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Abstract

Lung cancer is the leading cause of cancer death
worldwide. The critical reason for these deaths is
the delayed diagnosis and poor prognosis. With
the accelerated development of deep learning tech-
niques, it has been successfully applied extensively
in many real-world applications, including health
sectors such as medical image interpretation and
disease diagnosis. By combining more modalities
that being engaged in the processing of informa-
tion, multimodal learning can extract better fea-
tures and improve the predictive ability. The con-
ventional method for lung cancer survival analy-
sis normally utilize clinical data and only provide
a statistical probability. To improve the survival
prediction accuracy, and help prognostic decision-
making in clinical practice for medical experts.
We for the first time propose a multimodal deep
learning framework for non-small cell lung cancer
(NSCLC) survival analysis, named DeepMMSA,
which leverage CT images in combination with
clinical data, enabling the abundant information
hold within medical images to be associate with
lung cancer survival information. We validate our
model on the data of 422 NSCLC patients from The
Cancer Imaging Archive (TCIA). Experimental re-
sults verify our hypothesis that there is a underly-
ing relation between prognostic information and ra-
diomic images. Besides, quantitative results show-
ing that our method could surpass the state-of-the-
art methods by 4% on concordance.

1 Introduction

Lung cancer is the leading cancer killer in both men and
women in the world representing 19.4%—-27% of all deaths
from cancer [Siegel ef al., 2016]. It can be broadly classified
into non-small cell lung cancer (NSCLC) counting for 85%
and small cell lung cancer (SCLC) counting for the remain-
ing 15%. Lung cancer has a poor prognosis. The lung cancer
five-year survival rate is lower than many other leading can-
cer sites, such as colorectal (64.5 %), breast (89.6 %), and
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prostate (98.2%) [Feuer et al., 2015]. According to the TNM
system, 5-years survival for IA, 1B, TIA, 1IB, IIIA, IIIB and
IV stage disease, is about 73%, 58%, 46%, 36%, 24%, 9%,
and 13% respectively [Dziedzic er al., 2016]. More than half
of people with lung cancer die within one year of being di-
agnosed [Feuer et al., 2015]. Accurate assessment of disease
stage and survival time of lung cancer is essential in deciding
the optimal plan and timing treatment for the clinicians.

Nowadays, a large fraction interpretation of medical infor-
mation is performed by medical expertise. In terms of im-
age interpretation by human experts, a lot of diagnostic errors
appear in radiology. Approximately 20 million radiology re-
ports contain clinically significant errors each year [Brady,
2017]. This limitation is mainly due to the subjectivity, the
complexity of the image, extensive variations exist across dif-
ferent interpreters, and fatigue [Razzak et al., 2018]. More-
over, 2/3 of the world population lacks adequate access to
radiology specialists, this would translate to 4.7 billion peo-
ple.

Artificial intelligence is a promising tool that has shown
its efficacy for diagnostic purposes[Liu et al., 2019] [Zhu et
al., 2018] [Xing et al., 2017]. With the rapid development
in deep learning-based computer vision, its ability to recog-
nize images or diagnose pictures even exceeds human ability
[Russakovsky et al., 2015] [Deng et al., 2009] [Russakovsky
et al., 2013]. Convolutional neural networks (CNNs) is the
most frequently used deep learning technique. In the last few
years, image analysis by deep learning or CNNs has been uti-
lized in low-dose lung CT for early diagnosis, which dramat-
ically decreases the lung cancer mortality rate. To be specific,
it enabled computer vision models to assist the doctors to de-
tect suspicious pulmonary nodules or identify the location of
the nodule, evaluate whole-lung/pulmonary malignancy, clas-
sify candidate nodules into benign or malignant, and predict
the risk of lung cancer [Liao ef al., 2019] [Gruetzemacher
et al., 2018] [Trajanovski et al., 2018] [Ardila ef al., 2019]
[Zhu et al., 2018] [Ding et al., 2017] [Li and Fan, 2020]
[Riquelme and Akhloufi, 2020]; in some cases, the models
have reached competitive performance to doctors, and the ac-
curacy even exceed the doctors [Shin et al., 2012] [Esteva et
al.,2017] [Gulshan et al., 2016] [Litjens et al., 2017] [Xing
etal.,2017].

Although artificial intelligence in combination with CT
scans is a promising tool that has shown its utility for diag-



nostic purposes, it is rarely been used in predicting death, and
possibly even determining death, which is a unique and chal-
lenging area that could be fraught with the same biases that
affect analog physician-patient interactions. Current research
for NSCLC survival analysis is largely based on the statisti-
cal analysis of clinical data. Traditional approaches generally
utilize clinical information such as age, clinical TNM stage,
gender information, etc. In the work of [Wanget al., 2019],
which use CT images in survival analysis. But the model
only learns 2D features from each tumor image slices sepa-
rately, afterward, averaged features from all image slices for
every single patient and dismissed the 3D properties of the
tumor. Moreover, the overall performance of currently avail-
able works for survival analysis is considerably low. While
deep learning To our best knowledge, this is the first time to
develop a system based on 3D features extracted from lung
CT images fusion with features extracted from clinical data
for death prediction using deep learning.

By contrast, deep learning has the potential to reduce di-
agnostic errors and overcome the human limitations. Thus,
it is worth developing a fully automated deep learning sys-
tem for NSCLC survival prediction based on CT images and
clinical data to explore whether the deep learning techniques
have the ability to extract useful information from CT images
and clinical to predict death. In our work, considering the 3D
nature of CT images, in order to reveal the underlying rela-
tion between prognostic information and CT images, to fully
utilize the potential of the prognostic power existing in the
radiomic data, we design a 3D multimodal Resnet framework
for NSCLC survival analysis. Since combining CT image
and clinical data could provide comprehensive and supple-
mentary information to describe the cancer status, this frame-
work could indicate more accuracy overall trend of survival.
To our best knowledge, this is the first time to develop a sys-
tem based on 3D features extracted from lung CT images for
death prediction using deep learning. Quantitative results on
the NSCLC- Radiomics data show that the proposed method
could surpass the state-of-the-art methods by 4% on concor-
dance, revealing that our method could provide more accurate
diagnosis and prognostic decision-making in the future clin-
ical practice. The results of ablation experiments show that
using multiple modalities improves the biggest marginal per-
formance compared with using single modality.

To conclude, we mainly have the following contributions:

e The proposed method overcome the weakness of tradi-
tional non-parametric methods (KM etc.) which cannot
incorporate multiple variables.

» Experiment results shows that our method Could surpass
the SOTA methods (Cox-Time etc.) by 4% on concor-
dance.

* To our best knowledge, this is the first attempt to recon-
struct a deep 3D convolutional-based model and using
images for survival analysis.

* Experiment results verify our hypothesis and reveal the
underlying relation between prognostic information and
radiomic images.

* Our multimodal framework can provide more accurate

survival analysis with sufficient granularity for personal-
ized prognosis and decision-making compared to SOTA
methods.

2 Preliminary Knowledge

In this section, we provide a brief survey on multimodal deep
learning, 3D ResNets, survival analysis, and survival analysis
methods developed in recent years.

2.1 Notations

For notational clarity, we hereby define the key symbols and
their meanings in Table 1.

Symbol  Definition

T i-th 3D radiology image

Ci i-th clinical information

Yi i-th actucal survival time

e; i-th event, 1 for uncensored, O for censored
Ui predicted i-th survival time

I(x) 1 if x=True else 0

Table 1: Notations

2.2 Multimodal deep learning

Multimodal deep learning is a novel framework of deep neu-
ral networks to learn features over multiple modalities (e.g.,
text, images, or audio) [Ngiam er al., 2011]. In medical ap-
plications, multiple types of data are related to each patient,
including clinical information, radiology images, physician
note, medication, to name a few. Thus, when data comes from
different sources the approach of multimodal deep learning
can help to understand and extract more useful information.

2.3 3D-ResNet

The residual neural network (ResNet) [He et al., 2016] is to
handle gradient vanishing or exploding problems in deeper
neural networks training, especially in computer vision. The
core concept of ResNet is to construct a basic network block
in which the output is add up with input. To handle 3D image
input, we can simply increase kernel shape from 2 dimensions
to 3 dimensions (height, length, and depth) in convolution
layers.

2.4 Survival analysis

Survival analysis is the widely used technique to model time-
to-event data (e.g., failure, death, admission to hospital, the
emergence of disease, etc.) [Lee and Wang, 2003]. Tradi-
tional statistical methods for survival analysis, normally con-
tains three options for modeling the survival function: non-
parametric methods with no distribution of survival curve
predefined (e.g. Kaplan-Meier [Goel er al., 2010], Nelson-
Aalen [Nelson, 1972] [Aalen, 1978]), semi-parametric meth-
ods such as the Cox proportional hazards model [Cox, 1972]
which is most commonly used, and parametric methods
with distribution predefined (e.g. Linear regression, Weibull
distribution). Besides, machine learning methods such as
survival trees, Neural network, Cox-time [Kvamme et al.,



2019]), DeepHit [Lee et al., 2018], CoxCC [Kvamme et al.,
2019], PC-Hazard [Kvamme and Borgan, 2019] and Ensem-
ble method, to name just a few, are also applied in survival
analysis.

Due to the existence of censored survival data (usually
right censored), the standard evaluation indexes for regres-
sion, such as mean square error (MSE) and R2, do not fit
for quantifying the performance of survival analysis. The
most important evaluation index is the concordance index (C-
index) which can evaluate uncensored instances and censored
instances together.

Cuindex — Z” I(yi < gjlei = 1,y; <y;) )
> i 1 <yjlei=1)
Besides, as a regression problem, we also use the mean ab-
solute error (MAE) over uncensored instances to evaluate our
experiments.

MAE =
S I(ei=1) I

2.5 Related work

Conventional survival analysis for NSCLC is set of mod-
elling procedures which only harness clinical data and it mea-
sures time to an event. For example, in the specific area
of NSCLC survival analysis, [Janssen-Heijnen et al., 1998]
studied the variation in the prognosis for adult patients with
lung cancer within Europe, by age, histology, and country
from 1985-1989 with simple statistical methods, such as life-
table. The work of [Port ef al., 2003] shows that tumor
size within stage A is an important predictor of survival with
Kaplan-Meier survival analysis and Cox proportional hazards
regression model. [Morita et al., 2009] examined the survival
impact of a specific feature, gefitinib, in patients with EGFR
mutation-positive NSCLC. [Gyorffy e al., 2013] developed
an online survival analysis tool capable of uni- and multivari-
ate analysis (e.g. Kaplan-Meier survival plot, Cox regression
analysis) with 1,715 samples of ten independent datasets. Re-
cently, several work has been proposed to use deep learning
in survival analysis. DeepConvSurv [Zhu et al., 2016], which
for the first time developed a 2D deep convolutional neural
network (CNN) for survival analysis with pathological im-
ages. The study of [Chaddad er al., 2017] use the random
forest model to analyze the manually extracted features from
radiology images combined with age to predict a binary clas-
sification of survival time. [Wang et al., 2019] propose CNN
to extract 2D features from CT images in survival analysis.
In their work, features are learned from each 2D tumor im-
age slice, then features from all slices from one patient are
directly added together and calculate the average value. This
method may lost the spatial and temporal information exists
in tumor. [Cui et al., 2020] used a deep neural network to
learn cellular features from biomarkers and Cox proportional
hazards model to do survival analysis. DeepLung [Zhu er al.,
2018] use 3D CT images and 3D CNN for nodule detection
and classification, the success of which inspired us to extract
3D features from CT images for survival analysis.

In conclusion, the early stage research for NSCLC survival
analysis tends to find specific features to predict the survival
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curve, most of which using Kaplan-Meier survival analysis
and Cox proportional hazards regression model. In this pa-
per, we proposed more complex models, such as machine
learning and deep learning models. Besides, to fully utilize
the information gathered from all types of data sources, such
as CT images and clinical information, we design a fully au-
tomated multimodal deep learning framework for individual-
ized NSCLC survival prediction.

3 Methodology

In this section, we describe details about the proposed Deep-
MMSA. As far as we know, this is the first work to use a
multimodal deep learning framework to process CT images
together with clinical information for NSCLC survival analy-
sis.

3.1 The structure of DeepMMSA

Inspired by the recent successful applications of CNNs in
NSCLC diagnosis and other image recognition tasks, we pro-
posed a DeepMMSA that harness the strategies of analyz-
ing the combined information from multiple modalities. As
shown in Figure 1, we use the tumor region of interests(ROIs)
which is the lesions on CT scans as low-level image input.
Motivated by the work of [Zhu et al., 2018], 3D CNNs was
used to extract features from all three-dimensional directions
within the tumor volume. Meanwhile, we integrate the clin-
ical information through a 27D high-level clinical layer, the
input of which including screening test results such as clin-
ical TNM stage, overall stage, histology, gender, age of the
patient. Clinical layer is embedded in the hidden layer di-
rectly.
DeepMMSA framework consists of three modules:

e Multimodal feature (CT image features and Clinical
record features) extraction.

e Multimodal feature fusion.

* Survival analysis.

3.2 Multimodal feature extraction

CT images feature extraction with 3D-ResNet

As is shown in Figure.l our framework requires two mul-
timodal inputs, CT images, and clinical data from the ac-
cording patient. To be specific, CT images are introduced
to the radiomics embedding layer and clinical data are in-
troduced to the clinical embedding layer. We propose 3D-
ResNets as our network structure for the low-level image
feature learning. As shown in Figure 1 and Figure 2, 3D-
ResNets can be built by basic blocks or ”bottleneck” building
blocks, the number of which may vary from 18 to 152 in the
whole network. For instance, 3D-ResNet-18 contains 4 basic
blocks, each block contains 4 convolutional layers (convl-
conv4). Different from 2D ResNet, features extracted from
3D ResNet are calculated in all three-dimensional directions
within the tumour volume, thereby taking the spatial loca-
tion of each voxel compared with the surrounding voxels into
account[Aerts er al., 2014]. It worth noting that, in order
to eliminate the vanishing and exploding gradients types of
problems in very deep neural network, we add extra shortcut
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Figure 1: The framework of deepMMSA. DeepMMSA mainly has three module: (1)First it employs the 3D-ResNet in combination with
plain networks for multimodal feature extraction; (2) Then it uses simple feature fusion method (early fusion) for multimodal fusion; (3)
Lastly, during desicion making stage, plain neural network is designed for the survival prediction.

connections in our model. The advantage of such residual
learning is that it enables the reuse of features. Since our
dataset is relatively small compared to other general datasets
for image recognition, we use data argumentation techniques
before importing the data into the model.
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Figure 2: A deeper reseidual function F' for 3D-ResNet. Left: a
building block for 3D-ResNet-18/34. Right: a "bottleneck” building
block for 3D-ResNet-50/101/152.

The residual building block can be formulated as:
y=F(z)+=x 3)

where F' is the deeper residual function, x is the input, and y
is the output.

Clinical record feature extraction network /model

The clinical embedding layers introduce clinical data to the
network separately aims to capture the survival information
indicated within clinical data. For clinical data, a neural net-
work with two hidden layers was proposed to extract features.

As is shown in Figure.1l, the 27D non-image features were
extracted by a network, which in combination with the image
features is processed in later fusion stage.

3.3 Multimodal feature fusion

During feature fusion stage, multimodal features from CT im-
ages and clinical records are difficult to be fused together di-
rectly. This is due to that the features from different modal-
ities have different scales or statistical properties. Thus, to
solve this problem, we applied the Batch Normalization (BN)
technique to adjust the mean and variance of extracted fea-
tures in each modality before fusion procedure. Given the
features 21, 2o, ..., 2, Over a batch, Z; is calculated as:
G=mi——tl + B, (4)
\Vo; t+e€
where ~;, 8; are the parameters to be learned, u; is the mean
value of z; over the batch, o; is the standard deviation of z;
over the batch, € is set to a very small number such as 1078,

3.4 Survival analysis network/ model

Survival analysis network/model is the last module in the
framework and is intended as a overall feature analyze to get
the final survival time prediction. In this module, to meet the
requirement for specific problem, any survival analysis model
can be used.It can be models from traditional statistical meth-
ods such as Kaplan-Meier survival analysis, Cox proportional
hazards regression model. Either from novel machine learn-
ing methods, such as survival trees, and deep neural network.
All the mentioned models can be used to analyze the input
from multimodal features in our proposed fusion layer. In
this work, we define the survival time as the label, and use



the one hidden layer neural network with one dimension out-
put layer for the regression setting and overall optimization
convenience. The only difference is that we normalize the
model output with Sigmoid function to be on the same scale
with the normalized ground truth,
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and we use MSE loss function and L2 regularization penalty
term as the objective function which is defined as:

Yi =

N M
. 1 12
minimize L = Nzl(yz ) +)\2le (6)
1= J=

where w is the model parameter and the total number is M.
A is the penalty coefficient.

4 Experiments

We conduct extensive experiments based on NSCLC pa-
tients from TCIA to validate the performance of our proposed
method DeepMMSA with several state-of-the-art methods in
terms of the prediction accuracy for the survival time for each
patient. Besides, we also evaluate the prediction result by
concordance. Afterwards, we perform several ablation exper-
iments regarding different network structures to determine the
best structure.

4.1 Dataset

In this work, we considered 422 NSCLC patients from TCIA
to assess the proposed framework. For these patients pretreat-
ment CT scans, manual delineation by a radiation oncologist
of the 3D volume of the gross tumor volume and clinical out-
come data are available [Clark ef al., 2013]. The correspond-
ing clinical data are also available in the same collection. The
patients who had neither survival time nor event status were
excluded from this work.

4.2 Data preprocessing

For CT images, we resize the raw data which is the 3D vol-
ume of the primary gross tumor volume into 96 * 96 x 8. Af-
ter that, we transform the range linearity into [0,1]. Then,
to prevent overfitting problem, we perform data argumenta-
tion which includes three methods: rotate, swap, and flip.
Then we get 422 « 8 = 3376 samples, among which there
are 373 * 8 = 2984 uncensored samples and 49 * 8 = 392
censored samples.

Clinical data contains categorical data and non-categorical
data. Firstly, missing value is a common problem in medical
data and may pose difficulties for data analysing and mod-
elling. Specifically, in our dataset, the "age’ category contains
a few missing values. After observing the data, we find that
the age of patients in the dataset is close to each other. Thus,
we impute the mean value and fill it into the missing value.
Afterwards, In order to fit into our model, we use the one-
hot encoder to encode categorical data into numbers, which
allows the representation of categorical data to be more ex-
pressive.

Then, We use the min-max feature scaling method and
standard score method to perform data normalization, such

as age and survival time. For input x, the min-max feature
scaling method’s output is:
x — min(x)

v maz(x) — min(zx) ™

and the standard score method’s output is:

w/:x_ﬂ (8)

g

where p is the mean of x, and o is the standard deviation of
X.

For single patient with multiple tumors, we select the pri-
mary gross tumor volume ("GTV-17) to be processed in our
work, while other tumors such as secondary tumor volumes
denoted as "GTV2”, ?’GTV3” to name just a few, which were
occasionally present, were not considered in our work.

4.3 Experiment setup

We train and evaluate the framework on the NSCLC-
Radiomic dataset following 5-fold cross-validation with the
patient-level split. We divided the dataset into training, vali-
dation and testing data into 6:2:2 respectively. For hyperpa-
rameters tuning such as the penalty coefficient, we use the
validation dataset to fine-tune and get the optimized hyper-
parameters. In training process, we use 200 epochs in total
with Adam as optimizer. The batch size parameter is set as
64. The initial learning rate is set as 0.001, then the learning
rate is decayed by 0.5 in every 40 epochs.

Since we use the survival time as label, not cumulative haz-
ard. In the training and validation process, we only use the
uncensored data for precised survival time and objective func-
tion calculation, and in the testing process, we use all data for
concordance evaluation and uncensored data for MAE evalu-
ation.

Since this is the first work to use multimodal framework
for NSCLC survival analysis, we implement several state
of the art survival analysis methods as baselines to com-
pared with our work. The baseline methods including Cox-
time [Kvamme er al., 2019]), DeepHit [Lee et al., 2018],
CoxCC [Kvamme et al., 2019], PC-Hazard [Kvamme and
Borgan, 2019] and the regular cox regression.

4.4 Ablation study

To find a optimal network for our problem, we consider to
perform ablation experiments based on the following four as-
pects of network architecture:

* How the depth of Resnet effect the performance? Which
3D structure is the best?

e Whether multiple modalities outperform single modal-
ity?

* What the best ratio set between image data and clinical
data in in fusion stage?

* Whether hidden layer should add in survival analysis
stage?

Firstly, the evaluation of different depth of Resnet and
whether multiple modalities is better than single modality is



CT images Multi-modality

Loss C-index | Loss C-index
r3d18 0.1023 0.5782 0.0847 0.6287
r3d34 0.0975 0.5942 0.0757 0.6490
r3d50 0.1026 0.5804 0.0760 0.6375
r3d101 | 0.1071 0.5660 0.0795 0.6142

Table 2: To evaluate the performance of different ResNet structure
and effect of whether using multiple modalities.

Hidden No hidden

Loss C-index | Loss C-index
512:27 | 0.0757 0.6490 0.0760 0.6376
100:27 | 0.0745 0.6512 0.0755 0.6421
25:27 0.0739 0.6580 0.0761 0.6450
5:27 0.0765 0.6403 0.0793 0.6215

Table 3: To evaluate the effects of different ratio between modalities
features in fusion procedure and the performance of survival analysis
neural network with or without hidden layer.

conducted. By fixing the ratio of multiples modalities fea-
tures in fusion stage equals 512:27 with one hidden layer,
four different structures was tested. Table. 2 shows that, our
model of r3d34 structure with multiple modalities achieves
the best performance. Through experiments, the results vali-
date our assumption and show the effectiveness of using mul-
tiple modalities in survival analysis.

Moreover, using the best structure r3d34, we step further to
observe the effects of the changing the ratio between modali-
ties with and without hidden layer. It can be done by chang-
ing the number of perceptrons for image and non-image fea-
tures. The comparison results list in Table 3 shows that set-
ting the ratio between images and non-image modalities as
25:27 achieve the best performance. Besides, adding hidden
layers in the survival analysis module can further improve
the performance. After ablation experiments, the best frame-
work architecture of using r3d34 structure, setting the ratio
between multiple modalities as 25:27 with one hidden layer
outperform the other structures in this work.

The results indicate that NSCLC prognosis information can
be learned from CT images. Using multimodal structure,
more information can be jointly extracted and learned from
various information sources and non-linearly transformed in
to a deep network therefore improve the overall prediction
accuracy. Furthermore, using multiple modalities improves
the biggest marginal performance compared with using sin-
gle modalities.

4.5 Results

The loss in the training and testing process is shown in Figure
3.

For a fair comparison, we perform five state-of-the-art
methods as baseline methods from previous work for survival
analysis. As shown in Table 4, we compare our framework
and with other five baseline models. The results show that
our framework achieves the best performance. Besides, the
results verify that compared to the methods(Cox-time, Deep-
Hit, etc.) which simply use clinical data, DeepMMSA shows
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Figure 3: Training and testing process.

Model MAE C-index
Cox-time 0.183 0.6152
Cox regression | 0.204  0.6009
CoxCC 0.183 0.6120
PC-Hazard 0.191  0.6094
DeepHit 0.183 0.6133
DeepMMSA 0.162 0.6580

Table 4: Result vs baselines

its superior of effectively extracting the supplementary infor-
mation from multiple modalities, and can significantly im-
prove the prediction result.

5 Conclusion and Future Work

In this paper, we proposed an fully automated end-to-end
multimodal deep network framework for NSCLC survival
analysis. Our framework can learn complementary repre-
sentations from the CT image and non-image clinical data
modalities. Extensive experimental result shows that Deep-
MMSA outperform conventional methods using single source
of information alone. But there is still some future work to do.
There are some potential ways to improve the performance of
the proposed framework. Since there are three basic mod-
ules for multimodal deep learning survival analysis frame-
work, we consider to made improvements based on following
three aspects:

e Provide more complementary information by adding
more modalities to improve the performance, such as
e-nose diagnosis time series data, etc, and try to fully
exploit the inherent correlations across multiple modali-
ties.

 Perform different multimodal fusion approaches, such as
decision fusion and hybrid fusion method, ect.

¢ In the survival analysis module, theoretically, we can use
any survival analysis model, such as cox-time, deepsurv,
to improve performance of our framework.
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