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Abstract: Introduction: Patients with obstructive sleep apnea (OSA) can cause serious health problems 1

such as hypertension or cardiovascular disease. The manual detection of apnea is a time-consuming 2

task, and automatic diagnosis is much desirable. The contribution of this work is to detect OSA using 3

a multi-error-reduction (MER) classification system with multi-domain features from bio-signals. 4

Methods: Time-domain, frequency-domain, and non-linear analysis features are extracted from 5

oxygen saturation (SaO2), ECG, airflow, thoracic, and abdominal signals. To analyse the significance 6

of each feature, we design a two-stage feature selection. Stage 1 is the statistical analysis stage, and 7

Stage 2 is the final feature subset selection stage using machine learning methods. In Stage 1, two 8

statistics analyses (the one-way analysis of variance (ANOVA) and the rank-sum test) provide a 9

list of the significance level of each kind of feature. Then, in Stage 2, the support vector machine 10

(SVM) algorithm is used to select a final feature subset based on the significance list. Next, an MER 11

classification system is constructed, which applies a stacking with a structure that consists of base 12

learners and an artificial neural network (ANN) meta-learner. Results: The Sleep Heart Health Study 13

(SHHS) database is used to provide bio-signals. A total of 66 features are extracted. In the experiment 14

that involves a duration parameter, 19 features are selected as the final feature subset because they 15

provide a better and more stable performance. The SVM model shows good performance (accuracy 16

= 81.68%, sensitivity = 97.05%, and specificity = 66.54%). It is also found that classifiers have poor 17

performance when they predict normal events in less than 60 seconds. In the next experiment stage, 18

the time-window segmentation method with a length of 60s is used. After the above two-stage feature 19

selection procedure, 48 features are selected as the final feature subset that give good performance 20

(accuracy = 90.80%, sensitivity = 93.95%, and specificity = 83.82%). To do the classification, Gradient 21

Boosting, CatBoost, Light GBM, and XGBoost are used as base learners, and the ANN is used as the 22

meta-learner. The performance of this MER classification system has the accuracy of 94.66%, the 23

sensitivity of 96.37%, and the specificity of 90.83%. 24

Keywords: feature extraction; feature selection; polysomnography, sleep apnea detection 25

1. Introduction 26

Obstructive sleep apnea (OSA) is the most common breathing disorder during sleeping, 27

which is caused by repeated partial or total obstruction of the upper airway [1]. The 28

obstruction of the upper airway may last for 10 seconds or more. OSA has a risk for 29

several complications, such as hypertension and cardiac diseases. The number of apneas 30

and hypopneas in one hour during sleep (apnea-hypopnea index, AHI) diagnoses the 31

severity of OSA. Clinically, for diagnosing OSA, polysomnography (PSG) is considered the 32
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gold standard. PSG records overnight electrocardiogram (ECG), electromyogram (EMG), 33

electrooculogram (EOG), electroencephalogram (EEG), airflow, respiratory effort, oxygen 34

saturation (SaO2), body position, and snore signals. The diagnosis of OSA by trained 35

specialists requires expensive human resources and relies on the experience level of a 36

specialist. It is a time-consuming and difficult task for expert physicians to analyse a large 37

volume of data that is collected overnight. Thus, an automatic OSA detection system is 38

desirable to help doctors during a diagnostic process. 39

Recently, studies on automatic detection methods using PSG signals were reported. 40

The recent work had shown that SaO2 signals provided discriminative information in sparse 41

representation to detect apnea-hypopnea events [2]. Systematic and sporadic noise were 42

removed from airflow signals using the sliding window and short-time slice methods. Then, 43

a Bayesian criterion is used to classify apnea or hypopnea events [3]. Vaquerizo-Villar et al. 44

[4] used anthropometric variables, time-domain features, and spectral features from SaO2 45

recordings to classify apnea from the normal events using the multi-layer perceptron. In [5], 46

unlabelled ECG signals provided features obtained by the sparse auto-encoder method, and 47

an artificial neural network (ANN) was employed to detect OSA. Then, the hidden Markov 48

model was used to improve the performance. An optimized convolution neural network 49

structure was used to develop the apnea event, and SaO2 signals were used [6]. In Study [7], 50

the authors proposed a new probabilistic algorithm. A Gaussian mixture probability model 51

was used to detect apnea events based on the posterior probabilities of the respective events. 52

In Study [8], the authors used a hybrid feature selection method to obtain multi-domain 53

significant features from ECG, SaO2, and abdominal signals.Mahsa Bahrami [9] used ECG 54

recordings and hybrid deep models to achieve high performance. Yao Wang [10] designed a 55

single-channel EEG sleep monitoring model based on the bidirectional long and short-term 56

memory network (the accuracy of 92.73%). 57

The four contributions of this paper are as follows. First, we extracted new time- 58

domain, frequency-domain, and non-linear features from multiple bio-signals. Second, 59

we designed a two-stage feature selection to select a feature subset. Third, for practical 60

reasons, we proposed a time-window method and combined it with classifiers to achieve 61

good results. Fourth, we designed a multi-error-reduction (MER) classification system that 62

utilizes the proposed feature extraction and selection to improve classification performance. 63

This paper is organised as follows. Section 2 discusses the general structure, dataset, 64

feature extraction methods, two-stage feature selection, and some classification algorithms. 65

Section 3 reports results with discussions. A conclusion will be drawn in Section 4. 66

2. methodology 67

2.1. General Structure 68

Figure 1. Components of OSA detection system
Fig. 1 illustrates the basic components of the proposed OSA detection system. The 69

process starts with PSG signal collection, followed by a signal pre-processing module with 70

segmentation and filtering. Then, a feature extraction module obtains features from the 71

PSG signals. Next, a feature selection module determines a useful feature subset. Finally, 72
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the selected features are put into the MER classification system. Each input event can be 73

labelled as normal or apnea. 74

2.2. Collection of sleep studies from a database 75

To construct our apnea classification system, we use the Sleep Heart Health Study 76

(SHHS) database provided by the National Heart Lung & Blood Institute. The dataset 77

covers people over 40 years old and consists of thoracic, abdominal, airflow, SaO2, and ECG 78

signals. Thoracic and abdominal excursions are recorded by inductive plethysmography 79

bands and sampled at 10 Hz. The bands are placed on a subject’s thorax and abdomen. 80

SaO2 signals are collected by a finger-tip pulse oximetry and sampled at 1 Hz. Airflow 81

signals are collected by a nasal-oral thermocouple and sampled at 10 Hz. The airflow 82

sensors are placed under a subject’s nose. ECG is collected by a bipolar lead, sampled at 83

125 Hz, and 2 leads place R subclavicle - L lower rib. Heart rate (RR intervals) signals are 84

derived from ECG signals sampled at 1 Hz. A sleep physiologist labels each apnea event, 85

and its start and end points. Fig. 2 shows a piece of SaO2 signals, an apnea event, and its 86

start and end points. In this study, ECG, abdominal, thoracic, airflow, and SaO2 signals are 87

used. 88
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Figure 2. One apnea event duration in SaO2 signals: the duration is between the apnea start line and
the apnea end line

2.2.1. Feature extraction using SaO2 signals 89

We use 12 multi-domain extraction methods to obtain features from the SaO2 signals. 90

They are features 1 - 12 in Table 1. The mostly used index for diagnosing OSA is the cumu- 91

lative time that lasts below a threshold. As a preprocessing of the data, non-physiological 92

artifacts are considered as artifacts when the point-to-point difference is more than 8%, and 93

the median value is calculated for the beginning 10s to replace the artifacts. 94

In this study, the feature set covers multi-domain features that include the median of 95

each window (med), the maximum-to-minimum changes which were more than 2% of each 96

window (MM2), the kurtosis of each window (kur), the variance of each window (var), the 97

minimum of each window (min), the mean of each window (mean), the number of zero- 98

cross in the window (NumZC), and the complexity of each window (comp). Complexity 99

represents the length of the shortest description in an SaO2 window. The Poincare SD1 100

is computed, which shows the short-term variability of each SaO2 window [11]. Two 101

features are the time spent below and above the 98% maximum in each window (Bel98 and 102

Abo98). Finally, the power spectral density (PSD) method is used to show the intensity of 103

desaturation events. A 5th-order Yule-Walker autoregressive estimate is used to obtain the 104

mean of PSD in the 0.016 - 0.05Hz frequency band in each window (mean_PSD0.016/0.05). 105
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2.2.2. Feature extraction using airflow signals 106

Airflow recordings provide features 13 to 22 shown in Table 1. The apnea index from 107

airflow signals is related to a decrease to at least 10% of its basal value that sustains for 108

at least 10s [12]. The apnea events are scored for at least two missed breaths [13]. To 109

preprocess that data, we obtain the median of a 10-second window, which is used to correct 110

the baseline. For noise removal, a 3rd-order Butterworth low-pass filter with a cut-off 111

frequency of 3 Hz is used. Airflow recordings are re-sampled at 1 Hz. 112

In each window, there are statistical features, including the mean (mean), the median 113

(med), and the standard deviation (std). On the other hand, the decreases and increases 114

of airflow signals throughout the night are related to the frequency domain. PSD and the 115

wavelet algorithm are used to explore the differences in the spectral information between 116

the sleep apnea positive and negative groups. The Welch method uses a segment length of 117

five samples with 2.5 overlapped samples. The mean within the frequency ranges of 0 - 0.1 118

Hz and 0.4 - 0.5 Hz in each window is calculated (mean_PSD0/0.1 and mean_PSD0.4/0.5). 119

The depth of wavelet transformation is three, and Daubechies wavelets three is used. The 120

wavelet can decompose a given window signal to obtain means of one approximation level 121

and three detail coefficient levels (mean_D1 to mean_A3). Finally, there is a variable called 122

complexity in each window (comp). 123

2.2.3. Feature extraction using abdominal and thoracic signals 124

We use time-domain and frequency-domain methods to process abdominal and tho- 125

racic recordings. Features 23 - 28 are extracted from the abdominal recordings, and Features 126

29 - 34 are extracted from the thoracic recordings as shown in Table 1. The collapse of 127

the upper airway leads to OSA, which causes activities of the respiratory muscles. For 128

abdominal and thoracic recordings, we use the median of a 60-second window to start the 129

baseline correction. A Butterworth filter with a pass-band of 0.05 - 4 Hz is then used to 130

remove noise. 131

The feature set includes the summation and the standard deviation of each absolute 132

window (sum_abs and std_abs) and the mean of each window (mean). Yule-Walker 133

method and wavelet transformation are used to extract frequency-domain features. The 134

segmentation length of the Yule-Walker method is 40 samples, and the mean of the 80 135

- 100Hz frequency range in each window (mean_PSD80/100) is obtained. The wavelet is 136

Daubechies 2 with a depth of two, and the mean of the 1st and 2nd detail levels are computed 137

(mean_D1 and mean_D2) in each window. Next, features in the frequency domain and 138

time domain are extracted from thoracic recordings. This feature set consists of the median, 139

summation, mean, variance, and standard deviation of each window (sum, med, std, mean, 140

var). The summation of the 80 - 100Hz frequency band (sum_PSD80/100) in each window is 141

computed by the Yule-Walker method. 142

2.2.4. Feature extraction using ECG signals 143

In this study, three kinds of feature extraction methods are used to obtain features 144

from ECG signals. Table 1 shows them as features 35 - 66. To process the data, first, the 145

0.05 - 40 Hz band-pass 3rd Butterworth filter is applied to remove noise and takes baseline 146

correction. Then, the R-peaks are found by the modified Pan-Tompkin algorithm. QRS 147

series are extracted by a symmetric window of 120 ms around the R-peaks. Because of the 148

low ECG quality, there is a processing step to calculate a corrected RR interval sequence. 149

In this work, we use the heart rate correction method from [14]. Finally, ECG-derived 150

respiratory (EDR) signals are obtained from the ECG recordings by the Physionet EDR 151

method since EDR signals can reflect the motion of the thoracic cavity during sleep. 152

We first obtain features using time-domain methods. These features include the 153

number of pairs of adjacent RR intervals that the later RR interval is more than the previous 154

one by more than 50 ms (NN50_RR), the standard deviation of the RR interval (SDSD_RR), 155

the standard deviation of the RR interval between the standard deviation at the first 30 156

seconds and the one at the second 30 second (tSD_RR), the standard deviation of RR 157
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interval (std_RR), the variance, the kurtosis of each ECG window (var and kur), the mean 158

of each RR interval window (mean_RR), and a ratio of the standard deviation to the mean 159

of each EDR window (CV_EDR). 160

Second, we use PSD and wavelet transformation to extract frequency-domain features. 161

In each window, we extract spectral features such as spectral spread (SS) and spectral 162

decrease (SD). The wavelet transformation with a Symlet wavelet of order 3 and a level 163

number of 7 is used. Shannon’s entropy (entropy_D1 to entropy_D7) and variance (var_D1 164

to var_D7) are computed using seven detailed coefficient levels. Wavelet spectral density 165

(WSD) is used to analyze the RR series (WSD_RR). PSD is used to process the RR series 166

and ECG signals. In each RR interval window, the dominant frequency is found in the 0.03 167

- 0.5 Hz frequency range (max_PSD0.03/0.5). In each ECG window, we extract the mean of 168

PSD in 10 - 20Hz and 80 - 100Hz (mean_PSD10/20 and mean_PSD80/100). 169

Finally, two serial correlation coefficients are extracted from each RR interval window 170

(SCrC_3_RR to SCrC_4_RR). Here, the kernel principal component analysis (kPCA) is done 171

on the QRS recordings, and the maximum of the diagonal matrix of kPCA (max_dia_kPCA) 172

and the relative power of the second principal component (RP_2_PC) are calculated in each 173

QRS window. 174

In summary, we obtain 66 features. Features 1 - 12 are from SaO2 signals, Features 13 - 175

22 are from airflow signals, Features 23 - 28 are from abdominal recordings, Features 29 - 34 176

are from thoracic recordings, and Features 35 - 66 are from ECG signals, which are shown 177

in Table 1. 178
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Table 1. Feature selection results in the experiment with event duration using statistical analysis
(Features 1-12 from the SaO2 signals, features 13-22 from the airflow signals, features 23-28 from the
abdominal signals, features 29-34 from the thoracic signals, and features 35-66 from the ECG signals;
four dashed lines divide the table into five parts according to the kind of signals)

Feature λfeature Feature λfeature
1.med 581 34.sum_PSD80/100 341
2.MM2 748 35*.NN50_RR 1432
3.kur 651 36.SDSD_RR 351
4.var 582 37.tSD_RR 563
5.min 661 38.std_RR 330

6*.mean 1414 39.var 678
7*.NumZC 997 40.kur 671

8*.comp 1215 41.mean_RR 637
9.SD1 774 42.CV_EDR 168

10*.Bel98 1509 43*.SS 1477
11*.Abo98 831 44*.SD 1178

12*.mean_PSD0.016/0.05 1565 45*.entropy_D1 1497
13.mean 136 46*.entropy_D2 1505
14.med 149 47*.entropy_D3 1522
15.std 167 48*.entropy_D4 1529

16.mean_PSD0/0.1 427 49*.entropy_D5 1527
17.mean_PSD0.4/0.5 417 50*.entropy_D6 1529

18.mean_D1 12 51*.entropy_D7 1497
19.mean_D2 17 52.var_D1 606
20.mean_D3 18 53.var_D2 645
21.mean_A3 131 54.var_D3 668

22.comp 635 55.var_D4 700
23*.sum_abs 1475 56.var_D5 660
24.std_abs 474 57.var_D6 626
25.mean 590 58.var_D7 610

26*.mean_PSD80/100 947 59.WSD_RR 350
27.mean_D2 31 60.max_PSD0.03/0.5 352
28.mean_D1 26 61.mean_PSD10/20 711

29.sum 23 62.mean_PSD80/100 586
30.med 446 63.SCrC_3_RR 392
31.std 428 64.SCrC_4_RR 336

32.mean 16 65*.max_dia_kPCA 1526
33.var 363 66.RP_2_PC 558

2.3. Feature selection 179

A large number of features increase the processing time, but it might not be needed as 180

some features could be redundant. Hence, a feature selection is used to remove redundant 181

features before the classification stage, which helps to prevent over-fitting and reduce 182

computational load. We apply a two-stage procedure to make the feature selection. Stage 1 183

is the statistical analysis stage, and Stage 2 is the final feature subset selection stage using 184

machine learning methods. First, we use the one-way analysis of variance (ANOVA) and 185

then the rank-sum test to evaluate each feature. Redundant features are removed from the 186

feature set according to the results. Second, the reduced feature set is divided into different 187

classes. The performance is evaluated by a support vector machine (SVM) model with 188

different kernels and parameters. The hill-climbing method is also applied to select the best 189

feature subset. 190

2.3.1. Statistics analysis stage 191

To determine the significance of each feature, ANOVA and the rank-sum test are used. 192

We use a simple threshold (p-value of ANOVA < 0.05) to select positive features. Similarly, 193

in the rank-sum test, there is a simple value (p-value = 1) to detect positive features. For 194

each patient, the pair of p-values for each feature is obtained. If both p-values are positive 195

for a feature, it is considered significant to a patient. After obtaining the p-values of 66 196
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features for all patients, we set λfeature as the number of positive pairs for each feature, and 197

the maximum value of λfeature is the number of processed patients’ PSG signals. 198

In this study, to select useful features, we set a threshold as half of the processed PSG 199

signals. One feature is put into the selected subset if its λfeature is more than the threshold. 200

The selected features are then divided into different classes depending on the distribution 201

of their λfeature values. In the next stage, the hill-climbing algorithm is used to confirm the 202

best feature subset with the classes. 203

2.3.2. Support vector machine selection stage 204

To confirm the best feature subset, we used the SVM method to select the best classes 205

with the most relevant information separating apnea from normal according to the classes 206

obtained from the former stage. Initially, the features in the top class are fed to SVM models, 207

and the performance is recorded. Then, the same is done to the next class. The process 208

is repeated until all classes are done. The SVM algorithm is implemented with different 209

kernels and parameters. In this stage, we compare the performance of different kernels. 210

The kernels used in this paper are shown in Table 2. 211

Table 2. List of kernel functions used in SVM

Kernel Parameters Mathematical Formula
Linear K(xi,xj)=xi,xj

Polynomial K(xi,xj)=(xi,xj+1)d d is the degree of polynomial

Radial Basis Function (RBF) K(xi,xj)=e−
∥∥xi−xj

∥∥2
/2σ2

To verify the performance, we use four measures, namely accuracy, sensitivity, speci- 212

ficity, and AUC (the area of ROC curve). 213

sensitivity =
TP

TP + FN
(1)

speci f icity =
TN

TN + FP
(2)

accuracy =
TP + TN

P + N
(3)

where P is condition positive, and N is condition negative, and TP is true positive, and 214

TN is true negative, FP is false positive, and FN is false negative. Ideally, if the sensitivity 215

value is 1 and the specificity value is 0, AUC has the largest value (AUC = 1). 216

2.4. Multi-errors-reduction classification system 217

To improve the performance of apnea classification, we propose an MER classification. 218

A classifier has its error, and the errors of different classifiers are in different fields. MER 219

classification can combine the results of classifiers and minimize an error of a classifier 220

using other classifiers, and provide labels more accurately. The MER classification consists 221

of five phases. First, the selected features are fed to the MER classification system. Second, 222

some classifiers with good performance are considered as basic learners in level-0. Third, 223

we implement the classifier combination method as a potential solution to improve the 224

classification performance. The basic assumption of classifier combination is that the 225

misclassified instances of individual classifiers do not overlap, and different individual 226

classifiers can provide different perspectives of classification. Classifier combinations may 227

use complementary information to improve performance. Some basic classifier combination 228

schemes include maximum voting, average voting, and weighted average voting. In this 229

paper, we use the stacking ensemble method to do the classifier combination. In the last 230

phase, a meta-learner is used to make the final prediction. 231

The above method borrows a boosting concept, which is based on the idea that a 232

combination of simple classifiers can have better performance than any of the simple 233
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classifiers alone [15]. With the same training data, a simple classifier (basic learner) is able 234

to produce labels with a probability of error. Then, the final learner is able to minimize 235

small error probability arbitrarily and predict labels more accurately by combining the 236

basic learners (as illustrated in Fig. 3). 237

Dataset

Subset 1

Subset 2

Subset n

Model 1

Model 2

Model n

Final

Prediction

Figure 3. The concept of boosting
In this paper, some boosting methods are used, including Gradient Boosting, CatBoost 238

from Yandex, Light Gradient Boosting (Light GBM), and XGBoost [16]. Classic boosting 239

methods minimize the errors by updating the weights of a training set, but Gradient Boost- 240

ing uses the mistake-residual error directly. CatBoost is a kind of gradient boosting based 241

on decision trees. “Cat" comes from “Categories", and CatBoost can handle categorical 242

features in a large dataset quickly. Light GBM is also an algorithm based on a decision tree, 243

and it fits data to split the tree. It can reduce the loss and improve accuracy. The progress 244

is made based on the leaf-wise method when growing on the same leaf. XGBoost is a 245

decision-tree-based algorithm. It uses tree-pruning, parallel processing, handling missing 246

values and regularization to avoid overfitting and optimize the classic boosting algorithm 247

for enhanced performance. 248

Stacking is one of the most widely used ensemble approach [17]. It combines predic- 249

tions of base classifiers (level-0) for a meta-level (level-1) classifier. The meta-level classifier 250

corrects the decisions of the base classifiers and predicts the final labels, as shown in Fig. 251

4. To train the meta-level classifier, the k-fold cross-validation is used [18]. To form a 252

meta-instance, the decisions from base classifiers are combined with the gold standard 253

in each training fold. Then, a meta-level classifier is trained based on the meta-instances. 254

When a new instance is classified, the outputs of the base classifiers are calculated first. 255

Then these outputs are fed to the meta-classifier for the final results. 256

Dataset

Model 1

Model 2

Model n

Final

Prediction

Meta-

instances

Meta-

classifier

Base classifiers

(level-0)

level-1

Figure 4. The concept of stacking
The meta-classifier (level-1) is an ANN, extensively used for binary classification in 257

sleep apnea studies. In Fig. 5, the ANN schematic representation is shown. Each input 258

vector is put into the input layer, and it is distributed to a neuron in the first hidden layer. 259

Each neuron has its weight vector associated with the connections to the input vector. The 260

neuron sums the inputs, which is processed by a non-linear activation function. The output 261

vector of the hidden layer is multiplied by other weight vectors. The final prediction is 262

obtained from the final layer. The number of nodes will affect the performance of the ANN. 263
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Too few hidden nodes may not fit for complex tasks. However, if the network has too many 264

hidden nodes, the noise in the training data make causes the overfitting problem [19] [20]. 265

The meta-classifier (level-1) is an ANN, which is extensively used for binary classifica- 266

tion in sleep apnea studies. In Fig. 5, the ANN schematic representation is shown. Each 267

input vector is put into the input layer, and it is distributed to a neuron in the first hidden 268

layer. Each neuron has its weight vector associated with the connections to the input vector. 269

The neuron sums the inputs, which is processed by a non-linear activation function. The 270

output vector of the hidden layer is multiplied by other weight vectors. The final prediction 271

is obtained from the final layer. The number of nodes will affect the performance of the 272

ANN. Too few hidden nodes may not fit for complex tasks. However, if the network has 273

too many hidden nodes, the noise in the training data make causes the overfitting problem 274

[19] [20]. 275

Input layer Hidden layer

Output layer

Prediction from

XGBoost

Prediction from

Light GBM

Prediction from

CatBoost

Prediction from

Gradient Boosting

Figure 5. The structure of an artificial neural network

3. Results and Discussion 276

The experiment is divided into two parts. First, the segmentation is done based on 277

event duration as it is reported by the doctor directly. It is shown in Fig. 2. In this experiment 278

part, we extract 66 features based on event duration, use the two-stage feature selection 279

to confirm a feature subset, and then use a classifier to complete sleep apean detection. 280

Second, the segmentation is done based on a common time window. In this experiment 281

part, we extract 66 features based on a time window, use the two-stage feature selection, 282

and then use the MER system to improve performance. Also, the dataset is divided into 283

the training set and the testing set. All feature selections and training processes experiment 284

in the training set, and the testing set is only used to evaluate performance. 285

3.1. Experiment with event duration 286

3.1.1. Feature selection 287

Sixty-six features are obtained by the extraction methods shown in Table 1. In this 288

study, 1,574 patients’ PSG signals are used to provide features. For each feature, there are 289

1,574 pairs of p-values. λfeature is the number of positive pairs for a feature. The values of 290

λfeature are showed in Table 1. For example, it can be seen that λfeature of Feature 12 is 1565, 291

which means that 1,565 pairs of Feature 12 are positive. To select useful features, we set 292

the threshold to 787 (which is half of the number of processed PSG signals). A feature is 293

considered significant if its λfeature is larger than the threshold. Finally, nineteen features 294

are considered as significant features, which are marked with an asterisk in Table 1. 295

To determine the final feature subset using machine learning methods, we put the 296

selected features into four classes {Classes A, B, C, and D} by comparing the distribution of 297

19 λfeature values. The Classes are shown in Table 3. They are employed in the hill-climbing 298

method in Stage 2. Kernels affect the performance of the SVM method. In this paper, we 299

evaluate the linear (R), polynomial (R and d), and RBF (R and σ) kernels. The data are 300

preprocessed by the under-sampled balance method, and outliers are removed. In Stage 2 301

of the feature selection phase, 66 features are put into SVM models with different kernels 302

and parameters. The performance with 66 features is considered as the standard. After the 303
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hill-climbing algorithm, all performance is recorded and shown in Table 4. From this table, 304

we can compare the sensitivity, specificity, and accuracy to confirm the best feature subset. 305

The performance is bold if its accuracy is more than 70%. 306

Table 3. Feature classes via the distribution of λfeature in the experiment with event duration

Feature No. Class A Class B Class C Class D
1526-1574 1491-1525 1301-1490 787-1300

SaO2 12 10 6 7 8 11
Airflow

Abdominal 23 26
Thoracic

ECG 48 49 50 65 45 46 47 51 35 43 44

From Table 4, under all features, the SVM model with RBF, σ = 25, R = 0.2 has a 307

sensitivity of 92.26% and a specificity 63.75% is considered as the standard. From the 308

stability perspective, we can see that Class ABC and Class ABCD are better than Class A, 309

Class AB, and all features. Class ABCD is more stable than Class ABC, but Class ABC holds 310

the best accuracy (79.06%). Thus, AUC is used to evaluate Class ABC and Class ABCD. 311

A comparison of AUC under different feature subsets is shown in Table 5. The AUC of 312

Class ABCD is better than the AUC of Class ABC. It can be found that Class ABCD has 313

better effectiveness and robustness. Thus, Class ABCD is considered as the feature subset. 314

Features 6, 7, 8, 10, 11, and 12 are extracted from the SaO2 signals, Features 23 and 26 are 315

extracted from the abdominal signals, and Features 35, 43, 44, 45, 46, 47, 48, 49, 50, 51, and 316

65 are extracted from the ECG signals. 317

Table 4. Sensitivity (%), specificity (%) and accuracy (%) based on the hill-climbing method using
SVM models with different kernel functions and parameters in the experiment with event duration

Kernels R Class A Class AB Class ABC Class ABCD All features
Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc

RBF σ=1
0.2 99.31 40.84 70.07 98.94 50.94 74.94 98.85 54.06 76.46 98.15 56.91 77.53 93.99 07.25 50.62
1 99.12 43.10 71.11 98.90 51.87 75.39 98.68 54.92 76.80 98.24 57.88 78.06 93.70 11.66 52.68
10 98.82 47.96 73.39 98.72 54.12 76.42 98.49 56.21 77.35 97.61 59.98 78.80 93.14 14.15 53.64

RBF σ=5
0.2 99.06 44.87 71.96 99.09 46.42 72.75 99.15 45.85 72.50 97.58 59.99 78.78 91.76 62.07 76.92
1 99.12 45.08 72.10 99.01 46.28 72.65 99.34 46.54 72.94 97.21 60.36 78.79 91.39 63.25 77.32
10 99.27 40.08 69.68 99.08 48.99 74.04 98.63 54.41 76.52 97.82 58.69 78.26 89.41 65.43 77.42

RBF σ=25
0.2 99.96 19.78 59.87 99.84 31.44 65.64 99.80 33.55 66.67 99.63 43.77 71.70 92.26 63.75 78.00
1 99.96 24.15 62.06 99.75 35.53 67.64 99.74 37.24 68.49 98.71 49.18 73.94 91.11 64.49 77.80
10 99.41 39.48 69.45 99.26 42.35 70.81 99.34 42.87 71.10 96.19 60.95 78.57 91.49 64.44 77.96

Poly d=2
0.2 98.68 45.45 72.07 98.55 52.64 75.60 98.62 54.84 76.73 97.58 59.63 78.60 14.01 91.35 52.68
1 98.79 45.43 72.11 98.47 52.70 75.58 98.48 55.95 77.21 97.75 59.07 78.41 11.99 91.43 51.71
10 98.09 49.56 73.83 94.10 56.01 75.06 98.13 57.59 77.86 47.75 64.68 56.21 1.41 98.98 50.20

Poly d=3
0.2 99.70 33.62 66.66 3.73 96.74 50.24 0 99.42 49.71 0 99.48 49.74 0 1 50.00
1 95.91 38.44 67.18 1.02 99.65 50.34 0 99.42 49.71 0 99.84 49.97 0 1 50.00
10 99.35 40.68 70.01 21.01 89.92 55.47 0 99.99 49.99 0 1 50.00 0 1 50.00

Poly d=4
0.2 0 1 50.00 3.67 95.92 49.80 0 99.26 49.63 0 99.98 49.99 0 1 50.00
1 0 99.99 49.99 0 99.92 49.96 0 99.97 49.98 0 99.95 49.98 94.24 7.21 50.72
10 0 1 50.00 1 00.73 50.36 0 99.93 49.96 0 99.94 49.97 0 1 50.00

Linear
0.2 99.92 20.30 60.11 99.67 35.00 67.34 99.46 43.94 71.70 96.01 61.00 78.50 90.41 64.69 77.55
1 99.91 20.31 60.11 99.65 35.05 67.35 99.01 46.86 72.94 95.80 61.00 78.40 90.62 64.67 77.65
10 99.92 20.29 60.10 99.76 34.75 67.26 97.60 60.52 79.06 96.30 60.96 78.63 33.31 82.37 57.84
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Table 5. AUC (%) obtained from SVM models with different kernels and parameters using Class
ABC and ABCD in the experiment with event duration

Kernels R Class ABC Class ABCD

RBF σ = 1
0.2 76.45 77.53
1 76.80 78.06

10 77.35 78.79

RBF σ = 5
0.2 72.50 78.78
1 72.94 78.78

10 76.52 78.25

RBF σ = 25
0.2 66.67 71.70
1 68.49 73.94

10 71.10 78.57

Poly d=2
0.2 76.73 78.60
1 77.21 78.41

10 77.86 56.21

Poly d=3
0.2 49.71 49.74
1 49.71 49.92

10 49.99 50.00

Poly d=4
0.2 49.63 49.99
1 49.98 49.97

10 49.96 49.97

Linear
0.2 71.70 78.50
1 72.93 78.40

10 79.06 78.63

3.1.2. Classification 318

Classification methods include the SVM algorithm, the decision tree algorithm, the 319

k-nearest neighbour algorithm, the random forest algorithm, the extra trees algorithm, the 320

linear discriminant analysis algorithm, and the logistic regression algorithm. The results 321

of each classifier are shown in Table 6 and the 19 selected features are the inputs. The 322

performance of each classifier is evaluated by sensitivity, specificity, accuracy, and AUC. 323

The SVM method gives the highest performance (accuracy = 81.68%, sensitivity = 97.05%, 324

specificity = 66.54%, and AUC = 81.79%). 325

The sensitivity of different classification methods is around 85.00% as shown in Table 326

6, which means these methods are able to classify apnea events. However, the specificity is 327

just about 68.00%, which means that normal events are not so detected by the classification 328

methods. To improve specificity, we check the performance of each testing set and compare 329

the difference between the sets with good and bad results. For example, it can be found that 330

the No. 1537 patient has 98.18% accuracy, 100% specificity, and 96.42% sensitivity, while 331

the No. 1490 patient only has 80.52% accuracy, 61.45% specificity, and 100% sensitivity. 332

The duration of all normal events of the No. 1537 patient is more than 60 seconds, and 333

the normal events are classified. On the other hand, the normal events of the No. 1490 334

patient that has the 30-second duration are not labelled as normal episodes. It is found that 335

classifiers show poor performance when they predict normal events whose duration is less 336

than 60 seconds. 337
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Table 6. Performance of each classifier with the selected features in the experiment with event
duration

Classifiers Acc (%) Sen (%) Spe(%) AUC (%)
SVM 81.68 97.05 66.54 81.79

Random Forest 81.60 85.27 77.98 81.62
Decision Tree 76.78 75.41 78.13 76.77

Extra Trees 81.35 85.25 77.50 81.38
K-Neighbors 78.28 84.03 72.61 78.32

Logistic
Regression 81.28 96.18 66.60 81.39

Linear
Discriminant 73.80 88.69 59.13 73.91

3.2. Experiment with a time-window algorithm 338

3.2.1. Feature selection 339

Based on the result that normal events with a duration of less than 60 seconds are not 340

able to be classified, the time-window method is used. The length of the time window is 60 341

seconds. As mentioned in the feature extraction methods, 66 features are extracted from the 342

ECG, SaO2, airflow, thoracic, and abdominal signals in Table 7. Before the feature selection 343

stage, the balanced and cleaned data are used. The statistical analysis results of λfeature are 344

shown in Table 7. Features 1-12 are from the SaO2 signals, features 13-22 are extracted from 345

the airflow recordings, features 23-28 are extracted from the abdominal recordings, features 346

29-34 are extracted from the thoracic signals and features 35-66 are extracted from the ECG 347

signals. 348
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Table 7. Feature selection results in the experiment with time-window using statistical analysis
(Features 1-12 from the SaO2 signals, features 13-22 from the airflow signals, features 23-28 from the
abdominal signals, features 29-34 from the thoracic signals, and features 35-66 from the ECG signals;
four dashed lines divide the table into five parts according to the kind of signals)

Feature λfeature Feature λfeature
1*.med 542 34*.sum_PSD80/100 603
2*.MM2 1036 35*.NN50_RR 497
3*.kur 508 36*.SDSD_RR 520
4*.var 1032 37*.tSD_RR 553
5*.min 1079 38*.std_RR 551

6*.mean 1079 39*.var 564
7*.NumZC 572 40*.kur 596

8*.comp 1325 41*.mean_RR 583
9*.SD1 837 42*.CV_EDR 534

10*.Bel98 480 43*.SS 570
11*.Abo98 693 44*.SD 561

12*.mean_PSD0.016/0.05 662 45*.entropy_D1 554
13.mean 54 46*.entropy_D2 580
14.med 253 47*.entropy_D3 600
15*.std 422 48*.entropy_D4 588

16*.mean_PSD0/0.1 427 49*.entropy_D5 535
17.mean_PSD0.4/0.5 54 50*.entropy_D6 587

18*.mean_D1 378 51.entropy_D7 138
19.mean_D2 151 52*.var_D1 334
20*.mean_D3 345 53.var_D2 329
21.mean_A3 324 54*.var_D3 410

22*.comp 394 55.var_D4 265
23.sum_abs 332 56.var_D5 293
24.std_abs 198 57.var_D6 311
25.mean 213 58*.var_D7 333

26.mean_PSD80/100 331 59.WSD_RR 119
27.mean_D2 282 60*.max_PSD0.03/0.5 399
28*.mean_D1 516 61*.mean_PSD10/20 470

29*.sum 516 62*.mean_PSD80/100 615
30*.med 602 63.SCrC_3_RR 78
31*.std 618 64.SCrC_4_RR 70

32*.mean 671 65*.max_dia_kPCA 578
33*.var 574 66*.RP_2_PC 615

The hill-climbing algorithm is used to identify the most discriminative features. Ini- 349

tially, the single-best feature is picked according to the largest λfeature value. In Table 7, 350

the single-best feature is found to be feature 8 comp (λfeature = 1325) from the SaO2 signal. 351

It is put into the SVM method, and the performance is obtained. The next best feature 352

is then added into the SVM method, and the performance is obtained. This process is 353

repeated until all the features have been added, and the best feature subset is determined 354

by comparing all the obtained performances. Considering 66 features as inputs, the clas- 355

sification performance is presented in Table 8. The sensitivity is found to be 92.22%, the 356

specificity is 81.03%, the accuracy is 88.76%, and the AUC is 86.61%. These results suggest 357

that the performance with 66 features can be considered as the gold standard. The feature 358

subset with similar or better performance than the gold standard will be considered as the 359

final feature subset since it can hold good performance and reduce training time. Based 360

on the results of the hill-climbing algorithm, the best feature subset contains 48 features 361

marked with an asterisk in Table 7, which achieves a maximum accuracy of 88.80%, with a 362

good sensitivity of 91.95%, a specificity of 81.82%, and an AUC of 86.89%. These features 363

are extracted from the ECG, SaO2, airflow, thoracic, and abdominal signals. Overall, the 364

classifier discriminates OSA well when it is trained with the 48 features. 365
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Table 8. Two best performances in hill-climbing iterations with 48 and 66 features

Features Acc(%) Sen(%) Spe(%) AUC (%)
48 kinds of

features 88.80 91.95 81.82 86.89

A total 66
features 88.76 92.22 81.03 86.61

3.2.2. Multi-error-reduction Classification 366

48 Selected

Features

Basic Learners

in Level 0

Combination

Method
Meta-Learner

Final Prediction

of Apnea/Normal

Figure 6. Basic components of the multi-error-reduction classification system
To improve the performance of apnea classification, we propose an MER classification, 367

as shown in Fig. 6, which consists of five phases. First, the selected features are fed to 368

the MER classification system. Second, some classifiers with good performance are used 369

as basic learners in level-0. The third phase is the classifier combination method, which 370

potentially improves the classification performance. We use the stacking ensemble method 371

to do the classifier combination. Finally, a meta-learner is used to provide final predictions. 372

It is one of the crucial tasks to determine the basic learners in the MER classification 373

system. Classification methods are used to provide results, including the SVM algorithm, 374

Gradient Boosting, CatBoost, Light GBM, and XGBoost. The results of each classifier is 375

shown in Table 9 with 48 selected features. From Table 9, it can be seen that the boosting 376

methods have better performance than other classifiers. The best performance (accuracy = 377

90.71%) is obtained from CatBoost, with a specificity of 89.00% and a sensitivity of 91.94%. 378

The four boosting methods are considered as the basic learners in level-0. After applying 379

the stacking ensemble method, an ANN is used as the meta-learner. After the training, the 380

ANN has one input layer, one hidden layer with four nodes, and one output layer. This 381

ANN is used to provide the final prediction. 382

In the 60-second time-window experiment, the results of the MER classification system 383

(accuracy = 94.66%, sensitivity = 96.37%, specificity = 90.83%, and AUC = 93.60%) have 384

higher performance than the results from the four basic learners. Compared with the SVM 385

model shown in Table 6, the MER classification system improves the accuracy from about 386

89% to 94.66%, and there is an increase in the specificity from 80% to 90.83%. The MER 387

classification system is also used in the event duration experiment. The results of the MER 388

system show an accuracy of 85.14%, a sensitivity of 94.96%, a specificity of 75.45%, and an 389

AUC of 85.21%. Table 6 shows the results of other classifiers, and the MER classification 390

system outperforms these classifiers. 391

We also compare our results with the results in other papers. Study [10] shows 92.73% 392

accuracy. In Study [9], accuracy, sensitivity, specificity are 88.13%, 84.26%, and 92.27%, 393

respectively. In Study [2], the ROC curve analysis shows AUC, sensitivity, and specificity 394

of 93.70%, 85.65%, and 85.92%, respectively. Our results are greater than their results, and 395

it means the MER classification system uses multi-domain features from multi-bio signals 396

and an ensemble system to achieve better performance. It is the potential to be used in 397

actual doctor diagnoses and helps doctors reduce workload. 398

Table 9. Performance of each classifier with the 48 selected features in the 60-second experiment

Classifiers Acc (%) Sen (%) Spe(%) AUC (%)
SVM 88.80 91.95 81.82 86.89

Gradient
Boosting 90.60 93.23 86.94 90.08

CatBoost 90.71 91.94 89.00 90.47
Light GBM 90.34 91.88 88.20 90.04

XGBoost 90.55 91.73 88.90 90.32



Version July 12, 2022 submitted to Sensors 15 of 17

3.3. Discussion 399

In the experiment with the event duration, we find the Class ABCD is the feature 400

subset with high discrimination, which includes 19 features. The most widely used index to 401

diagnose OSA is that the oximetry value is less than a certain threshold or the cumulative 402

time spent is below a threshold. In oximetry values, sudden downturns and recoveries 403

affect the frequency band. Feature 12 is the mean of PSD within the 0.016 - 0.05Hz frequency 404

range (mean_PSD0.016/0.05). Feature 6 is the mean of the window (mean), Feature 7 is the 405

number of zero-cross in the window (NumZC), and Feature 8 is the complexity (comp). 406

Features 10 and 11 are the time spending above and below the 98% maximum (Bel98 and 407

Abo98). Feature 12 reflects the change of the frequency band, and Features 6, 7, 8, 10, 408

and 11 reflect the change of sudden downturns and recoveries in the time domain. In the 409

abdominal signals, Feature 23 is the summation of the absolute window (sum_abs), and 410

Feature 26 is the mean in the 80 - 100Hz frequency range (mean_PSD80/100). These features 411

are related to the active abdominal muscles during sleep apnea events. Patients with 412

OSA show beat-to-beat variation at lower heart rates relative to healthy subjects during 413

apnea events. The lower heart rate and the multi-domain changes lead to the selected 414

ECG features. Feature 35 is the number of pairs of adjacent RR intervals where the later 415

RR interval is more than 50 ms than the previous one (NN50_RR). Features 43 and 44 are 416

spectral spread (SS) and spectral decrease (SD), respectively. Features 45 - 51 are Shannon’s 417

entropy (entropy_D1 to entropy_D7) using seven detail coefficient levels. Feature 65 is the 418

maximum of the diagonal matrix of kPCA (max_dia_kPCA). 419

The time-window segmentation method is used because there is no duration parameter 420

in the actual data. The 48 features are related to the bio-physiological criteria. In the 421

experiment with the event duration, only 19 features from the ECG, SaO2, and abdominal 422

signals are put into the feature subset, and classifiers can offer good performance. However, 423

in the experiment with the time-window method, more features are put into the feature 424

subset, and the airflow and thoracic signals also provide some selected features. Classifiers 425

have to fit the larger feature subset and achieve similar performance in this experiment 426

because there is no detection of the duration of each event. 427

The performance of boosting methods is better than other classic machine learning 428

methods. The reason is that the classic machine learning methods usually use the train- 429

ing data once, but the boosting methods repeatedly use the training data with different 430

weights to obtain some basic classifiers. In each iteration of the boosting algorithm, the 431

weight of each instance of the training data is estimated by the accuracy of the previous 432

classifiers. Thus, this algorithm is able to focus on instances that are incorrectly detected. In 433

this way, the boosting methods are able to process complex multi-domain features from 434

different bio-signals. Fig. 6 demonstrates the basic components of the MER classification 435

system. The basic assumption of classifier combination is that the misclassified instances 436

of individual classifiers do not overlap, and different individual classifiers can provide 437

different perspectives for classification. The classifier combination can use complementary 438

information to improve the performance. 439

4. Conclusion 440

The aim of this study is to construct an apnea classification system to detect apnea 441

events. To achieve this aim, we design the apnea classification system, which consists of 442

three parts: the multi-domain feature extractions, the hybrid feature selection, and the MER 443

classification system. Multi-bio signals from PSG recordings are used to generate features, 444

and the PSG signals are collected from the SHHS database. We adopt 1,574 patients’ PSG 445

recordings from the database. The feature extraction algorithms include time-domain, 446

frequency-domain, and non-linear analysis. 447

In the experiment with the event duration, we obtain 19 selected features from different 448

domains. These features are extracted from the ECG, SaO2, and abdominal signals. They 449

reflect the change of bio-physiological signals of OSA. With the 19 features, an SVM model 450

is used as the classifier and provides good performance (accuracy = 81.68%, sensitivity = 451
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97.05%, specificity = 66.54%, and AUC = 81.79%). We find that classifiers do not predict the 452

normal events of shorter than 60 seconds perfectly to give good specificity results. Thus, 453

we do another experiment with the time-window method. 454

In the experiment with a time-window segmentation, 66 features are extracted from 455

the ECG, SaO2, airflow, thoracic, and abdominal signals. The length of the time window 456

is set at 60 seconds. After the feature selection stage, 48 features are selected from the 457

five kinds of bio-signals. The SVM model shows good performance (accuracy = 88.80%, 458

sensitivity = 91.95%, specificity = 81.82%, and AUC = 86.89%) with 48 features. In the MER 459

classification system, four basic classifiers are used. They are Gradient Boosting, CatBoost, 460

Light GBM, and XGBoost. The meta-learner is realised as an ANN. The combination 461

method is the stacking method. The system offers a higher performance (accuracy = 94.66%, 462

sensitivity = 96.37%, specificity = 90.83%, and AUC = 93.60%). 463
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Abbreviations 470

The following abbreviations are used in this manuscript: 471

472

OSA Obstructive Sleep Apnea
MER Multi-Error-Reduction
ANOVA Analysis of Variance
SVM Support Vector Machine
ANN Artificial Neural Network
SHHS Sleep Heart Health Study
AHI Apnea-Hypopnea Index
PSG Polysomnography
ECG Electrocardiogram
EEG Electroencephalogram
EOG Electrooculogram
EMG Electromyogram
AF Airflow
AB Abdominal
TH Thoracic
SaO2 Oxygen Saturation
HRV Heart Rate Variability
EDR ECG-Derived Respiration
PSD Power Spectral Density
WSD Wavelet Spectral Density
PCA Principal Component Analysis
AUC Area Under The ROC Curve
RBF Radial Basis Function kernel
kNN k-nearest neighbour algorithm
Light GBM Light Gradient Boosting
Sen Sensitivity
Spe specificity
FN False Negative
TN True Negative
N Condition Negative
FP False Positive
TP True Positive
P Condition Positive

473
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