparison, the CPLEX average time for

5−50−5−2 instances was 24 min, and for 5−100−5−2 and 10−100−5−2 CPLEX

utilised all available time (30 min) for each instance. Further, for 5 − 100 − 5 − 2

instance with Ω2 buffer size, in 5 hours CPLEX has improved the value obtained in

30 min by 14% only, however, the improved value was still 11.6% greater than the

best value obtained by the LR procedure.

In summary, the LR optimisation procedure with a scaling coefficient performs

efficiently for larger instances and generates better solutions, than the procedure

without scaling; the scaling option allows to evaluate the quality of the solutions

better, as the scaling allows to significantly improve the relative error. The strength

of the improved LR optimisation procedure is demonstrated by the fact that the

permutation approach or a straightforward integer programming approach failed to

obtain good solutions for larger instances.
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3.4.9 Conclusion

This section is concerned with a Lagrangian relaxation decomposition-based optimi-

sation procedure (LR procedure) applied to the problem of minimisation of the total

weighted tardiness for the two-stage flow shop with a job-dependent buffer. In this

problem, each stage is represented by a number of parallel identical machines. The

jobs are partitioned in predefined batches. Jobs’s first operations are processed by

one of parallel machines of the first stage, and jobs’s second operations are processed

in the predefined batches on a second-stage machine. The buffer requirement varies

from batch to batch; the batch occupies the buffer continuously from the start of its

its earliest job on a first-stage machine till the completion of the batch on the second-

stage machine. The LR procedure is presented with two additional scaling options,

and these options are compared computationally with each other and with a permu-

tation heuristic. The computational experiments demonstrated that LR procedure

with scaling provides tighter results in terms of the relative error, furthermore, for

larger instances the LR procedure outperforms both the permutation heuristic and

CPLEX in terms of the value of the objective function the resulting solutions and the

time spent. A new smaller planning horizon is proposed which significantly improves

the processing time.
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Chapter 4

Discrete optimisation with

polynomially detectable

boundaries and restricted level sets

The results discussed in this chapter have been published in the following conference

proceedings and a journal:

• [109]: Yakov Zinder, Julia Memar and Gaurav Singh. “Discrete optimisation

with polynomially detectable boundaries and restricted level sets”. Journal of

Combinatorial Optimisation. 25-2, pp 308–325, 2013.

• [80]: Julia Memar, Gaurav Singh and Yakov Zinder. “Scheduling Partially Or-

dered UET Tasks on Dedicated Machines”. IFAC Proceedings Volumes, 46(9),

pp.1672-1677, 2013.

• [40]: Hanyu Gu, Julia Memar, Yakov Zinder. “Search Strategies for Problems

with Detectable Boundaries and Restricted Level Sets”. In Data and Decision

Sciences in Action, pp. 149–162. Springer, 2018.

The results of this chapter have been presented at the following conferences:

• the 4th international conference on Combinatorial optimisation and applications

COCOA2010, Hawaii, USA, 18-20 December 2010;
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• the IFAC Conference on Manufacturing, Management and Control MIM 2013,

St.Petersburg, Russian Federation, 19-21 June 2013;

• the 24th National Conference of the Australian Society for Operations Research

ASOR2016, Canberra, Australia, 16-17 November 2016.

The computational experiments for this chapter were conducted on a personal com-

puter with Intel Core i5 processor CP U@1.70Ghz, using Ubuntu 14.04 LTS, with base

memory 4096 MB. The algorithms were implemented in C programming language.
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4.1 Introduction

Consider the following discrete optimisation problem

min
(x1,x2,...,xn)∈X

F (x1, x2, ..., xn), (4.1.1)

where F (x1, x2, ..., xn) is a function defined on an n-dimensional hypercube of points

with integer coordinates satisfying the inequalities 0 ≤ xi ≤ p(n), 1 ≤ i ≤ n, where

p(n) is a polynomial in n. Without loss of generality, it is assumed that p(n) is

integer. The feasible region X is a subset of this hypercube. It is also assumed that

F (x1, x2, ..., xn) is a nondecreasing function - for any (x1, ...xn) and (y1, ...yn), such

that xi ≥ yi, 1 ≤ i ≤ n, F (x1, x2, ..., xn) ≤ F (y1, y2, ..., yn).

This description is too general for any specific optimisation procedure. The follow-

ing three additional properties are introduced in this thesis to narrow the considered

class of discrete optimisation problems. However, these properties are not very restric-

tive - the resultant class, for example, contains various well-known NP -hard problems

of scheduling theory. These properties allow to describe a new discrete optimisation

procedure for the discrete optimisation problems (4.1.1) that posses these proper-

ties. The discrete optimisation procedure can be viewed as a generalisation of the

exact method, described in [112, 113] for scheduling problems on parallel machines.

In what follows, the expression “in polynomial time” has the standard meaning that,

the number of operations is bounded above by a polynomial in n, and this polynomial

remains the same for all instances of (4.1.1). Similarly, the expression “cardinality

is bounded above by some polynomial in n” implies, that for all instances of (4.1.1),

the number of elements in the considered set is bounded above by the value of some

polynomial in n and this polynomial remains the same for all instances of (4.1.1).

• The first property is concerned with the boundary of X the definition of which

is based on the notion of dominance:

- Point a = (a1, a2, ..., an) dominates point b = (b1, b2, ..., bn) if bi ≤ ai for all

1 ≤ i ≤ n, and a strictly dominates b if at least one of these inequalities is
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strict.

- The boundary of X is the set of all points in X which do not strictly

dominate any point in X.

Property 1 There is an algorithm which for any point in X in

polynomial time determines whether or not this point

is on the boundary of X.

• The second property pertains to the notion of a level set defined as follows:

- For any value F̄ of F , a set D in the domain of F is F̄ -dominant if

F (x1, x2, ..., xn) = F̄ for all (x1, x2, ..., xn) ∈ D and F (y1, y2, ..., yn) = F̄

implies that there exists a point in D which dominates (y1, y2, ..., yn).

- For any value F̄ of F , a level set, denoted by A(F̄ , F ), is an F̄ -dominant

set with the smallest cardinality among all F̄ -dominant sets. The next

section justifies this definition by showing that for any value F̄ of F the

corresponding level set is unique.

Property 2 For any value F̄ of F , the corresponding level set can

be found in polynomial time.

This property implies that the cardinality of each level set is bounded above by

some polynomial in n and this polynomial remains the same for all instances

of (4.1.1) - because otherwise the Property 2 would not be satisfied. Observe

that if F̄ = F (p(n), ..., p(n)), then A(F̄ , F ) is comprised of only one point

(p(n), ..., p(n)).

• The third property is the existence of a polynomial-time algorithm that for

any value F̄ of F such that F̄ < F (p(n), ..., p(n)) finds the smallest value of F

greater than F̄ .
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Property 3 For any value F̄ of F such that F̄ < F (p(n), ..., p(n))

the value

F ′ = min
{(x1,x2,...,xn):F (x1,x2,...,xn)>F̄ }

F (x1, x2, ..., xn).

can be found in polynomial time.

4.2 Level sets

The theorem below justifies the definition of a level set by establishing its uniqueness.

This theorem is based on the following lemma.

Lemma 1 For any value F̄ of F and any F̄ -dominant set D, A(F̄ , F ) ⊆ D.

Proof: Consider an arbitrary a ∈ A(F̄ , F ). Since D is an F̄ -dominant set, there

exists x ∈ D which dominates a. Since A(F̄ , F ) is also a dominant set, there exists

a′ ∈ A(F̄ , F ) which dominates x. If x strictly dominates a or a′ strictly dominates

x, then a′ strictly dominates a. In this case the set A(F̄ , F ) − {a} is a dominant

set, because any point dominated by a is also dominated by a′, which contradicts the

definition of a level set. Therefore a = x, and thus A(F̄ , F ) ⊆ D. �

Let D be any set of points in the considered hypercube (the domain of F ). Denote

by Dc the set of all points x ∈ D such that there is no point in D that strictly

dominates x.

Theorem 1 For any value F̄ of F the level set is unique, and for any F̄ -dominant

set D, Dc = A(F̄ , F ).

Proof: Suppose that for some value F̄ of F there exist two different level sets A and

B. Then by Lemma 1, A ⊆ B and B ⊆ A which contradicts the assumption that A

and B are different.

Since D is an F̄ -dominant set, for any x = (x1, ..., xn) such that F (x1, ..., xn) = F̄ ,

there exists d ∈ D which dominates x. If d 6∈ Dc, then there exists d′ ∈ Dc such

that d′ strictly dominates d, and therefore d′ strictly dominates x. Hence, Dc is an
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F̄ -dominant set and by Lemma 1, A(F̄ , F ) ⊆ Dc. Suppose that there exists d ∈ Dc

such that d 6∈ A(F̄ , F ). Since A(F̄ , F ) is an F̄ -dominant set, there exists a ∈ A(F̄ , F )

such that a strictly dominates d, which by virtue of A(F̄ , F ) ⊆ Dc contradicts the

definition of Dc. �

4.3 Examples of the problems with the considered

properties

4.3.1 Property 1 : scheduling on dedicated machines - the

boundary of the feasible region

The properties introduced in Section 4.1 are possessed by many NP -hard scheduling

problems. For example, consider the following scheduling problem. A set of n tasks

N = {1, . . . , n} is processed on a set M = {1, ..., m} of m parallel machines subject to

precedence constraints in the form of an anti-reflexive, anti-symmetric and transitive

relation on N . If in this relation task i precedes task j, denoted i → j, then task

i must be completed before task j can be processed. If i → j, then i is called a

predecessor of j and j is called a successor of i. The processing time of each task is

one unit of time. For each j ∈ N , the processing of task j can commence not earlier

than its release time rj , where rj is a nonnegative integer. Without loss of generality

it is assumed that the smallest release time is zero.

A machine can process only one task at a time and a task can be processed by

only one machine at a time. Each task j ∈ N can be processed only by a machine

from a particular subset Mj ⊆ M , which will be referred to as a set of dedicated

machines corresponding to task j. In what follows, it is assumed that the sets of

dedicated machines are embedded, that is for any j ∈ N and g ∈ N either Mj ⊆ Mg,

or Mg ⊆ Mj , or Mj ∩Mg = ∅. If a machine starts processing a task, it continues until

completion, i.e. no preemptions are allowed.

The availability of machines is a function of time. More specifically, for any

positive integer t, let M(t) be the set of machines that can process tasks during the
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time interval [t − 1, t]. It is assumed that, for any j ∈ N and any positive integer t,

Mj ∩ M(t) 6= ∅.

Since preemptions are not allowed, a schedule is specified by the tasks’ completion

times which without loss of generality are assumed being integers. In the scheduling

literature the completion time of task j is usually denoted by Cj , but for the purpose

of our discussion it is convenient to denote the completion time of task j by xj . The

goal is to minimize F (x1, ..., xn), where F is a nondecreasing function.

In the three field notation (see, for example, [87]) the above scheduling problem

can be denoted by P |prec, rj, pj = 1, Mj, emb, M(t)|F , where P and M(t) indicate

that tasks are processed on parallel machines and that the set of available machines

is a function of time, prec and rj specify that tasks are subject to precedence con-

straints and release times, pj = 1 shows that all processing times are one unit of

time, and Mj and emb state that each task can be processed only by a machine from

the corresponding set of dedicated machines and the sets of dedicated machines are

embedded. In the particular case, when each machine is available at any point in

time, the parameter M(t) is omitted. The particular case, when all release times are

equal to zero, is specified by omitting rj . Similarly, if the parameter Mj is omitted,

then it is assumed that all machines are identical. If the precedence constraints are

restricted to a certain type of graphs, then parameter prec is replaced by a reference

to this type of graphs. An alternative notation, as in the case of the job shop (see

below), also can be used.

The P |prec, rj, pj = 1, Mj, emb, M(t)|F problem includes as particular cases such

well known scheduling problems [87] as

• P |prec, rj, pj = 1, m(t)|F - the scheduling problem with parallel identical ma-

chines with the number m(t) being a function of time, i.e. m(t) is the number

of identical machines available in the time interval [t − 1, t];

• J |pj = 1|F - the job shop scheduling problem with unit execution time tasks:

|Mj|= 1 for any j ∈ N and the precedence constraints are a collection of disjoint

chains.
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Even very restricted versions of these particular cases remain NP −hard in the

strong sense. For example, P |bipartite, pj = 1|Cmax, where the precedence constraints

are in the form of a bipartite graph and

F (x1, ..., xn) = max
1≤j≤n

xj

(the so called makespan objective function denoted by Cmax), is NP −hard in the

strong sense [110]. Another example is J2|pj = 1|Cmax, where J2 indicates that the

tasks are to be scheduled on two machines. The NP -hardness of J2|pj = 1|Cmax was

established in [54].

Since i → j implies xi + 1 ≤ xj , without loss of generality it is assumed that

i → j implies ri + 1 ≤ rj. In turn, the above assumption allows to assume that

for any task i with ri > 0, the number of tasks j with rj < ri is greater than ri.

Indeed, suppose that this assumption does not hold, and among all i, violating this

assumption, g is a task with the smallest release time. Then, even processing only

one task at a time, one can complete all tasks j with rj < rg before time rg, and

therefore the problem can be split into two separate problems: one with all tasks

j satisfying rj < rg and another with all remaining tasks. The above assumption

implies that there exists an optimal schedule with all completion times less than or

equal to n. Consequently, it is sufficient to consider the objective function F only on

the n-dimensional hypercube of points (x1, ..., xn) with integer coordinates satisfying

0 ≤ xj ≤ n for all 1 ≤ j ≤ n. Then, the feasible region X can be viewed as the set

of points (x1, x2, ..., xn) corresponding to all feasible schedules with completion times

less than or equal to n. In other words, X is the set of all points (x1, ..., xn) with

integer coordinates satisfying the following three conditions:

(a) rj + 1 ≤ xj ≤ n for all 1 ≤ j ≤ n;

(b) |{i : xi = t and Mi ⊆ Mj}|≤ |Mj ∩ M(t)| for all integer 1 ≤ t ≤ n and all j

such that xj = t;

(c) xi ≤ xj − 1 for all i and j such that i → j.
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The following lemma shows that the P |prec, rj, pj = 1, Mj , emb, M(t)|F schedul-

ing problem has Property 1, as the condition specified in this lemma can be checked

in O(n2) operations.

Lemma 2 A point (x1, ..., xn) ∈ X is on the boundary of X if and only if, for each

integer t ≥ 1 such that |{g : xg = t}|< |M(t)| and for each xj > t, at least one of the

following conditions holds:

• rj ≥ t;

• there is i such that i → j and xi ≥ t;

• there is Mi such that Mj ⊆ Mi and |{g : xg = t and Mg ⊆ Mi}|= |Mi ∩ M(t)|.

Proof: Suppose that x = (x1, ..., xn) ∈ X is on the boundary of X, and let t ≥ 1 be

any integer such that |{g : xg = t}|< |M(t)|. Let j be any task such that xj > t.

Consider the point x′ = (x′
1, ..., x′

n), where x′
j = t and x′

g = xg for all g 6= j. Since x

is on the boundary of X and x strictly dominates x′, x′ 6∈ X. Hence, either rj ≥ t or

x′ does not satisfy either feasibility condition (b) or (c) or both. If rj ≥ t, then the

desired property holds. Suppose rj < t and x′ does not satisfy the feasibility condition

(c). This implies that there exists i → j and xi ≥ t. If rj < 0 and there is no i such

that i → j and xi ≥ t, then the feasibility condition (b) does not hold for x′. Thus,

there exists Mi such that Mj ⊆ Mi and |{g : xg = t and Mg ⊆ Mi}|= |Mi ∩ M(t)|.

Conversely, consider x = (x1, ..., xn) ∈ X and suppose that, for each integer t ≥ 1

such that |{g : xg = t}|< |M(t)| and each j such that xj > t, either rj ≥ t, or

there exists i such that xi ≥ t and i → j, or there exists Mi such that Mj ⊆ Mi and

|{g : xg = t and Mg ⊆ Mi}|= |Mi ∩ M(t)|. Suppose that x is not on the boundary

of X, i.e. x strictly dominates some x′ = (x′
1, ..., x′

n) ∈ X. Then, among all g such

that x′
g < xg select one with the smallest x′

g. Let it be task j. Then, xg = x′
j implies

x′
g = xg. Hence |{g : xg = x′

j}|< |M(x′
j)|, which together with x′

j < xj implies that

one of the conditions of the lemma holds and therefore one of the feasibility conditions

is violated. Thus, the inequality rj ≥ x′
j contradicts (x′

1, ..., x′
n) ∈ X. The existence

of i such that xi ≥ x′
j and i → j also contradicts x′ ∈ X because x′

i ≥ x′
j . Finally, if
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for some i with xi = x′
j the corresponding Mi is such that Mj ⊆ Mi and |{g : xg = x′

j

and Mg ⊆ Mi}|= |Mi ∩ M(x′
j)|, then x′ does not satisfy the feasibility condition (b).

�

4.3.2 Property 2 and Property 3 : level sets of max
1≤j≤n

ϕj(xj)

Consider (4.1.1) with the objective function

F (x1, x2, ..., xn) = max
1≤j≤n

ϕj(xj), (4.3.1)

where each ϕj(xj) is a nondecreasing function defined for all integer 0 ≤ xj ≤ p(n).

• Let F̄ be an arbitrary value of F , and let aj be the largest among all integer

xj satisfying the inequalities ϕj(xj) ≤ F̄ and xj ≤ p(n). It is easy to see that

F (a1, ..., an) = F̄ . Moreover, if F (x1, x2, ..., xn) = F̄ , then (a1, ..., an) dominates

(x1, x2, ..., xn). Hence, for each F̄ the level set A(F̄ , F ) is comprised of only

one point. This point can be found in polynomial time, for example by using

the binary search on the interval [0, p(n)] separately for each ϕj . Hence, the

objective function (4.3.1) has Property 2.

• Let F ′ < F ′′ be two consecutive values of F , i.e. there is no value of F between

these two values. Let (a′
1, ..., a′

n) and (a′′
1, ..., a′′

n) be the points constituting

A(F ′, F ) and A(F ′′, F ), respectively. Let J be the set of all j satisfying a′
j <

p(n). Observe that (a′′
1, ..., a′′

n) strictly dominates (a′
1, ..., a′

n) and a′
j < a′′

j implies

j ∈ J . Moreover, for all j ∈ J , ϕj(a
′
j + 1) > F ′ and therefore ϕj(a

′
j + 1) ≥ F ′′.

The above observations lead to the following inequalities

F ′′ ≤ min
j∈J

ϕj(a
′
j + 1) ≤ max

1≤j≤n
ϕj(a

′′
j ) = F ′′.

Hence,

F ′′ = min
j∈J

ϕj(a
′
j + 1). (4.3.2)

As has been shown above, for a given F ′, the corresponding point (a′
1, ..., a′

n),
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constituting A(F ′, F ), can be found in polynomial time. Then, F ′′ can be

obtained using (4.3.2). Therefore, the objective function (4.3.1) has Property 3.

Objective functions of the form (4.3.1) are common in scheduling theory. Thus,

one of the most frequently used objective functions in scheduling is (4.3.1) with all

ϕj(t) = t − dj, where dj is interpreted as a due date of task j. In this case, the

objective function is referred to as the maximum lateness denoted by Lmax. If all due

dates are zero, the maximum lateness problem converts into the makespan problem

with the makespan objective function denoted by Cmax.

Since the domain of each ϕj is the set of all integer points in the interval [0, p(n)],

ϕj takes on at most p(n) + 1 different values. Consequently, the cardinality of the

range of (4.3.1) cannot exceed n(p(n) + 1). So, the union of all level sets cannot

contain more than n(p(n) + 1) points. Starting with value F (0, ..., 0) and with the

corresponding level set (which is comprised of only one point), one can enumerate

the union of all level sets in polynomial time. Nevertheless, in general, the problem

remains NP -hard because the elements of level sets do not necessarily belong to the

feasible region X. Thus, it is well known that the P |prec, pj = 1|Cmax problem is

NP -hard in the strong sense [71, 101]. Further, the problem remains NP -hard in the

strong sense even if the precedence constraints are restricted to the bipartite graphs

[110].

4.3.3 Property 2 and Property 3 in multi-objective optimi-

sation

Consider an optimisation problem with k nondecreasing objective functions F1, ..., Fk,

each defined on the same n-dimensional hypercube of points with integer coordinates

satisfying the inequalities 0 ≤ xi ≤ p(n), 1 ≤ i ≤ n, where p(n) is a polynomial in

n. A common approach in multi-objective optimisation is the replacement of several

objective functions by a single function

F (x1, ..., xn) = ψ(F1(x1, ..., xn), ..., Fk(x1, ..., xn)), (4.3.3)

133



where ψ is a nondecreasing function.

Lemma 3 For any value F̄ of (4.3.3) and for any (a1, ..., an) ∈ A(F̄ , F ), there are

points (a
(i)
1 , ..., a(i)

n ) ∈ A(Fi(a1, ..., an), Fi), 1 ≤ i ≤ k, such that aj = min
1≤i≤k

a
(i)
j for all

1 ≤ j ≤ n.

Proof: Consider an arbitrary point (a1, ..., an) ∈ A(F̄ , F ), and for each

1 ≤ i ≤ k denote F̄i = Fi(a1, ..., an). By the definition of A(F̄i, Fi), there exists

(a
(i)
1 , ..., a(i)

n ) ∈ A(F̄i, Fi) such that aj ≤ a
(i)
j for all 1 ≤ j ≤ n. Consider the point

(ã1, ..., ãn), where ãj = min
1≤i≤k

a
(i)
j for all 1 ≤ j ≤ n. Since ψ is a nondecreasing func-

tion, each Fi is a nondecreasing function, each (a
(i)
1 , ..., a(i)

n ) dominates (ã1, ..., ãn), and

(ã1, ..., ãn) dominates (a1, ..., an),

F (a1, ..., an) ≤ F (ã1, ..., ãn) ≤ ψ
(

F1(a
(1)
1 , ..., a(1)

n ), ..., Fk(a
(k)
1 , ..., a(k)

n )
)

= ψ
(

F̄1, ..., F̄k

)

= F (a1, ..., an).

Hence, F (ã1, ..., ãn) = F (a1, ..., an). On the other hand, by the definition of A(F̄ , F ),

F (a1, ..., an) = F̄ , and therefore F (ã1, ..., ãn) = F̄ . Moreover, by the same definition,

there exists a point (a′
1, ..., a′

n) ∈ A(F̄ , F ) which dominates (ã1, ..., ãn). Consequently,

aj ≤ ãj ≤ a′
j for all 1 ≤ j ≤ n. If at least one of these inequalities is strict, then

(a′
1, ..., a′

n) strictly dominates (a1, ..., an) which contradicts the definition of a level set

because in this case A(F̄ , F ) − {(a1, ..., an)} is an F̄ -dominant set. So, aj = min
1≤i≤k

a
(i)
j

for all 1 ≤ j ≤ n. �

According to Lemma 3 all level sets of F can be obtained from the level sets of

F1,..., Fk. Therefore, in some cases, the fact that each of F1,..., Fk has Property 2 or

Property 3 or both may imply that (4.3.3) also has these properties. Theorems 2 and

3 are concerned with such a case.

Theorem 2 If each of F1,..., Fk has Property 3 and the cardinality of the range of

each F1,..., Fk is bounded above by a polynomial in n, then (4.3.3) has Property 3.

Proof: Each Fi is a nondecreasing function defined on the n-dimensional hypercube

of points with integer coordinates satisfying the inequalities 0 ≤ xi ≤ p(n), 1 ≤
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i ≤ n. Therefore, its smallest value is Fi(0, ..., 0). Since Fi has Property 3 and the

cardinality of the range of Fi is bounded above by some polynomial in n, it is possible

to enumerate all values of Fi in polynomial time by starting with Fi(0, ..., 0) and

using Property 3 of Fi. Consequently, it is possible in polynomial time to generate all

combinations (F̄1, ..., F̄k), where each F̄i is some value of the corresponding Fi. These

combinations give all values of (4.3.3), and therefore, (4.3.3) has Property 3. �

Theorem 3 If each of F1,..., Fk has Property 2 and Property 3 and the cardinality

of the range of each F1,..., Fk is bounded above by a polynomial in n, then (4.3.3) has

Property 2.

Proof: Let F̄ be an arbitrary value of F , and let (F̄1, ..., F̄k) be an arbitrary combi-

nation of values of F1, ..., Fk such that F̄ = ψ(F̄1, ..., F̄k). Since each Fi has Property

2, there exists an algorithm which in polynomial time finds all elements of A(F̄i, Fi).

Hence, it is possible to find in polynomial time all combinations (a(1), ..., a(k)), where

each a(i) = (a
(i)
1 , ..., a(i)

n ) is an element of the corresponding A(F̄i, Fi). Each combina-

tion (a(1), ..., a(k)) gives the point ( min
1≤i≤k

a
(i)
1 , ..., min

1≤i≤k
a(i)

n ). So, the cardinality of the

set D(F̄1, ..., F̄k) of all such points is bounded above by some polynomial in n.

Since the cardinality of the range of each Fi is bounded above by some poly-

nomial in n and since each Fi has Property 3, it is possible to find in polyno-

mial time all combinations (F̄1, ..., F̄k) of values of F1,..., Fk satisfying the condition

F̄ = ψ(F̄1, ..., F̄k). Furthermore, as has been shown above, there exists a polynomial-

time algorithm which for each such combination finds all elements of the correspond-

ing set D(F̄1, ..., F̄k). Therefore, the union D of D(F̄1, ..., F̄k) for all combinations

(F̄1, ..., F̄k), satisfying F̄ = ψ(F̄1, ..., F̄k), can be found in polynomial time. According

to Lemma 3, A(F̄ , F ) ⊆ D, and therefore D is an F̄ -dominant set. Then, by Theorem

1, Dc is the level set. Since the cardinality of D is bounded above by a polynomial

in n, Dc can be found in polynomial time which implies Property 2. �
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4.4 Description of the Discrete Optimisation Pro-

cedure

4.4.1 Introduction

The discrete optimisation procedure is an iterative algorithm that at each iteration

uses some lower bound on the optimal value of F . All lower bounds belong to the

range of F . Of course, F (0, ..., 0) can be taken as an initial lower bound, but a tighter

bound may improve the convergence. At each iteration with some lower bound F̄ ,

the optimisation procedure searches for a feasible point dominated by one of the

elements constituting A(F̄ , F ). Property 2 guarantees that all elements of A(F̄ , F )

can be enumerated in polynomial time, and the optimisation procedure uses them

in succession. If a feasible point, dominated by some element of A(F̄ , F ), has been

found, the optimisation procedure terminates with this point as an optimal solution.

Otherwise, using Property 3, the optimisation procedure finds a new lower bound and

starts a new iteration.

Denote by F0 the initial lower bound, and by F̄ - the current lower bound. Let

NextLB(F̄ ) be a procedure that determines the next lower bound greater than the

current lower bound. Assume that the procedure LevelSet(F̄ ) determines the level

set A(F̄ , F ) for the current lower bound, and the procedure Dominate(a) determines

whether or not the element a ∈ A(F̄ , F ) dominates any feasible point, and if it

does, then the procedure returns True; if the procedure determines that a does not

dominate any x ∈ X, it returns False. Let NImax be the maximum number of

iterations. The discrete optimisation procedure can be described as follows:

Discrete Optimisation Procedure

1: Set k = 0, F̄ = F0, Found = False;

2: while not Found and k < NImax do

3: LevelSet(F̄ ), Set i = 1;

4: while not Found and i ≤ |A(F̄ , F )| do

5: a = A(F̄ , F )[i];
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6: Found = Dominate(a);

7: i + 1;

8: end while

9: if not Found then

10: Set F̄ = NextLB(F̄ );

11: k = k + 1;

12: end if

13: end while

Search for a feasible point, dominated by an element of A(F̄ , F ), can be conducted

in several different ways. This gives a rise to the three different approaches - descend-

ing, ascending and descending-ascending search methods. In all three approaches,

each (a1, ..., an) ∈ A(F̄ , F ) initiates a search tree, where all nodes correspond to

points in the domain of F . The difference between the descending, ascending and

descending-ascending approaches is in the method of constructing the search tree.

These three methods are presented below.

4.4.2 Descending method

As it has been mentioned above, the root of the search tree corresponds to some

(a1, ..., an) ∈ A(F̄ , F ). At each stage of construction of the search tree, the optimisa-

tion procedure chooses a node that does not have successors in the already constructed

fragment of this tree and connects this node to one or several new nodes (branch-

ing). The new nodes correspond to the points dominated by the point corresponding

to the node at which branching occurs. Let d = (d1, ..., dn) /∈ X be a point which

corresponds to a node without successors in the partially constructed search tree. Let

̺(d1, ..., dn) = min
(x1,...,xn)∈X

max
1≤j≤n

[xj − dj].

Point d dominates at least one feasible point if and only if

̺(d1, ..., dn) ≤ 0. (4.4.1)
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In general, the question whether or not ̺(b1, ..., bn) ≤ 0 is an NP-complete problem.

Thus, the NP -completeness in the strong sense of this question for the P |prec, pj =

1|Cmax scheduling problem, which is a particular case of (4.1.1), follows from [71] and

[101]. Hence, instead of ̺(d1, ..., dn), one may attempt to calculate some ̺ such that

̺ ≤ ̺(d1, ..., dn). (4.4.2)

The method of calculating ̺ depends on F and X. If ̺ > 0, then d is fathomed,

i.e.no branching at d is required. If ̺ ≤ 0 or ̺ has not been calculated at all, then

d can be projected onto X, where the projection of d onto X is a point with the

smallest t among all points (d1 + t, ..., dn + t) satisfying (d1 + t, ..., dn + t) ∈ X. The

point (d1, ..., dn) can be projected onto X in polynomial time, since this requires that

only the points (d1 + t, ..., dn + t) with integer t satisfying the inequality |t|≤ p(n) are

considered. Of course, the projection may not exist. Consider the following cases:

• The projection (d1 + τ, ..., dn + τ) exists and τ ≤ 0;

• The projection (d1 + τ, ..., dn + τ) is on the boundary of X and τ > 0;

• The projection (d1 + τ, ..., dn + τ) is not the boundary of X and τ > 0;

• The projection does not exist.

If the projection (d1 + τ, ..., dn + τ) exists and τ ≤ 0, then d dominates this

projection, and the optimisation procedure terminates because the projection is a

feasible point. The following lemma considers the second case.

Lemma 4 If (d1 + τ, ..., dn + τ) is on the boundary of X and τ > 0, then d does not

dominate any feasible point.

Proof: Since (d1 + τ, ..., dn + τ) is on the boundary of X, by the definition of the

boundary of X, for any (x1, ..., xn) ∈ X, there exists j such that xj ≥ dj + τ , and

therefore max
1≤i≤n

(xi − di) ≥ τ . Hence, ̺(d1, ..., dn) ≥ τ > 0 and d does not dominate

any feasible point. �.
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Observe, that if the projection (d1 + τ, ..., dn + τ) is on the boundary of X and

dominates a, then a does not dominate any feasible point, and entire search tree

should be fathomed. Indeed, if we assume that a dominates a feasible point, then the

projection dominates the point, which contradicts the assumption that the projection

is on the boundary of X.

The two remaining cases are when the projection (d1 + τ, ..., dn + τ) does not

belong to the boundary of X and τ > 0, and the case when the projection does not

exist. The lemma below addresses these cases. Let X(d1, ..., dn) be the set of all

(x1, ..., xn) ∈ X such that

max
1≤j≤n

[xj − dj] = ̺(d1, ..., dn).

Lemma 5 If τ > 0 and (d1 + τ, ..., dn + τ) does not belong to the boundary of X or

if the projection does not exist, then there exist (x1, ..., xn) ∈ X(d1, ..., dn) and i such

that

xi − di < ̺(d1, ..., dn). (4.4.3)

Proof: Observe that the statement of this theorem does not hold if and only if

X(d1, ..., dn) is comprised of only point (d1 + ̺(d1, ..., dn), ..., dn + ̺(d1, ..., dn)). How-

ever, in this case for any (x1, ..., xn) /∈ X(d1, ..., dn), max1≤j≤n[xj − dj] > ̺(d1, ..., dn),

and hence there exits i such that xi − di > ̺(d1, ..., dn) > 0, which implies that the

only point (d1 + ̺(d1, ..., dn), ..., dn + ̺(d1, ..., dn)) ∈ X(d1, ..., dn) does not dominate

any other feasible point and therefore it is on the boundary of X.

If the projection does not exist, then (d1 + t, ..., dn + t) /∈ X for all integer t. In

particular, (d1 + ̺(d1, ..., dn), ..., dn + ̺(d1, ..., dn)) is not in X and therefore is not

in X(d1, ..., dn), because X(d1, ..., dn) is a subset of X. Hence, for any (x1, ..., xn) ∈

X(d1, ..., dn), there exists i satisfying (4.4.3).

Suppose that the projection exists but (d1 + τ, ..., dn + τ) /∈ X(d1, ..., dn). Assume

that (d1 + ̺(d1, ..., dn), ..., dn + ̺(d1, ..., dn)) ∈ X(d1, ..., dn). Then, by the definition

of projection, τ < ̺(d1, ..., dn), which by virtue of (d1 + τ, ..., dn + τ) ∈ X leads to the
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following contradiction:

̺(d1, ..., dn) > τ ≥ min
(x1,...,xn)∈X

max
1≤j≤n

[xj − dj ] = ̺(d1, ..., dn).

So, (d1 + ̺(d1, ..., dn), ..., dn + ̺(d1, ..., dn)) /∈ X(d1, ..., dn), and therefore for any

(x1, ..., xn) ∈ X(d1, ..., dn) there exists i satisfying (4.4.3).

Finally, assume that (d1 + τ, ..., dn + τ) ∈ X(d1, ..., dn). Then, τ = ̺(d1, ..., dn).

Furthermore, since (d1 + τ, ..., dn + τ) is not on the boundary of X, (d1 + τ, ..., dn + τ)

strictly dominates some (x1, ..., xn) ∈ X, i.e. xj ≤ dj + τ for all 1 ≤ j ≤ n and at

least one of these inequalities is strict. Then, taking into account the definition of

̺(d1, ..., dn),

̺(d1, ..., dn) = min
(y1,...,yn)∈X

max
1≤j≤n

[yj − dj] ≤ max
1≤j≤n

[xj − dj] ≤ τ = ̺(d1, ..., dn).

Hence, (x1, ..., xn) ∈ X(d1, ..., dn), and (4.4.3) holds for this (x1, ..., xn). �

In general, neither index i nor ̺(d1, ..., dn) − [xi − di] are known. The idea is

• find a subset B ⊆ {1, ..., n} such that for some i ∈ B, there exists (x1, ..., xn) ∈

X, satisfying (4.4.3);

• calculate a lower bound δ: 0 < δ ≤ ̺(d1, ..., dn) − [xi − di];

• introduce for each j ∈ B, a new node corresponding to the point (d′
1, ..., d′

n),

where

d′
e =







de − δ if e = j

de if e 6= j
,

if (d′
1, ..., d′

n) is in the domain of F ;

• link each such new node with the node corresponding to d.

Though {1, ..., n} is always a possible choice of B, smaller B may improve the con-

vergence. It is easy to see that each (d′
1, ..., d′

n) is dominated by d and therefore is

dominated by the element of the level set corresponding to the root of the search tree.
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Furthermore, for at least one of these new points

̺(d′
1, ..., d′

n) = ̺(d1, ..., dn).

Therefore, if there are feasible points dominated by (d1, ..., dn), then at least one of

them is dominated by one of the new points. Since 0 ≤ ae ≤ p(n) for all 1 ≤ e ≤ n,

after a finite number of steps, the optimisation procedure either finds a feasible point

dominated by the considered element of the level set and terminates with this feasible

point as an optimal solution, or establishes that the considered element of the level

set does not dominate any feasible point.

In general, the methods of choosing B and calculating δ depend on F and X. An

example is provided in Section 4.5.

4.4.3 Ascending method

In the ascending method, a search tree for each a = (a1, ..., an) ∈ A(F̄ , F ) emanates

from the root corresponding to a point that is dominated by a and by all points in

X. Although (0, ..., 0) is an obvious choice for the point associated with the root,

a point with a larger value of the objective function may improve the convergence.

As in the descending method, all nodes in this search tree correspond to points in

the domain of F and each of these points is dominated by a. In contrast to the

descending method, in the ascending method each branching results in new nodes

associated with the points that dominate the point corresponding to the node at

which branching occurred.

Let b = (b1, ..., bn) /∈ X be a point associated with a node without successors in

the partially constructed search tree, and let (b1 + τ, ..., bn + τ) be the projection of

b onto X, if it exists. Consider the following cases:

• The projection exists and the following inequality holds:

τ ≤ min
1≤j≤n

[aj − bj ]; (4.4.4)
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• The projection (b1+τ, ..., bn+τ) belongs to the boundary of X, and the following

inequality holds:

τ ≥ max
1≤j≤n

[ai − bi]; (4.4.5)

• The projection (b1 + τ, ..., bn + τ) belongs to the boundary of X, and

min
1≤j≤n

[aj − bj ] < τ < max
1≤j≤n

[ai − bi]; (4.4.6)

• The projection (b1 + τ, ..., bn + τ) does not belong to the boundary of X and

(4.4.4) does not hold;

• The projection does not exist.

In the first case, since a dominates b, if (4.4.4) holds, then a dominates (b1 +

τ, ..., bn + τ) and the optimisation procedure terminates with the projection as an

optimal solution.

The following lemma considers the second case.

Lemma 6 If the projection (b1 + τ, ..., bn + τ) is on the boundary of X and (4.4.5)

holds, then the point a does not dominate any feasible point.

Proof: The conditions of the lemma imply that the projection dominates a. If a

dominates a feasible point (recall that a /∈ X), then the projection dominates the

point too, which contradicts the assumption that the projection is on the boundary

of X. �

As a does not dominate any feasible point in this case, the entire search tree is

fathomed. The next lemma addresses the third case.

Lemma 7 If the projection (b1 + τ, ..., bn + τ) is on the boundary of X, (4.4.6) holds

and there exists (x1, ..., xn) ∈ X dominated by a, then there exists i such that,

xi − bi > min
1≤j≤n

[xj − bj ]. (4.4.7)
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Proof : Consider the set of all indexes such that bi + τ + 1 ≤ ai. Denote this set by

B. Observe, that B 6= ∅ as otherwise (4.4.6) would not hold. Since the projection

(b1 + τ, ..., bn + τ) cannot dominate feasible points, for any feasible point (x1, ..., xn)

dominated by a (if such a point exists), there exists i ∈ B satisfying the inequality

xi ≥ bi + τ + 1. The inequality implies that

xi − bi ≥ τ + 1 > τ = min
1≤j≤n

[xj − bj ].

�

Hence, the node, associated with (b1, ..., bn), can be linked with |B| new nodes

(branching), one for every i ∈ B. Here a new node corresponding to i is associated

with (b′
1, ..., b′

n), where

b′
j =







bj + τ + 1 if j = i,

bj if j 6= i.

The following lemma considers the two remaining cases: when the projection

(b1 + τ, ..., bn + τ) does not belong to the boundary of X and (4.4.4) does not hold

and when the projection does not exist. Let X(b, a) be the set of all feasible points

which dominate b and are dominated by a.

Lemma 8 If the projection (b1 + τ, ..., bn + τ) is not on the boundary of X and

(4.4.4) does not hold or if the projection does not exist, and if X(b, a) 6= ∅, then for

any (x1, ..., xn) ∈ X(b, a), there exists i for which the inequality (4.4.7) holds.

Proof : Assume that X(b, a) 6= ∅ and the projection does not exist. If there is

(x1, ..., xn) ∈ X(b, a) such that all n differences xi −bi are equal and t is their common

value, then

(x1, ..., xn) = (b1 + t, ..., bn + t).

Hence the projection exists, which contradicts the initial assumption.

Assume that X(b, a) 6= ∅, the projection is not on the boundary of X and (4.4.4)

holds. If there exist (x1, ..., xn) ∈ X(b, a) such that all n differences xi − bi are equal
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and t is their common value, then

t = min
1≤j≤n

[xj − bj ] ≤ min
1≤j≤n

[aj − bj ],

which implies that (4.4.4) holds - which again contradicts the initial assumption.

Since for any (x1, ..., xn) ∈ X(b, a) not all differences xi − bi are equal, then there

exists i such that

xi − bi > min
1≤j≤n

[xj − bj ].

�

In general, neither (x1, ..., xn) ∈ X(b, a) nor index i are known, and the idea is:

• find a subset B ⊆ {1, ..., n} such that if X(b, a) 6= ∅, there exists (x1, ..., xn) ∈

X(b, a) and i ∈ B such that (4.4.7) holds;

• calculate a lower bound δ: 1 ≤ δ ≤ xi − bi − min1≤j≤n[xj − bj ];

• to introduce, for each j ∈ B, a new node corresponding to the point b′ =

(b′
1, ..., b′

n), where

b′
e =







be + δ if e = j

be if e 6= j
,

if b′ is dominated by a;

• link each such new node with the node corresponding to b.

Similar to the descending method, {1, ..., n} is an obvious choice for B, but smaller

B may improve the convergence.

It is easy to see that if X(b, a) 6= ∅, then for at least one (x1, ..., xn) ∈ X(b, a)

there exists a new node and the associated point b′ = (b′
1, ..., b′

n) such that

min
1≤j≤n

[xj − b′
j ] = min

1≤j≤n
[xj − bj ] ≥ 0.

Hence, if X(b, a) 6= ∅, then X(b′, a) 6= ∅ for at least one new node. On the other

hand, each (b′
1, ..., b′

n) dominates b. Since all coordinates of all points are nonnegative
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integers bounded above by p(n), after a finite number of steps, the optimisation

procedure either finds a feasible point dominated by the considered element of the

level set and terminates with this feasible point as an optimal solution, or establishes

that the considered element of the level set does not dominate any feasible point.

4.4.4 Descending-ascending method

As the name suggests, the descending-ascending method is a combination of the

descending and ascending methods. Therefore, each node of the search tree for the

currently considered a = (a1, ..., an) ∈ A(F̄ , F ) is associated with a pair of points. All

these points are in the domain of F . The root of the search tree is associated with a

pair of points where the first point is a point dominated by all points in X, i.e. by

all feasible points, and by a, whereas the second point is a itself. For all other nodes

of the search tree, the pair (b, d) of points, associated with a node, has the following

property: b /∈ X, d /∈ X, d dominates b, and a dominates d.

Let b and d be a pair of points, associated with a node of the search tree that

does not have successors in this tree. The search procedure attempts to find a feasible

point that dominates b and is dominated by a, or to determine that such feasible point

does not exist and hence the node has to be fathomed. First procedure applies the

ascending method, ignoring d. If the ascending method cannot achieve this goal, the

procedure ignores b and uses the descending method to find a feasible point dominated

by d.

If both ascending and descending methods, using point b and point d respec-

tively, have failed to find a desired feasible point or to establish that such point does

not exist, then branching occurs. Branching is generated either using the ascending

method and the point b, or using the descending method and the point d, but not

using both methods simultaneously. If the ascending method is selected for branch-

ing, this method is modified to satisfy the following condition: each resultant point

b′ should be dominated by d. If the descending method is selected for branching,

this method is modified to satisfy the following condition: each resultant point d′

should dominate b. The choice of what method among the two should be used for
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branching can be made in many different ways. For example, the selection criterion

may be the cardinality of the sets B, generated by each of the methods. To pro-

vide another example, let b = (b1, ..., bn), d = (d1, ..., dn), and b′ = (b′
1, ..., b′

n), and

d′ = (d′
1, ..., d′

n) be the points introduced by branching by ascending and descending

methods, correspondingly. Then a selection criterion can be based on the comparison

of max1≤i≤n(di − b′
i) and max1≤i≤n(d′

i − bi).

4.5 Application

4.5.1 Description of the problem and preliminaries

As an illustration, consider the following scheduling problem

P |prec, cij = 1, pi = 1|Lmax, (4.5.1)

where P indicates that a set of tasks N = {1, ..., n} is processed on parallel machines,

prec and pi = 1 specify that tasks are subject to precedence constraints and that all

processing times are one unit of time, cij = 1 signifies the unit communication delays,

that is if i → j and these two tasks are processed on different machines, then j can

commence its processing only after completion of i plus an additional unit of time.

No preemptions are allowed; a feasible schedule σ is specified by tasks’ completion

times Ci(σ), 1 ≤ i ≤ n, which are assumed to be positive integers. Let m be the

number of parallel machines. It is easy to see that even if the tasks are scheduled one

at a time, Ci(σ) ≤ n, 1 ≤ i ≤ n. Thus the feasible region X can be viewed as a set

of points with integer coordinates (C1(σ), ..., Cn(σ)) satisfying:

a. 1 ≤ Ci(σ) ≤ n, 1 ≤ i ≤ n;

b. |{i : Ci(σ) = t}|≤ m for all integer 1 ≤ t ≤ n;

c. Ci(σ) ≤ Cj(σ) − 1 for all i and j such that i → j;

d. if i → j and i → g, then Ci(σ) ≤ max{Cj(σ), Cg(σ)} − 2;
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e. if i → j and h → j, then Cj(σ) ≥ min{Ci(σ), Ch(σ)} + 2.

The objective is to minimize maximum lateness

Lmax(σ) = max
j∈N

(Cj(σ) − dj), (4.5.2)

where Cj(σ) is the completion time of a task j in schedule σ and dj is the task’s due

date, assumed to be integer.

The (4.5.1) scheduling problem possesses the required three properties. Indeed,

the objective function of maximum lateness is a particular case of the objective func-

tion (4.3.1), discussed in the subsection 4.3.2: for any i ∈ N ϕi = Ci − di. Hence,

the problem possesses Property 2 and Property 3. To show that (4.5.1) possesses

Property 1 we modify Lemma 2 as it is shown below. The conditions of the lemma

can be checked in O(n2), and hence (4.5.1) has Property 1.

Lemma 9 A point (x1, ..., xn) ∈ X is on the boundary of X if and only if, for each

integer t ≥ 1 such that |{g : xg = t}|< m and for each xj > t, at least one of the

following conditions hold:

• there exists i such that i → j and xi ≥ t;

• there exist i and k such that i → j, i → k, xi = t − 1 and xk = t;

• there exist i and h such that i → j, h → j and min{xi, xh} ≥ t − 1.

Proof: Suppose that x = (x1, ..., xn) ∈ X is on the boundary of X, and let t ≥ 1

be any integer such that |{g : xg = t}|< m. Let j be any task such that xj > t.

Consider the point x′ = (x′
1, ..., x′

n), where x′
j = t and x′

g = xg for all g 6= j. Since

x is on the boundary of X and x strictly dominates x′, x′ 6∈ X. Hence, x′ does not

satisfy some feasibility conditions. The conditions (a.) and (b.) are not violated as

1 ≤ t < xj , hence 1 ≤ x′
i ≤ n for all i ∈ N ; and |{g : xg = t}|< m implies that

|{g : x′
g = t}|≤ m. Therefore, at least one of the conditions (c.), (d.) or (e.) is not

satisfied. Suppose x′ does not satisfy the feasibility condition (c.). This implies that

there exists i → j and xi ≥ t. If (d.) is not satisfied, then there exists i → j and k
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such that i → k, and xi = t − 1, xk = t. Finally, if (e.) is violated, then there exist i

and h such that i → j, h → j and min{xi, xh} ≥ t − 1.

Conversely, consider x = (x1, ..., xn) ∈ X and suppose that, for each integer t ≥ 1

such that |{g : xg = t}|< m and each j such that xj > t, either there exists i such that

xi ≥ t and i → j, or there exist i and k such that i → j, i → k, xi = t−1 and xk = t;

or there exist i and h such that i → j, h → j and min{xi, xh} ≥ t − 1. Suppose that

x is not on the boundary of X, i.e. x strictly dominates some x′ = (x′
1, ..., x′

n) ∈ X.

Then, among all g such that x′
g < xg select one with the smallest x′

g. Let it be task

j. Let τ = x′
j . Then if for some g x′

g = τ , it implies that x′
g = xg. Further x′

j < xj

implies that |{g : xg = τ}|< m and hence one of the conditions of the lemma holds.

Consequently, then for the x′ one of the feasibility conditions is violated. Indeed, the

existence of i such that xi ≥ τ and i → j contradicts x′ ∈ X because x′
i = xi ≥ x′

j .

Further, if there exist i and k such that i → j, i → k, xi = τ −1 = x′
i and xk = τ = x′

k,

then again x′ /∈ X because

x′
i = τ − 1 > τ − 2 = max{xj , xk} − 2.

Finally, if there exist i and h such that i → j, h → j and min{xi, xh} ≥ τ − 1, then

x′
j = τ < τ + 1 ≤ min{xi, xh} + 2 = min{x′

i, x′
h} + 2.

�

In what follows the time slot t is an interval [t − 1, t]. The time slot t is complete

(in respect to the given priority µg) if there are m tasks j with priority µj ≥ µg

and completion time Cj(σ) = t, otherwise the time slot is incomplete. Let Q(i)

be the set of predecessors of task i and K(i) be the set of successors of the task i,

correspondingly. Then for each task i ∈ N calculate the following:

• The lower bound for completion time ci:

ci =







1, if Q(i) = ∅

max
c≤c≤c̄

{

c +

⌈
|{j : j ∈ Q(i) and cj ≥ c}|−1

m

⌉

+ 1

}

otherwise,
(4.5.3)
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where c and c̄ are the smallest and the largest cj among j ∈ Q(i).

• The priority µi:

µi =







max
j∈N

dj − di, if K(i) = ∅

max

{

max
j∈N

dj − di, max
µ≤µ≤µ̄

{

µ +

⌈
|{j : j ∈ K(i) and µj ≥ µ}|−1

m

⌉

+ 1

}}

otherwise,

(4.5.4)

where µ and µ̄ are the smallest and the largest µj among j ∈ K(i), and di is

the task’s due date.

It has been shown in [113], that for any schedule σ

Lmax(σ) = max
i∈N

(Ci(σ) + µi) − max
j∈N

dj. (4.5.5)

According to the optimisation procedure, the first step is to calculate the initial lower

bound L. Taking into account (4.5.5), we have

L = G − max
q∈N

dq, (4.5.6)

where G is the lower bound on max
i∈N

(Ci(σ) + µi). The next step of the procedure

requires to determine a level set for this value of the objective function. The level

set consists of only one point (a1, ..., an) for any value L of the maximum lateness

function, where ai, for 1 ≤ i ≤ n, is defined as ai = L + di.

Thus, for the only point of the level set (a1, ..., an), the procedure determines

whether or not there exists a feasible point (x1, ..., xn) ∈ X, which is dominated by

(a1, ..., an). In other words, is there a feasible schedule σ, such that

max
i∈N

(Ci(σ) − ai) ≤ 0 (4.5.7)

Taking into account (4.5.5), (4.5.6) and the selection of ai,

max
i∈N

(Ci(σ) − ai) = max
i∈N

(Ci(σ) − (L + di)) =

max
i∈N

(Ci(σ) + µi) − max
q∈N

dq − (G − max
q∈N

dq) = max
i∈N

(Ci(σ) + µi) − G.
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Thus the inequality (4.5.7) holds if and only if the following inequality holds:

max
i∈N

(Ci(σ) + µi) ≤ G. (4.5.8)

Observe that due to feasibility condition (b.), for any V ⊆ N ,

min
i∈V

Ci(σ) +
|V |

m
− 1 ≤ min

i∈V
Ci(σ),

hence the lower bound G is calculated as follows:

G = max
c≤c≤c̄

{

max
µ≤µ≤µ̄

{

c − 1 +

⌈

|{j : cj ≥ c and µj ≥ µ}|

m

⌉

+ µ

}}

, (4.5.9)

where c and c̄ are the smallest and the largest ci among i ∈ N and µ and µ̄ are the

smallest and the largest µi among i ∈ N .

In order to find a feasible schedule satisfying (4.5.8) for the current value of G,

the procedure constructs a search tree using descending, ascending, or descending-

ascending methods.

Let b = (b1, ..., bn) be a point associated with a node of a partially constructed

search tree. If b ∈ X then the procedure terminates with an optimal schedule σ

such that Ci(σ) = bi for any i ∈ N . Assume that b /∈ X. Hence at least one of

the feasibility conditions (a.)-(e.) does not hold. Then for any integer t the point

(b1 + t, ...., bn + t) /∈ X either, which implies that the projection of b onto X does not

exist.

If the procedure determines that such a schedule does not exist, it retains the value

G̃, the next smallest value of max
i∈N

(Ci(σ) + µi) such that G̃ > G. The new iteration

starts with the new lower bound G̃ > G. Once a schedule satisfying (4.5.8) for the

current value of G is found, the optimal value L∗ is calculated as L∗ = G − max
q∈N

dq.

4.5.2 Descending method

According to the descending method described in subsection 4.4.2 the root of the

search tree is associated some point a ∈ A(F̄ , F ) and each node of the tree is associ-
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ated with some point d which is dominated by a. Taking into account (4.5.5), each

node of the search tree for the descending method, applied to the (4.5.1) problem, is

associated with the set of priorities {µ1, ..., µn}. Further, as no point corresponding

to a node in the partially constructed search tree, is a feasible point, the descending

method calculates lower bound for the current set of priorities {µ1, ..., µn}, and either

finds an optimal schedule, or branches on the current node, or determines that no

further branching is required.

The descending method will utilise the Descending list algorithm, which can be

described as follows. Assume N ′ consists of all tasks of N numbered in non-increasing

order of priorities {µ1, ..., µn}, plus there is the last additional unit task n + 1. Let

D(t) be a subset of tasks j ∈ N ′ for which a completion time has not been assigned

yet, and either Q(j) = ∅ or j ∈ D(t) possesses the following properties:

• Cj(σ) has not been assigned;

• for all v ∈ Q(j) the completion time has been assigned and Cv(σ) < t;

• |{v ∈ Q(j) : Cv(σ) = t − 1}|≤ 1;

• for any v ∈ Q(j) : Cv(σ) = t − 1, K(v) ∩ {h ∈ N ′ : Ch(σ) = t} = ∅

Descending list algorithm

Set t = 1, Nsch = 0, nm = 0, i = 0;

while Nsch < N do

Set k = min{v > i : v ∈ D(t)};

if k < n + 1 and nm < m then

Set i = k, Ck(σ) = t; Nsch = Nsch + 1; nm = nm + 1;

else

Set t = t + 1, i = 0, nm = 0.

end if

end while

The Descending list algorithm constructs a feasible schedule:
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• the condition [a.] is satisfied as for any value of t ≥ 1 either there is at least

one task is assigned a completion time or in a previous time slot there are at

least two tasks scheduled;

• the operator IF guarantees that the condition [b.] is observed;

• the selection of the set D(t) and index k guarantee conditions [c.]-[e.].

Let σ be the schedule constructed by the Descending list algorithm in non-

increasing order of the set of priorities µ, associated with the current node. Denote

by Gmax(σ) = max
i∈N

(Ci(σ) + µi). It has been shown in [113] that optimality of σ and

the branching set B can be determined as follows:

• Select the task g with the smallest completion time Cg(σ) among all tasks j

such that Cj(σ) + µj = Gmax(σ), and let τ be the first incomplete time slot (in

respect to the priority µg) on the left of the time slot τ = Cg(σ) in the schedule

σ.

• If τ = 1, or there are no incomplete time slots on the left of the task g, then σ

is the optimal schedule for this set of priorities µ.

• If τ > 1, then select the following sets:

U = {u : τ < Cu(σ) < Cg(σ) and µu ≥ µg} ∪ {g};

T = {b : K(b) ∩ U 6= ∅ and Cb(σ) = τ − 1};

S = {b : K(b) ∩ U 6= ∅, Q(b) ∩ T = ∅ and Cb(σ) = τ};

where K(b) is the set of immediate successors of task b.

• Set B = T
⋃

S. It has been shown in [113] that there exists an optimal schedule

σ∗ and j ∈ B such that Gmax(σ∗) > Cj(σ
∗) + µj and thus the priority µj can

be increased by δ = Cg(σ) + µg − (Cj(σ) + µj) without changing the value of

the criterion.
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Consider the partially constructed search tree associated with the current lower

bound G. The lower bound LBµ is calculated with the set of priorities according to

(4.5.9). All current existing nodes are queued in the list in non-decreasing order of

corresponding lower bounds. Denote by σf the schedule with the smallest value Gf

produced by a feasible schedule so far. Let G̃ ≤ Gf be the smallest lower bound on

the optimal value of Gmax the tree has produced so far. Here are the steps of the

descending method for the current lower bound G:

1. Select the node with the smallest lower bound LBµ. If the list is empty and

G̃ > G, the new iteration of the optimisation procedure starts for the new lower

bound G̃.

2. Construct a schedule σ with Descending list algorithm and the list of tasks in

non-increasing order of µ.

3. If Gmax(σ) ≤ G, set L∗ = G−max
q∈N

dq and terminate the optimisation procedure.

Otherwise go to the next step.

4. Select the task g and τ as described above. If τ = 1, or there are no incomplete

time slots on the left of g, then σ is the optimal schedule for this set of priorities

µ. If Gmax(σ) < G̃, set G̃ = Cmax(σ). If Gmax(σ) < Gf , set Gf = Cmax(σ) and

σf = σ. No further branching is required on the node, delete the node and go

to the step 1. If τ > 1 go to the next step.

5. Select sets U , T and S; set B = T
⋃

S.

6. For each i ∈ B calculate the new set of the priorities η as follows:

ηj =







µj, if j 6= i,

ηj = µj + Cg(σ) + µg − (Cj(σ) + µj), if j = i.

7. Calculate lower bound LBη. If LBη ≤ G, create a new node associated with

the set of priorities η and the lower bound LBη. Include the node in the list of

nodes and re-arrange the list in non-decreasing order of nodes’ lower bounds.

If G < LBη < G̃, let G̃ = LBη.
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8. If all elements of the set B have been considered, delete the current node and

go to step 1.

4.5.3 Ascending method

The main difference of the ascending method from the descending method is that we

will be increasing and branching on the sets of the lower bounds {c1, ..., cn} instead of

increasing and branching on the sets of priorities {µ1, ..., µn}. Let µ1 < µ2 < ... < µr

be all different values of the priorities µ, and ni be the number of tasks with µi,

1 ≤ i ≤ r. Similar to the reasoning in section 4.3.1 regarding values of release times

it is assumed that

µ1 +
e∑

i=1

ni > µe+1 (4.5.10)

for any 1 ≤ e ≤ r. Indeed, if (4.5.10) does not hold for some e, then the problem can

be split into two subproblems: first, all tasks with µ1, ...., µe are to be scheduled, and

then the remaining tasks are to be scheduled.

To select the branching set, a schedule σ is constructed using Ascending list algo-

rithm with the list of tasks in non-increasing order of c. The schedule is constructed

from right to left starting from the time slot t = n. Assume N ′ consists of all tasks

of N numbered in non-increasing order of priority c plus the last additional unit task

n + 1. Let A(t) be a subset of tasks j ∈ N ′ for which a completion time has not been

assigned yet, and either K(j) = ∅ or j ∈ K(t) possesses the following properties:

• Cj(σ) has not been assigned;

• t + µj ≤ n;

• for all v ∈ K(j) the completion time has been assigned and Cv(σ) > t;

• |{v ∈ K(j) : Cv(σ) = t + 1}|≤ 1;

• for any v ∈ K(j) : Cv(σ) = t + 1, Q(v) ∩ {h ∈ N ′ : Ch(σ) = t} = ∅

Ascending list algorithm

Set t = n, Nsch = 0, nm = 0, i = 0;

154



while Nsch < N do

Set k = min{v > i : v ∈ A(t)};

if k < n + 1 and nm < m then

Set i = k, Ck(σ) = t; Nsch = Nsch + 1; nm = nm + 1;

else

Set t = t − 1, i = 0, nm = 0

end if

end while

The Ascending list algorithm constructs a feasible schedule:

• the condition [a.] is satisfied as for any value of t < n there is at least one task

is assigned a completion time or there is at least two tasks into a previous time

slot t + 1;

• the operator IF guarantees that the condition [b.] is observed;

• the selection of the set A(t) and index k guarantee conditions [c.]-[e.].

It is easy to see that by construction

max
i∈N

(Ci(σ) + µi) = n. (4.5.11)

Let χ = min
j∈N

(Cj(σ)−cj). Let σ′ be a schedule derived from σ by shifting all completion

times by χ to the left: Ci(σ
′) = Ci(σ) − χ, 1 ≤ i ≤ n. Taking into account (4.5.11)

and the definition of χ,

max
i∈N

(Ci(σ
′) + µi) ≤ G ⇐⇒ max

i∈N
(Ci(σ) + µi − χ) ≤ G ⇐⇒

n − min
j∈N

(Cj(σ) − cj) ≤ G ⇐⇒ min
j∈N

(Cj(σ) − cj) ≥ n − G. (4.5.12)

Let σ be the schedule constructed by the Ascending list algorithm in non-increasing

order of the set of priorities {c1, ..., cn}, associated with the current node. Denote by

155



χ(σ) = mini∈N (Ci(σ) − ci). The optimality of σ in respect to the criterion

max
(C1(σ′),...Cn(σ′))∈X

min
i∈N

(Ci(σ
′) − ci)

and the branching set B can be determined as follows:

1. Select the task g with the largest completion time Cg(σ) among all tasks j such

that Cj(σ) − cj = χ(σ) and let τ be the largest incomplete time slot (in respect

to the priority cg) on the right of g in schedule σ.

2. If τ = n, or there are no incomplete time slots on the right of g, then σ is the

optimal schedule for this set of priorities {c1, ..., cn}. This item is addressed in

the lemma below.

3. If τ < n, then select the following sets:

U = {u : Cg(σ) < Cu(σ) < τ and cu ≥ cg} ∪ {g};

T = {b : Q(b) ∩ U 6= ∅ and Cb(σ) = τ + 1};

S = {b : Q(b) ∩ U 6= ∅, K(b) ∩ T = ∅ and Cb(σ) = τ};

where Q(b) is the set of immediate predecessors of task b.

4. Set B = T
⋃

S. It will be shown that there exists an optimal schedule σ∗ and

j ∈ B such that

χmin(σ∗) < Cj(σ
∗) − cj

and thus the priority cj can be increased by

δ = Cg(σ) − cg − (Cj(σ) − cj)

without changing the value of the criterion.

Lemma 10 Let σ be the schedule constructed by the Ascending list algorithm in non-

increasing order of the set of priorities {c1, ..., cn}, and let task g be selected as de-

scribed above in item [1.]. If there are no incomplete time slots (in respect to the
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priority cg) on the right of g in schedule σ, or the largest incomplete time slot τ = n,

then σ is the optimal schedule for this set of priorities {c1, ..., cn}.

Proof: Assume that there are no incomplete time slots on the right of g in σ. Let

σc be an optimal schedule for this set of priorities c, constructed from right to a left

starting from t = n. Then

χ(σc) ≤ min
i∈U

(Ci(σ
c − ci) ≤ min

i∈U
Ci(σ

c) − min
i∈U

ci ≤ n −
⌈

U

m

⌉

− cg

= Cg(σ) − cg = χ(σ) ≤ max
(C1(σ′),...Cn(σ′))∈X

min
i∈N

(Ci(σ
′) − ci) = χ(σc),

hence σ is optimal.

Assume that τ = n is the largest incomplete time slot on the right of g in σ.

Denote by B the following set: B = {j ∈ B : Cj(σ) = n and Q(j)
⋂

U 6= ∅}. It is

easy to see that B 6= ∅ as otherwise Ci(σ) < n for all i ∈ U contradicts the Ascending

list algorithm. Hence

χ(σc) ≤ min
i∈U

(Ci(σ
c − ci) ≤ min

i∈U
Ci(σ

c) − min
i∈U

ci ≤ n − 1 −
⌈

U

m

⌉

− cg

= Cg(σ) − cg = χ(σ) ≤ max
(C1(σ′),...Cn(σ′))∈X

min
i∈N

(Ci(σ
′) − ci) = χ(σc),

hence σ is optimal.�

Lemma 11 Let σ be the schedule constructed by Ascending list algorithm in non-

increasing order of the set of priorities {c1, ..., cn}, and let task g be selected as de-

scribed above in item [1.], and sets U , T , S - as described above in item [3.] and

B = T
⋃

S. If the largest incomplete time slot (in respect to priority cg) τ < n, then

there exist an optimal schedule σ∗ and j ∈ B such that

χ(σ∗) < Cj(σ
∗) − cj

and thus the priority cj can be increased by

δ = Cg(σ) − cg − (Cj(σ) − cj)
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without changing the value of the criterion.

Proof: Let q ∈ B be the task with Cq(σ
∗) = maxi∈B Ci(σ

∗), and assume that

Cq(σ
∗) = maxi∈S Ci(σ

∗). Then:

χ(σ∗) ≤ min
i∈U

(Ci(σ
∗ − ci) ≤ min

i∈U
Ci(σ

∗) − min
i∈U

ci

≤ max
i∈B

Ci(σ
∗) −

⌈

|U |

m

⌉

− cg = Cq(σ
∗) − (τ − Cg(σ)) − cg

= Cq(σ
∗) − (Cq(σ) − Cg(σ)) − cg < Cq(σ

∗) − cq (4.5.13)

Now assume that

Cq(σ
∗) > max

i∈S
Ci(σ

∗) or S = ∅. (4.5.14)

Define the following sets:

• H = {h ∈ H : Ch(σ) = τ, K(h) ∩ T 6= ∅, ch ≥ cg};

• S ′ = {s ∈ S ′ : Cs(σ) = τ, Q(s) ∩ U 6= ∅}.

• T ′ = S ′ ∪ H ;

• W = {w ∈ T ′ ∪ U and Cw(σ∗) = Cq(σ
∗) − 1}.

Observe, that for any s ∈ S ′ and u ∈ U such that u → s, cs ≥ cu ≥ cg. To show

that |W |≤ |T ′|, similar to [113], the one-to-one mapping of set W onto a subset of T ′

is defined as follows: for each w ∈ W an element w(T ′) ∈ T ′ is specified. If w ∈ T ′,

then w(T ′) = w. Assume that w /∈ T ′. Then by definition of W , w ∈ U . Therefore

there exists b ∈ B such that w → b. Further, since Cw(σ∗) = Cq(σ
∗) − 1, and due

to selection of q, Cb(σ
∗) = Cq(σ

∗). In addition, by virtue of (4.5.14), Cb(σ) = τ + 1,

hence there exists h ∈ H such that h → b, hence w(T ′) = h. In summary,

|U ∪ T ′ − W |≥ |U ∪ T ′|−|W |≥ |U ∪ T ′|−|T ′|= |U |+|T ′|−|T ′|= |U |. (4.5.15)
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Finally, taking into account (4.5.15),

χ(σ∗) ≤ min
i∈U

(Ci(σ
∗) − ci)

≤ min
i∈U

Ci(σ
∗) − min

i∈U
ci ≤ max

i∈B
Ci(σ

∗) − 1 −

⌈

|U ∪ T ′ − W |

m

⌉

− cg

≤ Cq(σ
∗) − 1 −

⌈

|U |

m

⌉

− cg = Cq(σ
∗) − 1 − (τ − Cg(σ)) − cg

= Cq(σ
∗) − (Cq(σ) − Cg(σ)) − cg < Cq(σ

∗) − cq. (4.5.16)

By virtue of (4.5.13) and (4.5.16), there exists q ∈ B and optimal schedule σ∗ such

that Cq(σ
∗)−cq > χ(σ∗), hence cq can be increased by δ = Cg(σ)−cg −(Cq(σ)−cq).�

As shown above, if the schedule σ satisfies (4.5.12), then the corresponding σ′

satisfies (4.5.8). Consider the partially constructed search tree associated with the

current lower bound G. Each node of the search tree is associated with the set of

lower bounds on the tasks’ completion times {c1, ..., cn} and the lower bound LBc,

where LBc is calculated with the set of {c1, ..., cn} according to (4.5.9). All current

existing nodes are queued in the list in non-decreasing order of corresponding lower

bounds LBc. Denote by χ(σ) = min
j∈N

(Cj(σ) − cj). Denote by σf the schedule with

the largest value χf produced by a feasible schedule so far. Let χ̃ ≥ χf be the largest

value the search tree has produced so far. Here are the steps of the ascending method:

1. Select the node with the smallest lower bound LBc. If the list is empty and

χ̃ < n − G, the new iteration of the optimisation procedure starts for the new

lower bound G̃ = n − χ̃.

2. Construct a schedule σ using the Ascending list algorithm and the list of tasks

in non-increasing order of cs.

3. If χ(σ) ≥ n−G, set L∗ = G−max
q∈N

dq and terminate the optimisation procedure.

Otherwise go to the next step.

4. Select task g with the largest completion time Cg(σ) among all tasks j such

that Cj(σ) − cj = χ(σ) and let τ be the first incomplete time slot (in respect

to the priority cg) on the right of g in schedule σ. If τ = n, or there are no
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incomplete time slots on the right of g, then by virtue of lemma 10 σ is the

optimal schedule for this set of {c1, ..., cn}. If χ(σ) > χf , set χf = χ(σ) and

σf = σ. If χ(σ) > χ̃, set χ̃ = χ(σ). No further branching is required on the

node, delete the node and go to the step 1. If τ < n go to the next step.

5. Select set U = {u : Cg(σ) < Cu(σ) < τ and cu ≥ cg} ∪ {g} and the sets:

T = {b : ¯Q(b) ∩ U 6= ∅ and Cb(σ) = τ + 1} and

S = {b : Q(b) ∩ U 6= ∅, K(b) ∩ T = ∅ and Cb(σ) = τ}.

Select the branching set B = T
⋃

S. By virtue of lemma 11, there exist an

optimal schedule σ∗ and j ∈ B such that χ(σ∗) < Cj(σ
∗) − cj and thus the cj

can be increased without changing the value of the criterion.

6. For each i ∈ B calculate the new set of the priorities ς as follows:

ςj =







cj , if j 6= i,

ςj = cj + Cj(σ) − cj − (Cg(σ) − cg), if j = i.

Calculate lower bound LBς . If LBς ≤ G, create a new node associated with

the set of priorities ς and the lower bound LBς . Include the node in the list of

nodes and re-arrange the list in non-decreasing order of nodes’ lower bounds.

If G < LBς < n − χ̃, let χ̃ = n − LBς . If all elements of the set B have been

considered, delete the current node and go to step 1.

4.5.4 Descending-ascending method

The descending-ascending method incorporates the elements of both descending and

ascending methods. Consider the partially constructed search tree associated with

the current lower bound G. Each node of the search tree is associated with the sets

{c1, ..., cn} and {µ1, ..., µn}, and the lower bound LB(c,µ), where LB(c,µ) is calculated

according to (4.5.9). All current existing nodes are queued in the list in non-decreasing

order of corresponding lower bounds LB(c,µ). Denote by σd the schedule constructed

by Descending list algorithm, and by σa- the schedule constructed by Ascending list
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algorithm. Denote by △(c,µ) = min{n − χ(σa), Gmax(σd)}. Let △̃ be the smallest

value of △(c,µ) produced by the search tree so far and σf be the schedule that with

the largest value △f ≥ △̃ produced by a feasible schedule. Here are the steps of the

descending-ascending method:

1. Select the node with the smallest lower bound LB(c,µ). If the list is empty and

△̃ > G, the new iteration starts for the new lower bound G̃ = △̃.

2. Construct a schedule σd with the Descending list algorithm and the list of tasks

in non-increasing order of µs and a schedule σa with the Ascending list algorithm

and the list of tasks in non-increasing order of cs.

3. If χ(σa) ≥ n − G or Gmax(σd) ≤ G, set L∗ = G − max
q∈N

dq and terminate the

optimisation procedure. Otherwise go to the next step.

4. Select task gd and incomplete time slot τd for the σd similar to the step 4 of

descending algorithm and select task ga and incomplete time slot τa for the σa

similar to the step 4 of ascending algorithm. If τa = n or τd = 1 or there is no

incomplete time slots, then either σa or σd is the optimal schedule for this set of

{c1, ..., cn} and {µ1, ..., µn} . If △(c,µ) < △̃, set △̃ = △(c,µ); if △(c,µ) < △f , set

△f = △(c,µ) and σf = σ. No further branching is required on the node, delete

the node and go to the step 1. If τa < n and τd > 1, go to the next step.

5. Select the “descending” and “ascending” branching sets Bd and Ba, repeating

the steps 5 and 6 of the descending and ascending methods.

6. Choose the branching set B out of Bd and Ba according to some criterion.

Three criteria of selection of the set B are implemented:

• Method DA-setB: Choose the set of the smallest cardinality;

• Method DA-MaxWind: For each element h ∈ Bd calculate the new

priorities {µh
1 , ..., µh

n} and for each element q ∈ Ba calculate the new set

{cq
1, ..., cq

n} according to step 6 of the descending and ascending methods
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correspondingly. For each branching set calculate the maximum “window”:

W (Ba) = max
j∈Ba

{max
i∈N

(G − cj
i − µi)};

W (Bd) = max
j∈Bd

{max
i∈N

(G − ci − µj
i )}.

Choose the branching set with the smallest maximum window;

• Method DA-AveWind: Similar to the previous case, calculate the set

of new priorities for Bd and Ba. Then for each of the sets calculate the

average “window”:

AV (Ba) =

∑

j∈Ba

∑

i∈N

(G − cj
i − µi)

|Ba|
;

AV (Bd) =

∑

j∈Bd

∑

i∈N

(G − ci − µj
i )

|Bd|
;

Choose the branching set with the smallest average window.

7. Calculate lower bound LB(c,µ) for the new sets of cs and µs. If LB(c,µ) ≤ G,

create a new node associated with the sets of priorities and the lower bound

LB(c,µ). Include the node in the list of nodes and re-arrange the list in non-

decreasing order of nodes’ lower bounds. If G < LB(c,µ) < △̃, let △̃ = LB(c,µ).

If all elements of the set B be have been considered, delete the current node

and go to step 1.

4.6 Computational Experiments

The computational experiments aimed to compare the descending, ascending and

descending-ascending algorithms. The partially ordered sets were obtained from

http://www.kasahara.cs.waseda.ac.jp/schedule/, the Kasahara Laboratory web site.

It was assumed that all tasks have unit processing time and there are unit commu-

nication delays. Each of the three considered groups consisted of 180 instances of

50, 100 or 300 tasks. For each group the experiments were run for 3, 4, 5 and 6
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parallel machines. The execution of each instance was terminated once the search

went through 5000 nodes, and the time for each group was limited by 2 hours. Each

group is described as n − m and consists of 180 instances each with n tasks and m

parallel machines, n = 50, 100, 300; m = 3, 4, 5, 6.

Table 4.1 represents the percentage of the instances solved to optimality in each

group. All algorithms were effective - across all groups with 50-300 tasks and 3-6

machines every algorithm solved 92 − 100 percent of the instances to optimality - the

schedule was determined as optimal if the value of the objective function was equal to

the current lower bound. At least one of the descending-ascending algorithms solved

to optimality at least as many or more instances than descending and ascending algo-

rithms. The table shows that there is no difference in performance of DA-MaxWind

and DA-AveWind algorithms. Further, the two algorithms provided the same best

objective function value for all instances.

Table 4.2 compares descending and ascending methods. The number of itera-

tions required by each method to solve an instance to optimality was calculated, and

then the difference between the two numbers was taken. The Table 4.2 shows the

percentage of instances where this difference falls into one of the following categories:

• for majority of instances (78%−96%) the numbers of iterations are equal across

all groups and numbers of machines;

• for 1.1% − 11.7% of instances there is a difference within 10 iterations;

• for up to 4.4% of instances there is a difference within 50 iterations;

• for up to 2.2% of instances there is a difference within 100 iterations;

• for up to 3.3% of instances there is a difference within 2000 iterations;

• for up to 1.7% of instances there is a difference within 4500 iterations;

• for up to 2.8% of instances there is a difference of more than 4500 iterations;

which indicates that the algorithms perform differently on the same instances and are

sensitive to the structure of the tasks’ precedence graphs.
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Table 4.1: Proportion of instances, in %, solved to optimality
Group Ascending Descending DA-setB DA-MaxWind DA-AveWind
50-3 97.22 98.33 95.56 98.33 98.33
50-4 94.44 95.56 93.89 95.56 95.56
50-5 95.56 98.33 98.33 98.33 98.33
50-6 97.78 99.44 98.33 99.44 99.44
100-3 100.00 100.00 100.00 100.00 100.00
100-4 94.44 95.56 93.89 95.56 95.56
100-5 96.11 95.56 95.56 95.56 95.56
100-6 96.67 97.22 96.11 97.22 97.22
300-3 98.33 97.78 98.33 97.78 97.78
300-4 97.22 97.22 98.33 97.22 97.22
300-5 95.00 96.67 97.22 97.22 97.22
300-6 92.22 94.44 95.56 95.00 95.00

Table 4.2: Comparison of ascending and descending algorithms: number of iterations
Group no difference ±10 it ±50 it ±100 it ±2000 it ±4500 it > 4500 it
50-3 78.3 10.0 4.4 1.1 3.3 1.1 1.7
50-4 78.9 11.7 2.2 1.7 2.2 1.7 1.7
50-5 79.4 11.1 3.9 1.1 1.7 0.0 2.8
50-6 83.9 10.6 2.2 0.6 0.6 1.1 1.1
100-3 94.4 1.1 1.1 2.2 1.1 0.0 0.0
100-4 78.9 11.7 2.2 1.7 2.2 1.7 1.7
100-5 85.0 6.1 3.9 1.1 3.3 0.0 0.6
100-6 85.0 7.8 2.8 2.2 1.1 0.6 0.6
300-3 96.7 1.1 0.6 0.0 0.0 1.7 0.0
300-4 93.9 3.3 0.0 0.0 0.6 0.6 1.7
300-5 92.2 2.2 1.1 0.0 1.1 1.1 2.2
300-6 88.3 3.3 1.1 0.0 3.3 1.7 2.2
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Figure 4-1: Time per group of tasks

The Figure 1-1. compares time spent by each algorithm for each group of tasks.

The time is increasing exponentially with increase of number of machines or number

of tasks (with only exception of the time decrease between 50-3 and 100-3 groups

of tasks). Further, Ascending and Descending methods are faster than descending-

ascending methods for all groups, with DA-setB method having the running time

comparable to Ascending and Descending methods across all groups. However, DA-

MaxWind and DA-AveWind methods show at least twice longer time for all groups.

4.7 Conclusion

In this chapter, a discrete optimisation procedure optimisation procedure is presented.

This optimisation procedure is an exact method for a class of problems with certain

properties. These properties are not too restrictive - we have shown that many NP -

hard scheduling problems posses these properties. It also has been shown that the

procedure can be potentially applied to problems of multi-objective optimisation.

The discrete optimisation procedure is an iterative algorithm, which considers lower

bounds on objective function in succession, and on each iteration it either finds a fea-
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sible point with this value of objective function, or determines that such a point does

not exist. The search for a feasible point can be conducted in several ways which can

be viewed as a Descending method, an Ascending or a descending-ascending methods.

Application of all three methods to a scheduling problem has been implemented, with

three variations of the descending-ascending method. The computational experiments

demonstrated that all algorithms are efficient and solve 92% − 100% of instances to

optimality. Further, Descending and Ascending methods perform differently on the

same instances, demonstrating that algorithms performance is affected by precedence

graph structure. All three descending-ascending methods showed very similar results

in terms of number of instances solved to optimality and number of iterations per

tasks group, however, DA-setB method showed significantly shorter running time

than two other descending-ascending methods.
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Chapter 5

The worst-case analysis for an

approximation algorithm for a

maximum lateness problem

• The results discussed in this chapter have been published in [81]: Julia Memar,

Yakov Zinder, and Alexander Kononov. “Worst-Case Analysis of a Modifica-

tion of the Brucker-Garey-Johnson Algorithm”. In International Conference on

Optimization Problems and Their Applications, pages 78-92. Springer, 2018.

• The results discussed in this chapter have been presented at the 7th Interna-

tional Conference on Optimization Problems and Their Applications OPTA-

2018, Omsk, Russia, July 8-14, 2018.

5.1 Introduction and description of the problem

In this chapter, a polynomial-time approximation algorithm is considered in applica-

tion to the maximum lateness scheduling problem with parallel identical machines.

It is assumed that the tasks are partially ordered, have arbitrary processing times,

and the preemptions of tasks’ processing are not allowed. The problem is NP -hard

in a strong sense, as even a particular case of the problem with all due dates equal
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to zero, two machines and the processing times equal to one or two units of time is

NP -hard in a strong sense [71].

This polynomial-time approximation algorithm can be viewed as a modification of

the Brucker-Garey-Johnson algorithm [7]. A tight worst-case performance guarantee

for this algorithm is obtained for the case of the problem when the largest processing

time does not exceed the number of machines. The Brucker-Garey-Johnson algorithm

was originally developed as an exact algorithm for the unit execution time tasks and

precedence constraints in the form of an in-tree. To stress the origin of the presented

approximation algorithm, in what follows, it will be referred to as the Brucker-Garey-

Johnson algorithm or simply as the BGJ-algorithm. It is also shown that when

the largest processing time is greater than the number of machines, the worst-case

performance guarantee for the list algorithm, obtained in [46], is tight.

The considered scheduling problem can be stated as follows. A set N = {1, . . . , n}

of n tasks is to be processed on m > 1 identical machines subject to precedence

constraints in the form of an anti-reflexive, anti-symmetric and transitive relation on

N . If task i precedes task j in this relation, denoted by i → j, then task i must be

completed before task j can be processed. If i → j, then i is called a predecessor of

j and j is called a successor of i. The processing of tasks commences at time t = 0.

Task i ∈ N requires pi units of processing time, where pi is integer. Each task can be

processed on any machine. Each machine can process at most one task at a time. If a

machine starts processing task i, then it continues to process this task for pi units of

time, i.e. till the completion. Each task i ∈ N has an associated due date di , where

di is integer. The goal is to minimise the maximum lateness

Lmax(σ) = max
j∈N

[Cj(σ) − dj ], (5.1.1)

where Cj(σ) is the completion time of task j in schedule σ. In the three-filed notation

(see, for example, [6, 87]) the considered problem is denoted by P | prec| Lmax, where

P signifies parallel identical machines, prec indicates the presence of precedence con-

straints, and Lmax specifies the objective function, i.e. the criterion of maximum
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lateness. If all due dates are zero, the problem is known as a makespan problem

and in the three-field notation is denoted by P | prec | Cmax; if all tasks have unit pro-

cessing times, then the problem is denoted by P | prec, pj = 1 | Lmax; if preemptions

are allowed, then the problem is denoted by P | prec, prmp | Lmax. In what follows

it is assumed that the largest processing time pmax does not exceed the number of

machines m.

5.2 BGJ-algorithm

For each task i, the set of all successors of i will be denoted by K(i). That is,

K(i) = {j : i → j}. Let d = maxi∈N di. Before constructing a schedule, the

BGJ-algorithm computes for each i ∈ N the axillary priority µi as follows:

1. For every task i such that K(i) = ∅, set µi = d − di.

2. If all tasks i ∈ N have been assigned µi, then stop. Otherwise, select i ∈ N such

that µi has not yet been specified and for each j ∈ K(i), µj has been specified.

3. Set

µi = max

{

d − di, max
j∈K(i)

(pj + µj)

}

(5.2.1)

and go to Step 2.

After obtaining the priorities µi for every task i, the BGJ-algorithm constructs a

schedule σ, where for each i it uses the priority βi = pi + µi. Let t be the earliest

time when a machine is available for a task’s processing, and tk signifies the earliest

time, when machine k, 1 ≤ k ≤ m, is available for a task’s processing. Then, the

BGJ-algorithm can be described as follows:

BGJ-algorithm

1. Set t = t1 = ... = tm = 0.

2. If all tasks have been scheduled, then stop.
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3. If no unscheduled task can be assigned for processing at time point t, or there

is no machine i such that ti = t, then go to Step 6.

4. Among all unscheduled tasks j, which can be assigned for processing at time

point t, choose a task with the largest βj. Let it be task g. Set Cg(σ) = t + pg.

5. Choose any machine i with ti = t and set ti = t + pg. Go to Step 2.

6. Set t = mini∈{k :tk>t} ti and then set ti = max{t, ti} for all 1 ≤ i ≤ m. Go to

Step 3.

Let Si(σ) = Ci(σ)−pi for i ∈ N , i.e. Si(σ) is the starting time of task i in the schedule

σ. Following [46], it is convenient to replace the problem of the minimisation of the

maximum lateness by the equivalent problem of the minimisation of the criterion

G(σ) as follows:

G(σ) = max
i∈N

[Si(σ) + βi] = max
i∈N

[Ci(σ) + µi]. (5.2.2)

The following lemma is similar to Lemma 1 in [94] and shows that (5.1.1) can be

replaced by (5.2.2).

Lemma 1 For any schedule σ,

G(σ) = Lmax(σ) + d. (5.2.3)

Proof: Among all tasks g such that Sg(σ) + βg = G(σ) select one with the largest

Sg(σ), say task i. If µi 6= d − di, then by (5.2.1), there exists j ∈ K(i) such that

µi = pj + µj = βj . Observe that Sj(σ) ≥ Si(σ) + pi. Hence for this j,

G(σ) = Si(σ) + βi = Si(σ) + pi + µi ≤ Sj(σ) + µi = Sj(σ) + βj,

which contradicts the choice of i because Si(σ) < Sj(σ). Hence, µi = d − di. On the
other hand, (5.2.1) implies that, for any g, µg ≥ d − dg. Then,

Lmax(σ) + d = max
g∈N

[Cg(σ) + d − dg] ≤ max
g∈N

[Cg(σ) + µg]

= G(σ) = Ci(σ) + µi = Ci(σ) + d − di ≤ Lmax(σ) + d,

which completes the proof. �
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5.3 The structure of a schedule

To describe the structure of the schedule σ, constructed by the BGJ-algorithm, it is

convenient to introduce the following definitions:

• For any integer t, the slot t is the time interval [t − 1, t];

• Let g be the task such that Sg(σ) is the smallest starting time among all tasks

j such that Sj(σ) + βj = G(σ);

• A task i ∈ N is complete, if βi ≥ βg. Otherwise, i is incomplete;

• A slot t ≤ Sg(σ) is complete if the number of complete tasks, processed in this

slot, equals m;

• A slot t ≤ Sg(σ), which is not complete, is incomplete.

• An incomplete slot t is Type I if at least one of the following holds:

(t1) in the slot t, at least one machine is idle;

(t2) there exists an incomplete task j such that Sj(σ) = t − 1;

(t3) all tasks j, processed in the slot t, have the same starting times Sj(σ).

• An incomplete slot t, which is not Type I, is Type II.

Observe that Sj(σ) ≤ Sg(σ) for any complete task j: by definitions of the task g and

a complete task,

Sg(σ) + βg > Sj(σ) + βj , hence

Sg(σ) − Sj(σ) > βj − βg ≥ 0.

Lemma 2 For any Type II slot t, there exists a Type I slot t′ such that

(s1) t′ < t;

(s2) any slot τ such that t′ < τ ≤ t is Type II;

(s3) any incomplete task, processed in slot t, is also processed in slot t′.

Proof: By the definition of a Type II slot, all machines in slot t are busy and at least

one machine processes an incomplete task. Among all such incomplete tasks i choose

a task with the largest Si(σ). Let it be task j. Then, any incomplete task, processed
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in slot t, is also processed in slot t̄ = Sj(σ) + 1. Furthermore, by the definition of a

Type I slot, the slot t̄ is Type I. Since slot t is Type II, t̄ < t. The proof is concluded

be repeating the procedure for every Type II time slot t̄ < τ < t and choosing t′ as

the largest integer among all integers t̄ such that t̄ < t and the slot t̄ is Type I. �

For any Type II slot t, the Type I slot t′, specified by the conditions (s1)-(s2)-(s3),

will be referred to as the supporting slot for the slot t.

Lemma 3 For any Type I slot t and any complete task j such that Sj(σ) ≥ t, there

exists a task q such that

Cq(σ) ≥ t and q → j. (5.3.1)

Proof: Suppose that either (t1) or (t2) holds or both. Then, the existence of q

satisfying (5.3.1) follows from the fact that the BGJ-algorithm has not scheduled j

at t − 1. If (t1) and (t2) do not hold, then there are m tasks processed in the slot

t and, by virtue of (t3), all these tasks commence their processing at same point in

time t′ < t − 1. Since at least one of these tasks is incomplete and j is not scheduled

by the BGJ-algorithm at t′, then amongst these m tasks there exists a task q such

that Cq(σ) ≥ t′ + 1 and q → j. Because the same m tasks are processed in slot t′ and

in slot t, Cq(σ) ≥ t which gives (5.3.1).�

Corollary 1 For any Type I slot t and any complete task j such that Sj(σ) ≥ t, there

exists a complete task i processed in the slot t and i → j.

Proof: Among all q, satisfying (5.3.1), select a task with the smallest Sq(σ), let it

be task i. Since i → j, by virtue of (5.2.1), βi ≥ pi + βj > βg, thus i is a complete

task. The proof is concluded by the observation that Si(σ) < t, because otherwise

by Lemma 3 there exists q such that Cq(σ) ≥ t and q → i → j, and therefore q → j,

which contradicts the selection of i. �

A sequence of tasks j1, ..., jk is a chain if, for each 1 ≤ i < k, ji → ji+1. The following

corollary is a direct consequence of Corollary 1 and the fact that g is complete.
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Corollary 2 There exists a chain of tasks j1, ..., jr such that jr → g and, for any

Type I incomplete slot, the chain has a task that is processed in this time slot.

Lemma 4 At least one complete task is processed in each slot t such that 1 ≤ t ≤

Sg(σ).

Proof: If the slot t is complete, then the lemma follows from the definition of a

complete slot. If the slot t is a Type I incomplete slot, the lemma follows from

Corollary 1 and the fact that g is a complete task. If the slot t is a Type II incomplete

slot, then any incomplete task, processed in slot t, is also processed in its supporting

slot (see Lemma 2), which by the definition is a Type I slot. As it has been proven

above, at least one complete task is processed in it. Hence, the number of incomplete

tasks, processed in the supporting slot and therefore in the slot t, is less than m, and

the lemma follows from the definition of a Type II slot which implies that in this slot

all m machines are busy. �

Let Z be the set of all Type II slots and lz = |Z|. Denote the set of all supporting

Type I slots by Y , and let ly = |Y |. Denote by X the set of Type I slots t which are

not in Y , and let lx = |X|. Let cx, cy and cz be the total processing time allocated to

complete tasks in the slots of sets X, Y and Z, respectively. Similarly, let ey and ez

be the total processing time allocated to incomplete tasks in the slots of sets Y and

Z, respectively.

Lemma 5 The following statements hold:

cz + ez = mlz; (5.3.2)

ez ≤ ey(m − 1). (5.3.3)

Proof: By the definition, there is no idle machine in each Type II slot, i.e. the

number of tasks processed in the slot is m. Hence the total processing time allocated

to complete and incomplete tasks in the lz Type II slots is mlz , and (5.3.2) holds.

Consider a slot t in Y . The slot is associated with a number of consecutive Type II

slots, for which t is a supporting slot. By virtue of Lemma 2, each incomplete task

processed in each of these Type II slots is also processed in t. Thus the number of these
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Type II slots does not exceed pmax − 1. Furthermore, the number of incomplete tasks

processed in each of the Type II slots, is not greater than the number of incomplete

tasks processed in t. Thus

ez ≤ ey(pmax − 1) ≤ ey(m − 1).�

5.4 Lower Bounds on the Optimal Value of G(σ)

In what follows, low bounds for the value of G(σ∗) are derived, where σ∗ is an optimal

schedule for G(σ).

Let a be the task with the maximum completion time among all complete tasks

in σ∗. The total time allocated to incomplete tasks in σ in slots t ≤ Sg(σ) is at least

ey + ez. Denote by e∗ the part of this time, which is allocated in slots t′ ≤ Ca(σ∗) in

σ∗. It is easy to see that

max
j∈N

Cj(σ
∗) ≥ Ca(σ∗) +

ey + ez − e∗

m

Let η =
ey + ez − e∗

m
and δ = min{pa − pg, Ca(σ∗) − Cg(σ∗)}

Since a is complete, βa ≥ βg, hence µa ≥ µg − (pa − pg). Thus

G(σ∗) ≥ max{Ca(σ∗) + µa, Cg(σ∗) + µg, Ca(σ∗) + η} ≥

≥ Ca(σ∗) + max{µg − (pa − pg), µg − (Ca(σ∗) − Cg), η} ≥

≥ Ca(σ∗) + max{µg − δ, η}. (5.4.1)

Let lc be the number of complete slots in σ. By virtue of (5.4.1), Lemmas 4 and 5,

G(σ∗) ≥ Ca(σ∗) + max{µg − δ, η}

≥ lc +
cx + cy + cz + e∗ + pg

m
+ η + max{µg − δ − η, 0}

≥ lc +
lx + ly + cz + e∗ + pg

m
+ η + max{µg − δ − η, 0}

= lc +
lx + ly + pg

m
+ lz +

ey

m
+ max{µg − δ − η, 0}. (5.4.2)

Assume that the first slot in σ is incomplete. Then (5.4.2) can be tightened. Let ̺
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be the minimum processing time among all j such that Sj(σ) = 0. All slots t, such

that 1 ≤ t ≤ ̺, are Type I slots, since they satisfy the condition (t3). By virtue of

Corollary 1, Sj(σ
∗) ≥ ̺ for any complete task j with Sj(σ) ≥ ̺. Denote by c̺ the

processing time allocated to complete tasks in Type I slots after the point of time ̺.

Then

Ca(σ∗) ≥ ̺ + lc +
c̺ + cz + e∗ + pg

m
≥ ̺ + lc +

lx + ly − ̺ + pg

m
+

cz + e∗

m

≥ pmin

(

1 −
1

m

)

+ lc +
lx + ly + pg

m
+

cz + e∗

m
. (5.4.3)

Thus, (5.4.1) and (5.4.3) imply that

G(σ∗) ≥ pmin

(

1 −
1

m

)

+ lc +
lx + ly + pg

m
+

cz + e∗

m
+ η + max{µg − δ − η, 0}

= pmin

(

1 −
1

m

)

+ lc +
lx + ly + pg

m
+ lz +

ey

m
+ max{µg − δ − η, 0}. (5.4.4)

Consider a chain j1 → j2 → ... → jr → g, satisfying Corollary 2. Then (5.4.1) can

be presented as:

G(σ∗) ≥ Ca(σ∗) + max{µg − δ, η} = Cg(σ∗) + (Ca(σ∗) − Cg(σ∗)) + max{µg − δ, η}

≥
r∑

k=1

pjk
+ pg + δ + max{µg − δ, η} ≥ lx + ly + pg + max{µg, η + δ}. (5.4.5)

If the first slot in σ is complete, then (5.4.5) can be tightened. Observe that in this

case at least pmin first time slots in σ are complete. If Sj1(σ) = 0, then

G(σ∗) ≥ Cg(σ∗) + βg ≥
r∑

k=1

pjk
+ βg ≥ pmin + lx + ly + βg.

If Sj1(σ) > 0, then according to the BGJ-algorithm either there exists h → j1 or

there exist another m tasks q with βq ≥ βj1 and Sq(σ) < Sj1(σ). Observe that

βj1 ≥
∑r

k=1 pjk
+ βg, thus in these two cases

G(σ∗) ≥ max
j∈{k:βk≥βj1

}
Sj(σ

∗) + βj1 ≥ pmin + βj1 ≥ pmin + lx + ly + βg.
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The last two inequalities and (5.4.5) imply that

G(σ∗) ≥ max{pmin + lx + ly + βg, lx + ly + pg + δ + η}

= lx + ly + pg + max{µg + pmin, δ + η}. (5.4.6)

5.5 Worst-Case Performance Guarantee

This lemma will help to simplify the proofs that follow.

Lemma 6 For nonnegative numbers a, b, h and α, where α < 1,

min{a, b} − (1 − α) max{a + h, b} ≤ bα − (1 − α)h. (5.5.1)

Proof: Consider the following cases: a ≤ b − h, b − h < a ≤ b and a > b. In each of

these cases (5.5.1) holds:

If a ≤ b − h then

min{a, b} − (1 − α) max{a + h, b} = a − (1 − α)b ≤ bα − h ≤ bα − (1 − α)h.

If b − h < a ≤ b, then
min{a, b}−(1−α) max{a+h, b} = a−(1−α)(a+h) = aα−(1−α)h ≤ bα−(1−α)h.

If a > b, then
min{a, b}−(1−α) max{a+h, b} = b−(1−α)(a+h) < b−(1−α)(b+h) = bα−(1−α)h.

�

Theorem 1

G(σ) ≤
(

2 −
1

m

)

G(σ∗) +
pmax

m
− pmin, (5.5.2)

and the bound is tight.

Proof: The value of G(σ) can be expressed as:

G(σ) = Cg(σ) + µg = lc + lx + ly + lz + pg + µg. (5.5.3)
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If the first slot in σ is complete, then by (5.4.2) and (5.5.3)

G(σ) − G(σ∗) ≤

≤

(

1 −
1

m

)

(lx + ly + pg) + µg −
ey

m
− max{µg − δ − η, 0}

=

(

1 −
1

m

)

(lx + ly + pg) −
ey

m
+ min{δ + η, µg}. (5.5.4)

Furthermore, if the first slot in σ is complete, (5.4.6) and (5.5.4) imply that

G(σ) ≤
(

2 −
1

m

)

G(σ∗) −
ey

m
+ min{δ + η, µg} −

(

1 −
1

m

)

max{µg + pmin, δ + η}.(5.5.5)

If the first slot in σ is incomplete, then by (5.4.4) and (5.5.3)

G(σ) − G(σ∗) ≤

≤

(

1 −
1

m

)

(lx + ly + pg − pmin) + µg −
ey

m
− max{µg − δ − η, 0}

=

(

1 −
1

m

)

(lx + ly + pg − pmin) −
ey

m
+ min{δ + η, µg}. (5.5.6)

It is easy to see that if the first slot in σ is incomplete, (5.4.5) and (5.5.6) imply the

same result as (5.5.5) :

G(σ) ≤

(

2 −
1

m

)

G(σ∗) −
ey

m
+ min{δ + η, µg} −

(

1 −
1

m

)

(pmin + max{µg, δ + η})

≤

(

2 −
1

m

)

G(σ∗) −
ey

m
+ min{δ + η, µg} −

(

1 −
1

m

)

max{µg + pmin, δ + η}.

Let a = µg, b = δ + η, h = pmin, α = 1
m

. Then by virtue of (5.5.5) and Lemma 6,

G(σ) ≤

(

2 −
1

m

)

G(σ∗) −
ey

m
+

δ

m
+

η

m
− pmin

(

1 −
1

m

)

. (5.5.7)

Taking into account (5.3.3),

η

m
−

ey

m
=

ey + ez − e∗

m2
−

ey

m
≤

ey + ey(m − 1)

m2
−

ey × m

m2
= 0. (5.5.8)
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Finally, by virtue of (5.5.8) and the fact that δ ≤ pmax − pmin, (5.5.2) is obtained:

G(σ) ≤

(

2 −
1

m

)

G(σ∗) +
pmax − pmin

m
− pmin

(

1 −
1

m

)

=

(

2 −
1

m

)

G(σ∗) +
pmax

m
− pmin.

Observe that by direct substitution of (5.2.3) in (5.5.2), the equivalent bound for the

criterion of maximum lateness is obtained:

Lmax(σ) ≤
(

2 −
1

m

)

Lmax(σ∗) +
(

1 −
1

m

)

d +
pmax

m
− pmin.

To show that (5.5.2) is tight, consider the partially ordered set of tasks depicted by

Figure 5-1. The graph constitutes of km − 1 identical sections and the last section.

On this figure, a pmin units task is denoted by p and a pmax units task is denoted by

pmax. Each section constitutes of m − 1 rows with m + 1 pmin units tasks; the mth

row of the first km − 1 sections is comprised of one pmin units task; the mth row of

the last section is comprised of one pmin units task and m pmax units tasks. Hence,

the total number of rows is km2. Priorities of the tasks are the following:

• last (km2)th row, for the pmin units task: µ = pmax − pmin, β = pmax;

• last (km2)th row, for the pmax units tasks: µ = 0, β = pmax;

• ith row from the bottom, 1 ≤ i ≤ km2, for a pmin units task:

µ = pmax + (i − 2)pmin, β = pmax + (i − 1)pmin.

The schedule σ constructed by the BGJ-algorithm and the optimal schedule σ∗ are

depicted by Figure 5-2. To demonstrate that the σ∗ is optimal, it is shown below

that G(σ∗) is equal to a lower bound for its value. Let l be the lth row from the top

of a section h, where 1 ≤ l ≤ m and 1 ≤ h ≤ km, and j be the jth row from the top,
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1 ≤ j ≤ km2. Then the following equalities hold:

j = km2 − i + 1;

j = l + (h − 1)m, hence

i = km2 + 1 − l − (h − 1)m (5.5.9)

Hence, β for pmin tasks in lth row from the top of a section h, where 1 ≤ l ≤ m and

1 ≤ h ≤ km, is calculated as

β = pmax + (i − 1)pmin = pmax +
(

km2 + 1 − l − (h − 1)m − 1
)

pmin

= pmax + (km2 − l − (h − 1)m)pmin

Value of G(σ) :

To determine the value of G(σ), consider the following cases:

• l = m, h = km, pmin units task;

• l = m, h = km, pmax units tasks;

• 1 ≤ l ≤ m − 1, 1 ≤ h ≤ km, a “shaded” pmin units task;

• l = m, 1 ≤ h ≤ km − 1, pmin units task;

Consider the pmin units task in the last row of the last section, denote the task by g:

Sg(σ) + βg = [2pmin(m − 1) + pmin]
︸ ︷︷ ︸

per section

(km − 1)
︸ ︷︷ ︸

km−1sections

+ 2pmin(m − 1) + pmax
︸ ︷︷ ︸

last section

+ pmax
︸ ︷︷ ︸

βg

= 2pminkm2 − pminkm + 2pmax − pmin (5.5.10)

Consider a pmax units task i in the last row of the last section:

Si(σ) + βi = [2pmin(m − 1) + pmin]
︸ ︷︷ ︸

per section

(km − 1)
︸ ︷︷ ︸

km−1sections

+

+ 2pmin(m − 1)
︸ ︷︷ ︸

last section

+ pmax
︸ ︷︷ ︸

βi

= 2pminkm2 − pminkm + pmax − pmin (5.5.11)
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Let i be the “shaded” task with the largest Si(σ) out of all tasks in the row l of a

section h, 1 ≤ l ≤ m − 1, 1 ≤ h ≤ km:

Si(σ) + βi =

= 2pmin(l − 1) + pmin + (h − 1) (2pmin(m − 1) + pmin)
︸ ︷︷ ︸

Si(σ)

+ pmax + (km2 − l − (h − 1)m)pmin
︸ ︷︷ ︸

βi

= pmax + pminl + hmpmin − hpmin − mpmin + pminkm2

= pmax + hpmin(m − 1) + pmin(l − m) + pminkm2

≤ pmax + kmpmin(m − 1) + pmin(m − 1 − m) + pminkm2

= 2pminkm2 − pminkm + pmax − pmin. (5.5.12)

Let i be the task in the row m of a section h, 1 ≤ h ≤ km − 1:

Si(σ) + βi =

= 2pmin(m − 1) + (h − 1) (2pmin(m − 1) + pmin)
︸ ︷︷ ︸

Si(σ)

+ pmax + (km2 − m − (h − 1)m)pmin
︸ ︷︷ ︸

βi

= pmax + pminkm2 − pmin + hmpmin − hpmin

≤ 2pminkm2 − pminkm + pmax − mpmin < 2pminkm2 − pminkm + pmax − pmin (5.5.13)

By virtue of (5.5.10)-(5.5.13),

G(σ) = 2pminkm2 − pminkm + 2pmax − pmin (5.5.14)

Value of G(σ∗) :

To determine the value of G(σ∗), consider the following cases:
• l = m, h = km, pmax units tasks;

• 1 ≤ l ≤ m − 1, 1 ≤ h ≤ km, pmin units tasks;

• l = m, 1 ≤ h ≤ km, pmin units tasks;
Consider a pmax units task a in the last row of the last section:

Sa(σ∗) + βa =

= mpmin
︸ ︷︷ ︸

per section

(km − 1)
︸ ︷︷ ︸

km−1 sections

+ mpmin
︸ ︷︷ ︸

last section

+ pmax
︸ ︷︷ ︸

βa

= kpminm2 + pmax (5.5.15)
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Let i be the task with the largest Si(σ) out of all tasks in the row l of a section h,

1 ≤ l ≤ m − 1, 1 ≤ h ≤ km:

Si(σ
∗) + βi =

= (h − 1)mpmin + lpmin
︸ ︷︷ ︸

Si(σ∗)

+ pmax + (km2 − l − (h − 1)m)pmin
︸ ︷︷ ︸

βi

= kpminm2 + pmax (5.5.16)

Let i be a pmin units task in the row m of a section h, 1 ≤ h ≤ km:

Si(σ
∗) + βi =

= (h − 1)mpmin + (m − 1)pmin
︸ ︷︷ ︸

Si(σ∗)

+ pmax + (km2 − m − (h − 1)m)pmin
︸ ︷︷ ︸

βi

= kpminm2 + pmax − pmin (5.5.17)

Observe that for the schedule σ∗ the following lower bound holds:

G(σ∗) ≥

∑

i∈N pi

m

=

km
︸︷︷︸

sections

× ((m − 1)(m + 1) + 1)
︸ ︷︷ ︸

per section

×pmin + mpmax

m

= kpminm2 + pmax (5.5.18)

Finally, by virtue of (5.5.15)-(5.5.17),

G(σ∗) = kpminm2 + pmax, (5.5.19)

and by virtue of (5.5.18), σ∗ is the optimal schedule.

To complete the proof, we substitute (5.5.14) and (5.5.19) in (5.5.2) and show that
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the bound is tight:

(

2 −
1

m

)

G(σ∗) +
pmax

m
− pmin =

(

2 −
1

m

)

(kpminm2 + pmax) +
pmax

m
− pmin

= 2kpminm2 + 2pmax − kpminm −
pmax

m
+

pmax

m
− pmin = G(σ).

�

5.6 The case of the problem when pmax > m

To establish that (5.5.2) does not hold when pmax > m consider the partially ordered set of

tasks depicted by Figure 5-3 and let pmax = m + 1 and pmin = 1. The graph constitutes of

m identical sections and the last section. Each of the first m sections constitutes of m − 1

rows with m + 1 unit tasks and the mth row, which is comprised of one unit task and m − 1

(m + 1) units tasks. The last section constitutes of m − 1 rows with m + 1 unit tasks and

the mth row, which is comprised of one unit task and m (m + 1) units tasks. Priorities of

the tasks are the following:

• last (m2 + m)th row: for the unit task µ = m2 + m − 1, β = m2 + m;

• last (m2 + m)th row: for the (m + 1) units tasks µ = m2 − 1, β = m2 + m;

• ith row from the bottom, 1 ≤ i ≤ m2 + m, for a unit task in: µ = m2 + m + i − 2,

β = m2 + m + i − 1;

• the mth row in the first m sections, for a (m + 1) units task: µ = 0, β = m + 1.

The schedule σ constructed by the BGJ-algorithm and the optimal schedule σ∗ are depicted

by Figure 5-4. Similar to the previous subsection, let l be the lth row from the top of a

section h, where 1 ≤ l ≤ m and 1 ≤ h ≤ m + 1, and j be the jth row from the top,

1 ≤ j ≤ m2 + m. Then the following equalities hold:

j = m2 + m − i + 1;

j = l + (h − 1)m, hence

i = m2 + m + 1 − l − (h − 1)m = m2 + 2m + 1 − l − hm. (5.6.1)
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Figure 5-1: Set of tasks: pmax ≤ m
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Hence, β for unit tasks in lth row from the top of a section h, where 1 ≤ l ≤ m and

1 ≤ h ≤ m + 1, is calculated as

β = m2 + m + i − 1 = m2 + m − 1 + m2 + 2m + 1 − l − hm = 2m2 + 3m − l − hm.

Value of G(σ) :

To determine the value of G(σ), consider the following cases:

• h = 1, 1 ≤ l ≤ m − 1, a “shaded” unit task;

• 2 ≤ h ≤ m + 1, l = 1, a “shaded” unit task;

• 2 ≤ h ≤ m + 1, 2 ≤ l ≤ m − 1 a “shaded” unit task;

• 2 ≤ h ≤ m, l = m, a “shaded” unit task;

• 2 ≤ h ≤ m, l = m, an (m + 1) units task;

• h = m + 1, l = m, an (m + 1) units task;

• h = m + 1, l = m, the unit task.

Let i be the “shaded” task with the largest Si(σ) out of all tasks in the lth row of the

first section, 1 ≤ l ≤ m − 1:

Si(σ) + βi = 2l − 1
︸ ︷︷ ︸

Si(σ)

+ 2m2 + 3m − l − m
︸ ︷︷ ︸

βi

= l + 2m2 + 2m − 1 < 2m2 + 3m − 2. (5.6.2)

Let i be the “shaded” unit task with the largest Si(σ) out of all tasks in the first row

of the section h, 2 ≤ h ≤ m + 1:

Si(σ) + βi =

= 2m − 1 + (h − 2)(m + 1 + 2(m − 2) + 1) + m
︸ ︷︷ ︸

Si(σ)

+ 2m2 + 3m − 1 − hm
︸ ︷︷ ︸

βi

= 2m2 + 2h(m − 1) + 2

≤ 2m2 + 2(m2 − 1) + 2 = 4m2. (5.6.3)
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Let i be the “shaded” unit task with the largest Si(σ) out of all tasks in the lth row

of the section h, 2 ≤ l ≤ m − 1, 2 ≤ h ≤ m + 1:

Si(σ) + βi =

= 2m − 1 + (h − 2)(m + 1 + 2(m − 2) + 1) + m + 1 + 2l − 1
︸ ︷︷ ︸

Si(σ)

+ 2m2 + 3m − l − hm
︸ ︷︷ ︸

βi

= 2m2 + 2h(m − 1) + l + 3

≤ 2m2 + 2(m2 − 1) + m − 1 + 3 = 4m2 + m. (5.6.4)

Let i be the unit task in the mth row of the section h, 1 ≤ h ≤ m:

Si(σ) + βi =

= 2m − 1 + (h − 2)(m + 1 + 2(m − 2) + 1) + m + 1 + 2(m − 2)
︸ ︷︷ ︸

Si(σ)

+ 2m2 + 3m − m − hm
︸ ︷︷ ︸

βi

= 2m2 + 2h(m − 1) + m

≤ 2m2 + 2(m2 − 1) + m = 4m2 + m − 2. (5.6.5)

Let i be an (m + 1) units task in the mth row of the section h, 1 ≤ h ≤ m:

Si(σ) + βi =

= 2m − 1 + (h − 2)(m + 1 + 2(m − 2) + 1) + m + 1 + 2(m − 2)
︸ ︷︷ ︸

Si(σ)

+ m + 1
︸ ︷︷ ︸

βi

= 1 + h(3m − 2) ≤ 1 + m(3m − 2) = 3m2 − 2m + 1. (5.6.6)

Let i be an (m + 1) units task in the mth row of the last section:

Si(σ) + βi =

= 2m − 1 + (m − 1)(m + 1 + 2(m − 2) + 1) + m + 1 + 2(m − 2)
︸ ︷︷ ︸

Si(σ)

+ m2 + m
︸ ︷︷ ︸

βi

= 4m2 + m − 2. (5.6.7)

186



Let g be the unit task in the mth row of the last section:

Sg(σ) + βg =

= 2(m − 1) + 1
︸ ︷︷ ︸

1st section

+ [m + 1 + 2(m − 2) + 1](m − 1)
︸ ︷︷ ︸

2nd − mth sections

+

m + 1 + 2(m − 2) + m + 1
︸ ︷︷ ︸

the last section

+ m2 + m
︸ ︷︷ ︸

βg

= 4m2 + 2m − 1 (5.6.8)

By virtue of (5.6.2)-(5.6.8),

G(σ) = 4m2 + 2m − 1 (5.6.9)

Value of G(σ∗) :

To determine the value of G(σ∗), consider the following cases:

• 1 ≤ l ≤ m − 1, 1 ≤ h ≤ m + 1, a unit task;

• l = m, 1 ≤ h ≤ m + 1, a unit task;

• l = m, 1 ≤ h ≤ m, an (m + 1) units task;

• l = m, h = m + 1, an (m + 1) units task.

Let i be the unit task with the largest Si(σ) out of all tasks in the lth row of the

section h, 1 ≤ l ≤ m − 1, 1 ≤ h ≤ m + 1:

Si(σ
∗) + βi =

= m(h − 1) + l
︸ ︷︷ ︸

Si(σ∗)

+ 2m2 + 3m − l − hm
︸ ︷︷ ︸

βi

= 2m2 + 2m. (5.6.10)
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Let i be a unit task in the mth row of the section h, 1 ≤ h ≤ m + 1:

Si(σ
∗) + βi =

= m(h − 1) + m − 1
︸ ︷︷ ︸

Si(σ∗)

+ 2m2 + 3m − m − hm
︸ ︷︷ ︸

βi

= 2m2 + 2m − 1. (5.6.11)

Let a be the (m + 1) units task with the largest starting time out of all such tasks

from sections 1 − m. Recall that µa = 0 and that there are m × (m − 1) such tasks:

Ca(σ∗) + µa =

= m
︸︷︷︸

per section

× (m + 1)
︸ ︷︷ ︸

m+1 sections

+ m + 1
︸ ︷︷ ︸

long tasks of last section

+ (m − 1) × (m + 1)
︸ ︷︷ ︸

(m−1) columns of (m+1) unit tasks

= 2m2 + 2m (5.6.12)

Let i be an (m + 1) units task from the last section:

Ci(σ
∗) + µi =

= m
︸︷︷︸

per section

× (m + 1)
︸ ︷︷ ︸

m+1 sections

+ m + 1
︸ ︷︷ ︸

long tasks of last section

+ m2 − 1
︸ ︷︷ ︸

µi

= 2m2 + 2m (5.6.13)

By virtue of (5.6.10)-(5.6.13),

G(σ∗) = 2m2 + 2m (5.6.14)

Observe that similar to (5.5.18), this value is equal to the lower bound on the value
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of G(σ∗), and hence the σ∗ is optimal:

G(σ∗) ≥

∑

i∈N pi

m

=

(m + 1)
︸ ︷︷ ︸

sections

× ((m − 1)(m + 1) + 1)
︸ ︷︷ ︸

per section

+ m
︸︷︷︸

1st−mth sections

× ((m − 1)(m + 1))
︸ ︷︷ ︸

long tasks, persection

+ m
︸︷︷︸

last section

× (m + 1)
︸ ︷︷ ︸

long tasks

m

= 2m2 + 2m

When (5.6.9) and (5.6.14) are substituted in (5.5.2), the bound does not hold:

(

2 −
1

m

)

G(σ∗) +
pmax

m
− pmin =

(

2 −
1

m

)

(2m2 + 2m) +
m + 1

m
− 1

= 4m2 + 4m − 2m − 2 + 1 +
1

m
− 1 = G(σ) − (1 −

1

m
) < G(σ).

This section is concluded by demonstrating that if pmax > m, then there exists

a sequence of instances of the considered maximum lateness problem such that, for

the corresponding sequence of optimal schedules σ∗
1 , σ∗

2, ..., σ∗
k, ... and the sequence of

schedules σ1, σ2, ..., σk, ..., constructed by the BGJ-algorithm

G(σk) → 2G(σ∗
k).

Consider the set of tasks constituting of m pmax units tasks and one pmin units task.

For any task j such that pj = pmax let µj = 0, then βj = pmax. Denote pmin units task

by g and let µg = pmax − pmin, then βg = pmax. Schedule σ constructed by the BGJ-

algorithm and an optimal schedule are depicted on the figure 5-5. The BGJ-algorithm

could assign Sj(σ) = 0 for any task j such that pj = pmax and Sg(σ) = pmax. Then

G(σ) = Cg(σ) + µg = pmax + pmin
︸ ︷︷ ︸

Cg(σ)

+ pmax − pmin
︸ ︷︷ ︸

µg

= 2pmax

In the optimal schedule σ∗ Sg(σ∗) = 0, and Sj(σ
∗) = 0 for m − 1 tasks j such that
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Figure 5-3: Set of tasks: pmax > m
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pj = pmax. For one task i such that pi = pmax Si(σ
∗) = pmin. Then

G(σ∗) = Ca(σ∗) + µa = pmin + pmax;

G(σ) =
2pmax

pmax + pmin
G(σ∗) =

(

2 −
2pmin

pmax + pmin

)

G(σ∗) → 2G(σ∗).

Figure 5-5: G(σ) → 2G(σ∗)

5.7 Conclusion

In this chapter, a polynomial-time approximation algorithm is presented for a max-

imum lateness problem with parallel identical machines with precedence constraints

and tasks with arbitrary processing times. This algorithm can be viewed as a modi-

fication of the Brucker-Garey-Johnson algorithm. For the case of the problem when

the maximum processing time does not exceed the number of parallel machines, a

tight worst-case performance guarantee is derived. It is shown that if the maximum

processing time exceeds the number of machines, this guarantee does not hold. Fur-

thermore, in this case the algorithm is a 2-approximation algorithm, and the bound

is asymptotically tight.
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Chapter 6

Conclusion and further research

In this thesis several algorithms for NP -hard scheduling problems are introduced and

discussed. This thesis contributes to the existing research as follows:

• A new approach that utilises Lagrangian relaxation and decomposition tech-

niques is developed for flow shop problems with a job-dependent buffer - these

techniques have never been used before for such problems. Efficient Lagrangian

relaxation and decomposition-based heuristics are designed; the efficiency of

these heuristics tested computationally. The considered problems belong to a

class of flow shop problems with a job-dependent buffer - the new area of re-

search that has gained attention only in the last 10-15 years. In these problems,

the storage requirement varies from job to job and a job occupies the storage

continuously from the start of its first operation till the completion of its second

operation rather than only between operations.

• A new discrete optimisation procedure is introduced. This optimisation pro-

cedure can be viewed as an alternative to the widely used exact algorithm -

the branch and bound algorithm, for a class of discrete optimisation problems

with certain properties. These properties are not too restrictive as they allow

to include in this class several NP -hard scheduling problems. The procedure is

generalisation of the method proposed in [112, 113], where it has been shown

that the method outperforms a conventional branch and bound algorithm for

the considered scheduling problems. This discrete optimisation procedure is an
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iterative algorithm, that searches for a feasible solution with the objective value

of the current lower bound or determines that such solution does not exists.

The various methods of how this search can be carried out are investigated ,

and these methods are compared computationally in application to a scheduling

problem.

• A worst-case analysis of an approximation algorithm for a classical maximum

lateness problem on parallel machines is presented. Though there is a wealth

of literature for the case of the problem when all tasks are of unit execution

time, much less is know about more general case of the problem - when there are

arbitrary processing times and arbitrary precedence constraints. This thesis ad-

dressed this gap in the literature by presenting a polynomial-time approximation

algorithm that can be viewed as a modification of the Brucker-Garey-Johnson

algorithm [7]. The Brucker-Garey-Johnson algorithm was originally developed

as an exact algorithm for the case of the problem with unit execution time tasks

and precedence constraints represented by an in-tree. A tight a worst-case per-

formance guarantee is obtained for the case of the problem, when the largest

processing time does not exceed the number of machines. The guarantee is

tight for arbitrary large instances of the considered maximum lateness prob-

lem. It is shown that, if the largest processing time is greater than the number

of machines, then the classical worst-case performance guarantee for the list

algorithm, obtained in [46], is tight.

Further research will focus on the following:

• attempt developing approximation algorithms and analyse their worst-case per-

formance for flow shop problems with the job-dependent buffer considered in

this thesis;

• investigate the possibility of obtaining a worst-case performance guarantee for

other priority algorithms such as the Garey-Johnson algorithm and the Zinder-

Roper algorithm for the case of arbitrary processing times;
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• consider an application of the discrete optimisation procedure to other schedul-

ing problems, such as problems on parallel machines with arbitrary processing

times.
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